JP3959154B2 - Ultrasonic probe - Google Patents

Ultrasonic probe Download PDF

Info

Publication number
JP3959154B2
JP3959154B2 JP17214897A JP17214897A JP3959154B2 JP 3959154 B2 JP3959154 B2 JP 3959154B2 JP 17214897 A JP17214897 A JP 17214897A JP 17214897 A JP17214897 A JP 17214897A JP 3959154 B2 JP3959154 B2 JP 3959154B2
Authority
JP
Japan
Prior art keywords
piezoelectric body
ground electrode
flexible printed
wiring board
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17214897A
Other languages
Japanese (ja)
Other versions
JPH119599A (en
Inventor
寿 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17214897A priority Critical patent/JP3959154B2/en
Publication of JPH119599A publication Critical patent/JPH119599A/en
Application granted granted Critical
Publication of JP3959154B2 publication Critical patent/JP3959154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、被検体に超音波を送信して、被検体内の音響インピーダンスの違いによっておこる反射波を受信し、その受信信号から被検体の断層組織や血流の動態などの様々な情報を取り出す超音波診断装置に接続され、実際に被検体に当てられ、超音波を送受信する機能を担っている超音波プローブに関する。
【0002】
【従来の技術】
超音波の医学的な応用としては種々の装置があるが、その主流は超音波パルス反射法を用いて生体の軟部組織を断層像で画像化するものである。この超音波画像化は、X線コンピュータ断層撮影装置(X線CT)、磁気共鳴映像装置(MRI)、核医学診断装置(ガンマカメラ、SPECT等)の他の画像化装置に比べて、リアルタイム性が高く、装置が小型で安価、しかも放射線の被曝が無くて安全性が高いという特徴を有しており、泌尿器科や産婦人科などでその活用範囲は広い。
【0003】
このような超音波診断装置に接続され、実際に被検体に当てられ、超音波を送受信する機能を担っているのが、超音波プローブである。この超音波プローブの主要部は、その先端部分に設けられている振動子部分であり、これは、図11に示すように、圧電セラミックスに代表される矩形の圧電体101の超音波送受信面(表面)にアース電極103を形成し、その上から音響整合層104と音響レンズ105とを順に積層している。一方、圧電体101の背面には、信号電極102を形成して、その上からバッキング層106を装着している。
【0004】
そして、信号電極102の表面に信号電極引出用フレキシブルプリント配線板107を電気的に接続し、バッキング層106の側面に沿って引き出している。また、アース電極103の表面にアース電極引出用銅箔108を電気的に接続し、信号電極引出用フレキシブルプリント配線板107とは反対側からバッキング層106の側面に沿って引き出している。
【0005】
また、図12に示すように、信号電極102とアース電極103とを、同じ側からそれぞれ信号電極引出用フレキシブルプリント配線板107とアース電極引出用銅箔108で引き出している従来例もある。
【0006】
また、図13乃至図15に示すように、円形の圧電体111のタイプもあるが構造や電極引出方法は図11や図12の例と基本的に同じであり、つまり、超音波送受信面(表面)にアース電極113を形成し、その上から音響整合層114と音響レンズ115とを順に積層し、圧電体111の背面から側面にわたって信号電極112を形成して、その上からバッキング層116を装着している。そして、信号電極112の表面に信号電極引出用フレキシブルプリント配線板117を電気的に接続し、バッキング層116の側面に沿って引き出し、また、アース電極113に側面においてアース電極引出用銅箔118を電気的に接続し、バッキング層116の側面に沿って引き出している。
【0007】
このような超音波プローブには次のような問題がある。周知の通り、圧電体に電圧を印加すると、この圧電体に機械的な振動が起こり、超音波が発生する。そして、逆に、超音波(反射波)により圧電体が振動されると、そこから電気信号が出力される。従って、圧電体の機械的振動を阻害するものがあると、その部分では超音波の送受信は実質的にできなくなってしまう。圧電体の表面や背面の電極に接続されている信号電極引出用フレキシブルプリント配線板やアース電極引出用銅箔銅箔がこれに当たる。つまり、信号電極引出用フレキシブルプリント配線板やアース電極引出用銅箔銅箔が接続されている部分では、超音波の送受信ができない又は送受信効率が極端に低下してしまうことになる。
【0008】
従って、圧電体の全面を使って送受信を行うことができず、外形寸法に対する実質的に送受信可能な実効口径の割合の低下は否めない。これにより送信と受信の総合的な感度が低下して、画質が低下し、またペネトレーション(視野深度)の制限が強調され、実効口径の割合の低下により、方位分解能が低下するという事態を招いてしまう。そこで、ある程度の実効口径を得ようとすると、より大型の圧電体が必要になってしまう。このような問題は、サイズが制限されている経食道、経膣、経直腸等の体腔内プローブにとっては重大である。
【0009】
【発明が解決しようとする課題】
本発明の目的は、圧電体の外形寸法に対する実質的に送受信可能な実効口径の割合を大きくすることのできる超音波プローブを提供することにある。
【0010】
【課題を解決するための手段】
本発明は、超音波を送受信するための超音波プローブにおいて、配列されて略円柱形状を構成する複数の圧電体の超音波送受信面のそれぞれから、前記円柱形状の側面の略半周分の一部分にかけてアース電極を形成し、前記アース電極に前記側面の一部分においてアース電極引出用銅箔を接続し、前記複数の圧電体の背面のそれぞれから、前記側面の略半周分の一部分にかけて複数の信号電極を形成し、前記複数の信号電極に、前記側面の他の部分において、フレキシブルプリント配線板上の複数の信号線をそれぞれ接続し、前記フレキシブルプリント配線板を前記略円柱形状の圧電体の側面に略半周分巻き付け、前記アース電極引出用銅箔を前記略円柱形状の圧電体の側面に前記フレキシブルプリント配線板の上に接着されて略1周分巻き付けている。
【0011】
【発明の実施の形態】
以下、図面を参照して、本発明の超音波プローブを好ましい実施形態により説明する。上述したように、超音波診断の主流は、超音波パルス反射法を用いて生体の軟部組織を断層像で画像化するものであるが、その他に反射波に含まれるドプラ偏移周波数情報を検出して、血流の動態を画像化する等の種々の機能分化を遂げてきている。このような超音波診断装置に接続され、実際に被検体に当てられ、超音波を送受信する機能を担っているのが、超音波プローブであり、この超音波プローブの主要部は、その先端部分に設けられている振動子部分である。
(第1実施形態)
図1に第1実施形態に係る超音波プローブの振動子部分の構造を斜視図により示している。また、図2には、図1の圧電体を超音波送受信面(表面)の側から見た平面図を示し、図3には、図1の圧電体を背面側から見た平面図を示している。この実施形態では、圧電体1は、圧電セラミックスに代表される材料で、断面が矩形に、そして外形が四角柱形状に形成されている。この圧電体1には、その表面から一側面(第1の側面)にかけて、アース電極3が形成されている。また、圧電体1の背面には、その背面から、アース電極3が形成されている第1の側面とは反対側の側面(第2の側面)にかけて、信号電極2が形成されている。
【0012】
この圧電体1の表面には、アース電極3を挟んで、音響整合層4と音響レンズ5とが順に積層されている。また、圧電体1の背面には、信号電極2を挟んで、バッキング層6が装着されている。
【0013】
そして、信号電極2とアース電極3をそれぞれ、信号電極引出用フレキシブルプリント配線板(FPC)7とアース電極引出用銅箔(エレクトロード)8により、圧電体1の表面と背面以外の場所、つまり、圧電体1の側面から引き出している。具体的には、信号電極2に、それが形成されている第1の側面において、信号電極引出用フレキシブルプリント配線板7を電気的に接続し、この信号電極引出用フレキシブルプリント配線板7をバッキング層6の側面に沿って後方に引き出している。また、アース電極3に、それが形成されている第2の側面において、アース電極引出用銅箔8を電気的に接続し、信号電極引出用フレキシブルプリント配線板7とは反対側のバッキング層6の側面に沿って引き出している。
【0014】
このように、信号電極2とアース電極3の両方を側面から引き出すことにより、この引出のための信号電極引出用フレキシブルプリント配線板7とアース電極引出用銅箔8が、圧電体1の表面(超音波送受信面)と背面との両方を何ら侵食することがないので、圧電体1の略全面を使って超音波の送受信が行い得、従って外形寸法に対する実質的に送受信可能な実効口径の割合を大きすることができ、その結果、送受信効率の向上を実現できる。
【0015】
これにより送信と受信の総合的な感度が向上するので、画質の向上が期待でき、またペネトレーション(視野深度)の制限が緩和され得る。さらに、送受信の口径が実質的に拡大されるので、同一周波数で比較した場合、走査方向に関する方位分解能が向上する効果もある。
(第2実施形態)
図4に第2実施形態に係る超音波プローブの振動子部分の構造を断面図により示している。また、図5には、図4の圧電体を超音波送受信面(表面)の側から見た平面図を示し、図6には、図4の圧電体を背面側から見た平面図を示している。また、図7には、図5のA−A断面図を示し、図8には、図5のB−B断面図を示している。
【0016】
この実施形態では、圧電体11は、圧電セラミックスに代表される材料で、断面が略円形に、そして外形が略円柱形状に形成されている。この圧電体11には、その表面から側面の略半周分の部分にかけて、アース電極13が形成されている。また、圧電体11の背面には、その背面から側面の略半周分の部分にかけて、アース電極13とは重ならないように区分けして、信号電極12が形成されている。
【0017】
この圧電体11の表面には、アース電極13を挟んで、音響整合層14と音響レンズ15とが順に積層されている。また、圧電体11の背面には、信号電極12を挟んで、バッキング層16が装着されている。
【0018】
そして、信号電極12とアース電極13をそれぞれ、信号電極引出用フレキシブルプリント配線板(FPC)17とアース電極引出用銅箔(エレクトロード)18により、圧電体11の表面と背面以外の場所、つまり、圧電体11の側面部分から引き出している。具体的には、信号電極12に、それが形成されている側面部分において、信号電極引出用フレキシブルプリント配線板17を電気的に接続し、この信号電極引出用フレキシブルプリント配線板17をバッキング層16の側面部分に沿って後方に引き出している。
【0019】
また、アース電極13に、それが形成されている側面部分において、アース電極引出用銅箔18を電気的に接続し、信号電極引出用フレキシブルプリント配線板7と重ならない反対側のバッキング層16の側面部分に沿って引き出している。
【0020】
このように、第1実施形態と同様に、信号電極12とアース電極13の両方を側面から引き出しているので、第1実施形態と同様の効果を奏することができる。つまり、圧電体11の略全面を使って超音波の送受信を行って、外形寸法に対する実質的に送受信可能な実効口径の割合を大きすることができ、そして、送受信効率の向上を実現できるのである。
(第3実施形態)
図9に第3実施形態に係る超音波プローブの振動子部分の構造を斜視図により示している。また、図10には、図9の信号電極引き出しのためのフレキシブルプリント配線板27とアース電極引き出しのための銅箔28とが重なる部分の断面図を示している。なお、これらの図9,10において、第2実施形態の図4乃至図8と同じ部分には同じ符号を付して説明は省略するものとする。また、図9では電極引出し構造をよく見えるように音響レンズ等を省略している。
【0021】
本第3実施形態が、上述した第2実施形態と相違する点は、信号電極12とアース電極13の引出し方法にある。上述したように、信号電極12とアース電極13とは互いに重ならないように円柱形状の圧電体11の側面にそれぞれ略半周分に形成されている。
【0022】
このような信号電極12に対して、チャネル数分の複数本の信号線29が当然の如く絶縁素材の基板30の上に互いに平行に印刷されているフレキシブルプリント配線板27を、信号電極12が形成されている円柱形状の圧電体11の側面部分に略半周分巻き付けて、電気的に接続している。
【0023】
そして、アース電極13に対しては、アース電極引出用銅箔28をアース電極13が形成されている円柱形状の圧電体11の側面部分に略半周分巻き付けて電気的に接続し、さらに略半周分、フレキシブルプリント配線板27の上からそれに重ねて合計略1周分巻き付けている。
【0024】
このように、第1や第2実施形態と同様に、信号電極12とアース電極13の両方を側面から引き出しているので、第1や第2実施形態と同様の効果を奏することができる。つまり、圧電体11の略全面を使って超音波の送受信を行って、外形寸法に対する実質的に送受信可能な実効口径の割合を大きすることができ、そして、送受信効率の向上を実現できるのである。
【0025】
さらに、本実施形態では独自の効果を実現している。それは、フレキシブルプリント配線板27の基板30の上に印刷されている複数本の信号線29の間での素子間クロストークを効果的に低減できることである。これは、複数本の信号線29に絶縁基板30を隔ててアース電極引出用銅箔28が非常に近接した状態で設けられていることにより達成されている。
本発明は、上述してきたような実施形態に限定されることなく、種々変形して実施可能であることは言うまでもない。
【0026】
【発明の効果】
本発明は、圧電体に形成された複数の電極を圧電体の側面から引き出す点に特徴があり、この特徴によれば、電極引出部が圧電体の超音波送受信面と背面との両方を何ら侵食することがないので、圧電体の外形寸法に対する実質的に送受信可能な実効口径の割合を大きすることができ、その結果、送受信効率の向上を実現できる。これにより送信と受信の総合的な感度が向上するので、画質が向上し、またペネトレーション(視野深度)の制限が緩和され得る。さらに、送受信の口径が実質的に拡大されるので、同一周波数で比較した場合、走査方向に関する方位分解能が向上する。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る超音波プローブの矩形振動子部分の構造を示す斜視図。
【図2】図1の圧電体を表面側から見た平面図。
【図3】図1の圧電体を背面側から見た平面図。
【図4】本発明の第2実施形態に係る超音波プローブの円形振動子部分の構造を示す断面図。
【図5】図4の圧電体を表面側から見た平面図。
【図6】図4の圧電体を背面側から見た平面図。
【図7】図5のA−A断面図
【図8】図5のB−B断面図
【図9】本発明の第3実施形態に係る超音波プローブの円形振動子部分の構造を示す斜視図。
【図10】図9の信号電極引き出しのためのフレキシブルプリント配線板とアース電極引き出しのための銅箔とが重なる部分の断面図。
【図11】第1の従来技術の超音波プローブの振動子部分の構造図。
【図12】第2の従来技術の超音波プローブの振動子部分の構造図。
【図13】第3の従来技術の超音波プローブの振動子部分の構造図。
【図14】第4の従来技術の超音波プローブの振動子部分の構造図。
【図15】図14のC−C断面図。
【符号の説明】
1…矩形圧電体、
2…信号電極、
3…アース電極、
4…音響整合層、
5…音響レンズ、
6…バッキング層、
7…信号電極引出用フレキシブルプリント配線板、
8…アース電極引出用銅箔、
11…円形圧電体、
12…信号電極、
13…アース電極、
14…音響整合層、
15…音響レンズ、
16…バッキング層、
17…信号電極引出用フレキシブルプリント配線板、
18…アース電極引出用銅箔、
27…信号電極引出用フレキシブルプリント配線板、
28…アース電極引出用銅箔、
29…信号線、
30…フレキシブルプリント基板。
[0001]
BACKGROUND OF THE INVENTION
The present invention transmits an ultrasonic wave to a subject, receives a reflected wave caused by a difference in acoustic impedance in the subject, and receives various information such as a tomographic tissue and blood flow dynamics from the received signal. The present invention relates to an ultrasonic probe that is connected to an ultrasonic diagnostic apparatus to be taken out, is actually applied to a subject, and has a function of transmitting and receiving ultrasonic waves.
[0002]
[Prior art]
There are various apparatuses for medical applications of ultrasound, and the mainstream is to image soft tissue of a living body with a tomographic image using an ultrasonic pulse reflection method. This ultrasonic imaging is real-time compared to other imaging apparatuses such as an X-ray computed tomography apparatus (X-ray CT), a magnetic resonance imaging apparatus (MRI), and a nuclear medicine diagnosis apparatus (gamma camera, SPECT, etc.). The device is small, inexpensive, and has high radiation safety without exposure to radiation. Its application range is wide in urology and obstetrics and gynecology.
[0003]
An ultrasonic probe is connected to such an ultrasonic diagnostic apparatus, is actually applied to a subject, and has a function of transmitting and receiving ultrasonic waves. The main part of this ultrasonic probe is a vibrator part provided at the tip part thereof, as shown in FIG. 11, which is an ultrasonic transmission / reception surface of a rectangular piezoelectric body 101 represented by piezoelectric ceramics ( A ground electrode 103 is formed on the surface), and an acoustic matching layer 104 and an acoustic lens 105 are laminated in that order. On the other hand, a signal electrode 102 is formed on the back surface of the piezoelectric body 101, and a backing layer 106 is mounted thereon.
[0004]
The signal electrode lead flexible printed wiring board 107 is electrically connected to the surface of the signal electrode 102 and is drawn out along the side surface of the backing layer 106. Also, a ground electrode lead copper foil 108 is electrically connected to the surface of the ground electrode 103 and is drawn along the side surface of the backing layer 106 from the side opposite to the signal electrode lead flexible printed wiring board 107.
[0005]
In addition, as shown in FIG. 12, there is a conventional example in which the signal electrode 102 and the ground electrode 103 are pulled out from the same side by a flexible printed wiring board 107 for leading out the signal electrode and a copper foil 108 for pulling out the ground electrode, respectively.
[0006]
Further, as shown in FIGS. 13 to 15, there is a circular piezoelectric body 111 type, but the structure and electrode extraction method are basically the same as the examples of FIGS. 11 and 12, that is, an ultrasonic transmission / reception surface ( A ground electrode 113 is formed on the surface), and an acoustic matching layer 114 and an acoustic lens 115 are sequentially stacked thereon, a signal electrode 112 is formed from the back surface to the side surface of the piezoelectric body 111, and a backing layer 116 is formed thereon. Wearing. Then, the signal electrode lead flexible printed wiring board 117 is electrically connected to the surface of the signal electrode 112, drawn along the side surface of the backing layer 116, and the ground electrode lead copper foil 118 is placed on the side surface of the ground electrode 113. They are electrically connected and drawn out along the side surface of the backing layer 116.
[0007]
Such an ultrasonic probe has the following problems. As is well known, when a voltage is applied to a piezoelectric body, mechanical vibration occurs in the piezoelectric body, and ultrasonic waves are generated. Conversely, when the piezoelectric body is vibrated by ultrasonic waves (reflected waves), an electrical signal is output therefrom. Therefore, if there is something that obstructs the mechanical vibration of the piezoelectric body, ultrasonic waves cannot be transmitted or received at that portion. The flexible printed wiring board for signal electrode extraction and the copper foil copper foil for extraction of the earth electrode connected to the electrodes on the front and back surfaces of the piezoelectric body correspond to this. That is, in the portion where the flexible printed wiring board for signal electrode extraction and the copper foil copper foil for earth electrode extraction are connected, transmission / reception of ultrasonic waves cannot be performed or transmission / reception efficiency is extremely reduced.
[0008]
Therefore, transmission / reception cannot be performed using the entire surface of the piezoelectric body, and a reduction in the ratio of the effective aperture that can substantially be transmitted / received with respect to the external dimensions cannot be denied. This lowers the overall sensitivity of transmission and reception, lowers the image quality, emphasizes the limitation of penetration (depth of field), and leads to the situation that the azimuth resolution is reduced due to the reduction of the effective aperture ratio. End up. Therefore, to obtain a certain effective diameter, a larger piezoelectric body is required. Such a problem is serious for intra-cavity probes such as transesophagus, vagina, and rectum, which are limited in size.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide an ultrasonic probe capable of increasing a ratio of an effective aperture that can be substantially transmitted and received with respect to an outer dimension of a piezoelectric body.
[0010]
[Means for Solving the Problems]
The present invention relates to an ultrasonic probe for transmitting and receiving ultrasonic waves, from each of ultrasonic transmission / reception surfaces of a plurality of piezoelectric bodies arranged in a substantially cylindrical shape to a part of a substantially half circumference of the cylindrical side surface. Forming a ground electrode, connecting a ground electrode lead-out copper foil to a part of the side surface to the ground electrode, and connecting a plurality of signal electrodes from each of the back surfaces of the plurality of piezoelectric bodies to a part of a substantially half circumference of the side surface. formed, before Symbol plurality of signal electrodes, in other parts of the side, a plurality of signal lines on the flexible printed wiring board and connected, the flexible printed wiring board on the side surfaces of the piezoelectric body of the generally cylindrical substantially wrapped half circumference, the grounded electrode lead copper foil is bonded on the piezoelectric side to the flexible printed wiring board of the substantially cylindrical one round turn substantially Only to have.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an ultrasonic probe of the present invention will be described with reference to the drawings according to a preferred embodiment. As described above, the mainstream of ultrasonic diagnosis is to image soft tissue of a living body with a tomographic image using an ultrasonic pulse reflection method, but also detects Doppler shift frequency information contained in the reflected wave. Thus, various functional differentiations such as imaging of blood flow dynamics have been achieved. It is an ultrasonic probe that is connected to such an ultrasonic diagnostic apparatus, is actually applied to a subject, and has a function of transmitting and receiving ultrasonic waves. The main part of this ultrasonic probe is the tip part thereof. It is the vibrator | oscillator part provided in.
(First embodiment)
FIG. 1 is a perspective view showing the structure of the transducer part of the ultrasonic probe according to the first embodiment. 2 shows a plan view of the piezoelectric body of FIG. 1 viewed from the ultrasonic transmission / reception surface (front surface) side, and FIG. 3 shows a plan view of the piezoelectric body of FIG. 1 viewed from the back side. ing. In this embodiment, the piezoelectric body 1 is made of a material typified by piezoelectric ceramics, and has a rectangular cross section and a quadrangular prism shape. A ground electrode 3 is formed on the piezoelectric body 1 from the surface to one side surface (first side surface). A signal electrode 2 is formed on the back surface of the piezoelectric body 1 from the back surface to a side surface (second side surface) opposite to the first side surface on which the ground electrode 3 is formed.
[0012]
An acoustic matching layer 4 and an acoustic lens 5 are sequentially laminated on the surface of the piezoelectric body 1 with the ground electrode 3 interposed therebetween. A backing layer 6 is attached to the back surface of the piezoelectric body 1 with the signal electrode 2 interposed therebetween.
[0013]
Then, the signal electrode 2 and the ground electrode 3 are respectively connected to a place other than the surface and the back surface of the piezoelectric body 1 by a flexible printed wiring board (FPC) 7 for extracting the signal electrode and a copper foil (electrode) 8 for extracting the ground electrode. The piezoelectric body 1 is pulled out from the side surface. Specifically, the signal electrode lead flexible printed wiring board 7 is electrically connected to the signal electrode 2 on the first side where the signal electrode 2 is formed, and the signal electrode lead flexible printed wiring board 7 is backed. The layer 6 is pulled back along the side surface. Further, the ground electrode 3 is electrically connected to the ground electrode 3 on the second side surface on which the ground electrode 3 is formed, and the backing layer 6 on the side opposite to the signal electrode lead flexible printed wiring board 7 is connected. Pull out along the side.
[0014]
Thus, by pulling out both the signal electrode 2 and the ground electrode 3 from the side surface, the flexible printed wiring board 7 for pulling out the signal electrode and the copper foil 8 for pulling out the ground electrode are brought into contact with the surface of the piezoelectric body 1 ( Since there is no erosion of both the ultrasonic transmission / reception surface) and the back surface, ultrasonic transmission / reception can be performed using substantially the entire surface of the piezoelectric body 1, and therefore the ratio of the effective aperture that can be substantially transmitted / received to the outer dimensions. As a result, the transmission / reception efficiency can be improved.
[0015]
As a result, the overall sensitivity of transmission and reception is improved, so that an improvement in image quality can be expected, and the limitation on penetration (depth of field) can be relaxed. Furthermore, since the transmission / reception aperture is substantially enlarged, there is an effect of improving the azimuth resolution in the scanning direction when compared at the same frequency.
(Second Embodiment)
FIG. 4 is a sectional view showing the structure of the transducer part of the ultrasonic probe according to the second embodiment. 5 shows a plan view of the piezoelectric body of FIG. 4 viewed from the ultrasonic transmission / reception surface (front surface) side, and FIG. 6 shows a plan view of the piezoelectric body of FIG. 4 viewed from the back side. ing. 7 shows a cross-sectional view along AA in FIG. 5, and FIG. 8 shows a cross-sectional view along BB in FIG.
[0016]
In this embodiment, the piezoelectric body 11 is made of a material typified by piezoelectric ceramics, and has a substantially circular cross section and a substantially cylindrical outer shape. An earth electrode 13 is formed on the piezoelectric body 11 from the surface thereof to a portion corresponding to a substantially half circumference of the side surface. A signal electrode 12 is formed on the back surface of the piezoelectric body 11 so as not to overlap with the ground electrode 13 from the back surface to a substantially half circumference portion of the side surface.
[0017]
An acoustic matching layer 14 and an acoustic lens 15 are sequentially laminated on the surface of the piezoelectric body 11 with the ground electrode 13 interposed therebetween. A backing layer 16 is attached to the back surface of the piezoelectric body 11 with the signal electrode 12 interposed therebetween.
[0018]
Then, the signal electrode 12 and the ground electrode 13 are connected to a place other than the surface and the back surface of the piezoelectric body 11 by the flexible printed wiring board (FPC) 17 for extracting the signal electrode and the copper foil (electrode) 18 for extracting the ground electrode, respectively. The piezoelectric body 11 is pulled out from the side surface portion. Specifically, the signal electrode lead flexible printed wiring board 17 is electrically connected to the signal electrode 12 at the side surface portion where the signal electrode 12 is formed, and the signal electrode lead flexible printed wiring board 17 is connected to the backing layer 16. It is pulled out rearward along the side part.
[0019]
Further, the ground electrode lead-out copper foil 18 is electrically connected to the ground electrode 13 at the side surface portion where the ground electrode 13 is formed, and the backing layer 16 on the opposite side that does not overlap the signal electrode lead-out flexible printed wiring board 7 is formed. Pulls out along the side.
[0020]
As described above, since both the signal electrode 12 and the ground electrode 13 are pulled out from the side surfaces as in the first embodiment, the same effects as in the first embodiment can be obtained. That is, ultrasonic waves can be transmitted and received using substantially the entire surface of the piezoelectric body 11, the ratio of the effective aperture that can be substantially transmitted and received to the outer dimensions can be increased, and transmission and reception efficiency can be improved. .
(Third embodiment)
FIG. 9 is a perspective view showing the structure of the transducer part of the ultrasonic probe according to the third embodiment. FIG. 10 shows a cross-sectional view of a portion where the flexible printed wiring board 27 for drawing out the signal electrode and the copper foil 28 for drawing out the ground electrode overlap in FIG. 9 and 10, the same reference numerals are given to the same portions as those in FIGS. 4 to 8 of the second embodiment, and description thereof will be omitted. In FIG. 9, the acoustic lens and the like are omitted so that the electrode lead-out structure can be clearly seen.
[0021]
The third embodiment is different from the second embodiment described above in the method of drawing out the signal electrode 12 and the ground electrode 13. As described above, the signal electrode 12 and the ground electrode 13 are formed on the side surface of the cylindrical piezoelectric body 11 so as not to overlap each other, and approximately half a circumference.
[0022]
With respect to such a signal electrode 12, the signal electrode 12 includes a flexible printed wiring board 27 in which a plurality of signal lines 29 corresponding to the number of channels are naturally printed in parallel on a substrate 30 made of an insulating material. The cylindrical piezoelectric body 11 is formed so as to be electrically connected by being wound around a side portion of the cylindrical body 11 by approximately a half circumference.
[0023]
The ground electrode 13 is electrically connected to the ground electrode 13 by winding the ground electrode lead copper foil 28 around the side surface portion of the columnar piezoelectric body 11 on which the ground electrode 13 is formed. The flexible printed wiring board 27 is wound on the flexible printed wiring board 27 for a total of approximately one turn.
[0024]
Thus, since both the signal electrode 12 and the ground electrode 13 are pulled out from the side surfaces as in the first and second embodiments, the same effects as in the first and second embodiments can be achieved. That is, ultrasonic waves can be transmitted and received using substantially the entire surface of the piezoelectric body 11, the ratio of the effective aperture that can be substantially transmitted and received to the outer dimensions can be increased, and transmission and reception efficiency can be improved. .
[0025]
Further, this embodiment realizes a unique effect. That is, it is possible to effectively reduce crosstalk between elements between a plurality of signal lines 29 printed on the substrate 30 of the flexible printed wiring board 27. This is achieved by providing the ground electrode lead-out copper foil 28 in close proximity to the plurality of signal lines 29 across the insulating substrate 30.
It goes without saying that the present invention is not limited to the above-described embodiments and can be implemented with various modifications.
[0026]
【The invention's effect】
The present invention is characterized in that a plurality of electrodes formed on the piezoelectric body are drawn out from the side surface of the piezoelectric body. According to this feature, the electrode lead-out portion does not provide both the ultrasonic wave transmitting / receiving surface and the back surface of the piezoelectric body. Since it does not erode, it is possible to increase the ratio of the effective aperture that can be transmitted and received with respect to the outer dimensions of the piezoelectric body. As a result, it is possible to improve the transmission and reception efficiency. As a result, the overall sensitivity of transmission and reception is improved, so that the image quality is improved and the limitation on the penetration (depth of field) can be relaxed. Further, since the transmission / reception aperture is substantially enlarged, the azimuth resolution in the scanning direction is improved when compared at the same frequency.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a structure of a rectangular transducer part of an ultrasonic probe according to a first embodiment of the present invention.
2 is a plan view of the piezoelectric body of FIG. 1 viewed from the surface side.
3 is a plan view of the piezoelectric body of FIG. 1 viewed from the back side.
FIG. 4 is a cross-sectional view showing the structure of a circular transducer portion of an ultrasonic probe according to a second embodiment of the present invention.
5 is a plan view of the piezoelectric body of FIG. 4 as viewed from the surface side.
6 is a plan view of the piezoelectric body of FIG. 4 viewed from the back side.
7 is a cross-sectional view taken along line AA in FIG. 5. FIG. 8 is a cross-sectional view taken along line BB in FIG. 5. FIG. 9 is a perspective view showing the structure of a circular transducer portion of an ultrasonic probe according to a third embodiment of the present invention. Figure.
10 is a cross-sectional view of a portion where a flexible printed wiring board for drawing out signal electrodes and a copper foil for drawing out ground electrodes overlap in FIG. 9;
FIG. 11 is a structural diagram of a transducer part of a first conventional ultrasonic probe.
FIG. 12 is a structural diagram of a transducer part of an ultrasonic probe according to a second prior art.
FIG. 13 is a structural diagram of a transducer part of an ultrasonic probe according to a third prior art.
FIG. 14 is a structural diagram of a transducer part of an ultrasonic probe according to a fourth prior art.
15 is a cross-sectional view taken along the line CC of FIG.
[Explanation of symbols]
1 ... rectangular piezoelectric body,
2 ... Signal electrode,
3 ... Earth electrode,
4 ... acoustic matching layer,
5 ... Acoustic lens,
6 ... backing layer,
7 ... Flexible printed circuit board for extracting signal electrodes,
8 ... Copper foil for extracting the ground electrode,
11: Circular piezoelectric body,
12: Signal electrode,
13: Earth electrode,
14 ... acoustic matching layer,
15 ... acoustic lens,
16 ... backing layer,
17 ... Flexible printed wiring board for extracting signal electrodes,
18 ... Copper foil for extracting the ground electrode,
27 ... Flexible printed circuit board for extracting signal electrodes,
28 ... Copper foil for extracting the ground electrode,
29 ... Signal line,
30: Flexible printed circuit board.

Claims (1)

超音波を送受信するための超音波プローブにおいて、
配列されて略円柱形状を構成する複数の圧電体の超音波送受信面のそれぞれから、前記円柱形状の側面の略半周分の一部分にかけてアース電極を形成し、
前記アース電極に前記側面の一部分においてアース電極引出用銅箔を接続し、
前記複数の圧電体の背面のそれぞれから、前記側面の略半周分の一部分にかけて複数の信号電極を形成し、
記複数の信号電極に、前記側面の他の部分において、フレキシブルプリント配線板上の複数の信号線をそれぞれ接続し、
前記フレキシブルプリント配線板を前記略円柱形状の圧電体の側面に略半周分巻き付け、
前記アース電極引出用銅箔を前記略円柱形状の圧電体の側面に前記フレキシブルプリント配線板の上に接着されて略1周分巻き付けていることを特徴とする超音波プローブ。
In an ultrasonic probe for transmitting and receiving ultrasonic waves,
From each of the ultrasonic wave transmitting / receiving surfaces of the plurality of piezoelectric bodies arranged to form a substantially cylindrical shape, a ground electrode is formed over a portion of a substantially half circumference of the cylindrical side surface,
Connecting the ground electrode lead-out copper foil in a part of the side surface to the ground electrode ,
A plurality of signal electrodes are formed from each of the back surfaces of the plurality of piezoelectric bodies to a part of the substantially half circumference of the side surface,
Before SL plurality of signal electrodes, in other parts of the side, by connecting a plurality of signal lines on the flexible printed wiring board, respectively,
Wrapping the flexible printed wiring board about a half circumference around the side surface of the substantially cylindrical piezoelectric body,
An ultrasonic probe characterized in that the ground electrode lead-out copper foil is bonded to the side surface of the substantially cylindrical piezoelectric body on the flexible printed wiring board and wound for approximately one turn.
JP17214897A 1997-06-27 1997-06-27 Ultrasonic probe Expired - Fee Related JP3959154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17214897A JP3959154B2 (en) 1997-06-27 1997-06-27 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17214897A JP3959154B2 (en) 1997-06-27 1997-06-27 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JPH119599A JPH119599A (en) 1999-01-19
JP3959154B2 true JP3959154B2 (en) 2007-08-15

Family

ID=15936463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17214897A Expired - Fee Related JP3959154B2 (en) 1997-06-27 1997-06-27 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JP3959154B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100642677B1 (en) 2004-05-15 2006-11-10 주식회사 휴먼스캔 Ultrasonic probe and preparing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922534A (en) * 1982-07-28 1984-02-04 富士写真光機株式会社 Ultrasonic diagnostic endoscope
US4543960A (en) * 1983-04-11 1985-10-01 Advanced Technology Laboratories, Inc. Transesophageal echo cardiography scanhead
JPH06105842A (en) * 1992-05-22 1994-04-19 Toshiba Corp Ultrasonic trasducer
JPH07136164A (en) * 1993-11-12 1995-05-30 Olympus Optical Co Ltd Ultrasonic probe
JP3526486B2 (en) * 1995-04-28 2004-05-17 株式会社東芝 Ultrasonic probe, ultrasonic probe equipped with the probe, and methods of manufacturing these

Also Published As

Publication number Publication date
JPH119599A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
JP2758199B2 (en) Ultrasonic probe
USRE47414E1 (en) Probe for ultrasonic diagnostic apparatus
JP4408974B2 (en) Ultrasonic transducer and manufacturing method thereof
US20130181577A1 (en) Ultrasonic probe and manufacturing method thereof
EP2610860A2 (en) Ultrasound probe and manufacturing method thereof
KR101031010B1 (en) Pcb and probe therewith
KR101354605B1 (en) Ultrasound Probe and Manufacturing Method thereof
US10201328B2 (en) Ultrasonic diagnostic apparatus and manufacturing method thereof
CN108459085B (en) Ultrasonic probe
JP2010158522A (en) Probe for ultrasonic diagnostic apparatus and method for manufacturing the same
JPH11155863A (en) Ultrasonic probe
EP0306288B1 (en) Ultrasonic imaging apparatus
JP3967429B2 (en) Ultrasonic diagnostic equipment
JP3959154B2 (en) Ultrasonic probe
JP2011124997A (en) Ultrasonic probe and method of manufacturing the same
JP3780168B2 (en) Ultrasonic array transducer
JPH09299370A (en) Ultrasonic probe
JPS60137200A (en) Ultrasonic probe
US11754534B2 (en) Ultrasonic probe and method of manufacturing the same
Szabó et al. Estimation of the size of prostatic adenoma by ultrasonography
JP4131592B2 (en) Ultrasonic probe
JP2793501B2 (en) In-vivo ultrasonic probe
JPH03131242A (en) Ultrasonic probe
Cladé et al. 10 MHz ultrasound linear array catheter for endobronchial imaging
KR100856044B1 (en) Ultrasound diagnosis device comprising multilayer-membrane structured probe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees