JP2005310744A - Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator - Google Patents

Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator Download PDF

Info

Publication number
JP2005310744A
JP2005310744A JP2004376870A JP2004376870A JP2005310744A JP 2005310744 A JP2005310744 A JP 2005310744A JP 2004376870 A JP2004376870 A JP 2004376870A JP 2004376870 A JP2004376870 A JP 2004376870A JP 2005310744 A JP2005310744 A JP 2005310744A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
composite oxide
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004376870A
Other languages
Japanese (ja)
Inventor
Fumi Inada
ふみ 稲田
Motoe Nakajima
源衛 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004376870A priority Critical patent/JP2005310744A/en
Publication of JP2005310744A publication Critical patent/JP2005310744A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cathode activator for a nonaqueous lithium secondary battery capable of obtaining high output, and a manufacturing method of the same. <P>SOLUTION: On the nonaqueous lithium secondary battery using a complex oxide composed of lithium and transition metal, the cathode activator, expressed by compositional formula; Li<SB>a</SB>Mn<SB>x</SB>Ni<SB>y</SB>M<SB>z</SB>O<SB>2</SB>[M is either Co or Al] is formed by surface-modifying a metal compound film with a thickness of 10 nm to 70 nm containing at least one element selected from Al, Mg, Sn, Ti, Zn and Zr, on a surface of the complex oxide having a layered crystal structure within a range of 1≤a≤1.2, 0.2≤x≤0.5, 0.35≤y≤0.5, 0≤z≤0.45, and x+y+z=1. It is preferable to use a metal compound solution in which, a metal compound is dissolved at manufacturing process, and irradiating an ultrasonic wave so that the content of the metal in the solution gets to 0.0001 to 10 mass% against the complex oxide, after mixing the metal compound solution an the complex oxide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウム及び遷移金属からなる複合酸化物を用いたリチウム二次電池用正極活物質とその製造方法、並びにこれら正極活物質と製造方法を用いたリチウム二次電池に関するものである。   The present invention relates to a positive electrode active material for a lithium secondary battery using a composite oxide composed of lithium and a transition metal, a manufacturing method thereof, and a lithium secondary battery using the positive electrode active material and the manufacturing method.

近年、携帯電話やノ−ト型コンピュ−タ−の高性能化及び急激な普及に伴って、これらに用いる二次電池に関して小型、軽量化、高容量の要望が高まってきている。リチウム二次電池はニッケルカドミウム電池、ニッケル水素電池に比べて電池電圧が高く、高エネルギ−密度で、上記の分野で急速に普及している。また最近の環境問題を背景に、電気自動車やハイブリッド自動車のモータ駆動用電源としても期待されている。特にハイブリッド自動車のエネルギー貯蔵用としては高い出力密度が必要であり、高出力放電特性と高いサイクル安定性が要求されている。   In recent years, with the high performance and rapid spread of mobile phones and notebook computers, there are increasing demands for small size, light weight and high capacity for secondary batteries used in these. Lithium secondary batteries have a higher battery voltage and higher energy density than nickel cadmium batteries and nickel hydrogen batteries, and are rapidly spreading in the above fields. Against the background of recent environmental problems, it is also expected to serve as a motor drive power source for electric vehicles and hybrid vehicles. In particular, high power density is required for energy storage in hybrid vehicles, and high power discharge characteristics and high cycle stability are required.

リチウム二次電池は正極、負極およびセパレータを容器内に配置し、有機溶媒による非水電解液を充たして構成されている。正極はアルミニウム箔等の集電体に正極活物質を塗布し加圧成形したものである。このリチウム二次電池の正極活物質としては、α-NaFeO2構造を有するコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、スピネル型構造を有するマンガン酸リチウム(LiMn2O4)などに代表されるようなリチウムと遷移金属の複合酸化物(以下、リチウム遷移金属酸化物と言うことがある。)の粉体が主として用いられ、例えば特許文献1にはその製法が詳しく開示されている。これら正極活物質の合成は一般にリチウム化合物(Li2CO3、LiOH等)粉末と遷移金属化合物(MnO2、 NiO、 Co3O4等)粉末を混合し、乾燥、焼成した後、解砕してリチウム遷移金属酸化物とする方法が広く採用されている。
正極活物質を集電体に塗布する際には、正極活物質に重量比で数%〜数十%程度の炭素粉を混ぜ、さらにPVdF(ポリフッ化ビリニデン)、PTFE(ポリテトラフルオロエチレン)等の結着材と混練してペースト状にして、集電体箔上に厚み20μm〜200μmに塗布、乾燥、プレス工程を経て正電極が作られている。
A lithium secondary battery is configured by arranging a positive electrode, a negative electrode, and a separator in a container and filling a non-aqueous electrolyte with an organic solvent. The positive electrode is formed by applying a positive electrode active material to a current collector such as an aluminum foil and press-molding it. As a positive electrode active material of this lithium secondary battery, lithium cobaltate (LiCoO 2 ) having an α-NaFeO 2 structure, lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ) having a spinel structure, etc. The powder of lithium-transition metal composite oxide (hereinafter sometimes referred to as lithium transition metal oxide) as typified by the above is mainly used. For example, Patent Document 1 discloses the production method in detail. Yes. In general, these positive electrode active materials are synthesized by mixing lithium compound (Li 2 CO 3 , LiOH, etc.) powder and transition metal compound (MnO 2, NiO, Co 3 O 4 etc.) powder, drying, firing, and crushing. Thus, a lithium transition metal oxide method is widely adopted.
When the positive electrode active material is applied to the current collector, carbon powder of several percent to several tens percent by weight is mixed with the positive electrode active material, and PVdF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), etc. The positive electrode is made through a paste process by kneading with the binder material and applying, drying, and pressing steps on the current collector foil to a thickness of 20 μm to 200 μm.

上記正極活物質は、電気伝導率が10-1〜10-6S/cm2で一般の導体と比べ低く、アルミニウム集電体と正極活物質間の電気伝導度および電気的接触状況は、電池のサイクル特性、放電レート特性に大きな影響を与える。そこで、アルミニウム集電体と正極活物質間もしくは活物質相互間の電気伝導率を更に高めるように、正極活物質よりも電気伝導率の高い炭素粉等の導電助材が使用されることが多い。 The positive electrode active material has an electrical conductivity of 10 -1 to 10 -6 S / cm 2 and is lower than that of a general conductor. The electrical conductivity and electrical contact between the aluminum current collector and the positive electrode active material are This greatly affects the cycle characteristics and discharge rate characteristics. Therefore, in order to further increase the electrical conductivity between the aluminum current collector and the positive electrode active material or between the active materials, a conductive aid such as carbon powder having a higher electrical conductivity than the positive electrode active material is often used. .

一般に、放電電流を大きくすると内部抵抗のため放電容量が落ちる。ハイブリッド自動車等の二次電池として高出力を得るためには、できるだけ内部抵抗を低くする必要がある。例えば、特許文献2には、リチウムと遷移金属の酸化物にCo等の化合物を修飾することで内部抵抗を低減する手法が述べられている。また、特許文献3にも同様の手法により、サイクル特性を改善し、内部抵抗を低減する点が述べられている。   Generally, when the discharge current is increased, the discharge capacity decreases due to internal resistance. In order to obtain a high output as a secondary battery for a hybrid vehicle or the like, it is necessary to make the internal resistance as low as possible. For example, Patent Document 2 describes a method of reducing internal resistance by modifying a compound such as Co to an oxide of lithium and a transition metal. Patent Document 3 also describes that the cycle characteristics are improved and the internal resistance is reduced by a similar method.

特開平8−17471号公報JP-A-8-17471 特開平9−55210号公報JP 9-55210 A 特開2002−151083号公報JP 2002-151083 A

しかしながら、これらの手段では未だ満足できるものではなかった。例えば特許文献3には、コーティング溶液とリチウム化合物を混合機に投入し、攪拌しながら混合機の温度を上昇させて溶液を乾燥させる手法が記載されているが、この方法では溶液内の過剰なコーティング物質が残存してしまい、リチウム化合物に対して高濃度のコーティングとなる。リチウム遷移金属複合酸化物に対して、修飾する金属化合物の割合が高い場合は、薄い膜を形成することが困難になるとともに、正極のうち正極活物質の占める割合が減ることになり、容量が低下することが問題となる。   However, these means are still not satisfactory. For example, Patent Document 3 describes a method in which a coating solution and a lithium compound are charged into a mixer, and the temperature of the mixer is increased while stirring to dry the solution. The coating material remains, resulting in a high concentration coating for the lithium compound. When the proportion of the metal compound to be modified is high with respect to the lithium transition metal composite oxide, it becomes difficult to form a thin film, and the proportion of the positive electrode active material in the positive electrode decreases, and the capacity increases. Decreasing becomes a problem.

本発明は、さらなる内部抵抗の低減をなし、高出力が得られる非水系リチウム二次電池用正極活物質とその製造方法及びその正極活物質を用いた非水系リチウム二次電池を提供することを目的とする。   The present invention provides a positive electrode active material for a non-aqueous lithium secondary battery that can further reduce internal resistance and obtain a high output, a method for producing the same, and a non-aqueous lithium secondary battery using the positive electrode active material. Objective.

本発明は、リチウム化合物と遷移金属化合物を混合後、焼成、解砕、熱処理及び分級という工程を経て製造した複合酸化物粒子表面に所定厚さの、Al、Mg、Sn、Ti、Zn、及びZrのうち少なくとも一種を含有する金属化合物膜を表面修飾したものを正極活物質として用いた場合に、内部抵抗を低くすることができて、高出力が得られることを知見し本発明に想到した。また、本発明では、金属化合物を表面修飾する際に、希薄な金属化合物溶液を用いること、また複合酸化物に対して適切な濃度・量の金属化合物溶液を用いることが内部抵抗低減に効果的であり、さらに金属化合物溶液と複合酸化物の混合工程において超音波を照射することで、より効果を増大できることを見出した。   In the present invention, after mixing a lithium compound and a transition metal compound, a predetermined thickness of Al, Mg, Sn, Ti, Zn, and a composite oxide particle surface produced through steps of firing, crushing, heat treatment and classification, and The inventors have found that when a surface-modified metal compound film containing at least one of Zr is used as a positive electrode active material, the internal resistance can be lowered and high output can be obtained, and the present invention has been conceived. . In the present invention, when the metal compound is surface-modified, it is effective to reduce the internal resistance by using a dilute metal compound solution and using a metal compound solution having a concentration and amount appropriate for the composite oxide. Furthermore, it has been found that the effect can be further increased by irradiating ultrasonic waves in the mixing step of the metal compound solution and the composite oxide.

即ち、本発明の非水系リチウム二次電池用正極活物質は、リチウム及び遷移金属からなる複合酸化物を正極活物質とする非水系リチウム二次電池において、前記複合酸化物はその粒子表面に厚さ10nm〜70nmの、Al、Mg、Sn、Ti、Zn、及びZrのうち少なくとも一種を含有する金属化合物膜を表面修飾したことを特徴とするものである。本発明において表面修飾とは、複合酸化物の粒子表面に厚さ10nm〜70nmの金属化合物膜を形成することである。表面修飾する金属化合物は一様に形成されることが望ましいが部分的な形成でも効果はある。但し、その膜厚が10nm未満であると内部抵抗低減の効果が得られず、70nmを超えた場合も逆効果となり、内部抵抗を低減できない。望ましくは、20〜50nm程度である。
また、このときの正極活物質の組成としては、組成式がLiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0≦x≦0.65、0.35≦y≦1、0≦z≦0.65の範囲で、かつx+y+z=1の層状結晶構造を有する酸化物であることが望ましい。更に望ましくは、前記正極活物質の組成としては、組成式LiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0.2≦x≦0.5、0.35≦y≦0.8、0≦z≦0.45の範囲で、かつx+y+z=1の層状結晶構造を有する酸化物である。
That is, the positive electrode active material for a non-aqueous lithium secondary battery of the present invention is a non-aqueous lithium secondary battery in which a composite oxide comprising lithium and a transition metal is used as a positive electrode active material. A metal compound film containing at least one of Al, Mg, Sn, Ti, Zn, and Zr having a thickness of 10 nm to 70 nm is surface-modified. In the present invention, the surface modification is to form a metal compound film having a thickness of 10 nm to 70 nm on the surface of the composite oxide particles. It is desirable that the metal compound to be surface-modified is formed uniformly, but partial formation is also effective. However, if the film thickness is less than 10 nm, the effect of reducing the internal resistance cannot be obtained, and if it exceeds 70 nm, the reverse effect is obtained and the internal resistance cannot be reduced. Desirably, it is about 20-50 nm.
The composition of the positive electrode active material at this time is represented by a composition formula of Li a Mn x Ni y M z O 2 [M = Co, at least one of Al], 1 ≦ a ≦ 1.2, 0 ≦ x It is desirable that the oxide has a layered crystal structure in the range of ≦ 0.65, 0.35 ≦ y ≦ 1, 0 ≦ z ≦ 0.65 and x + y + z = 1. More preferably, the composition of the positive electrode active material is represented by a composition formula Li a Mn x Ni y M z O 2 [M = Co, at least one of Al], 1 ≦ a ≦ 1.2, 0.2 ≦ x ≦ The oxide has a layered crystal structure of 0.5, 0.35 ≦ y ≦ 0.8, 0 ≦ z ≦ 0.45, and x + y + z = 1.

本発明の非水系リチウム二次電池用正極活物質の製造方法は、リチウムと遷移金属の複合酸化物を合成する第Iの工程と、得られた複合酸化物に金属化合物を表面修飾する第IIの工程を有し、前記表面修飾を金属化合物を溶媒に溶かした金属化合物溶液を用いて行い、金属化合物溶液と複合酸化物を混合した後、超音波を照射することを特徴とするものである。金属化合物溶液と複合酸化物の混合時に超音波を照射することで、超音波のエネルギーが何らかの形で特性改善に寄与しているものと推測されるが、正極活物質の表面状態等では、超音波照射の有無による明確な差は今のところ見られていない。   The method for producing a positive electrode active material for a non-aqueous lithium secondary battery according to the present invention includes a first step of synthesizing a composite oxide of lithium and a transition metal, and a second step of modifying the surface of the obtained composite oxide with a metal compound. The surface modification is performed using a metal compound solution in which a metal compound is dissolved in a solvent, and after mixing the metal compound solution and the complex oxide, ultrasonic irradiation is performed. . By irradiating ultrasonic waves during mixing of the metal compound solution and the composite oxide, it is estimated that the ultrasonic energy contributes to improving the characteristics in some form. There is no clear difference so far with or without sonication.

本発明の正極活物質の製造方法は、まず第Iの工程でリチウム化合物と遷移金属化合物を所定比で湿式混合し、乾燥させて顆粒状にし、大気中、窒素雰囲気中あるいは酸素雰囲気中にて850℃以上1100℃以下の温度で焼成を行い、層状結晶構造を有するリチウム遷移金属複合酸化物とした後、この複合酸化物を解砕し、その後大気中、窒素雰囲気中あるいは酸素雰囲気中にて400℃以上700℃以下の温度で熱処理を行った後、分級し、複合酸化物とし、第IIの工程において金属化合物溶液と前記分級後の複合酸化物を混合、超音波照射を行い、ろ過、回収して乾燥の後、大気中、窒素雰囲気中あるいは酸素雰囲気中にて300℃以上700℃以下の温度で熱処理を行うことを特徴としている。
ここで、層状結晶構造を有するリチウム遷移金属複合酸化物としては、組成式LiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0≦x≦0.65、0.35≦y≦1、0≦z≦0.65の範囲で、かつx+y+z=1となるようにすること、またあるいは、組成式LiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0.2≦x≦0.5、0.35≦y≦0.8、0≦z≦0.45の範囲で、かつx+y+z=1とした層状結晶構造を有する酸化物であることが望ましい。
In the method for producing a positive electrode active material of the present invention, first, in the first step, a lithium compound and a transition metal compound are wet-mixed at a predetermined ratio, dried and granulated, and then in air, nitrogen atmosphere or oxygen atmosphere After firing at a temperature of 850 ° C. or higher and 1100 ° C. or lower to obtain a lithium transition metal composite oxide having a layered crystal structure, the composite oxide is crushed, and then in the atmosphere, nitrogen atmosphere or oxygen atmosphere After heat treatment at a temperature of 400 ° C. or more and 700 ° C. or less, classification is performed to obtain a composite oxide, in the second step, the metal compound solution and the composite oxide after the classification are mixed, subjected to ultrasonic irradiation, filtered, After recovery and drying, heat treatment is performed at a temperature of 300 ° C. or higher and 700 ° C. or lower in air, nitrogen atmosphere, or oxygen atmosphere.
Here, the lithium transition metal composite oxide having a layered crystal structure is represented by the composition formula Li a Mn x Ni y M z O 2 [M = Co, at least one of Al], 1 ≦ a ≦ 1.2, In the range of 0 ≦ x ≦ 0.65, 0.35 ≦ y ≦ 1, 0 ≦ z ≦ 0.65 and x + y + z = 1, or alternatively, the composition formula Li a Mn x Ni y M z O 2 [M = Co, at least one of Al], 1 ≦ a ≦ 1.2, 0.2 ≦ x ≦ 0.5, 0.35 ≦ y ≦ 0.8, 0 ≦ z ≦ 0.45, and x + y + z = An oxide having a layered crystal structure of 1 is desirable.

本発明の正極活物質の製造工程において、乾燥工程は、スプレードライヤによる噴霧乾燥とすることが望ましい。噴霧乾燥とは、微粒化装置を用いて乾燥室に微粒化した原料スラリーを供給し、熱風を接触させて瞬時に乾燥し、1〜100μmの顆粒状の粉末を得ることができるものであり、均一な組成の混合粉が得られることが特長である。また、前記焼成工程は、大気中、窒素雰囲気中あるいは酸素雰囲気中において850〜1100℃で行うことが望ましく、この焼成は複数回にわたって行っても良い。850℃未満の温度で焼成した場合は焼結がほとんど進行せず、また1100℃を超える温度で焼成した場合は粒子同士がくっついて解砕できなくなるためである。この焼成の後、解砕を樹脂でコ−トしたボ−ルをメディアとして用いて行うことが望ましい。そして、再び大気中、窒素雰囲気中あるいは酸素雰囲気中で400〜700℃の熱処理を行うが、この熱処理工程は、解砕工程で結晶が受けた物理的衝撃によるダメージを修復し、電池特性を改善するためのもので、400℃未満ではその効果が少なく、700℃を超えると焼結が進行し、正極活物質の粒径や粒形態が変わって電池特性に影響を及ぼすので好ましくない。その後、分級を行う。この分級工程では、フルイ機あるいは気流式分級機を用いる。次に、金属化合物を溶液に溶かして金属化合物溶液を作製する工程において、Al、Mg、Sn、Ti、Zn、及びZrのアルコキシドのうち少なくとも一つを脱水エタノール、脱水2−プロパノール、エタノールやイソプロピルアルコールに、あるいはAl、Mg、Sn、Ti、Zn、及びZrのアセチルアセトナートを水に溶解し、その濃度が0.001〜10質量%であることが望ましい。ここで、アセチルアセトナート水溶液を作製する際に、炭酸リチウムを添加してもよい。続いて、金属アルコキシド溶液または金属アセチルアセトナート溶液と正極活物質を混合する工程において、正極活物質に対して溶液中の金属量が0.0001〜10質量%であることが望ましい。また、金属アルコキシド及び金属アルコキシド溶液は、水分の影響を避けるため、グローブボックスなどを用いて不活性ガス雰囲気下で取り扱うことが望ましい。   In the production process of the positive electrode active material of the present invention, it is desirable that the drying process is spray drying with a spray dryer. Spray drying is a method in which a raw material slurry atomized using a atomizer is supplied to a drying chamber and dried instantaneously by contact with hot air to obtain a granular powder of 1 to 100 μm. The feature is that a mixed powder having a uniform composition can be obtained. The firing step is desirably performed at 850 to 1100 ° C. in the air, a nitrogen atmosphere, or an oxygen atmosphere, and the firing may be performed a plurality of times. This is because sintering hardly proceeds when fired at a temperature lower than 850 ° C., and when fired at a temperature higher than 1100 ° C., the particles adhere to each other and cannot be crushed. After this firing, it is desirable to carry out crushing using a resin-coated ball as a medium. Then, heat treatment is performed again in air, nitrogen atmosphere or oxygen atmosphere at 400-700 ° C. This heat treatment process repairs the damage caused by the physical impact of the crystals in the crushing process and improves battery characteristics. Therefore, if the temperature is lower than 400 ° C., the effect is small. If the temperature exceeds 700 ° C., the sintering proceeds, and the particle size and particle shape of the positive electrode active material are changed to affect the battery characteristics. After that, classification is performed. In this classification step, a fluid machine or an airflow classifier is used. Next, in the step of preparing the metal compound solution by dissolving the metal compound in the solution, at least one of Al, Mg, Sn, Ti, Zn, and Zr alkoxides is dehydrated ethanol, dehydrated 2-propanol, ethanol or isopropyl. It is desirable that acetylacetonate of Al, Mg, Sn, Ti, Zn, and Zr is dissolved in water and its concentration is 0.001 to 10% by mass. Here, when preparing an aqueous acetylacetonate solution, lithium carbonate may be added. Subsequently, in the step of mixing the metal alkoxide solution or the metal acetylacetonate solution and the positive electrode active material, the amount of metal in the solution is preferably 0.0001 to 10% by mass with respect to the positive electrode active material. Moreover, in order to avoid the influence of moisture, the metal alkoxide and the metal alkoxide solution are desirably handled in an inert gas atmosphere using a glove box or the like.

本発明による非水系リチウム二次電池用正極活物質を用いることによって内部抵抗が低く、高出力の非水系リチウム二次電池を提供することが出来た。   By using the positive electrode active material for a non-aqueous lithium secondary battery according to the present invention, a non-aqueous lithium secondary battery with low internal resistance and high output could be provided.

以下、本発明を図面を参照して説明する。なお、本発明は以下に述べる実施例に限定されるものではない。
図1は本発明の製造方法の一実施例を示すフローチャートである。先ず、これにより本発明の非水系リチウム二次電池用正極活物質の製造方法を説明する。
まず工程1で原料として、焼成によって酸化物となる遷移金属、例えばコバルト、ニッケル、マンガン、アルミニウムの化合物(例えばCo3O4, CoO, Co(OH)2, NiO, MnO2, Mn3O4, Mn2O3, MnCO3, Al(OH)3)のうち少なくとも一種と焼成によって酸化物となるリチウム化合物(例えばLi2CO3, LiOH, LiCl)とを所定の割合で秤量する。
これらの原料粉末を工程2で溶媒液である水を加えて攪拌してスラリーを作製し、ボールミルを用いて原料を混合及び粉砕する。尚、スラリーを作製する際に分散剤を添加してもよい。
湿式混合・粉砕後のスラリーを工程3においてスプレードライヤで噴霧乾燥させ、1〜100μm程度の顆粒を作製する。噴霧乾燥とは、微粒化装置を用いて乾燥室に微粒化したスラリーを供給し、乾燥させて球状粒子を得る方法である。なお、噴霧乾燥前には、スラリーにPVA溶液を固形分に換算して1質量%前後添加することが好ましい。
次に工程4で焼成を行う。この焼成によって層状結晶構造を有するリチウム遷移金属酸化物となる。ここでの焼成は、大気中や窒素雰囲気中、酸素雰囲気中で800℃〜1100℃で10分から24時間行う。この焼成は2回以上行っても良い。そして、焼成後の粒子の粒子径を調整する場合には、焼成後の工程5においてボールミルにより解砕する。ここで、例えばナイロン等の樹脂でコ−トしたボ−ルをメディアとして用いて、所望の粒度になるまで解砕を行う。
続いて工程6において大気中、窒素雰囲気中あるいは酸素雰囲気中で400〜700℃で0.5時間から10時間の熱処理を行う。さらに工程7にて分級し、この様な工程を経てリチウム遷移金属複合酸化物を合成する。ここまでが第Iの工程である。
The present invention will be described below with reference to the drawings. In addition, this invention is not limited to the Example described below.
FIG. 1 is a flowchart showing an embodiment of the manufacturing method of the present invention. First, the manufacturing method of the positive electrode active material for non-aqueous lithium secondary batteries of this invention is demonstrated by this.
First, as a raw material in Step 1, a transition metal that becomes an oxide by firing, for example, a compound of cobalt, nickel, manganese, aluminum (for example, Co 3 O 4 , CoO, Co (OH) 2 , NiO, MnO 2 , Mn 3 O 4 , Mn 2 O 3 , MnCO 3 , Al (OH) 3 ) and a lithium compound (for example, Li 2 CO 3 , LiOH, LiCl) that is converted into an oxide by firing at a predetermined ratio.
In step 2, these raw material powders are added with water as a solvent solution and stirred to produce a slurry, and the raw materials are mixed and pulverized using a ball mill. In addition, you may add a dispersing agent when producing a slurry.
The slurry after wet mixing and pulverization is spray-dried with a spray dryer in Step 3 to produce granules of about 1 to 100 μm. Spray drying is a method of obtaining spherical particles by supplying a slurry that has been atomized into a drying chamber using a atomizer and drying the slurry. In addition, before spray drying, it is preferable to add about 1% by mass of the PVA solution to the slurry in terms of solid content.
Next, firing is performed in step 4. By this firing, a lithium transition metal oxide having a layered crystal structure is obtained. The firing here is carried out at 800 ° C. to 1100 ° C. for 10 minutes to 24 hours in air, nitrogen atmosphere or oxygen atmosphere. This firing may be performed twice or more. And when adjusting the particle diameter of the particle | grains after baking, in the process 5 after baking, it crushes with a ball mill. Here, for example, a ball coated with a resin such as nylon is used as a medium and pulverized until a desired particle size is obtained.
Subsequently, in step 6, heat treatment is performed at 400 to 700 ° C. for 0.5 to 10 hours in air, nitrogen atmosphere or oxygen atmosphere. Further, classification is performed in step 7, and a lithium transition metal composite oxide is synthesized through such steps. This is the first step.

次に、工程8にて表面修飾に用いる溶液を作製する。ここでは、Al、Mg、Sn、Ti、Zn、及びZrのアルコキシドのうち少なくとも一つを脱水エタノール、脱水2−プロパノール、エタノールまたはイソプロピルアルコールに、あるいはAl、Mg、Sn、Ti、Zn、及びZrのアセチルアセトナートを水にその濃度が0.001〜10質量%となるよう溶解する。工程9ではこの溶液にリチウム遷移金属複合酸化物を投入して混合し、表面修飾の効果をより高めるために、発振周波数20〜40kHzの超音波を0.5時間から3時間照射する。超音波照射は望ましい過程ではあるが必須ではない。但し、このときの混合によって、リチウム遷移金属複合酸化物に対して溶液中の金属量が0.0001〜10質量%となるよう、溶液とリチウム遷移金属複合酸化物を混合する。工程10で吸引ろ過してリチウム遷移金属複合酸化物を回収し、工程11で120℃で8時間真空乾燥、そして工程12にて大気中、窒素雰囲気中あるいは酸素雰囲気中で300℃から700℃で1〜20時間熱処理を行って、正極活物質とする。以上が第IIの工程である。   Next, a solution used for surface modification is prepared in step 8. Here, at least one of the alkoxides of Al, Mg, Sn, Ti, Zn, and Zr is dehydrated ethanol, dehydrated 2-propanol, ethanol, or isopropyl alcohol, or Al, Mg, Sn, Ti, Zn, and Zr. Of acetylacetonate is dissolved in water to a concentration of 0.001 to 10% by mass. In step 9, a lithium transition metal composite oxide is added to and mixed with this solution, and ultrasonic waves with an oscillation frequency of 20 to 40 kHz are irradiated for 0.5 to 3 hours in order to enhance the effect of surface modification. While ultrasonic irradiation is a desirable process, it is not essential. However, by mixing at this time, the solution and the lithium transition metal composite oxide are mixed so that the amount of metal in the solution is 0.0001 to 10% by mass with respect to the lithium transition metal composite oxide. The lithium transition metal composite oxide is recovered by suction filtration in step 10, vacuum dried at 120 ° C. for 8 hours in step 11, and in air, nitrogen atmosphere or oxygen atmosphere at step 12 at 300 ° C. to 700 ° C. Heat treatment is performed for 1 to 20 hours to obtain a positive electrode active material. The above is the second step.

次に、上記した正極活物質の特性評価を以下の手順で行う。正極材、導電助材(炭素粉)、結着剤(8質量%PVdF/NMP)を重量比で85.2:10.5:4.3の割合でメノウ鉢にて混練しスラリー状の合材とする。得られた合材を厚さ20μmの集電体(Al箔)上に約200μm厚に塗布する。塗布した合材は乾燥後、所定の寸法(巾10mm、長さはおよそ50mm)に切断し金型を用いて1.5×104ton/m2の圧力でプレスした。得られた正極は十分に電解液(エチレンカーボネート:ジメチルカーボネート=1:2、電解質1M-LiPF6)に浸潤した後、セパレータ(25μm厚ポリエチレン)、金属リチウム対極と重ね合わせて試験用電池とする。セルが電気化学的に平衡になるように数時間程度放置してから、充放電測定装置に接続し、電池の放電容量の測定を行い、初期抵抗を測定する。 Next, the characteristic evaluation of the positive electrode active material described above is performed according to the following procedure. A positive electrode material, a conductive additive (carbon powder), and a binder (8 mass% PVdF / NMP) are kneaded in an agate bowl at a weight ratio of 85.2: 10.5: 4.3 to obtain a slurry-like mixture. The obtained composite material is applied to a thickness of about 200 μm on a current collector (Al foil) having a thickness of 20 μm. The applied composite material was dried, cut into predetermined dimensions (width 10 mm, length approximately 50 mm), and pressed at a pressure of 1.5 × 10 4 ton / m 2 using a mold. The obtained positive electrode is sufficiently infiltrated into an electrolytic solution (ethylene carbonate: dimethyl carbonate = 1: 2, electrolyte 1M-LiPF 6 ), and then superposed on a separator (25 μm thick polyethylene) and a metal lithium counter electrode to form a test battery. . After leaving the cell for about several hours so as to be electrochemically balanced, it is connected to a charge / discharge measuring device, the discharge capacity of the battery is measured, and the initial resistance is measured.

以下、上述した本発明の製造過程を用いた実施例と比較例について説明する。最初に金属化合物溶液濃度について検討した結果について述べる。
(実施例1)
Li:Mn:Ni:Co=1:0.4:0.4:0.2の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉で酸素中、焼成温度を1000℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)コートしたボールをメディアとして用いて解砕を行った。その後、電気炉で酸素中600℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co複合酸化物粒子に対して0.01質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で酸素中600℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、16Ωであった。
Hereinafter, examples and comparative examples using the manufacturing process of the present invention described above will be described. First, the results of studying the metal compound solution concentration will be described.
(Example 1)
Li: Mn: Ni: Co = 1: 0.4: 0.4: 0.2 Weighed lithium carbonate, manganese dioxide, nickel oxide and cobalt oxide at a stoichiometric ratio, added water to this, and stirred. A slurry was prepared. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were baked in oxygen in an electric furnace at a calcination temperature of 1000 ° C. and a duration of 4 hours, and pulverized using a ball coated with resin (nylon) as a medium in a ball mill. Thereafter, heat treatment was performed in oxygen in an electric furnace at 600 ° C. for 4 hours, followed by classification through a sieve having an aperture of 63 μm to synthesize Li—Mn—Ni—Co composite oxide particles.
Next, a 0.003 mass% solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, and the Li—Mn—Ni—Co composite oxide particles described above were added therein, and the amount of Al in the solution was Li—Mn—. The Ni-Co composite oxide particles were dispersed to 0.01% by mass, stirred, and then collected by suction filtration. The collected powder was vacuum-dried and then heat-treated in oxygen at 600 ° C. for 1 hour in an electric furnace to obtain a positive electrode active material.
A test battery using this positive electrode active material was prepared, and the initial resistance was measured with a charge / discharge test apparatus at room temperature.

(比較例1)
実施例1に対する比較例として、表面修飾をしない場合について以下に述べる。実施例1と同様にしてLi-Mn-Ni-Co複合酸化物粒子を合成し、正極活物質とした。この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、22Ωであった。
(Comparative Example 1)
As a comparative example for Example 1, the case where no surface modification is performed will be described below. Li-Mn-Ni-Co composite oxide particles were synthesized in the same manner as in Example 1 to obtain a positive electrode active material. A test battery was produced using this positive electrode active material, and the initial resistance was measured at room temperature using a charge / discharge test apparatus. The result was 22Ω.

(実施例2)
実施例1と同様にして、まずLi-Mn-Ni-Co複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.03質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co複合酸化物粒子に対して0.1質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で酸素中600℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、17Ωであった。
(Example 2)
First, Li—Mn—Ni—Co composite oxide particles were synthesized in the same manner as in Example 1.
Next, a 0.03% by mass solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, and the Li—Mn—Ni—Co composite oxide particles described above were added therein, and the amount of Al in the solution was Li—Mn—. The Ni-Co composite oxide particles were dispersed so as to be 0.1% by mass, stirred, and then collected by suction filtration. The collected powder was vacuum-dried and then heat-treated in oxygen at 600 ° C. for 1 hour in an electric furnace to obtain a positive electrode active material.
A test battery was produced using this positive electrode active material, and the initial resistance was measured at room temperature using a charge / discharge test apparatus. The result was 17Ω.

(実施例3)
実施例1と同様にして、まずLi-Mn-Ni-Co複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.3質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co複合酸化物粒子に対して1質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で酸素中600℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、17Ωであった。
(Example 3)
First, Li—Mn—Ni—Co composite oxide particles were synthesized in the same manner as in Example 1.
Next, an Al (OC 3 H 7 ) 3 / isofluoroalcohol 0.3% by mass solution was prepared, and the Li-Mn-Ni-Co composite oxide particles described above were added therein, and the Al content in the solution was Li-Mn- The dispersion was dispersed so as to be 1% by mass with respect to the Ni—Co composite oxide particles, stirred, and then collected by suction filtration. The collected powder was vacuum-dried and then heat-treated in oxygen at 600 ° C. for 1 hour in an electric furnace to obtain a positive electrode active material.
A test battery was produced using this positive electrode active material, and the initial resistance was measured at room temperature using a charge / discharge test apparatus. The result was 17Ω.

(実施例4)
実施例1と同様にして、まずLi-Mn-Ni-Co複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール3質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co複合酸化物粒子に対して1質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で酸素中600℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、18Ωであった。
Example 4
First, Li—Mn—Ni—Co composite oxide particles were synthesized in the same manner as in Example 1.
Next, an Al (OC 3 H 7 ) 3 / isofluoroalcohol 3% by mass solution was prepared, and the Li-Mn-Ni-Co composite oxide particles described above were added therein, and the Al content in the solution was Li-Mn- The dispersion was dispersed so as to be 1% by mass with respect to the Ni—Co composite oxide particles, stirred, and then collected by suction filtration. The collected powder was vacuum-dried and then heat-treated in oxygen at 600 ° C. for 1 hour in an electric furnace to obtain a positive electrode active material.
A test battery using this positive electrode active material was prepared, and the initial resistance was measured by a charge / discharge test apparatus at room temperature.

(比較例2)
上記実施例1〜4に示した溶液よりもさらに高濃度の溶液について検討した結果を、以下に述べる。
実施例1と同様にして、まずLi-Mn-Ni-Co複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール13質量%溶液を作製したが、Al(OC3H7)3がイソフ゜ロヒ゜ルアルコールに完全に溶解せず、残渣が見られたため、複合酸化物粒子に表面修飾を行うことが不可能であった。
(Comparative Example 2)
The results of studying a solution having a higher concentration than the solutions shown in Examples 1 to 4 will be described below.
First, Li—Mn—Ni—Co composite oxide particles were synthesized in the same manner as in Example 1.
Next, a 13% by mass solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, but Al (OC 3 H 7 ) 3 was not completely dissolved in isofluoroalcohol and a residue was observed. It was impossible to perform surface modification on the particles.

(比較例3)
上記実施例1〜4に示した溶液よりもさらに低濃度の溶液について検討した結果を、以下に述べる。
実施例1と同様にして、まずLi-Mn-Ni-Co複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.0003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co複合酸化物粒子に対して0.0001質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で酸素中600℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、21Ωであった。
(Comparative Example 3)
The results of examining a solution having a lower concentration than the solutions shown in Examples 1 to 4 will be described below.
First, Li—Mn—Ni—Co composite oxide particles were synthesized in the same manner as in Example 1.
Next, a 0.0003 mass% solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, in which the Li—Mn—Ni—Co composite oxide particles described above were added and the amount of Al in the solution was Li—Mn— The Ni-Co composite oxide particles were dispersed so as to be 0.0001% by mass, stirred, and then collected by suction filtration. The collected powder was vacuum-dried and then heat-treated in oxygen at 600 ° C. for 1 hour in an electric furnace to obtain a positive electrode active material.
A test battery using this positive electrode active material was prepared, and the initial resistance was measured with a charge / discharge test apparatus at room temperature.

上記の実施例1〜4、比較例1〜3において、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール溶液の濃度を検討した結果を表1に示す。また、図3に実施例1〜4及び比較例1〜3による初期抵抗値を示す。尚、正極活物質の組成については図2に示している。 Table 1 shows the results of examining the concentration of the Al (OC 3 H 7 ) 3 / isofluoroalcohol solution in Examples 1 to 4 and Comparative Examples 1 to 3. Moreover, the initial stage resistance value by Examples 1-4 and Comparative Examples 1-3 is shown in FIG. The composition of the positive electrode active material is shown in FIG.

表面修飾の有無については、比較例1と実施例1から明らかに抵抗値の差が見られ、表面修飾の効果が見られる。また、実施例2〜4は本発明の濃度範囲の金属化合物溶液を用いた場合であり、比較例2は高濃度、比較例3は低濃度の溶液を用いた場合であるが、本発明の濃度範囲の金属化合物溶液を用いて金属化合物を表面修飾したリチウム遷移金属酸化物を正極活物質として用いた場合、初期抵抗が低い値を示す。   About the presence or absence of surface modification, the difference of resistance value is seen clearly from the comparative example 1 and Example 1, and the effect of surface modification is seen. Examples 2 to 4 are cases in which the metal compound solution having the concentration range of the present invention is used. Comparative Example 2 is a case in which a high concentration and Comparative Example 3 is a case in which a low concentration solution is used. When a lithium transition metal oxide whose surface is modified with a metal compound solution in a concentration range is used as the positive electrode active material, the initial resistance exhibits a low value.

次に、表面修飾に用いる金属アルコキシドと溶媒を検討した結果を述べる。
(実施例5)
Li:Mn:Ni=1.05:0.3:0.7の化学量論比で炭酸リチウム、二酸化マンガン及び酸化ニッケルを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉で酸素中、焼成温度を1000℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)コートしたボールをメディアとして用いて解砕を行った。その後、電気炉で酸素中700℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni複合酸化物粒子を合成した。
次に、Zr(OC3H7)4/イソフ゜ロヒ゜ルアルコール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni複合酸化物粒子を、溶液中のZr量がLi-Mn-Ni複合酸化物粒子に対して0.01質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で酸素中500℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、17Ωであった。
Next, the results of studies on metal alkoxides and solvents used for surface modification will be described.
(Example 5)
Lithium carbonate, manganese dioxide, and nickel oxide were weighed at a stoichiometric ratio of Li: Mn: Ni = 1.05: 0.3: 0.7, and water was added thereto and stirred to prepare a slurry. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were baked in oxygen in an electric furnace at a calcination temperature of 1000 ° C. and a duration of 4 hours, and pulverized using a ball coated with resin (nylon) as a medium in a ball mill. Then, after heat-treating in an electric furnace at 700 ° C. for 4 hours, the particles were classified by passing through a sieve having an aperture of 63 μm to synthesize Li—Mn—Ni composite oxide particles.
Next, a 0.003 mass% solution of Zr (OC 3 H 7 ) 4 / isofluoroalcohol was prepared, and the Li—Mn—Ni composite oxide particles described above were added to the Li—Mn—Ni composite with the amount of Zr in the solution. The mixture was dispersed so as to be 0.01% by mass with respect to the oxide particles, stirred, and collected by suction filtration. The collected powder was vacuum-dried and then heat-treated in oxygen at 500 ° C. for 1 hour in an electric furnace to obtain a positive electrode active material.
A test battery was produced using this positive electrode active material, and the initial resistance was measured at room temperature using a charge / discharge test apparatus. The result was 17Ω.

(実施例6)
実施例5と同様にして、まずLi-Mn-Ni複合酸化物粒子を合成した。
次に、Mg(OC2H5)2/エタノール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni複合酸化物粒子を、溶液中のMg量がLi-Mn-Ni複合酸化物粒子に対して0.01質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で酸素中500℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、16Ωであった。
(Example 6)
First, Li—Mn—Ni composite oxide particles were synthesized in the same manner as in Example 5.
Next, a Mg (OC 2 H 5 ) 2 / ethanol 0.003 mass% solution was prepared, and the Li-Mn-Ni composite oxide particles described above were added to the Li-Mn-Ni composite oxide. The mixture was dispersed to 0.01% by mass with respect to the product particles, stirred, and then collected by suction filtration. The collected powder was vacuum-dried and then heat-treated in oxygen at 500 ° C. for 1 hour in an electric furnace to obtain a positive electrode active material.
A test battery using this positive electrode active material was prepared, and the initial resistance was measured with a charge / discharge test apparatus at room temperature.

(実施例7)
実施例5と同様にして、まずLi-Mn-Ni複合酸化物粒子を合成した。
次に、Mg(OC2H5)2/脱水エタノール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni複合酸化物粒子を、溶液中のMg量がLi-Mn-Ni複合酸化物粒子に対して0.01質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で酸素中500℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、16Ωであった。
(Example 7)
First, Li—Mn—Ni composite oxide particles were synthesized in the same manner as in Example 5.
Next, a 0.003 mass% solution of Mg (OC 2 H 5 ) 2 / dehydrated ethanol was prepared, and the Li-Mn-Ni composite oxide particles previously contained therein were mixed with the amount of Mg in the solution of Li-Mn-Ni composite. The mixture was dispersed so as to be 0.01% by mass with respect to the oxide particles, stirred, and collected by suction filtration. The collected powder was vacuum-dried and then heat-treated in oxygen at 500 ° C. for 1 hour in an electric furnace to obtain a positive electrode active material.
A test battery using this positive electrode active material was prepared, and the initial resistance was measured with a charge / discharge test apparatus at room temperature.

(実施例8)
実施例5と同様にして、まずLi-Mn-Ni複合酸化物粒子を合成した。
次に、Al(OC3H7)3/脱水2-フ゜ロハ゜ノール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni複合酸化物粒子に対して0.01質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で酸素中500℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、17Ωであった。
(Example 8)
First, Li—Mn—Ni composite oxide particles were synthesized in the same manner as in Example 5.
Next, an Al (OC 3 H 7 ) 3 / dehydrated 2-fluoroanol 0.003% by mass solution was prepared, and the Li—Mn—Ni composite oxide particles described above were added therein, and the Al content in the solution was Li—Mn— The Ni composite oxide particles were dispersed so as to be 0.01% by mass, stirred, and then collected by suction filtration. The collected powder was vacuum-dried and then heat-treated in oxygen at 500 ° C. for 1 hour in an electric furnace to obtain a positive electrode active material.
A test battery was produced using this positive electrode active material, and the initial resistance was measured at room temperature using a charge / discharge test apparatus. The result was 17Ω.

(実施例9)
実施例5と同様にして、まずLi-Mn-Ni複合酸化物粒子を合成した。
次に、Sn(OC2H5)4/エタノール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni複合酸化物粒子を、溶液中のSn量がLi-Mn-Ni複合酸化物粒子に対して0.01質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で酸素中500℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、16Ωであった。
Example 9
First, Li—Mn—Ni composite oxide particles were synthesized in the same manner as in Example 5.
Next, a solution of Sn (OC 2 H 5 ) 4 / ethanol 0.003% by mass was prepared, and the Li-Mn-Ni composite oxide particles in the previous solution were added to the Li-Mn-Ni composite oxide. The mixture was dispersed to 0.01% by mass with respect to the product particles, stirred, and then collected by suction filtration. The collected powder was vacuum-dried and then heat-treated in oxygen at 500 ° C. for 1 hour in an electric furnace to obtain a positive electrode active material.
A test battery using this positive electrode active material was prepared, and the initial resistance was measured with a charge / discharge test apparatus at room temperature.

(実施例10)
実施例5と同様にして、まずLi-Mn-Ni複合酸化物粒子を合成した。
次に、Ti(OC2H5)4/エタノール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni複合酸化物粒子を、溶液中のTi量がLi-Mn-Ni複合酸化物粒子に対して0.01質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で酸素中500℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、17Ωであった。
(Example 10)
First, Li—Mn—Ni composite oxide particles were synthesized in the same manner as in Example 5.
Next, a solution of Ti (OC 2 H 5 ) 4 / ethanol 0.003% by mass was prepared, and the Li-Mn-Ni composite oxide particles described earlier were added to the Li-Mn-Ni composite oxide. The mixture was dispersed to 0.01% by mass with respect to the product particles, stirred, and then collected by suction filtration. The collected powder was vacuum-dried and then heat-treated in oxygen at 500 ° C. for 1 hour in an electric furnace to obtain a positive electrode active material.
A test battery was produced using this positive electrode active material, and the initial resistance was measured at room temperature using a charge / discharge test apparatus. The result was 17Ω.

(実施例11)
実施例5と同様にして、まずLi-Mn-Ni複合酸化物粒子を合成した。
次に、Al(CH3COCHCOCH3)3/純水0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni複合酸化物粒子に対して0.01質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で酸素中500℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、18Ωであった。
(Example 11)
First, Li—Mn—Ni composite oxide particles were synthesized in the same manner as in Example 5.
Next, an Al (CH 3 COCHCOCH 3 ) 3 / pure water 0.003 mass% solution is prepared, and the Li-Mn-Ni composite oxide particles are added to the previous solution, and the Al amount in the solution is Li-Mn-Ni composite. The mixture was dispersed so as to be 0.01% by mass with respect to the oxide particles, stirred, and collected by suction filtration. The collected powder was vacuum-dried and then heat-treated in oxygen at 500 ° C. for 1 hour in an electric furnace to obtain a positive electrode active material.
A test battery using this positive electrode active material was prepared, and the initial resistance was measured by a charge / discharge test apparatus at room temperature.

(実施例12)
実施例5と同様にして、まずLi-Mn-Ni複合酸化物粒子を合成した。
次に、Zn(CH3COCHCOCH3)2/純水0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni複合酸化物粒子を、溶液中のZn量がLi-Mn-Ni複合酸化物粒子に対して0.01質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で酸素中500℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、18Ωであった。
(Example 12)
First, Li—Mn—Ni composite oxide particles were synthesized in the same manner as in Example 5.
Next, a Zn (CH 3 COCHCOCH 3 ) 2 / pure water 0.003 mass% solution was prepared, and the Li-Mn-Ni composite oxide particles previously contained therein were mixed with the Zn amount in the solution being a Li-Mn-Ni composite. The mixture was dispersed so as to be 0.01% by mass with respect to the oxide particles, stirred, and collected by suction filtration. The collected powder was vacuum-dried and then heat-treated in oxygen at 500 ° C. for 1 hour in an electric furnace to obtain a positive electrode active material.
A test battery using this positive electrode active material was prepared, and the initial resistance was measured by a charge / discharge test apparatus at room temperature.

(比較例4)
実施例5と同様にして、Li-Mn-Ni複合酸化物粒子を合成し、正極活物質とした。この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、23Ωであった。
(Comparative Example 4)
In the same manner as in Example 5, Li-Mn-Ni composite oxide particles were synthesized and used as a positive electrode active material. A test battery using this positive electrode active material was prepared, and the initial resistance was measured at room temperature using a charge / discharge test apparatus.

上記の実施例5〜12、比較例4において、各種金属化合物溶液による効果を検討した結果を表2に示す。また、図4に実施例5〜12及び比較例4による初期抵抗値を示す。尚、正極活物質の組成については図2に示している。   Table 2 shows the results of examining the effects of various metal compound solutions in Examples 5 to 12 and Comparative Example 4. FIG. 4 shows initial resistance values according to Examples 5 to 12 and Comparative Example 4. The composition of the positive electrode active material is shown in FIG.

表2から明らかなように、Zr、Mg、Sn、Ti、Znを用いた金属化合物溶液の場合でも、表面修飾の効果が見られる。   As is clear from Table 2, the effect of surface modification can be seen even in the case of a metal compound solution using Zr, Mg, Sn, Ti, Zn.

次に、リチウム遷移金属複合酸化物に対する溶液中の金属量と正極活物質最表面に生成した金属化合物層の膜厚を検討した結果を示す。
(実施例13)
Li:Mn:Ni:Co=1.1:0.31:0.38:0.31の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉で大気中、焼成温度を1000℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)コートしたボールをメディアとして用いて解砕を行った。その後、電気炉で大気中600℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co複合酸化物粒子に対して0.0001質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で大気中700℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、16Ωであった。また、透過型電子顕微鏡を用いてこの正極活物質粒子最表面に生成した膜の厚さを測ると、30nmであった。図7にこのときの正極活物質粒子の最表面の透過型電子顕微鏡写真を示す。図7の右図の符号2で示す部分が生成されたAlの化合物膜であり粒子表面に表面修飾されていた。
Next, the result of examining the amount of metal in the solution with respect to the lithium transition metal composite oxide and the thickness of the metal compound layer formed on the outermost surface of the positive electrode active material is shown.
(Example 13)
Li: Mn: Ni: Co = 1.1: 0.31: 0.38: 0.31 Weigh lithium carbonate, manganese dioxide, nickel oxide and cobalt oxide at a stoichiometric ratio and add water to this. A slurry was prepared by stirring. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were baked in an electric furnace in the atmosphere at a calcination temperature of 1000 ° C. and a duration of 4 hours, and pulverized using a ball coated with resin (nylon) as a medium using a ball mill. Then, after heat-treating in an electric furnace at 600 ° C. for 4 hours in the atmosphere, the particles were classified by passing through a sieve having an aperture of 63 μm to synthesize Li—Mn—Ni—Co composite oxide particles.
Next, an Al (OC 3 H 7 ) 3 / isofluoroalcohol 0.003% by mass solution was prepared, and the Li-Mn-Ni-Co composite oxide particles described above were added therein, and the Al content in the solution was Li-Mn- The Ni-Co composite oxide particles were dispersed so as to be 0.0001% by mass, stirred, and then collected by suction filtration. The collected powder was vacuum-dried, and then heat-treated at 700 ° C. for 1 hour in the air in an electric furnace to obtain a positive electrode active material.
A test battery using this positive electrode active material was prepared, and the initial resistance was measured with a charge / discharge test apparatus at room temperature. Further, the thickness of the film formed on the outermost surface of the positive electrode active material particles was measured using a transmission electron microscope and found to be 30 nm. FIG. 7 shows a transmission electron micrograph of the outermost surface of the positive electrode active material particles at this time. The portion indicated by reference numeral 2 in the right diagram of FIG. 7 is an Al compound film produced, and the surface of the particles was modified.

(実施例14)
実施例13と同様にして、まずLi-Mn-Ni-Co複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co複合酸化物粒子に対して0.001質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で大気中700℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、16Ωであった。また、透過型電子顕微鏡を用いてこの正極活物質粒子最表面に生成した膜の厚さを測ると、30nmであった。
(Example 14)
In the same manner as in Example 13, first, Li—Mn—Ni—Co composite oxide particles were synthesized.
Next, a 0.003 mass% solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, and the Li—Mn—Ni—Co composite oxide particles described above were added therein, and the amount of Al in the solution was Li—Mn—. The dispersion was dispersed so as to be 0.001% by mass with respect to the Ni—Co composite oxide particles, stirred, and then collected by suction filtration. The collected powder was vacuum-dried, and then heat-treated at 700 ° C. for 1 hour in the air in an electric furnace to obtain a positive electrode active material.
A test battery using this positive electrode active material was prepared, and the initial resistance was measured with a charge / discharge test apparatus at room temperature. Further, the thickness of the film formed on the outermost surface of the positive electrode active material particles was measured using a transmission electron microscope and found to be 30 nm.

(実施例15)
実施例13と同様にして、まずLi-Mn-Ni-Co複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co複合酸化物粒子に対して0.01質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で大気中700℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、16Ωであった。また、透過型電子顕微鏡を用いてこの正極活物質粒子最表面に生成した膜の厚さを測ると、35nmであった。
(Example 15)
In the same manner as in Example 13, first, Li—Mn—Ni—Co composite oxide particles were synthesized.
Next, a 0.003 mass% solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, and the Li—Mn—Ni—Co composite oxide particles described above were added therein, and the amount of Al in the solution was Li—Mn—. The Ni-Co composite oxide particles were dispersed to 0.01% by mass, stirred, and then collected by suction filtration. The collected powder was vacuum-dried, and then heat-treated at 700 ° C. for 1 hour in the air in an electric furnace to obtain a positive electrode active material.
A test battery using this positive electrode active material was prepared, and the initial resistance was measured with a charge / discharge test apparatus at room temperature. The thickness of the film formed on the outermost surface of the positive electrode active material particles was measured using a transmission electron microscope and found to be 35 nm.

(実施例16)
実施例13と同様にして、まずLi-Mn-Ni-Co複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co複合酸化物粒子に対して0.1質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で大気中700℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、17Ωであった。また、透過型電子顕微鏡を用いてこの正極活物質粒子最表面に生成した膜の厚さを測ると、40nmであった。
(Example 16)
In the same manner as in Example 13, first, Li—Mn—Ni—Co composite oxide particles were synthesized.
Next, a 0.003 mass% solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, and the Li—Mn—Ni—Co composite oxide particles described above were added therein, and the amount of Al in the solution was Li—Mn—. The Ni-Co composite oxide particles were dispersed so as to be 0.1% by mass, stirred, and then collected by suction filtration. The collected powder was vacuum-dried, and then heat-treated at 700 ° C. for 1 hour in the air in an electric furnace to obtain a positive electrode active material.
A test battery was produced using this positive electrode active material, and the initial resistance was measured at room temperature using a charge / discharge test apparatus. The result was 17Ω. Further, the thickness of the film formed on the outermost surface of the positive electrode active material particles was measured using a transmission electron microscope and found to be 40 nm.

(実施例17)
実施例13と同様にして、まずLi-Mn-Ni-Co複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co複合酸化物粒子に対して1質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で大気中700℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、17Ωであった。また、透過型電子顕微鏡を用いてこの正極活物質粒子最表面に生成した膜の厚さを測ると、50nmであった。
(Example 17)
In the same manner as in Example 13, first, Li—Mn—Ni—Co composite oxide particles were synthesized.
Next, a 0.003 mass% solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, and the Li—Mn—Ni—Co composite oxide particles described above were added therein, and the amount of Al in the solution was Li—Mn—. The dispersion was dispersed so as to be 1% by mass with respect to the Ni—Co composite oxide particles, stirred, and then collected by suction filtration. The collected powder was vacuum-dried, and then heat-treated at 700 ° C. for 1 hour in the air in an electric furnace to obtain a positive electrode active material.
A test battery was produced using this positive electrode active material, and the initial resistance was measured at room temperature using a charge / discharge test apparatus. The result was 17Ω. Further, the thickness of the film formed on the outermost surface of the positive electrode active material particles was measured using a transmission electron microscope and found to be 50 nm.

(実施例18)
実施例13と同様にして、まずLi-Mn-Ni-Co複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co複合酸化物粒子に対して10質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で大気中700℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、19Ωであった。また、透過型電子顕微鏡を用いてこの正極活物質粒子最表面に生成した膜の厚さを測ると、70nmであった。
(Example 18)
In the same manner as in Example 13, first, Li—Mn—Ni—Co composite oxide particles were synthesized.
Next, a 0.003 mass% solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, and the Li—Mn—Ni—Co composite oxide particles described above were added therein, and the amount of Al in the solution was Li—Mn—. The mixture was dispersed so as to be 10% by mass with respect to the Ni—Co composite oxide particles, stirred, and then collected by suction filtration. The collected powder was vacuum-dried, and then heat-treated at 700 ° C. for 1 hour in the air in an electric furnace to obtain a positive electrode active material.
When a test battery using this positive electrode active material was prepared and the initial resistance was measured with a charge / discharge test apparatus at room temperature, it was 19Ω. Further, the thickness of the film formed on the outermost surface of the positive electrode active material particles was measured using a transmission electron microscope and found to be 70 nm.

(比較例5)
上記実施例13〜18に示した溶液よりも金属/複合酸化物濃度が低い場合について検討した結果を、以下に述べる。
実施例13と同様にして、まずLi-Mn-Ni-Co複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co複合酸化物粒子に対して0.00001質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で大気中700℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、22Ωであった。また、透過型電子顕微鏡を用いてこの正極活物質粒子最表面を観察したが、実施例13〜18のような膜は見られなかった。
(Comparative Example 5)
The results of studies on the case where the metal / complex oxide concentration is lower than the solutions shown in Examples 13 to 18 are described below.
In the same manner as in Example 13, first, Li—Mn—Ni—Co composite oxide particles were synthesized.
Next, a 0.003 mass% solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, and the Li—Mn—Ni—Co composite oxide particles described above were added therein, and the amount of Al in the solution was Li—Mn—. The Ni-Co composite oxide particles were dispersed to 0.00001% by mass, stirred, and then collected by suction filtration. The collected powder was vacuum-dried, and then heat-treated at 700 ° C. for 1 hour in the air in an electric furnace to obtain a positive electrode active material.
A test battery was produced using this positive electrode active material, and the initial resistance was measured at room temperature using a charge / discharge test apparatus. The result was 22Ω. Moreover, although the outermost surface of this positive electrode active material particle was observed using the transmission electron microscope, the film | membrane like Examples 13-18 was not seen.

(比較例6)
上記実施例13〜18に示した溶液よりも金属/複合酸化物濃度が高い場合について検討した結果を、以下に述べる。
実施例13と同様にして、まずLi-Mn-Ni-Co複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co複合酸化物粒子に対して15質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で大気中700℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、23Ωであった。また、透過型電子顕微鏡を用いてこの正極活物質粒子最表面に生成した膜の厚さを測ると、80nmであった。
(Comparative Example 6)
The results of studies on the case where the metal / complex oxide concentration is higher than the solutions shown in Examples 13 to 18 are described below.
In the same manner as in Example 13, first, Li—Mn—Ni—Co composite oxide particles were synthesized.
Next, a 0.003 mass% solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, and the Li—Mn—Ni—Co composite oxide particles described above were added therein, and the amount of Al in the solution was Li—Mn—. The Ni-Co composite oxide particles were dispersed so as to be 15% by mass, stirred, and collected by suction filtration. The collected powder was vacuum-dried, and then heat-treated at 700 ° C. for 1 hour in the air in an electric furnace to obtain a positive electrode active material.
A test battery using this positive electrode active material was prepared, and the initial resistance was measured at room temperature using a charge / discharge test apparatus. In addition, the thickness of the film formed on the outermost surface of the positive electrode active material particles was measured using a transmission electron microscope and found to be 80 nm.

以上の実施例13〜18、比較例5〜6における金属化合物膜の生成形態による効果を検討した結果を表3に示す。また、図5に実施例13〜18及び比較例5〜6による初期抵抗値を示す。図6に実施例13〜18及び比較例5〜6による金属化合物の膜厚を示す。尚、正極活物質の組成については図2に示している。   Table 3 shows the results of examining the effects of the metal compound film formation modes in Examples 13 to 18 and Comparative Examples 5 to 6 described above. FIG. 5 shows initial resistance values according to Examples 13 to 18 and Comparative Examples 5 to 6. The film thickness of the metal compound by Examples 13-18 and Comparative Examples 5-6 is shown in FIG. The composition of the positive electrode active material is shown in FIG.

表3から分かるように、金属/複合酸化物濃度が本発明の範囲にあれば、低い抵抗値を得られるが、比較例5のように低濃度の場合や比較例6のように高濃度の場合には、低抵抗化の効果が得られない。これは金属化合物の膜厚にも反映される。即ち、実施例13〜18のように粒子最表面の膜厚が本発明の範囲内であれば、低い抵抗値を得られ、比較例5や比較例6のように本発明の範囲外であれば、低抵抗値を得られない。   As can be seen from Table 3, if the metal / composite oxide concentration is within the range of the present invention, a low resistance value can be obtained, but in the case of a low concentration as in Comparative Example 5 or a high concentration as in Comparative Example 6, In this case, the effect of reducing the resistance cannot be obtained. This is also reflected in the film thickness of the metal compound. That is, if the film thickness on the outermost surface of the particles is within the range of the present invention as in Examples 13 to 18, a low resistance value can be obtained, and the film is outside the range of the present invention as in Comparative Examples 5 and 6. Thus, a low resistance value cannot be obtained.

次に超音波照射の効果について検討した結果を説明する。
(実施例19)
Li:Mn:Ni:Co:Al=1.1:0.35:0.4:0.17:0.08の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル、酸化コバルト及び酸化アルミニウムを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉で大気中、焼成温度を1020℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)コートしたボールをメディアとして用いて解砕を行った。その後、電気炉で大気中500℃で4時間熱処理をした後、目開き63μmの篩に通して分級し、Li-Mn-Ni-Co-Al複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co-Al複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co-Al複合酸化物粒子に対して0.01質量%となるよう分散し、発振周波数20kHzの超音波を0.5時間照射してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で大気中700℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、15Ωであった。
Next, the result of examining the effect of ultrasonic irradiation will be described.
(Example 19)
Li: Mn: Ni: Co: Al = lithium carbonate, manganese dioxide, nickel oxide, cobalt oxide and aluminum oxide at a stoichiometric ratio of 1.1: 0.35: 0.4: 0.17: 0.08 Weighed, added water to this, and stirred to prepare a slurry. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were baked in an electric furnace in the atmosphere, at a calcination temperature of 1020 ° C. and for a duration of 4 hours, and pulverized using a ball coated with resin (nylon) as a medium in a ball mill. Then, after heat-treating in the atmosphere at 500 ° C. for 4 hours in an electric furnace, the particles were classified by passing through a sieve having an aperture of 63 μm to synthesize Li—Mn—Ni—Co—Al composite oxide particles.
Next, a 0.003 mass% solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, and the Li-Mn-Ni-Co-Al composite oxide particles described above were added therein, and the amount of Al in the solution was Li--. The Mn—Ni—Co—Al composite oxide particles were dispersed so as to be 0.01% by mass, irradiated with ultrasonic waves having an oscillation frequency of 20 kHz for 0.5 hours, and then collected by suction filtration. The collected powder was vacuum-dried, and then heat-treated at 700 ° C. for 1 hour in the air in an electric furnace to obtain a positive electrode active material.
A test battery was produced using this positive electrode active material, and the initial resistance was measured with a charge / discharge test apparatus at room temperature.

(実施例20)
実施例19と同様にして、まずLi-Mn-Ni-Co-Al複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co-Al複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co-Al複合酸化物粒子に対して0.01質量%となるよう分散し、発振周波数20kHzの超音波を3時間照射してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で大気中700℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、14Ωであった。
(Example 20)
In the same manner as in Example 19, first, Li—Mn—Ni—Co—Al composite oxide particles were synthesized.
Next, a 0.003 mass% solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, and the Li-Mn-Ni-Co-Al composite oxide particles described above were added therein, and the amount of Al in the solution was Li--. The Mn-Ni-Co-Al composite oxide particles were dispersed so as to be 0.01% by mass, irradiated with ultrasonic waves having an oscillation frequency of 20 kHz for 3 hours, and then collected by suction filtration. The collected powder was vacuum-dried, and then heat-treated at 700 ° C. for 1 hour in the air in an electric furnace to obtain a positive electrode active material.
When a test battery using this positive electrode active material was prepared and the initial resistance was measured with a charge / discharge test apparatus at room temperature, it was 14Ω.

(実施例21)
実施例19と同様にして、まずLi-Mn-Ni-Co-Al複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co-Al複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co-Al複合酸化物粒子に対して0.01質量%となるよう分散し、発振周波数40kHzの超音波を0.5時間照射してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で大気中700℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、14Ωであった。
(Example 21)
In the same manner as in Example 19, first, Li—Mn—Ni—Co—Al composite oxide particles were synthesized.
Next, a 0.003 mass% solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, and the Li-Mn-Ni-Co-Al composite oxide particles described above were added therein, and the amount of Al in the solution was Li--. The Mn—Ni—Co—Al composite oxide particles were dispersed so as to be 0.01% by mass, irradiated with ultrasonic waves having an oscillation frequency of 40 kHz for 0.5 hours, and then collected by suction filtration. The collected powder was vacuum-dried, and then heat-treated at 700 ° C. for 1 hour in the air in an electric furnace to obtain a positive electrode active material.
When a test battery using this positive electrode active material was prepared and the initial resistance was measured with a charge / discharge test apparatus at room temperature, it was 14Ω.

(実施例22)
実施例19と同様にして、まずLi-Mn-Ni-Co-Al複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co-Al複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co-Al複合酸化物粒子に対して0.01質量%となるよう分散し、発振周波数40kHzの超音波を3時間照射してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で大気中700℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、15Ωであった。
(Example 22)
In the same manner as in Example 19, first, Li—Mn—Ni—Co—Al composite oxide particles were synthesized.
Next, a 0.003 mass% solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, and the Li-Mn-Ni-Co-Al composite oxide particles described above were added therein, and the amount of Al in the solution was Li--. The Mn—Ni—Co—Al composite oxide particles were dispersed so as to be 0.01% by mass, irradiated with ultrasonic waves having an oscillation frequency of 40 kHz for 3 hours, and then collected by suction filtration. The collected powder was vacuum-dried, and then heat-treated at 700 ° C. for 1 hour in the air in an electric furnace to obtain a positive electrode active material.
A test battery was produced using this positive electrode active material, and the initial resistance was measured with a charge / discharge test apparatus at room temperature.

(比較例7)
実施例19と同様にして、まずLi-Mn-Ni-Co-Al複合酸化物粒子を合成した。
次に、Al(OC3H7)3/イソフ゜ロヒ゜ルアルコール0.003質量%溶液を作製し、その中に先ほどのLi-Mn-Ni-Co複合酸化物粒子を、溶液中のAl量がLi-Mn-Ni-Co-Al複合酸化物粒子に対して0.01質量%となるよう分散し、攪拌してから、吸引ろ過して回収した。回収した粉末を真空乾燥し、その後電気炉で大気中700℃で1時間熱処理をし、正極活物質とした。
この正極活物質による試験用電池を作製し、室温において充放電試験装置により初期抵抗を測定したところ、17Ωであった。
(Comparative Example 7)
In the same manner as in Example 19, first, Li—Mn—Ni—Co—Al composite oxide particles were synthesized.
Next, a 0.003 mass% solution of Al (OC 3 H 7 ) 3 / isofluoroalcohol was prepared, and the Li—Mn—Ni—Co composite oxide particles described above were added therein, and the amount of Al in the solution was Li—Mn—. The Ni-Co-Al composite oxide particles were dispersed to 0.01% by mass, stirred, and then collected by suction filtration. The collected powder was vacuum-dried, and then heat-treated at 700 ° C. for 1 hour in the air in an electric furnace to obtain a positive electrode active material.
A test battery was produced using this positive electrode active material, and the initial resistance was measured at room temperature using a charge / discharge test apparatus. The result was 17Ω.

以上の実施例19〜22、比較例7による超音波照射の効果を検討した結果を表4に示す。また、図8に実施例19〜22及び比較例7による初期抵抗値を示す。尚、正極活物質の組成については図2に示している。   Table 4 shows the results of examining the effects of ultrasonic irradiation according to Examples 19 to 22 and Comparative Example 7 described above. FIG. 8 shows initial resistance values according to Examples 19 to 22 and Comparative Example 7. The composition of the positive electrode active material is shown in FIG.

表4より実施例19〜22の超音波を照射した場合と比較例7の超音波を照射しない場合の抵抗値を見ると、超音波照射の効果は明らかである。但し、実施例の中では超音波の発振周波数及び照射時間にはあまり影響を受けないことが分かる。金属化合物溶液と複合酸化物の混合時に超音波を照射することで、超音波のエネルギーが何らかの形で特性改善に寄与しているものと推測される。   From Table 4, the effect of ultrasonic irradiation is clear when the resistance values when the ultrasonic waves of Examples 19 to 22 are irradiated and when the ultrasonic wave of Comparative Example 7 is not irradiated are observed. However, it can be seen that in the examples, the ultrasonic oscillation frequency and irradiation time are not significantly affected. By irradiating ultrasonic waves when mixing the metal compound solution and the composite oxide, it is presumed that the ultrasonic energy contributes to the characteristic improvement in some way.

最後に組成の検討を行った結果を比較例として述べる。
(比較例8)
Li:Mn:Ni:Co=1:0.55:0.25:0.2の化学量論比で炭酸リチウム、二酸化マンガン、酸化ニッケル及び酸化コバルトを秤量し、これに水を加えて攪拌してスラリーを作製した。この原料スラリーをボールミルにより混合・粉砕し、スラリーをスプレードライヤで乾燥させた。得られた乾燥粒子を電気炉中で焼成温度を900℃、持続時間を4時間として焼成し、ボールミルにて樹脂(ナイロン)でコートしたボールをメディアとして用いて解砕を行った。その後電気炉中600℃で4時間熱処理をし、目開き63μmの篩に通して分級したが、層状構造単相は得られなかった。
Finally, the results of studying the composition will be described as a comparative example.
(Comparative Example 8)
Li: Mn: Ni: Co = 1: 0.55: 0.25: 0.2 Weigh lithium carbonate, manganese dioxide, nickel oxide and cobalt oxide at a stoichiometric ratio, add water to this and stir. A slurry was prepared. This raw slurry was mixed and pulverized by a ball mill, and the slurry was dried by a spray dryer. The obtained dried particles were baked in an electric furnace at a calcination temperature of 900 ° C. and a duration of 4 hours, and pulverized using a ball coated with a resin (nylon) as a medium. Thereafter, heat treatment was performed in an electric furnace at 600 ° C. for 4 hours, and the mixture was classified by passing through a sieve having an opening of 63 μm. However, a single layered structure was not obtained.

本発明の正極活物質は組成式LiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0≦x≦0.65、0.35≦y≦0.5、0≦z≦0.65の範囲でかつx+y+z=1の層状結晶構造を有する酸化物であるが、比較例8のようにこれよりMn含有量が多くなると、本発明の製造方法によれば層状結晶構造単相の生成が困難である。Co含有量が多くなると、Co原料が高価なため高コストとなり、実用性が低い。 The positive electrode active material of the present invention is represented by the composition formula Li a Mn x Ni y M z O 2 [M = Co, at least one of Al], and 1 ≦ a ≦ 1.2, 0 ≦ x ≦ 0.65, 0.35 ≦ y ≦ Although it is an oxide having a layered crystal structure of 0.5, 0 ≦ z ≦ 0.65 and x + y + z = 1, when the Mn content is higher than this as in Comparative Example 8, the production method of the present invention Therefore, it is difficult to generate a single layered crystal structure. When the Co content is increased, the cost of the Co raw material is high and the utility is low.

以上の結果より、本発明の製造条件に沿って製造したリチウム遷移金属複合酸化物をリチウム二次電池用正極材として用いた場合、良好な初期抵抗特性を得られた。   From the above results, when the lithium transition metal composite oxide produced according to the production conditions of the present invention was used as a positive electrode material for a lithium secondary battery, good initial resistance characteristics were obtained.

本発明の正極活物質の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the positive electrode active material of this invention. 本発明の実施例1〜22及び比較例1〜8の正極活物質の組成を表す3元状態図である。It is a ternary phase diagram showing the composition of the positive electrode active materials of Examples 1 to 22 and Comparative Examples 1 to 8 of the present invention. 本発明の実施例1〜4及び比較例1〜3の正極活物質の初期抵抗値を示すグラフである。It is a graph which shows the initial stage resistance value of the positive electrode active material of Examples 1-4 of this invention, and Comparative Examples 1-3. 本発明の実施例5〜12及び比較例4の正極活物質の初期抵抗値を示すグラフである。It is a graph which shows the initial stage resistance value of the positive electrode active material of Examples 5-12 and Comparative Example 4 of this invention. 本発明の実施例13〜18及び比較例5〜6の正極活物質の初期抵抗値を示すグラフである。It is a graph which shows the initial stage resistance value of the positive electrode active material of Examples 13-18 of this invention, and Comparative Examples 5-6. 本発明の実施例13〜18及び比較例5〜6の正極活物質最表面の膜厚を示すグラフである。It is a graph which shows the film thickness of the positive electrode active material outermost surface of Examples 13-18 of this invention, and Comparative Examples 5-6. 本発明の実施例13の正極活物質最表面の透過型電子顕微鏡写真である。It is a transmission electron micrograph of the positive electrode active material outermost surface of Example 13 of this invention. 本発明の実施例19〜22及び比較例7の正極活物質の初期抵抗値を示すグラフである。It is a graph which shows the initial stage resistance value of the positive electrode active material of Examples 19-22 of this invention, and the comparative example 7. FIG.

Claims (9)

リチウム及び遷移金属からなる複合酸化物を正極活物質とする非水系リチウム二次電池において、前記複合酸化物はその粒子表面に厚さ10nm〜70nmの、Al、Mg、Sn、Ti、Zn、及びZrのうち少なくとも一種を含有する金属化合物膜を表面修飾することを特徴とする非水系リチウム二次電池用正極活物質。 In a non-aqueous lithium secondary battery using a composite oxide composed of lithium and a transition metal as a positive electrode active material, the composite oxide has Al, Mg, Sn, Ti, Zn, and 10 nm to 70 nm thick on the particle surface. A positive electrode active material for a non-aqueous lithium secondary battery, wherein a metal compound film containing at least one of Zr is surface-modified. リチウム及び遷移金属からなる複合酸化物を正極活物質とする非水系リチウム二次電池において、前記正極活物質は、組成式LiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0≦x≦0.65、0.35≦y≦1、0≦z≦0.65の範囲でかつx+y+z=1の層状結晶構造を有する酸化物であることを特徴とする請求項1記載の非水系リチウム二次電池用正極活物質。 In a non-aqueous lithium secondary battery using a composite oxide composed of lithium and a transition metal as a positive electrode active material, the positive electrode active material has a composition formula of Li a Mn x Ni y M z O 2 [M = Co, at least of Al An oxide having a layered crystal structure in the range of 1 ≦ a ≦ 1.2, 0 ≦ x ≦ 0.65, 0.35 ≦ y ≦ 1, 0 ≦ z ≦ 0.65 and x + y + z = 1 The positive electrode active material for a non-aqueous lithium secondary battery according to claim 1. 前記正極活物質は、組成式LiaMnxNiyz2[M=Co、Alのうち少なくとも一種]で表され、1≦a≦1.2、0.2≦x≦0.5、0.35≦y≦0.8、0≦z≦0.45の範囲で、かつx+y+z=1の層状結晶構造を有する酸化物であることを特徴とする請求項1乃至2記載の非水系リチウム二次電池用正極活物質。 The positive electrode active material is represented by a composition formula Li a Mn x Ni y M z O 2 [M = Co, at least one of Al], 1 ≦ a ≦ 1.2, 0.2 ≦ x ≦ 0.5, 0.35 ≦ y ≦ 0.8. 3. The positive electrode active material for a non-aqueous lithium secondary battery according to claim 1, wherein the oxide has a layered crystal structure in a range of 0 ≦ z ≦ 0.45 and x + y + z = 1. . リチウム及び遷移金属からなる複合酸化物を正極活物質とする非水系リチウム二次電池において、リチウムと遷移金属の複合酸化物を合成する第Iの工程と、得られた複合酸化物に金属化合物を表面修飾する第IIの工程を有し、前記表面修飾を金属化合物を溶媒に溶かした金属化合物溶液を用いて行い、金属化合物溶液と複合酸化物を混合した後超音波を照射することを特徴とする非水系リチウム二次電池用正極活物質の製造方法。 In a non-aqueous lithium secondary battery using a composite oxide composed of lithium and a transition metal as a positive electrode active material, a first step of synthesizing a composite oxide of lithium and a transition metal, and a metal compound added to the obtained composite oxide A step II of surface modification, wherein the surface modification is performed using a metal compound solution in which a metal compound is dissolved in a solvent, and after mixing the metal compound solution and the composite oxide, ultrasonic irradiation is performed. A method for producing a positive electrode active material for a non-aqueous lithium secondary battery. 前記第Iの工程において、リチウム化合物と遷移金属化合物を所定比で湿式混合し、乾燥させて顆粒状にし、大気中、窒素雰囲気中あるいは酸素雰囲気中にて850℃以上1100℃以下の温度で焼成を行い、層状結晶構造を有するリチウム遷移金属複合酸化物とした後、この複合酸化物を解砕し、その後大気中、窒素雰囲気中あるいは酸素雰囲気中にて400℃以上700℃以下の温度で熱処理を行った後、分級し、第IIの工程において金属化合物溶液と前記分級後の複合酸化物を混合、超音波照射を行い、ろ過、回収して乾燥の後、大気中、窒素雰囲気中あるいは酸素雰囲気中にて300℃以上700℃以下の温度で熱処理を行うことを特徴とする請求項4記載の非水系リチウム二次電池用正極活物質の製造方法。 In the first step, the lithium compound and the transition metal compound are wet-mixed at a predetermined ratio, dried and granulated, and fired at a temperature of 850 ° C. to 1100 ° C. in air, nitrogen atmosphere or oxygen atmosphere. To obtain a lithium transition metal composite oxide having a layered crystal structure, and then pulverizing the composite oxide, and then heat-treating at a temperature of 400 ° C. or higher and 700 ° C. or lower in air, nitrogen atmosphere or oxygen atmosphere. In step II, the metal compound solution and the composite oxide after classification are mixed, subjected to ultrasonic irradiation, filtered, recovered, dried, and then in the atmosphere, nitrogen atmosphere or oxygen. The method for producing a positive electrode active material for a non-aqueous lithium secondary battery according to claim 4, wherein heat treatment is performed at a temperature of 300 ° C or higher and 700 ° C or lower in an atmosphere. 前記金属化合物溶液は金属アルコキシドを脱水エタノール、脱水2−プロパノール、エタノールやイソプロピルアルコールなどの溶媒に溶かした金属アルコキシド溶液、あるいは金属アセチルアセトナートを水に溶かした金属アセチルアセトナート溶液であり、その濃度が0.001〜10質量%であることを特徴とする請求項4または5記載の非水系リチウム二次電池用正極活物質の製造方法。 The metal compound solution is a metal alkoxide solution obtained by dissolving metal alkoxide in a solvent such as dehydrated ethanol, dehydrated 2-propanol, ethanol or isopropyl alcohol, or a metal acetylacetonate solution obtained by dissolving metal acetylacetonate in water. The manufacturing method of the positive electrode active material for nonaqueous lithium secondary batteries of Claim 4 or 5 characterized by the above-mentioned. 請求項5における金属化合物溶液と複合酸化物を混合する工程において、複合酸化物に対して溶液中の金属量が0.0001〜10質量%となるよう、混合することを特徴とする請求項4乃至6記載の非水系リチウム二次電池用正極活物質の製造方法。 6. The step of mixing the metal compound solution and the composite oxide according to claim 5, wherein mixing is performed such that the amount of metal in the solution is 0.0001 to 10% by mass with respect to the composite oxide. The manufacturing method of the positive electrode active material for non-aqueous lithium secondary batteries of description. 前記金属アルコキシド、金属アセチルアセトナートはAl、Mg、Sn、Ti、Zn、及びZrのアルコキシドあるいはアセチルアセトナートのうち少なくとも一種を用いることを特徴とする請求項6または7記載の非水系リチウム二次電池用正極活物質の製造方法。 The non-aqueous lithium secondary according to claim 6 or 7, wherein the metal alkoxide and metal acetylacetonate use at least one of an alkoxide or acetylacetonate of Al, Mg, Sn, Ti, Zn, and Zr. A method for producing a positive electrode active material for a battery. 請求項1乃至3の正極活物質または請求項4乃至8記載の正極活物質の製造方法を用いて構成されたことを特徴とする非水系リチウム二次電池。 A non-aqueous lithium secondary battery comprising the positive electrode active material according to any one of claims 1 to 3 or the method for producing a positive electrode active material according to any one of claims 4 to 8.
JP2004376870A 2004-03-24 2004-12-27 Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator Pending JP2005310744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376870A JP2005310744A (en) 2004-03-24 2004-12-27 Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004086962 2004-03-24
JP2004376870A JP2005310744A (en) 2004-03-24 2004-12-27 Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator

Publications (1)

Publication Number Publication Date
JP2005310744A true JP2005310744A (en) 2005-11-04

Family

ID=35439240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376870A Pending JP2005310744A (en) 2004-03-24 2004-12-27 Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator

Country Status (1)

Country Link
JP (1) JP2005310744A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052712A1 (en) * 2005-11-02 2007-05-10 Agc Seimi Chemical Co., Ltd. Lithium-containing composite oxide and method for production thereof
WO2007105818A1 (en) * 2006-03-15 2007-09-20 Sumitomo Chemical Company, Limited Positive electrode active material powder
WO2007142275A1 (en) * 2006-06-09 2007-12-13 Agc Seimi Chemical Co., Ltd. Positive electrode active material for rechargeable battery with nonaqueous electrolyte, and method for manufacturing the same
KR100790834B1 (en) 2006-05-10 2008-01-03 주식회사 엘지화학 Material for Lithium Secondary Battery of High Performance
JP2008071750A (en) * 2006-08-17 2008-03-27 Tdk Corp Process for production of active material and electrode, active material, and electrode
JP2008514534A (en) * 2004-09-24 2008-05-08 エルジー・ケム・リミテッド Composite material precursor for aluminum-containing lithium transition metal oxides and method for producing the same
JP2008147034A (en) * 2006-12-11 2008-06-26 Tokyo Univ Of Science Positive electrode material, its manufacturing method, positive electrode, and lithium secondary battery
JP2008226495A (en) * 2007-03-08 2008-09-25 Agc Seimi Chemical Co Ltd Lithium-containing composite oxide particle for nonaqueous secondary battery, and its manufacturing method
JP2009224307A (en) * 2008-02-22 2009-10-01 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2009535781A (en) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド Electrode active material with improved safety and electrochemical device using the same
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
WO2010079949A2 (en) * 2009-01-06 2010-07-15 주식회사 엘지화학 Positive electrode active material for lithium secondary battery
US20110183214A1 (en) * 2010-01-28 2011-07-28 Sanyo Electric Co., Ltd. Nonaqueous secondary battery
US8101300B2 (en) 2006-03-02 2012-01-24 Agc Seimi Chemical Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery and its production method
KR101147601B1 (en) * 2008-12-17 2012-05-21 주식회사 엘지화학 Cathode Active Material with Modified Surface
EP2463942A1 (en) 2006-05-10 2012-06-13 LG Chem, Ltd. Material for lithium secondary battery of high performance
US20120164525A1 (en) * 2010-12-28 2012-06-28 Sony Corporation Lithium secondary battery, positive electrode active material, positive electrode, electric tool, electric vehicle, and power storage system
WO2012141258A1 (en) 2011-04-14 2012-10-18 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND PROCESS FOR PRODUCING SAME, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2013503449A (en) * 2009-08-27 2013-01-31 エンビア・システムズ・インコーポレイテッド Cathode material for lithium batteries coated with metal oxide
US8426066B2 (en) 2005-04-13 2013-04-23 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8450013B2 (en) 2005-04-13 2013-05-28 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8540961B2 (en) 2005-04-13 2013-09-24 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
JP2013542905A (en) * 2010-09-21 2013-11-28 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing modified mixed transition metal oxides
US8715854B2 (en) 2006-08-17 2014-05-06 Tdk Corporation Active material with a surface-modified layer covering a metal oxide core and an electrode and battery comprising the same
US8722250B2 (en) 2009-08-20 2014-05-13 Samsung Sdi Co., Ltd. Cathode active material, cathode including the cathode active material, lithium battery employing the cathode, and method of preparing the same
CN103811749A (en) * 2014-03-12 2014-05-21 张萍 Preparation method of graphene-multi-element metal positive electrode material
US20150044513A1 (en) * 2012-03-26 2015-02-12 Sony Corporation Cathode active material, cathode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2015038806A (en) * 2010-03-30 2015-02-26 大日本印刷株式会社 Electrode active material and production method therefor
JP2015069958A (en) * 2013-10-01 2015-04-13 日立マクセル株式会社 Positive electrode material for nonaqueous secondary batteries, manufacturing method thereof, positive electrode mixture layer for nonaqueous secondary batteries arranged by use of positive electrode material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2015080502A1 (en) * 2013-11-29 2015-06-04 한양대학교 산학협력단 Active material for all-solid lithium secondary battery, method for manufacturing same, and all-solid lithium secondary battery comprising same
WO2015163356A1 (en) * 2014-04-22 2015-10-29 三菱化学株式会社 Positive electrode active material for non-aqueous secondary cell, and non-aqueous secondary cell
KR20170045148A (en) 2014-09-03 2017-04-26 미쓰이금속광업주식회사 Positive-electrode active material for lithium secondary cell
KR20170048244A (en) 2014-09-03 2017-05-08 미쓰이금속광업주식회사 Lithium metal composite oxide powder
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
US10193135B2 (en) 2015-01-15 2019-01-29 Zenlabs Energy, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
WO2021095360A1 (en) * 2019-11-14 2021-05-20 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2022259755A1 (en) 2021-06-10 2022-12-15 三井金属鉱業株式会社 Active material and method for producing same

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514534A (en) * 2004-09-24 2008-05-08 エルジー・ケム・リミテッド Composite material precursor for aluminum-containing lithium transition metal oxides and method for producing the same
JP4767963B2 (en) * 2004-09-24 2011-09-07 エルジー・ケム・リミテッド Composite material precursor for aluminum-containing lithium transition metal oxides and method for producing the same
US8540961B2 (en) 2005-04-13 2013-09-24 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US8784770B2 (en) 2005-04-13 2014-07-22 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8574541B2 (en) 2005-04-13 2013-11-05 Lg Chem, Ltd. Process of making cathode material containing Ni-based lithium transition metal oxide
US9590235B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8426066B2 (en) 2005-04-13 2013-04-23 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
US8450013B2 (en) 2005-04-13 2013-05-28 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8815204B2 (en) 2005-04-13 2014-08-26 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US7943111B2 (en) 2005-04-13 2011-05-17 Lg Chem, Ltd. Process of making cathode material containing Ni-based lithium transition metal oxide
US8795897B2 (en) 2005-04-13 2014-08-05 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US7939049B2 (en) 2005-04-13 2011-05-10 Lg Chem, Ltd. Cathode material containing Ni-based lithium transition metal oxide
US7939203B2 (en) 2005-04-13 2011-05-10 Lg Chem, Ltd. Battery containing Ni-based lithium transition metal oxide
US7709148B2 (en) 2005-11-02 2010-05-04 Agc Seimi Chemical Co., Ltd. Lithium-containing composite oxide and its production process
WO2007052712A1 (en) * 2005-11-02 2007-05-10 Agc Seimi Chemical Co., Ltd. Lithium-containing composite oxide and method for production thereof
JP5192818B2 (en) * 2006-03-02 2013-05-08 Agcセイミケミカル株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
US8101300B2 (en) 2006-03-02 2012-01-24 Agc Seimi Chemical Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery and its production method
US7811478B2 (en) 2006-03-15 2010-10-12 Sumitomo Chemical Company, Limited Positive-electrode active material powder
WO2007105818A1 (en) * 2006-03-15 2007-09-20 Sumitomo Chemical Company, Limited Positive electrode active material powder
JP2009535781A (en) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド Electrode active material with improved safety and electrochemical device using the same
JP2014013770A (en) * 2006-05-04 2014-01-23 Lg Chem Ltd Electrode active material with improved safety and electrochemical device using the same
CN102916163A (en) * 2006-05-04 2013-02-06 株式会社Lg化学 Electrode active material with high stability and electrochemical device using the same
KR100790834B1 (en) 2006-05-10 2008-01-03 주식회사 엘지화학 Material for Lithium Secondary Battery of High Performance
EP2463942A1 (en) 2006-05-10 2012-06-13 LG Chem, Ltd. Material for lithium secondary battery of high performance
EP2463941A1 (en) 2006-05-10 2012-06-13 LG Chem, Ltd. Material for lithium secondary battery of high performance
US8021785B2 (en) 2006-06-09 2011-09-20 Agc Seimi Chemical Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery and its production method
JP2012079703A (en) * 2006-06-09 2012-04-19 Agc Seimi Chemical Co Ltd Positive electrode active material used for nonaqueous electrolyte secondary battery, and method for producing the same
WO2007142275A1 (en) * 2006-06-09 2007-12-13 Agc Seimi Chemical Co., Ltd. Positive electrode active material for rechargeable battery with nonaqueous electrolyte, and method for manufacturing the same
JP4909347B2 (en) * 2006-06-09 2012-04-04 Agcセイミケミカル株式会社 A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
JP2008071750A (en) * 2006-08-17 2008-03-27 Tdk Corp Process for production of active material and electrode, active material, and electrode
US8715854B2 (en) 2006-08-17 2014-05-06 Tdk Corporation Active material with a surface-modified layer covering a metal oxide core and an electrode and battery comprising the same
JP2008147034A (en) * 2006-12-11 2008-06-26 Tokyo Univ Of Science Positive electrode material, its manufacturing method, positive electrode, and lithium secondary battery
JP2008226495A (en) * 2007-03-08 2008-09-25 Agc Seimi Chemical Co Ltd Lithium-containing composite oxide particle for nonaqueous secondary battery, and its manufacturing method
JP2009224307A (en) * 2008-02-22 2009-10-01 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and method for manufacturing the same
KR101147601B1 (en) * 2008-12-17 2012-05-21 주식회사 엘지화학 Cathode Active Material with Modified Surface
CN102272986A (en) * 2009-01-06 2011-12-07 株式会社Lg化学 Positive electrode active material for lithium secondary battery
WO2010079949A3 (en) * 2009-01-06 2010-10-14 주식회사 엘지화학 Positive electrode active material for lithium secondary battery
WO2010079949A2 (en) * 2009-01-06 2010-07-15 주식회사 엘지화학 Positive electrode active material for lithium secondary battery
US8377594B2 (en) 2009-01-06 2013-02-19 Lg Chem, Ltd. Cathode active material for lithium secondary battery
US8722250B2 (en) 2009-08-20 2014-05-13 Samsung Sdi Co., Ltd. Cathode active material, cathode including the cathode active material, lithium battery employing the cathode, and method of preparing the same
JP2013503449A (en) * 2009-08-27 2013-01-31 エンビア・システムズ・インコーポレイテッド Cathode material for lithium batteries coated with metal oxide
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
US20110183214A1 (en) * 2010-01-28 2011-07-28 Sanyo Electric Co., Ltd. Nonaqueous secondary battery
US8563179B2 (en) * 2010-01-28 2013-10-22 Sanyo Electric Co., Ltd. Nonaqueous secondary battery
JP2015038806A (en) * 2010-03-30 2015-02-26 大日本印刷株式会社 Electrode active material and production method therefor
JP2013542905A (en) * 2010-09-21 2013-11-28 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing modified mixed transition metal oxides
US9812709B2 (en) * 2010-12-28 2017-11-07 Sony Corporation Lithium secondary battery, positive electrode active material, positive electrode, electric tool, electric vehicle, and power storage system
US20120164525A1 (en) * 2010-12-28 2012-06-28 Sony Corporation Lithium secondary battery, positive electrode active material, positive electrode, electric tool, electric vehicle, and power storage system
US9764962B2 (en) 2011-04-14 2017-09-19 Toda Kogyo Corporation Li—Ni composite oxide particles and process for producing the same, and non-aqueous electrolyte secondary battery
KR20140016314A (en) 2011-04-14 2014-02-07 도다 고교 가부시끼가이샤 Li-ni composite oxide particle powder and process for producing same, and non-aqueous electrolyte secondary battery
WO2012141258A1 (en) 2011-04-14 2012-10-18 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND PROCESS FOR PRODUCING SAME, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US20150044513A1 (en) * 2012-03-26 2015-02-12 Sony Corporation Cathode active material, cathode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
JP2015069958A (en) * 2013-10-01 2015-04-13 日立マクセル株式会社 Positive electrode material for nonaqueous secondary batteries, manufacturing method thereof, positive electrode mixture layer for nonaqueous secondary batteries arranged by use of positive electrode material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2015080502A1 (en) * 2013-11-29 2015-06-04 한양대학교 산학협력단 Active material for all-solid lithium secondary battery, method for manufacturing same, and all-solid lithium secondary battery comprising same
US10050258B2 (en) 2013-11-29 2018-08-14 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Active material for all-solid lithium secondary battery, method for manufacturing same, and all-solid lithium secondary battery comprising same
CN103811749A (en) * 2014-03-12 2014-05-21 张萍 Preparation method of graphene-multi-element metal positive electrode material
JP2019165010A (en) * 2014-04-22 2019-09-26 三菱ケミカル株式会社 Nonaqueous secondary battery
JPWO2015163356A1 (en) * 2014-04-22 2017-04-20 三菱化学株式会社 Cathode active material for non-aqueous secondary battery and non-aqueous secondary battery
WO2015163356A1 (en) * 2014-04-22 2015-10-29 三菱化学株式会社 Positive electrode active material for non-aqueous secondary cell, and non-aqueous secondary cell
KR20170048244A (en) 2014-09-03 2017-05-08 미쓰이금속광업주식회사 Lithium metal composite oxide powder
KR20170045148A (en) 2014-09-03 2017-04-26 미쓰이금속광업주식회사 Positive-electrode active material for lithium secondary cell
US10141570B2 (en) 2014-09-03 2018-11-27 Mitsui Mining & Smelting Co., Ltd. Positive electrode active material for lithium secondary cell
US10312508B2 (en) 2014-09-03 2019-06-04 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide powder
US10193135B2 (en) 2015-01-15 2019-01-29 Zenlabs Energy, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
USRE49980E1 (en) 2015-01-15 2024-05-21 Ionblox, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
WO2021095360A1 (en) * 2019-11-14 2021-05-20 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2022259755A1 (en) 2021-06-10 2022-12-15 三井金属鉱業株式会社 Active material and method for producing same
KR20220167280A (en) 2021-06-10 2022-12-20 미쓰이금속광업주식회사 Active material and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2005310744A (en) Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator
KR101964726B1 (en) Spherical or spherical-like lithium ion battery cathode material and preparation method and application thereof
KR101395478B1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery using said positive electrode active material
KR101787141B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP4986098B2 (en) Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
KR101970909B1 (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
US20120021292A1 (en) Anode active material for lithium secondary battery and method for preparing the same
JP5494199B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP3991359B2 (en) Cathode active material for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery using the cathode active material
JP2015122234A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and method for manufacturing the same
JP4919147B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery
WO2016017360A1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, production method therefor, and non-aqueous electrolyte secondary battery
KR101566155B1 (en) Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and manufacturing method thereof
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP2003173777A (en) Combining method and its combining material of positive electrode active material for nonaqueous lithium secondary battery and conductive subsidiary material, and positive electrode and nonaqueous lithium secondary battery using the same
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP4172024B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP7027928B2 (en) Positive active material for non-aqueous electrolyte secondary battery, manufacturing method of positive positive active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP4543474B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
JP2020035605A (en) Production method of positive electrode active material for lithium ion secondary battery, and manufacturing method of lithium ion secondary battery
JP2017010842A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method for the same, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP2018195419A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery