JP3991359B2 - Cathode active material for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery using the cathode active material - Google Patents

Cathode active material for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery using the cathode active material Download PDF

Info

Publication number
JP3991359B2
JP3991359B2 JP2003390194A JP2003390194A JP3991359B2 JP 3991359 B2 JP3991359 B2 JP 3991359B2 JP 2003390194 A JP2003390194 A JP 2003390194A JP 2003390194 A JP2003390194 A JP 2003390194A JP 3991359 B2 JP3991359 B2 JP 3991359B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003390194A
Other languages
Japanese (ja)
Other versions
JP2005150057A (en
Inventor
ふみ 稲田
源衛 中嶋
晃夫 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003390194A priority Critical patent/JP3991359B2/en
Publication of JP2005150057A publication Critical patent/JP2005150057A/en
Application granted granted Critical
Publication of JP3991359B2 publication Critical patent/JP3991359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、層状結晶構造を有するリチウムと遷移金属の複合酸化物(以下、層状リチウム遷移金属酸化物と記す)を用いたリチウム二次電池用正極活物質とその製造方法、並びにこれら正極活物質と製造方法を用いたリチウム二次電池に関するものである。   The present invention relates to a positive electrode active material for a lithium secondary battery using a composite oxide of lithium and a transition metal having a layered crystal structure (hereinafter referred to as a layered lithium transition metal oxide), a method for producing the same, and these positive electrode active materials And a lithium secondary battery using the manufacturing method.

近年、携帯電話やノ−ト型コンピュ−タ−の高性能化及び急激な普及に伴って、これらに用いる二次電池に関して小型、軽量化、高容量の要望が高まってきている。リチウム二次電池はニッケルカドミウム電池、ニッケル水素電池に比べて電池電圧が高く、高エネルギ−密度で、上記の分野で急速に普及している。また最近の環境問題を背景に、電気自動車やハイブリッド自動車のモータ駆動用電源としても期待されている。特にハイブリッド自動車のエネルギー貯蔵用としては高い出力密度が必要であり、高出力放電特性と高いサイクル安定性が要求されている。   In recent years, with the high performance and rapid spread of mobile phones and notebook computers, there are increasing demands for small size, light weight and high capacity for secondary batteries used in these. Lithium secondary batteries have a higher battery voltage and higher energy density than nickel cadmium batteries and nickel hydrogen batteries, and are rapidly spreading in the above fields. Against the background of recent environmental problems, it is also expected to serve as a motor drive power source for electric vehicles and hybrid vehicles. In particular, high power density is required for energy storage in hybrid vehicles, and high power discharge characteristics and high cycle stability are required.

リチウム二次電池は正極、負極およびセパレータを容器内に配置し、有機溶媒による非水電解液を充たして構成されている。正極はアルミニウム箔等の集電体に正極活物質を塗布し加圧成形したものである。このリチウム二次電池の正極活物質としては、α-NaFeO2構造を有するコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、スピネル型構造を有するマンガン酸リチウム(LiMn2O4)などに代表されるようなリチウムと遷移金属の複合酸化物(以下、リチウム遷移金属酸化物と言うことがある。)の粉体が主として用いられ、例えば特許文献1にはその製法が詳しく開示されている。これら正極活物質の合成は一般にリチウム化合物(Li2CO3、LiOH等)粉末と遷移金属化合物(MnO2、 NiO、 Co3O4等)粉末を混合し、乾燥、焼成した後、解砕してリチウム遷移金属酸化物とする方法が広く採用されている。
正極活物質を集電体に塗布する際には、正極活物質に重量比で数%〜数十%程度の炭素粉を混ぜ、さらにPVdF(ポリフッ化ビリニデン)、PTFE(ポリテトラフルオロエチレン)等の結着材と混練してペースト状にして、集電体箔上に厚み20μm〜100μmに塗布、乾燥、プレス工程を経て正電極が作られている。
A lithium secondary battery is configured by arranging a positive electrode, a negative electrode, and a separator in a container and filling a non-aqueous electrolyte with an organic solvent. The positive electrode is formed by applying a positive electrode active material to a current collector such as an aluminum foil and press-molding it. As a positive electrode active material of this lithium secondary battery, lithium cobaltate (LiCoO 2 ) having an α-NaFeO 2 structure, lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ) having a spinel structure, etc. The powder of lithium-transition metal composite oxide (hereinafter sometimes referred to as lithium transition metal oxide) as typified by the above is mainly used. For example, Patent Document 1 discloses the production method in detail. Yes. In general, these positive electrode active materials are synthesized by mixing lithium compound (Li 2 CO 3 , LiOH, etc.) powder and transition metal compound (MnO 2, NiO, Co 3 O 4 etc.) powder, drying, firing, and crushing. Thus, a lithium transition metal oxide method has been widely adopted.
When the positive electrode active material is applied to the current collector, carbon powder of several percent to several tens percent by weight is mixed with the positive electrode active material, and PVdF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), etc. The positive electrode is made through a paste process by kneading with the binder material and applying, drying and pressing the collector foil to a thickness of 20 μm to 100 μm.

上記正極活物質は、電気伝導率が10-1〜10-6S/cm2で一般の導体と比べ低く、アルミニウム集電体と正極活物質間の電気伝導度および電気的接触状況は、電池のサイクル特性、放電レート特性に大きな影響を与える。そこで、アルミニウム集電体と正極活物質間もしくは活物質相互間の電気伝導率を更に高めるように、正極活物質よりも電気伝導率の高い炭素粉等の導電助材が使用されることが多い。 The positive electrode active material has an electrical conductivity of 10 -1 to 10 -6 S / cm 2 and is lower than that of a general conductor. The electrical conductivity and electrical contact between the aluminum current collector and the positive electrode active material are This greatly affects the cycle characteristics and discharge rate characteristics. Therefore, in order to further increase the electrical conductivity between the aluminum current collector and the positive electrode active material or between the active materials, a conductive aid such as carbon powder having a higher electrical conductivity than the positive electrode active material is often used. .

また、層状リチウムニッケルマンガン複合酸化物の製造方法については、特許文献2に述べられている。特許文献2では、層状構造を有するリチウム遷移金属酸化物の製造工程において、粉砕後の複合酸化物には、粉体の機械的強度を確保する上で、加熱処理を施すのが好ましい旨が説明されている。   A method for producing the layered lithium nickel manganese composite oxide is described in Patent Document 2. Patent Document 2 explains that in the production process of a lithium transition metal oxide having a layered structure, it is preferable to heat-treat the pulverized composite oxide in order to ensure the mechanical strength of the powder. Has been.

特開平8−17471号公報JP-A-8-17471 特開2003−34536号公報Japanese Patent Laid-Open No. 2003-34536

上記の従来技術において、通常のリチウム塩粉末と遷移金属化合物を混合し、焼成する方法で合成された正極活物質粒子は、アルミニウムの集電体と正極活物質間もしくは活物質相互間の電気伝導性が悪く、放電電流を大きくすると、内部抵抗のため放電容量がおちる。ハイブリッド自動車等の二次電池として高出力を得るためには、できるだけ内部抵抗を低くする必要がある。   In the above-described prior art, the positive electrode active material particles synthesized by mixing and firing an ordinary lithium salt powder and a transition metal compound are electrically conductive between an aluminum current collector and a positive electrode active material or between active materials. When the discharge current is increased, the discharge capacity decreases due to the internal resistance. In order to obtain a high output as a secondary battery for a hybrid vehicle or the like, it is necessary to make the internal resistance as low as possible.

以上のことより本発明は、層状結晶構造を有するリチウム遷移金属酸化物を正極活物質として用いて、高出力を得られる非水系リチウム二次電池用正極活物質の製造方法及びその正極活物質並びにこれらを用いたリチウム二次電池を提供することを目的としている。   From the above, the present invention uses a lithium transition metal oxide having a layered crystal structure as a positive electrode active material, a method for producing a positive electrode active material for a non-aqueous lithium secondary battery capable of obtaining high output, and the positive electrode active material, An object of the present invention is to provide a lithium secondary battery using these.

本発明は、リチウム化合物と遷移金属化合物を混合後、焼成、解砕、熱処理及び分級という工程を経て製造した層状リチウム遷移金属酸化物を正極活物質として用いた場合に、内部抵抗を低くすることができて、高出力が得られることを知見したものである。また、正極活物質にはある特定のpHの関与があることを見出したものである。例えばpHの値は熱処理の温度により影響を受けるもので、熱処理温度の違いにより正極活物質粒子のサイズ、粒子形態が変わるが、適切な粒径・粒形態になるよう熱処理温度を制御することにより、低内部抵抗を実現できるものと考えられる。
即ち、本発明の非水系リチウム二次電池用正極活物質は、組成式Li a Mn x Ni y z 2 [M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0.2≦x≦0.5、0.35≦y≦0.5、0≦z≦0.45の範囲で、かつx+y+z=1の層状結晶構造を有する酸化物であって、それを重量で5倍量の純水(pH7.2〜7.5)に分散した際、この上澄み液のpHが10.0〜12.0であることを特徴とするものである。また、前記正極活物質は、焼成後に解砕し、これに熱処理を行ったものであることが望ましく、前記熱処理を400℃以上700℃以下の温度で行った場合に、電池として高出力を得ることができるものである。
The present invention reduces the internal resistance when a layered lithium transition metal oxide produced through steps of firing, crushing, heat treatment and classification after mixing a lithium compound and a transition metal compound is used as a positive electrode active material. It has been found that high output can be obtained. Further, the present inventors have found that the positive electrode active material has a specific pH. For example, the pH value is affected by the temperature of the heat treatment, and the size and particle shape of the positive electrode active material particles change depending on the temperature of the heat treatment, but by controlling the heat treatment temperature so as to obtain an appropriate particle size and particle shape. It is considered that low internal resistance can be realized.
That is, the positive electrode active material for a non-aqueous lithium secondary battery of the present invention is represented by a composition formula Li a Mn x Ni y M z O 2 [M = Co, at least one of Al], 1 ≦ a ≦ 1.2, An oxide having a layered crystal structure of 0.2 ≦ x ≦ 0.5, 0.35 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.45 and x + y + z = 1, When dispersed in water (pH 7.2 to 7.5), the supernatant has a pH of 10.0 to 12.0. The positive electrode active material is desirably crushed after firing and subjected to heat treatment. When the heat treatment is performed at a temperature of 400 ° C. or higher and 700 ° C. or lower, high output is obtained as a battery. It is something that can be done.

本発明の正極活物質の製造方法は、リチウム化合物と遷移金属化合物を所定比で湿式混合し、乾燥させて顆粒状にし、大気中、窒素雰囲気中あるいは酸素雰囲気中にて850℃以上1100℃以下の温度で焼成を行って、組成式LiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0.2≦x≦0.5、0.35≦y≦0.5、0≦z≦0.45の範囲で、かつx+y+z=1の層状結晶構造を有するリチウム遷移金属複合酸化物とした後、この複合酸化物を解砕し、その後大気中、窒素雰囲気中あるいは酸素雰囲気中にて400℃以上700℃以下の温度で熱処理を行うことを特徴とするものである。 The method for producing a positive electrode active material according to the present invention comprises wet mixing a lithium compound and a transition metal compound in a predetermined ratio, drying to form granules, and 850 ° C. or higher and 1100 ° C. or lower in air, nitrogen atmosphere or oxygen atmosphere The composition is expressed by the following formula: Li a Mn x Ni y M z O 2 [M = Co, at least one of Al], 1 ≦ a ≦ 1.2, 0.2 ≦ x ≦ 0.5, 0.35 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.45, and after making a lithium transition metal composite oxide having a layered crystal structure of x + y + z = 1, this composite oxide was crushed, and then in the atmosphere, nitrogen The heat treatment is performed at a temperature of 400 ° C. or higher and 700 ° C. or lower in an atmosphere or an oxygen atmosphere.

ここで本発明の正極活物質の製造工程において、乾燥工程は、スプレードライヤによる噴霧乾燥とすることが望ましい。噴霧乾燥とは、微粒化装置を用いて乾燥室に微粒化した原料スラリーを供給し、熱風を接触させて瞬時に乾燥し、1〜100μmの顆粒状の粉末を得ることができるものであり、均一な組成の混合粉が得られることが特長である。また、前記焼成工程は、大気中、窒素雰囲気中あるいは酸素雰囲気中において850〜1100℃で行うことが望ましく、この焼成は複数回にわたって行っても良い。850℃未満の温度で焼成した場合は焼結がほとんど進行せず、また1100℃を超える温度で焼成した場合は粒子同士がくっついて解砕できなくなるためである。この焼成の後、解砕を樹脂でコ−トしたボ−ルをメディアとして用いて行うことが望ましい。そして、再び大気中、窒素雰囲気中あるいは酸素雰囲気中で400〜700℃の熱処理を行うものである。この熱処理工程は、解砕工程で結晶が受けた物理的衝撃によるダメージを修復し、電池特性を改善するためのもので、400℃未満ではその効果が少なく、700℃を超えると焼結が進行し、正極活物質の粒径や粒形態が変わって電池特性に影響を及ぼすので好ましくない。   Here, in the manufacturing process of the positive electrode active material of the present invention, the drying process is preferably spray drying using a spray dryer. Spray drying is a method in which a raw material slurry atomized into a drying chamber using a atomizer is supplied and dried in an instant by contacting with hot air to obtain a granular powder of 1 to 100 μm. The feature is that a mixed powder having a uniform composition can be obtained. Moreover, it is desirable to perform the said baking process at 850-1100 degreeC in air | atmosphere, nitrogen atmosphere, or oxygen atmosphere, and this baking may be performed in multiple times. This is because sintering hardly proceeds when fired at a temperature lower than 850 ° C., and when fired at a temperature higher than 1100 ° C., the particles adhere to each other and cannot be crushed. After this firing, it is desirable to carry out crushing using a resin-coated ball as a medium. Then, heat treatment at 400 to 700 ° C. is performed again in the air, in a nitrogen atmosphere, or in an oxygen atmosphere. This heat treatment process is for repairing the damage caused by the physical impact received by the crystal in the crushing process and improving the battery characteristics. The effect is less at less than 400 ° C, and the sintering proceeds when the temperature exceeds 700 ° C. However, it is not preferable because the particle size and particle shape of the positive electrode active material change and affect the battery characteristics.

本発明による非水系リチウム二次電池用正極活物質を用いることによって内部抵抗が低く、高出力の非水系リチウム二次電池を提供することが出来た。   By using the positive electrode active material for a non-aqueous lithium secondary battery according to the present invention, a non-aqueous lithium secondary battery with low internal resistance and high output could be provided.

以下、本発明を図面を参照して説明する。なお、本発明は以下に述べる実施例に限定されるものではない。
先ず、図1のフローチャートにより本発明の非水系リチウム二次電池用正極活物質の製造方法を説明する。
まず工程1で原料として、焼成によって酸化物となる遷移金属、例えばコバルト、ニッケル、マンガン、アルミニウムの化合物(例えばCo3O4, CoO, Co(OH)2, NiO, MnO2, Mn3O4, Mn2O3, MnCO3, Al(OH)3)のうち少なくとも一種と焼成によって酸化物となるリチウム化合物(例えばLi2CO3, LiOH, LiCl)とを所定の割合で秤量する。
これらの原料粉末を工程2で溶媒液である水を加えて攪拌してスラリーを作製し、ボールミルを用いて原料を混合及び粉砕する。尚、スラリーを作製する際に分散剤を添加してもよい。
湿式混合・粉砕後のスラリーを工程3においてスプレードライヤで噴霧乾燥させ、1〜100μm程度の顆粒を作製する。噴霧乾燥とは、微粒化装置を用いて乾燥室に微粒化したスラリーを供給し、乾燥させて球状粒子を得る方法である。なお、噴霧乾燥前には、スラリーにPVA溶液を固形分に換算して1wt%前後添加することが好ましい。
次に工程4で焼成を行う。この焼成によって層状結晶構造を有するリチウム遷移金属酸化物となる。ここでの焼成は、大気中や窒素雰囲気中、酸素雰囲気中で800℃〜1100℃で10分から24時間行う。この焼成は2回以上行っても良い。そして、焼成後の粒子の粒子径を調整する場合には、焼成後工程5において解砕する。ここで、例えばナイロン等の樹脂でコ−トしたボ−ルをメディアとして用いて、所望の粒度になるまで解砕を行う。
続いて工程6において大気中、窒素雰囲気中あるいは酸素雰囲気中で400〜700℃で0.5時間から10時間の熱処理を行う。さらに工程7にて粗大粒を分級することが望ましく、この様な工程を経て正極材料としたものである。
The present invention will be described below with reference to the drawings. In addition, this invention is not limited to the Example described below.
First, the manufacturing method of the positive electrode active material for nonaqueous lithium secondary batteries of this invention is demonstrated with the flowchart of FIG.
First, as a raw material in Step 1, a transition metal that becomes an oxide by firing, for example, a compound of cobalt, nickel, manganese, aluminum (for example, Co 3 O 4 , CoO, Co (OH) 2 , NiO, MnO 2 , Mn 3 O 4 , Mn 2 O 3 , MnCO 3 , Al (OH) 3 ) and a lithium compound (for example, Li 2 CO 3 , LiOH, LiCl) that is converted into an oxide by firing at a predetermined ratio.
In step 2, these raw material powders are added with water as a solvent solution and stirred to produce a slurry, and the raw materials are mixed and pulverized using a ball mill. In addition, you may add a dispersing agent when producing a slurry.
The slurry after wet mixing and pulverization is spray-dried with a spray dryer in Step 3 to produce granules of about 1 to 100 μm. Spray drying is a method of obtaining spherical particles by supplying a slurry that has been atomized into a drying chamber using a atomizer and drying the slurry. In addition, before spray drying, it is preferable to add about 1 wt% of the PVA solution in terms of solid content to the slurry.
Next, firing is performed in step 4. By this firing, a lithium transition metal oxide having a layered crystal structure is obtained. The firing here is performed at 800 ° C. to 1100 ° C. for 10 minutes to 24 hours in air, nitrogen atmosphere, or oxygen atmosphere. This firing may be performed twice or more. And when adjusting the particle diameter of the particle | grains after baking, it crushes in the process 5 after baking. Here, for example, a ball coated with a resin such as nylon is used as a medium and pulverized until a desired particle size is obtained.
Subsequently, in step 6, heat treatment is performed in the air, in a nitrogen atmosphere, or in an oxygen atmosphere at 400 to 700 ° C. for 0.5 to 10 hours. Further, it is desirable to classify coarse particles in step 7, and the positive electrode material is obtained through such a step.

次に、上記実施例及び比較例による正極活物質の特性評価を以下の手順で行う。まず、pHメーター(横河電機(株)製)を用いて、正極活物質を水に分散した時の上澄み液のpHを測定する。中性燐酸塩標準液と炭酸塩pH標準液により二点校正したpHメーターを使用して、正極活物質5gを純水25g中に分散し、スターラーで30分間攪拌後5分間放置し、上澄み液を抜き取り、10分後のpHを測定する。
次に、正極材、導電助材(炭素粉)、結着剤(8wt%PVdF/NMP)を重量比で85.2:10.5:4.3の割合でメノウ鉢にて混練しスラリー状の合材とする。得られた合材を厚さ20μmの集電体(Al箔)上に約100μm厚に塗布する。塗布した合材は乾燥後、所定の寸法(巾10mm、長さはおよそ50mm)に切断し金型を用いて1.5×104ton/m2の圧力でプレスした。得られた正極は十分に電解液(エチレンカーボネート:ジメチルカーボネート=1:2、電解質1M-LiPF6)に浸潤した後、セパレータ(25μm厚ポリエチレン)、金属リチウム対極と重ね合わせて試験用電池とする。セルが電気化学的に平衡になるように数時間程度放置してから、充放電測定装置に接続し、電池の放電容量の測定を行い、初期抵抗を測定する。
Next, the characteristics evaluation of the positive electrode active material according to the above examples and comparative examples is performed according to the following procedure. First, using a pH meter (manufactured by Yokogawa Electric Corporation), the pH of the supernatant liquid when the positive electrode active material is dispersed in water is measured. Using a pH meter calibrated at two points with a neutral phosphate standard solution and a carbonate pH standard solution, 5 g of the positive electrode active material is dispersed in 25 g of pure water, stirred for 30 minutes with a stirrer, and allowed to stand for 5 minutes. Is removed and the pH is measured after 10 minutes.
Next, a positive electrode material, a conductive additive (carbon powder), and a binder (8 wt% PVdF / NMP) are kneaded in an agate bowl at a weight ratio of 85.2: 10.5: 4.3 to obtain a slurry-like composite material. The obtained composite material is applied to a thickness of about 100 μm on a current collector (Al foil) having a thickness of 20 μm. The applied composite material was dried, cut into predetermined dimensions (width 10 mm, length approximately 50 mm), and pressed at a pressure of 1.5 × 10 4 ton / m 2 using a mold. The obtained positive electrode is sufficiently infiltrated into an electrolytic solution (ethylene carbonate: dimethyl carbonate = 1: 2, electrolyte 1M-LiPF 6 ), and then superimposed on a separator (25 μm thick polyethylene) and a metal lithium counter electrode to form a test battery. . After leaving the cell for about several hours so as to be electrochemically balanced, it is connected to a charge / discharge measuring device, the discharge capacity of the battery is measured, and the initial resistance is measured.

以下、実施例について説明する。
(実施例1)
Li:Mn:Ni:Co=1:0.2:0.35:0.45の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を1000℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)コートしたボールをメディアとして用いて解砕を行った。その後、電気炉中600℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co複合酸化物粒子の正極活物質を合成した。この複合酸化物粒子を純水に分散させ、その上澄み液のpHを測定したところ、10.0であった。また、この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、19Ωであった。
Examples will be described below.
Example 1
Li: Mn: Ni: Co = 1: 0.2: 0.35: 0.45 The stoichiometric ratio of lithium carbonate, manganese dioxide, nickel oxide and cobalt oxide was weighed, and water was added to this and stirred. A slurry was prepared. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were baked in an electric furnace at a calcination temperature of 1000 ° C. and a duration of 4 hours, and crushed using a ball coated with resin (nylon) as a medium in a ball mill. Thereafter, heat treatment was performed in an electric furnace at 600 ° C. for 4 hours, followed by classification through a sieve having an aperture of 63 μm to synthesize a positive electrode active material of Li—Mn—Ni—Co composite oxide particles. The complex oxide particles were dispersed in pure water, and the pH of the supernatant was measured and found to be 10.0. Further, a test battery using this positive electrode active material was prepared, and the initial resistance was measured with a charge / discharge test apparatus at room temperature.

(実施例2)
Li:Mn:Ni:Co=1.1:0.3:0.4:0.3の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を1010℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行った。その後電気炉中600℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co複合酸化物粒子の正極活物質を合成した。この複合酸化物粒子を純水に分散させ、その上澄み液のpHを測定したところ、10.6であった。また、この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、16Ωであった。
(Example 2)
Li: Mn: Ni: Co = 1.1: 0.3: 0.4: 0.3 Weigh lithium carbonate, manganese dioxide, nickel oxide and cobalt oxide at a stoichiometric ratio and add water to this. A slurry was prepared by stirring. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were fired in an electric furnace at a firing temperature of 1010 ° C. and a duration of 4 hours, and crushed using a ball coated with resin (nylon) as a medium in a ball mill. Thereafter, heat treatment was performed in an electric furnace at 600 ° C. for 4 hours, followed by classification through a sieve having an opening of 63 μm to synthesize a positive electrode active material of Li—Mn—Ni—Co composite oxide particles. The complex oxide particles were dispersed in pure water, and the pH of the supernatant was measured to be 10.6. Moreover, when a test battery using this positive electrode active material was prepared and the initial resistance was measured with a charge / discharge test apparatus at room temperature, it was 16Ω.

(実施例3)
Li:Mn:Ni:Co:Al=1:0.3:0.4:0.2:0.1の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル、酸化コバルト及び水酸化アルミニウムを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を960℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行った。その後電気炉中700℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co-Al複合酸化物粒子の正極活物質を合成した。この複合酸化物粒子を純水に分散させ、その上澄み液のpHを測定したところ、10.4であった。また、この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、18Ωであった。
(Example 3)
Lithium carbonate, manganese dioxide, nickel oxide, cobalt oxide and aluminum hydroxide are weighed in a stoichiometric ratio of Li: Mn: Ni: Co: Al = 1: 0.3: 0.4: 0.2: 0.1 Then, water was added thereto and stirred to prepare a slurry. This raw material slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were fired in an electric furnace at a firing temperature of 960 ° C. and a duration of 4 hours, and crushed using a ball coated with resin (nylon) as a medium in a ball mill. Thereafter, heat treatment was performed in an electric furnace at 700 ° C. for 4 hours, followed by classification through a sieve having a mesh opening of 63 μm to synthesize a positive electrode active material of Li—Mn—Ni—Co—Al composite oxide particles. The complex oxide particles were dispersed in pure water, and the pH of the supernatant was measured and found to be 10.4. Moreover, when a test battery using this positive electrode active material was prepared and the initial resistance was measured with a charge / discharge test apparatus at room temperature, it was 18Ω.

(実施例4)
図1に従い、Li:Mn:Ni:Co=1.1:0.2:0.5:0.3の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を960℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行った。その後電気炉中400℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co複合酸化物粒子の正極活物質を合成した。この複合酸化物粒子を純水に分散させ、その上澄み液のpHを測定したところ、11.2であった。また、この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、18Ωであった。
(Example 4)
According to FIG. 1, Li carbonate, manganese dioxide, nickel oxide and cobalt oxide were weighed at a stoichiometric ratio of Li: Mn: Ni: Co = 1.1: 0.2: 0.5: 0.3. Water was added and stirred to prepare a slurry. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were fired in an electric furnace at a firing temperature of 960 ° C. and a duration of 4 hours, and crushed using a ball coated with resin (nylon) as a medium in a ball mill. Thereafter, after heat treatment at 400 ° C. for 4 hours in an electric furnace, the mixture was passed through a sieve having an opening of 63 μm and classified to synthesize a positive electrode active material of Li—Mn—Ni—Co composite oxide particles. The complex oxide particles were dispersed in pure water, and the pH of the supernatant was measured and found to be 11.2. Moreover, when a test battery using this positive electrode active material was produced and the initial resistance was measured with a charge / discharge test apparatus at room temperature, it was 18Ω.

(比較例1)
図1に従い、Li:Mn:Ni:Co=1.1:0.25:0.4:0.35の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を850℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行った。その後電気炉中200℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co複合酸化物粒子の正極活物質を合成した。この複合酸化物粒子を純水に分散させ、その上澄み液のpHを測定したところ、12.2であった。また、この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、27Ωであった。
(Comparative Example 1)
According to FIG. 1, lithium carbonate, manganese dioxide, nickel oxide and cobalt oxide were weighed at a stoichiometric ratio of Li: Mn: Ni: Co = 1.1: 0.25: 0.4: 0.35. Water was added and stirred to prepare a slurry. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were fired in an electric furnace at a firing temperature of 850 ° C. and a duration of 4 hours, and crushed by using a ball coated with resin (nylon) as a medium in a ball mill. Thereafter, heat treatment was performed in an electric furnace at 200 ° C. for 4 hours, followed by classification through a sieve having an aperture of 63 μm to synthesize a positive electrode active material of Li—Mn—Ni—Co composite oxide particles. The complex oxide particles were dispersed in pure water, and the pH of the supernatant was measured and found to be 12.2. Further, a test battery using this positive electrode active material was prepared, and the initial resistance was measured by a charge / discharge test apparatus at room temperature.

(比較例2)
Li:Mn:Ni:Co=1.1:0.35:0.5:0.15の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を900℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行った。その後電気炉中800℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co複合酸化物粒子の正極活物質を合成した。この複合酸化物粒子を純水に分散させ、その上澄み液のpHを測定したところ、9.8であった。また、この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、30Ωであった。
(Comparative Example 2)
Li: Mn: Ni: Co = 1.1: 0.35: 0.5: 0.15 The lithium carbonate, manganese dioxide, nickel oxide and cobalt oxide were weighed at a stoichiometric ratio, and water was added thereto. A slurry was prepared by stirring. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were baked in an electric furnace at a calcination temperature of 900 ° C. and a duration of 4 hours, and pulverized using a ball coated with a resin (nylon) as a medium. Thereafter, heat treatment was performed in an electric furnace at 800 ° C. for 4 hours, followed by classification through a sieve having an opening of 63 μm to synthesize a positive electrode active material of Li—Mn—Ni—Co composite oxide particles. The complex oxide particles were dispersed in pure water, and the pH of the supernatant was measured and found to be 9.8. In addition, a test battery using this positive electrode active material was prepared, and the initial resistance was measured with a charge / discharge test apparatus at room temperature.

(比較例3)
Li:Mn:Ni:Co=1:0.4:0.4:0.2の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を900℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行った。その後電気炉中1000℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co複合酸化物粒子の正極活物質を合成した。この複合酸化物粒子を純水に分散させ、その上澄み液のpHを測定したところ、9.7であった。また、この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、34Ωであった。
(Comparative Example 3)
Li: Mn: Ni: Co = 1: 0.4: 0.4: 0.2 Weighed lithium carbonate, manganese dioxide, nickel oxide and cobalt oxide at a stoichiometric ratio, added water to this, and stirred. A slurry was prepared. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were baked in an electric furnace at a calcination temperature of 900 ° C. and a duration of 4 hours, and pulverized using a ball coated with a resin (nylon) as a medium. After heat treatment at 1000 ° C. for 4 hours in an electric furnace, the mixture was classified by passing through a sieve having an aperture of 63 μm to synthesize a positive electrode active material of Li—Mn—Ni—Co composite oxide particles. The complex oxide particles were dispersed in pure water, and the pH of the supernatant was measured and found to be 9.7. Further, a test battery was produced using this positive electrode active material, and the initial resistance was measured with a charge / discharge test apparatus at room temperature.

(比較例4)
Li:Mn:Ni:Co=1.1:0.25:0.45:0.3の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を900℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行い、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co複合酸化物粒子の正極活物質を合成した。この複合酸化物粒子を純水に分散させ、その上澄み液のpHを測定したところ、12.3であった。また、この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、29Ωであった。
(Comparative Example 4)
Li: Mn: Ni: Co = 1.1: 0.25: 0.45: 0.3 Weigh lithium carbonate, manganese dioxide, nickel oxide and cobalt oxide at a stoichiometric ratio and add water to this. A slurry was prepared by stirring. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were baked in an electric furnace at a calcination temperature of 900 ° C. and a duration of 4 hours, and crushed using a ball coated with a resin (nylon) as a medium in a ball mill with an opening of 63 μm. The mixture was classified through a sieve to synthesize a positive electrode active material of Li-Mn-Ni-Co composite oxide particles. The complex oxide particles were dispersed in pure water, and the pH of the supernatant was measured and found to be 12.3. Further, a test battery using this positive electrode active material was prepared, and its initial resistance was measured at room temperature using a charge / discharge test apparatus.

(比較例5)
Li:Mn:Ni:Co=1:0.55:0.15:0.3の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を900℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行った。その後電気炉中700℃で4時間熱処理をし、目開き63μmの篩に通して分級したが、層状構造単相は得られなかった。
(Comparative Example 5)
Li: Mn: Ni: Co = 1: 0.55: 0.15: 0.3 Weigh lithium carbonate, manganese dioxide, nickel oxide and cobalt oxide at a stoichiometric ratio, add water to this and stir. A slurry was prepared. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were baked in an electric furnace at a calcination temperature of 900 ° C. and a duration of 4 hours, and pulverized using a ball coated with a resin (nylon) as a medium. Thereafter, heat treatment was performed in an electric furnace at 700 ° C. for 4 hours, and the mixture was classified by passing through a sieve having an aperture of 63 μm. However, a single layered structure was not obtained.

以上の実施例及び比較例について特性評価を行った結果を表1に示す。   Table 1 shows the results of the characteristic evaluation of the above examples and comparative examples.

Figure 0003991359
Figure 0003991359

表1から明らかなように、熱処理条件が400℃〜700℃の範囲で、純水に分散した時のpHが10.0〜12.0の範囲にあれば、初期抵抗が低い値を示す。本実施例の正極活物質は何れもその範囲にあり、比較例の正極活物質に比較して、低い抵抗値を示した。また、本発明の正極活物質は組成式LiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0.2≦x≦0.5、0.35≦y≦0.5、0≦z≦0.45の範囲でかつx+y+z=1の層状結晶構造を有する酸化物であるが、比較例のようにこれよりMn含有量が多くなると、本発明の製造方法によれば層状結晶構造単相の生成が困難である。Co含有量が多くなると、Co原料が高価なため高コストとなり、実用性が低い。 As is clear from Table 1, when the heat treatment conditions are in the range of 400 ° C. to 700 ° C. and the pH when dispersed in pure water is in the range of 10.0 to 12.0, the initial resistance is low. All of the positive electrode active materials in this example were within the range, and the resistance value was lower than that of the positive electrode active material of the comparative example. The positive electrode active material of the present invention is represented by the composition formula Li a Mn x Ni y M z O 2 [M = Co, at least one of Al], and 1 ≦ a ≦ 1.2, 0.2 ≦ x ≦ 0.5, 0.35 ≦ The oxide has a layered crystal structure in the range of y ≦ 0.5 and 0 ≦ z ≦ 0.45 and x + y + z = 1. If the Mn content is higher than this as in Comparative Example 5 , the present invention According to the production method, it is difficult to generate a single layered crystal structure. When the Co content is increased, the cost of the Co raw material is high and the utility is low.

以上の結果より、本発明の製造条件に沿って製造したリチウム遷移金属複合酸化物をリチウム二次電池用正極材として用いた場合、良好な初期抵抗特性を得られた。   From the above results, when the lithium transition metal composite oxide produced according to the production conditions of the present invention was used as a positive electrode material for a lithium secondary battery, good initial resistance characteristics were obtained.

本発明の正極活物質の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the positive electrode active material of this invention. 本発明の実施例及び比較例の複合酸化物の組成を表す3元状態図である。It is a ternary phase diagram showing the composition of complex oxides of examples and comparative examples of the present invention. 本発明の実施例及び比較例の複合酸化物のpH−初期抵抗図である。It is a pH-initial stage resistance diagram of the complex oxide of the Example of this invention, and a comparative example.

Claims (3)

リチウム及び遷移金属からなる複合酸化物を正極活物質とする非水系リチウム二次電池において、前記正極活物質は、組成式Li a Mn x Ni y z 2 [M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0.2≦x≦0.5、0.35≦y≦0.5、0≦z≦0.45の範囲で、かつx+y+z=1の層状結晶構造を有する酸化物であって、それを重量で5倍量の純水(pH7.2〜7.5)に分散した際、この上澄み液のpHが10.0〜12.0であることを特徴とする非水系リチウム二次電池用正極活物質。 In a non-aqueous lithium secondary battery using a composite oxide composed of lithium and a transition metal as a positive electrode active material, the positive electrode active material has a composition formula of Li a Mn x Ni y M z O 2 [M = Co, at least of Al An oxide having a layered crystal structure in the range of 1 ≦ a ≦ 1.2, 0.2 ≦ x ≦ 0.5, 0.35 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.45, and x + y + z = 1 Non-aqueous lithium, characterized in that when it is dispersed in 5 times the amount of pure water (pH 7.2 to 7.5) by weight, the supernatant has a pH of 10.0 to 12.0. Positive electrode active material for secondary battery. リチウム化合物と遷移金属化合物を所定比で湿式混合し、乾燥させて顆粒状にし、大気中、窒素雰囲気中あるいは酸素雰囲気中にて850℃以上1100℃以下の温度で焼成を行って、組成式LiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0.2≦x≦0.5、0.35≦y≦0.5、0≦z≦0.45の範囲で、かつx+y+z=1の層状結晶構造を有するリチウム遷移金属複合酸化物とした後、この複合酸化物を解砕し、その後大気中、窒素雰囲気中あるいは酸素雰囲気中にて400℃以上700℃以下の温度で熱処理を行うことを特徴とする非水系リチウム二次電池用正極活物質の製造方法。 Lithium compound and transition metal compound are wet-mixed at a predetermined ratio, dried and granulated, and fired at a temperature of 850 ° C. or higher and 1100 ° C. or lower in air, nitrogen atmosphere or oxygen atmosphere. a Mn x Ni y M z O 2 [M = Co, at least one of Al], 1 ≦ a ≦ 1.2, 0.2 ≦ x ≦ 0.5, 0.35 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.45 And a lithium transition metal composite oxide having a layered crystal structure of x + y + z = 1, and then pulverizing the composite oxide, and then at least 400 ° C. in air, nitrogen atmosphere or oxygen atmosphere A method for producing a positive electrode active material for a non-aqueous lithium secondary battery, wherein the heat treatment is performed at a temperature of 700 ° C or lower. 請求項1の正極活物質または請求項記載の正極活物質の製造方法を用いて構成されたことを特徴とする非水系リチウム二次電池。 A nonaqueous lithium secondary battery comprising the positive electrode active material according to claim 1 or the method for producing a positive electrode active material according to claim 2 .
JP2003390194A 2003-11-20 2003-11-20 Cathode active material for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery using the cathode active material Expired - Fee Related JP3991359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390194A JP3991359B2 (en) 2003-11-20 2003-11-20 Cathode active material for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery using the cathode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390194A JP3991359B2 (en) 2003-11-20 2003-11-20 Cathode active material for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery using the cathode active material

Publications (2)

Publication Number Publication Date
JP2005150057A JP2005150057A (en) 2005-06-09
JP3991359B2 true JP3991359B2 (en) 2007-10-17

Family

ID=34696657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390194A Expired - Fee Related JP3991359B2 (en) 2003-11-20 2003-11-20 Cathode active material for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery using the cathode active material

Country Status (1)

Country Link
JP (1) JP3991359B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891299A (en) * 2012-09-12 2013-01-23 黎军 High-rate lithium ion battery cathode material and preparation method and application thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709149B2 (en) * 2004-09-24 2010-05-04 Lg Chem, Ltd. Composite precursor for aluminum-containing lithium transition metal oxide and process for preparation of the same
JP4868786B2 (en) 2004-09-24 2012-02-01 三洋電機株式会社 Lithium secondary battery
US20070292761A1 (en) 2005-04-13 2007-12-20 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US20070298512A1 (en) 2005-04-13 2007-12-27 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US20080032196A1 (en) 2005-04-13 2008-02-07 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
US8535829B2 (en) 2006-04-07 2013-09-17 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
CN101300696A (en) 2006-05-10 2008-11-05 株式会社Lg化学 Material for lithium secondary battery of high performance
KR100790834B1 (en) 2006-05-10 2008-01-03 주식회사 엘지화학 Material for Lithium Secondary Battery of High Performance
EP2202828B1 (en) 2007-09-04 2013-12-11 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder, method for manufacturing the same and lithium secondary battery positive electrode and lithium secondary battery using the same
JP5625273B2 (en) * 2009-07-24 2014-11-19 日産自動車株式会社 Method for producing positive electrode material for lithium ion battery
JP5830236B2 (en) * 2010-09-29 2015-12-09 日立オートモティブシステムズ株式会社 Nonaqueous electrolyte secondary battery
JP5601157B2 (en) * 2010-11-01 2014-10-08 トヨタ自動車株式会社 Positive electrode active material, positive electrode active material layer, all-solid battery, and method for producing positive electrode active material
JP5708277B2 (en) * 2011-06-07 2015-04-30 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
US20130084384A1 (en) * 2011-10-04 2013-04-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of secondary particles and manufacturing method of electrode of power storage device
WO2021010321A1 (en) * 2019-07-18 2021-01-21 株式会社豊田自動織機 Positive electrode active material in which aluminum is dispersed uniformly
CN114284488B (en) * 2021-12-23 2023-10-27 上海瑞浦青创新能源有限公司 Positive electrode material and determination method and application of stability of positive electrode material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891299A (en) * 2012-09-12 2013-01-23 黎军 High-rate lithium ion battery cathode material and preparation method and application thereof
CN102891299B (en) * 2012-09-12 2015-06-03 黎军 High-rate lithium ion battery cathode material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2005150057A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
KR101964726B1 (en) Spherical or spherical-like lithium ion battery cathode material and preparation method and application thereof
JP5007919B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and non-aqueous lithium secondary battery using the same
JP2005310744A (en) Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator
JP3991359B2 (en) Cathode active material for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery using the cathode active material
JP4986098B2 (en) Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
KR101395478B1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery using said positive electrode active material
JP3110728B1 (en) Cathode active material and cathode for non-aqueous secondary batteries
JP4951638B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP2004355824A (en) Cathode active substance for nonaqueous secondary battery and cathode
JP2008147068A (en) Lithium composite oxide for nonaqueous electrolyte secondary battery
JP5606654B2 (en) Lithium metal composite oxide
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP2003173777A (en) Combining method and its combining material of positive electrode active material for nonaqueous lithium secondary battery and conductive subsidiary material, and positive electrode and nonaqueous lithium secondary battery using the same
JP4868271B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery, positive electrode using this active material, and non-aqueous lithium secondary battery
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP3709446B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2020035605A (en) Production method of positive electrode active material for lithium ion secondary battery, and manufacturing method of lithium ion secondary battery
JP2005346956A (en) Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material
JP2018195419A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP5062534B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery
KR101497624B1 (en) Positive active material for lithium secondary battery, method for manufacturing the same and lithium secondary battery using the same
JP5585847B2 (en) Method for producing electrode active material
JP6819859B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
JP2001155728A (en) Positive electrode active material for use in non-aqueous lithium secondary battery and method of fabricating it
JP2002216756A (en) Method for manufacturing positive electrode active material for nonaqueous lithium secondary battery, positive electrode active material and nonaqueous lithium secondary battery using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3991359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees