JP3919301B2 - Rear focus zoom lens and imaging apparatus using the same - Google Patents

Rear focus zoom lens and imaging apparatus using the same Download PDF

Info

Publication number
JP3919301B2
JP3919301B2 JP21419797A JP21419797A JP3919301B2 JP 3919301 B2 JP3919301 B2 JP 3919301B2 JP 21419797 A JP21419797 A JP 21419797A JP 21419797 A JP21419797 A JP 21419797A JP 3919301 B2 JP3919301 B2 JP 3919301B2
Authority
JP
Japan
Prior art keywords
group
lens
refractive power
rear focus
angle end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21419797A
Other languages
Japanese (ja)
Other versions
JPH1144847A (en
Inventor
昭永 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21419797A priority Critical patent/JP3919301B2/en
Publication of JPH1144847A publication Critical patent/JPH1144847A/en
Application granted granted Critical
Publication of JP3919301B2 publication Critical patent/JP3919301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリヤーフォーカス式のズームレンズ及びそれを用いた撮像装置に関し、特にビデオカメラ、そして放送用カメラ等の撮像装置に用いられる像面側に色分解プリズムを設けることができる程度に長いバックフォーカスを有し、かつ大口径比で高変倍比のレンズ全長の短い小型のリヤーフォーカス式のズームレンズ及びそれを用いた撮像装置に関するものである。
【0002】
【従来の技術】
最近、ホームビデオカメラ等の小型軽量化に伴い、撮像用のズームレンズの小型化にも目覚ましい進歩が見られ、特にレンズ全長の短縮化や前玉径の小型化、構成の簡略化に力が注がれている。
【0003】
これらの目的を達成する一つの手段として、物体側の第1群以外のレンズ群を移動させてフォーカスを行う、所謂リヤーフォーカス式のズームレンズが知られている。
【0004】
一般にリヤーフォーカス式のズームレンズは第1群を移動させてフォーカスを行うズームレンズに比べて第1群の有効径が小さくなり、レンズ系全体の小型化が容易になり、又近接撮影、特に極近接撮影が容易となり、更に比較的小型軽量のレンズ群を移動させて行っているので、レンズ群の駆動力が小さくてすみ迅速な焦点合わせができる等の特長がある。
【0005】
このようなリヤーフォーカス式のズームレンズとして、特開平3−158813号公報では、物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、そして正の屈折力の第4群の4つのレンズ群を有し、第2群と第3群の間隔を変化させて変倍を行い、該第4群の一部のレンズ群を移動させてフォーカスを行うズームレンズを開示している。
【0006】
又、特開昭61−296317号公報や特開昭61−296318号公報等では、物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、そして正の屈折力の第4群の4つのレンズ群を有し、第2群と第3群の間隔を変化させて変倍を行い、該第2群と第3群との間に開口絞りを配置し、第1群を移動させてフォーカスを行うズームレンズを開示している。
【0007】
一方、最近のビデオデッキの高性能化(デジタル化)に伴い、ビデオカメラの高画質化が種々となされている。その1つとして色分解光学系による画像の色分解がある。このようなビデオカメラ用のズームレンズが、例えば特開平5−72474号公報,特開平6−51199号公報,特開平7−199069号公報,特開平7−270684号公報等で提案されている。
【0008】
【発明が解決しようとする課題】
一般にズームレンズにおいてリヤーフォーカス方式を採用するとレンズ系全体が小型化され又迅速なるフォーカスが可能となり、更に近接撮影が容易となる等の特長が得られる。
【0009】
しかしながら反面、色分解プリズムを配置できる程度の長いバックフォーカスを確保しつつ、フォーカスの際の収差変動を少なくし、無限遠物体から近距離物体に至る物体距離全般にわたり高い光学性能を得ようとすると、そのレンズ構成が大変難しくなってくる。
【0010】
特に大口径比で高変倍比を確保したズームレンズでは長いバックフォーカスを確保しつつ全変倍範囲にわたり、又物体距離全般にわたり高い光学性能を得るのが大変難しくなってくる。
【0011】
前述した特開平3−158813号公報では、リヤーフォーカス式を利用してレンズ系全体の小型化を図っているが、絞りを第3群と一体的に移動させる為に絞りを駆動制御するIGメータも変倍に伴い移動させていた為に、機構が複雑化する傾向があった。
【0012】
一般にズームレンズにおいて各レンズ群の屈折力を強めれば、所定の変倍比を得る為の各レンズ群の移動量が少なくなり、レンズ全長の短縮化を図りつつ高変倍化が可能となる。しかしながら単に各レンズ群の屈折力を強めると変倍に伴う収差変動が大きくなり、特に高変倍化を図る際には全変倍範囲にわたり良好なる光学性能を得るのが難しくなってくる。
【0013】
本発明はリヤーフォーカス方式を採用しつつ、像面側に色分解プリズムや光学フィルター等を配置することができる程度の長いバックフォーカスを有し、かつ大口径比で、変倍比14〜16倍と高変倍比を有し、広角端から望遠端に至る全変倍範囲にわたり、又無限遠物体から超至近物体に至る物体距離全般にわたり、良好なる光学性能を有したリヤーフォーカス式のズームレンズ及びそれを用いた撮像装置の提供を目的とする。
【0014】
請求項1の発明のリヤーフォーカス式のズームレンズを有する撮像装置は、物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、そして正の屈折力の第4群の4つのレンズ群のみをレンズ群として有し、該第2群と第3群を互いに逆方向に単調移動させて変倍を行い、該第4群の一部又は全部を移動させてフォーカスを行
該第2群と該第3群との間に開口絞りが配置されており、
広角端のズーム位置における該第2群と該第3群の間隔、該第2群と該開口絞りの間隔を各々D23W,D2SW、
広角端で無限遠物体にフォーカスしたときの該第4群から像面までの空気換算量をBFW、広角端における全系の焦点距離、Fナンバー、そして半画角を順にfW,FNW,ωwとしたとき、
0.3<D2SW/D23W<0.65 ‥‥‥ ( )
【数4】
なる条件を満足することを特徴としている。
【0015】
請求項2の発明のリヤーフォーカス式のズームレンズを有する撮像装置は、物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、そして正の屈折力の第4群の4つのレンズ群のみをレンズ群として有し、該第2群と第3群を互いに逆方向に単調移動させて変倍を行い、該第4群は負の屈折力の第41群と正の屈折力の第42群の2つのレンズ群のみをレンズ群として有し、該第41群又は第42群のいずれか一方又は双方を移動させてフォーカスを行
該第2群と該第3群との間に開口絞りが配置されており、
広角端のズーム位置における該第2群と該第3群の間隔、該第2群と該開口絞りの間隔を各々D23W,D2SW、
広角端で無限遠物体にフォーカスしたときの該第4群から像面までの空気換算量をBFW、広角端における全系の焦点距離、Fナンバー、そして半画角を順にfW,FNW,ωwとしたとき、
0.3<D2SW/D23W<0.65 ‥‥‥ ( )
【数5】
なる条件を満足することを特徴としている。
【0016】
本発明のリヤーフォーカス式のズームレンズを有する撮像装置は請求項1又は2のリヤーフォーカス式のズームレンズの像面側に色分解光学系を有していることを特徴としている。
【0017】
【発明の実施の形態】
図1は本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態1の要部断面図、図2,図3,図4は実施形態1の広角端,中間,望遠端のズーム位置における収差図である。
【0018】
図5は本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態2の要部断面図、図6,図7,図8は実施形態2の広角端,中間,望遠端のズーム位置における収差図である。
【0019】
図9は本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態3の要部断面図、図10,図11,図12は実施形態3の広角端,中間,望遠端のズーム位置における収差図である。
【0020】
図13は本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態4の要部断面図、図14,図15,図16は実施形態4の広角端,中間,望遠端のズーム位置における収差図である。
【0021】
図中L1は正の屈折力の第1群、L2は負の屈折力の第2群、L3は正の屈折力の第3群、L4は正の屈折力の第4群であり、負の屈折力の第41群との屈折力の第42群とを有している。SPは開口絞りであり、第3群L3の前方に配置している。GAはズームレンズの保護を目的とした必要に応じて設けられる保護ガラス、GBは色分解プリズムやフェースプレートやフィルター等のガラスブロックである。IPは像面であり、CCD等の撮像素子が配置されている。
【0022】
第1群L1から第4群L4はズームレンズ(ズームレンズ部)ZLの一要素を構成している。ガラスブロックGBと撮像素子はカメラ本体CB内に収納されている。ズームレンズ部ZLはマウント部材Cを介してカメラ本体CBに着脱可能に装着されている。
【0023】
本実施形態では広角端から望遠端への変倍に際して矢印のように第2群を像面側へ単調移動させると共に、変倍に伴う像面変動を第3群をそれとは逆の物体側に単調移動させて補正している。
【0024】
又、第4群の一部又は全部(本実施形態では第41群L41)を光軸上移動させてフォーカスを行うリヤーフォーカス式を採用している。
【0025】
同図において、第41群L41を両レンズ面が凹面の負レンズより構成し、該負レンズを矢印4aのように像面側へ移動させて無限遠物体から近距離物体へのフォーカスを行っている。尚、本実施形態では第42群L42はフォーカスの際に固定としているが、第41群L41と共に又は独立に異なった速度で移動させても良い。
【0026】
本発明のビデオカメラ(撮像装置)は、少なくとも上記ズームレンズと、色分解用素子と該色分解素子によって分割された各色対応の撮像素子と、撮像信号処理回路等から構成されている。
【0027】
本実施形態では絞りSPをはさんだ第2群と第3群を変倍の際、互いに逆方向へ単調移動させ、第2群に変倍効果を持たせるとともに第3群にも変倍効果を持たせることにより高変倍化を達成している。また、第2群と第3群との間の空間を有効利用し、更に第2群と第3群の光軸上の移動量を全体的に少なくしてレンズ全長の短縮化を図っている。
【0028】
また、一般のズームレンズではレンズの重量のうち5〜8割を第1群が占めている。そのためズームレンズの軽量化を図るには、第1群のレンズの材料を軽くするか第1群のレンズ径を小さくして体積を減少させることが有効である。そこで本実施形態では、第1群のレンズ径を小さくしてズームレンズ全体の軽量化を図っている。
【0029】
すなわち、絞りSPを第3群よりも後方に配置したズームレンズに比べて絞りを第1群に近い第2群と第3群との間である光学系の略中間位置に配置することにより第1群のレンズ径の小型化を達成している。そして本実施形態では広角端側で射光線で決定される第1群のレンズ径と望遠端の軸上光線(Fナンバー光線)により決定される第1群のレンズ径の両方においてレンズ有効径が小さくなるように絞りとレンズ群を配置している。
【0030】
また、バックフォーカスを長くするには第4群を負の屈折力の第41群と正の屈折力の第42群の2つのレンズ群で構成している。これにより、該第4群をレトロフォーカスタイプにして長いバックフォーカスを確保している。尚、第1群は変倍及びフォーカスの際固定である。
【0031】
本実施形態のズームレンズは以上のように全体として4つのレンズ群より構成し、変倍及びフォーカスの際の各レンズ群の移動条件や第4群のレンズ構成等を適切に設定することにより所定のバックフォーカスを確保しつつ全変倍範囲にわたり、又物体距離全体にわたり高い光学性能を得ている。
【0032】
次に本発明のリヤーフォーカス式のズームレンズのこの他のレンズ構成の特徴について説明する。
【0033】
[A1]広角端のズーム位置における該第2群と第3群の間隔、該第2群と開口絞りの間隔を各々D23W,D2SWとしたとき
0.3<D2SW/D23W<0.65 ‥‥(1)
なる条件を満足している。
【0034】
これにより第1群のレンズ径の小型化及びレンズ全長の短縮化と良好な収差補正を効果的に達成している。
【0035】
特に条件式(1)を満足するように第2群と第3群及び絞りを配置することにより、それぞれが機械的な干渉を起こさずに高変倍化を図りつつレンズ全長の短縮化及び第1群のレンズ径の小型化を達成している。
【0036】
絞りを第1群に近付ければ第1群のレンズ径は小さくなるが、逆に絞りから遠くなる最終レンズ群は大きくなってくる。この条件式(1)は主に第1群のレンズ径と最終レンズ群のレンズ径の大きさをバランス良く維持しつつレンズ径全体の小型化を図るためのものである。
【0037】
条件式(1)の下限値を越えると第1群のレンズ径は小さくなるが、逆に最終レンズ群のレンズ径が増大する。そして、第3群が変倍で移動することにより第4群に入射する軸外光線の位置が大きく変化するために、収差変動を良好に補正するのが困難になってくる。また、上限値を越えて絞りの位置が第1群から遠くなると第1群のレンズ径が大きくなり好ましくない。
【0038】
[A2]前記第2群の焦点距離をf2、広角端における全系のFナンバーと焦点距離を各々FNW,fW、望遠端における全系の焦点距離をfTとし、
【0039】
【数3】
とおいたとき
0.53<|f2|×FNW/fM<0.84 ‥‥(2)
なる条件を満足している。
【0040】
これによりズーミングにより発生するコマ収差の変動を効果的に補正している。この条件式(2)は、第2群の焦点距離を規制するもので広角端のFナンバーFNWと大きく関係している。第2群は主に変倍機能を有するためズーミングで光軸上を移動する。そのために発生する収差変動を良好に補正しなければならない。特に変倍に伴いコマ収差が大きく変動する。条件式(2)はこれを良好に補正するためのものである。
【0041】
条件式(2)の下限値を越えて広角端のFNWを明るくしたり、第2群の焦点距離f2を短くすると高次のコマフレアーが大きく発生して補正が困難になる。逆に、上限値を越えて第2群の焦点距離をむやみに長くしたり、広角端のFNWを暗くすると、光学性能は上がるもののレンズ全長が長くなり小型化が達成できなくなる。
【0042】
[A3]広角端で無限遠物体にフォーカスしたときの前記第4群から像面までの空気換算量をBFW、広角端における全系の焦点距離、Fナンバー、そして半画角を順にfW,FNW,ωwとしたとき
【0043】
【数4】
なる条件を満足している。
【0044】
これにより所定の長さのバックフォーカスを確保している。条件式(3)の下限値を越えて広角端のFナンバーを明るくすると高次の球面収差、コマ収差が多く発生し、これを良好に補正するのが困難になる。逆に、上限値を越えてFナンバーが暗くなると軸上光線束が細くなり、第4群の最終レンズ面と像面との間に配置される色分解プリズムを小型化することができるが、バックフォーカスを長くする必要がないにもかかわらず、長くしなければならず、該レンズ全長の長大化をまねき好ましくない。
【0045】
[A4]本発明の目的の1つに高変倍比のズームレンズを得ることにある。このため変倍に伴って発生する色収差は主に第1群及び第2群においてキャンセルすることが望ましい。
【0046】
然るに、変倍に伴う倍率の色収差の発生のしかたは第1群と第2群のそれとでは大きく異なり、広角端では過剰補正の傾向となりやすい。従って第4群の倍率の色収差を補正不足とする事により全体としての色収差のバランスを保っている。
【0047】
また、軸上の色収差は変倍比が小さいときは大きくバランスを崩すことなく補正が可能であるが、本発明の如く高変倍、大口径をねらう場合、軸上の色収差が全体として補正不足となり高い光学性能を維持することが困難となる。
【0048】
従って本発明では第3群に適切な屈折力とアッベ数を持つ正レンズと物体側に強い凹面を向けた負のメニスカスレンズの接合レンズを有することで、全変倍範囲にわたり最適に色収差を補正し、簡単なレンズ構成でありながら変倍比14以上と高変倍でFナンバーFNW1.6程度と大口径でしかも高い光学性能を維持している。
【0049】
基本的に各レンズ群の構成においてレンズを接合する構成をとると、群内偏心を効果的に抑制可能であり、製品性能の安定化を図ることが可能であるが、設計の自由度が1つ減り、大口径、小型ズームという仕様を満足しつつ、充分な初期性能を達成することが難しくなってくる。
【0050】
そこで本実施形態では第3群に接合レンズを有し、更に第3群に非球面を採用する事により数値実施例2〜3で示される様に群内偏心等の抑制を効果的に行って、より光学性能の高い大口径ズームレンズを得ている。
【0051】
第3群中に設ける非球面は、おもに広角端側での球面収差の高次のフレアー成分を補正するために用いられており、そのためにはより強い凸面に施すのが効果的である。従って第3群の正の屈折力が一番大きい正レンズに非球面を採用するのが最も良い。
【0052】
[A5]第4群に非球面を採用する事により数値実施例3で示される様に大口径、超高倍ズームレンズでありながらも光学性能の高いズームレンズを達成している。
【0053】
第4群中に設ける非球面は、おもに球面収差の高次のフレアー成分と非点収差を補正するために用いられており、そのためには、より強い凸面に施すのが効果的である。従って第4群の正の屈折力が一番大きい正レンズに非球面を採用するのが最も良い。
【0054】
[A6]第42群を物体側から順に像面側のレンズ面が凸面の正の第421レンズ、物体側に凸面を向けたメニスカス状の負の第422レンズ、両レンズ面が凸面の正の第423レンズより構成し、該第422レンズの像面側のレンズ面と第423レンズの物体側のレンズ面の曲率半径を各々Ra,Rb、全系の広角端の焦点距離をfWとしたとき
0≦|1/Ra−1/Rb|・fW<0.11 ‥‥(4)
を満足している。
【0055】
この条件式(4)は、第4群内で発生する高次の非点収差および球面収差成分が正レンズと負レンズの間で発生しており、それを抑制するためのものである。下限値は接合レンズ又はそれと同等の効果をもち、非常に安定した状態となる。上限値を越えると高次のフレアー成分の補正が第4群に設ける非球面の高次の項に集中するため製造誤差を考慮すると非常に不安定となりやすい。
【0056】
なお、第4群中に設ける非球面は、基本的に球面収差の補正を目的としているため、レンズの周辺部にいくに従って正の屈折力が弱くなる形状となることが望ましい。
【0057】
次に本発明の数値実施例を示す。数値実施例においてRiは物体側より順に第i番目のレンズ面の曲率半径、Diは物体側より順に第i番目のレンズ厚及び空気間隔、Niとνiは各々物体側より順に第i番目のレンズのガラスの屈折率とアッベ数である。又、非球面形状はレンズ面の中心部の曲率半径Rとし、光軸方向(光の進行方向)をX軸とし、光軸と垂直方向をY軸、B,C,D,Eを各々非球面係数としたとき
【0058】
【数5】
なる式で表している。又「e−0X」は「×10-X」を意味している。また前述の各条件式と数値実施例における諸数値との関係を表−1に示す。
【0059】
また、数値実施例1〜3におけるR25〜R28及び数値実施例4におけるR28〜R31は色分解プリズム、光学フィルター、フェースプレート等のガラスブロックを示す。
【0060】
【表1】
【0061】
【表2】
【0062】
【表3】
【0063】
【表4】
【0064】
【表1】
【0065】
【発明の効果】
本発明によれば以上のように、各要素を設定することにより、リヤーフォーカス方式を採用しつつ、像面側に色分解プリズムや光学フィルター等を配置することができる程度の長いバックフォーカスを有し、かつ大口径比で、変倍比14〜16倍と高変倍比を有し、広角端から望遠端に至る全変倍範囲にわたり、又無限遠物体から超至近物体に至る物体距離全般にわたり、良好なる光学性能を有したリヤーフォーカス式のズームレンズ及びそれを用いた撮像装置を達成することができる。
【図面の簡単な説明】
【図1】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態1の要部断面図
【図2】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態1の広角端の収差図
【図3】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態1の中間の収差図
【図4】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態1の望遠端の収差図
【図5】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態2の要部断面図
【図6】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態2の広角端の収差図
【図7】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態2の中間の収差図
【図8】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態2の望遠端の収差図
【図9】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態3の要部断面図
【図10】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態3の広角端の収差図
【図11】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態3の中間の収差図
【図12】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態3の望遠端の収差図
【図13】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態4の要部断面図
【図14】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態4の広角端の収差図
【図15】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態4の中間の収差図
【図16】本発明のリヤーフォーカス式のズームレンズを有した撮像装置の実施形態4の望遠端の収差図
【符号の説明】
L1 第1群
L2 第2群
L3 第3群
L4 第4群
L41 第41群
L42 第42群
SP 絞り
IP 像面
d d線
g g線
S サジタル像面
M メリディオナル像面
GB ガラスブロック
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rear focus type zoom lens and an image pickup apparatus using the same, and in particular, a back focus that is long enough to provide a color separation prism on an image plane side used in an image pickup apparatus such as a video camera and a broadcast camera. In addition, the present invention relates to a small rear focus zoom lens having a large aperture ratio and a high zoom ratio and a short overall lens length, and an image pickup apparatus using the same.
[0002]
[Prior art]
Recently, with the reduction in size and weight of home video cameras and the like, remarkable progress has been made in reducing the size of zoom lenses for imaging, particularly in reducing the overall length of the lens, reducing the front lens diameter, and simplifying the configuration. It has been poured.
[0003]
As one means for achieving these objects, a so-called rear focus type zoom lens that performs focusing by moving a lens group other than the first group on the object side is known.
[0004]
In general, a rear focus type zoom lens has a smaller effective diameter of the first lens unit than a zoom lens that focuses by moving the first lens unit, which makes it easy to reduce the size of the entire lens system. Close-up photography is facilitated, and the relatively small and light lens group is moved, so that the lens group has a small driving force and can be focused quickly.
[0005]
As such a rear focus type zoom lens, Japanese Patent Application Laid-Open No. 3-15881 discloses, in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, and a third group having a positive refractive power. And having four lens groups of the fourth group having positive refractive power, changing the distance between the second group and the third group, and moving a part of the lenses of the fourth group. A zoom lens that performs focusing is disclosed.
[0006]
In Japanese Patent Laid-Open Nos. 61-296317 and 61-296318, the first group having a positive refractive power, the second group having a negative refractive power, and the second group having a positive refractive power are sequentially arranged from the object side. There are three lens groups, and four lens groups having a positive refractive power and a fourth lens group. The zooming is performed by changing the distance between the second group and the third group, and between the second group and the third group. Discloses a zoom lens in which an aperture stop is disposed and focus is performed by moving the first lens group.
[0007]
On the other hand, with the recent high performance (digitalization) of video decks, various improvements in the image quality of video cameras have been made. One of them is color separation of an image by a color separation optical system. Such zoom lenses for video cameras have been proposed in, for example, Japanese Patent Laid-Open Nos. 5-72474, 6-511199, 7-199069, and 7-270684.
[0008]
[Problems to be solved by the invention]
In general, when a rear focus method is used in a zoom lens, the entire lens system can be miniaturized, quick focusing can be performed, and close-up photography can be facilitated.
[0009]
However, on the other hand, while securing a long back focus that can arrange the color separation prism, reducing aberration fluctuations during focusing and trying to obtain high optical performance over the entire object distance from an infinite object to a close object The lens configuration becomes very difficult.
[0010]
In particular, in a zoom lens that secures a high zoom ratio with a large aperture ratio, it becomes very difficult to obtain high optical performance over the entire zoom range and the entire object distance while securing a long back focus.
[0011]
In the above-mentioned Japanese Patent Application Laid-Open No. 3-158813, the rear lens type is used to reduce the size of the entire lens system. However, an IG meter that drives and controls the diaphragm in order to move the diaphragm integrally with the third group. However, there was a tendency for the mechanism to become complicated due to the movement with zooming.
[0012]
In general, if the refracting power of each lens unit is increased in a zoom lens, the amount of movement of each lens unit to obtain a predetermined zoom ratio is reduced, and high zooming can be achieved while shortening the overall lens length. . However, when the refractive power of each lens unit is simply increased, aberration fluctuations accompanying zooming increase, and it becomes difficult to obtain good optical performance over the entire zooming range, particularly when zooming in at high magnifications is attempted.
[0013]
The present invention employs a rear focus system, has a long back focus that allows a color separation prism, an optical filter, and the like to be disposed on the image surface side, and has a large aperture ratio and a zoom ratio of 14 to 16 times. And a high zoom ratio, a rear-focus zoom lens with excellent optical performance over the entire zoom range from the wide-angle end to the telephoto end, and over the entire object distance from the infinity object to the very close object. And an imaging apparatus using the same.
[0014]
An imaging apparatus having a rear focus type zoom lens according to the first aspect of the invention includes, in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, Then, only the fourth lens group of the fourth group having a positive refractive power is provided as a lens group, and the second group and the third group are monotonically moved in opposite directions to perform zooming. part or move all have line focus, the
An aperture stop is disposed between the second group and the third group;
The distance between the second group and the third group at the zoom position at the wide-angle end, and the distance between the second group and the aperture stop are D23W, D2SW,
When focusing on an object at infinity at the wide angle end, the air equivalent amount from the fourth group to the image plane is BFW, the focal length of the entire system at the wide angle end, the F number, and the half angle of view in order of fW, FNW, ωw. When
0.3 <D2SW / D23W <0.65 ( 1 )
[Expression 4]
It is characterized by satisfying the following conditions .
[0015]
An imaging apparatus having a rear focus type zoom lens according to a second aspect of the invention includes, in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, Then, only the fourth lens group of the fourth group having positive refractive power is provided as a lens group, and the second group and the third group are monotonously moved in opposite directions to perform zooming, and the fourth group is negative. The lens group has only two lens groups, ie, a forty-first lens group having a refractive power of 42 and a forty-second lens group having a positive refractive power, and focusing is performed by moving one or both of the forty-first group and the forty-second group. Yes ,
An aperture stop is disposed between the second group and the third group;
The distance between the second group and the third group at the zoom position at the wide-angle end, and the distance between the second group and the aperture stop are D23W, D2SW,
When focusing on an object at infinity at the wide angle end, the air equivalent amount from the fourth group to the image plane is BFW, the focal length of the entire system at the wide angle end, the F number, and the half angle of view in order of fW, FNW, ωw. When
0.3 <D2SW / D23W <0.65 ( 1 )
[Equation 5]
It is characterized by satisfying the following conditions .
[0016]
An image pickup apparatus having a rear focus type zoom lens of the present invention is characterized by having a color separation optical system to the image plane side of the Zumuren's of rear focus type according to claim 1 or 2.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view of an essential part of Embodiment 1 of an image pickup apparatus having a rear focus zoom lens according to the present invention, and FIGS. 2, 3 and 4 are zoom positions at the wide-angle end, intermediate and telephoto ends of Embodiment 1. FIG.
[0018]
FIG. 5 is a cross-sectional view of an essential part of Embodiment 2 of an imaging apparatus having a rear focus type zoom lens according to the present invention, and FIGS. 6, 7, and 8 are zoom positions at the wide-angle end, the middle, and the telephoto end of Embodiment 2. FIG.
[0019]
FIG. 9 is a cross-sectional view of an essential part of Embodiment 3 of an imaging apparatus having a rear focus type zoom lens according to the present invention, and FIGS. 10, 11, and 12 are zoom positions at the wide-angle end, intermediate, and telephoto ends of Embodiment 3. FIG.
[0020]
FIG. 13 is a cross-sectional view of an essential part of Embodiment 4 of an image pickup apparatus having a rear focus type zoom lens according to the present invention, and FIGS. 14, 15 and 16 are zoom positions at the wide-angle end, intermediate and telephoto ends of Embodiment 4, respectively. FIG.
[0021]
In the figure, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, L3 is a third group having a positive refractive power, and L4 is a fourth group having a positive refractive power. It has a forty-first group of refractive power and a forty-second group of positive refractive power. SP is an aperture stop, which is disposed in front of the third lens unit L3. GA is a protective glass provided as needed for the purpose of protecting the zoom lens, and GB is a glass block such as a color separation prism, a face plate, or a filter. IP is an image plane, and an image pickup device such as a CCD is disposed.
[0022]
The first lens unit L1 to the fourth lens unit L4 constitute an element of the zoom lens (zoom lens unit) ZL. The glass block GB and the image sensor are housed in the camera body CB. The zoom lens unit ZL is detachably attached to the camera body CB via the mount member C.
[0023]
In this embodiment, when zooming from the wide-angle end to the telephoto end, the second group is monotonously moved to the image plane side as indicated by an arrow, and the image plane variation accompanying zooming is shifted to the object side opposite to the third group. It is corrected by moving monotonously.
[0024]
In addition, a rear focus type is employed in which focusing is performed by moving part or all of the fourth group (the 41st group L41 in the present embodiment) on the optical axis.
[0025]
In the figure, the forty-first lens unit L41 is composed of negative lenses having both concave lens surfaces, and the negative lens is moved to the image plane side as indicated by an arrow 4a to focus from an infinite object to a close object. Yes. In the present embodiment, the forty-second group L42 is fixed at the time of focusing, but may be moved together with the forty-first group L41 or independently at a different speed.
[0026]
The video camera (imaging device) according to the present invention includes at least the zoom lens, a color separation element, an imaging element corresponding to each color divided by the color separation element, an imaging signal processing circuit, and the like.
[0027]
In this embodiment, the second group and the third group sandwiching the stop SP are monotonically moved in the opposite directions when zooming, so that the second group has a zooming effect and the zooming effect is also applied to the third group. High magnification is achieved by having it. In addition, the space between the second group and the third group is effectively used, and the total movement amount on the optical axis of the second group and the third group is reduced to shorten the overall lens length. .
[0028]
In a general zoom lens, the first group occupies 50 to 80% of the weight of the lens. Therefore, in order to reduce the weight of the zoom lens, it is effective to reduce the volume by reducing the material of the first lens group or reducing the lens diameter of the first lens group. Therefore, in this embodiment, the lens diameter of the first group is reduced to reduce the weight of the entire zoom lens.
[0029]
That is, as compared with a zoom lens in which the stop SP is arranged behind the third group, the stop is arranged at a substantially intermediate position of the optical system between the second group and the third group close to the first group. The lens diameter of one group is reduced. In the present embodiment, the effective lens diameter is the lens diameter of both the first group lens diameter determined by the incident light at the wide-angle end side and the first group lens diameter determined by the on-axis light beam (F number light beam) at the telephoto end. An aperture and a lens group are arranged so as to be small.
[0030]
In order to lengthen the back focus, the fourth group is composed of two lens groups, a 41th group having a negative refractive power and a 42nd group having a positive refractive power. This ensures a long back focus by using the fourth group as a retrofocus type. The first group is fixed during zooming and focusing.
[0031]
As described above, the zoom lens according to the present embodiment is composed of four lens groups as a whole, and is predetermined by appropriately setting the moving conditions of each lens group during zooming and focusing, the lens configuration of the fourth group, and the like. High optical performance is obtained over the entire zoom range and over the entire object distance while ensuring the back focus.
[0032]
Next, features of other lens configurations of the rear focus type zoom lens of the present invention will be described.
[0033]
[A1] 0.3 <D2SW / D23W <0.65 when the distance between the second group and the third group at the zoom position at the wide-angle end, and the distance between the second group and the aperture stop are D23W and D2SW, respectively. (1)
Is satisfied.
[0034]
This effectively achieves a reduction in the lens diameter of the first lens group, a reduction in the total lens length, and good aberration correction.
[0035]
In particular, by arranging the second group, the third group, and the stop so as to satisfy the conditional expression (1), each of the lenses can be shortened and the first lens can be shortened while achieving high zooming without causing mechanical interference. The lens diameter of one group is reduced.
[0036]
If the aperture is moved closer to the first lens group, the lens diameter of the first lens group becomes smaller, but conversely, the final lens group that is farther from the aperture becomes larger. Conditional expression (1) is mainly for reducing the overall lens diameter while maintaining a good balance between the lens diameter of the first lens group and the lens diameter of the final lens group.
[0037]
When the lower limit of conditional expression (1) is exceeded, the lens diameter of the first lens group decreases, but conversely, the lens diameter of the final lens group increases. Then, since the position of the off-axis light beam incident on the fourth group is greatly changed by moving the third group by zooming, it becomes difficult to correct aberration variation satisfactorily. Further, if the stop position is far from the first group beyond the upper limit, the lens diameter of the first group becomes large, which is not preferable.
[0038]
[A2] The focal length of the second lens unit is f2, the F number and focal length of the entire system at the wide angle end are FNW and fW, respectively, and the focal length of the entire system at the telephoto end is fT.
[0039]
[Equation 3]
0.53 <| f2 | × FNW / fM <0.84 (2)
Is satisfied.
[0040]
This effectively corrects fluctuations in coma generated by zooming. Conditional expression (2) regulates the focal length of the second group and is largely related to the F-number FNW at the wide-angle end. Since the second group mainly has a zooming function, it moves on the optical axis by zooming. Therefore, it is necessary to satisfactorily correct aberration fluctuations that occur. In particular, coma greatly varies with zooming. Conditional expression (2) is for correcting this well.
[0041]
If the lower limit of conditional expression (2) is exceeded and the FNW at the wide-angle end is brightened or the focal length f2 of the second group is shortened, higher order coma flare will occur and correction will be difficult. On the other hand, if the focal length of the second lens group is increased unnecessarily beyond the upper limit value or the FNW at the wide-angle end is darkened, the optical performance increases, but the overall lens length becomes longer, making it impossible to achieve downsizing.
[0042]
[A3] The air equivalent amount from the fourth group to the image plane when focusing on an object at infinity at the wide-angle end is BFW, the focal length of the entire system at the wide-angle end, the F-number, and the half field angle are fW and FNW in this order. , Ωw [0043]
[Expression 4]
Is satisfied.
[0044]
As a result, a back focus of a predetermined length is secured. If the F-number at the wide-angle end is made brighter beyond the lower limit value of conditional expression (3), many higher-order spherical aberrations and coma occur, and it is difficult to correct them well. Conversely, when the F-number becomes darker than the upper limit value, the axial ray bundle becomes thin, and the color separation prism arranged between the final lens surface of the fourth group and the image surface can be reduced in size. Although it is not necessary to lengthen the back focus, it must be lengthened, which leads to an increase in the overall length of the lens.
[0045]
[A4] One of the objects of the present invention is to obtain a zoom lens having a high zoom ratio. For this reason, it is desirable to cancel the chromatic aberration caused by zooming mainly in the first group and the second group.
[0046]
However, the generation of chromatic aberration of magnification accompanying zooming differs greatly between the first group and the second group, and tends to be overcorrected at the wide-angle end. Therefore, the balance of the chromatic aberration as a whole is maintained by making the correction of the chromatic aberration of the magnification of the fourth group insufficient.
[0047]
In addition, axial chromatic aberration can be corrected without greatly losing balance when the zoom ratio is small. However, when aiming at high zoom ratio and large aperture as in the present invention, axial chromatic aberration is not fully corrected. It becomes difficult to maintain high optical performance.
[0048]
Therefore, in the present invention, the third lens group has a positive lens having an appropriate refractive power and Abbe number and a negative meniscus lens having a strong concave surface facing the object side, so that chromatic aberration can be corrected optimally over the entire zoom range. In spite of its simple lens configuration, it has a zoom ratio of 14 or higher, a high zoom ratio, an F number of about FNW 1.6, a large aperture, and high optical performance.
[0049]
Basically, if the lens is joined in the configuration of each lens group, the intra-group eccentricity can be effectively suppressed and the product performance can be stabilized. However, the degree of design freedom is one. It becomes difficult to achieve sufficient initial performance while satisfying the specifications of large aperture and small zoom.
[0050]
Therefore, in the present embodiment, by having a cemented lens in the third group and further adopting an aspheric surface in the third group, as shown in Numerical Examples 2 to 3, it is possible to effectively suppress in-group eccentricity and the like. A large-aperture zoom lens with higher optical performance has been obtained.
[0051]
The aspheric surface provided in the third lens group is mainly used to correct higher-order flare components of spherical aberration at the wide-angle end, and it is effective to apply it to a stronger convex surface. Therefore, it is best to use an aspherical surface for the positive lens having the largest positive refractive power in the third group.
[0052]
[A5] By adopting an aspherical surface in the fourth lens group, as shown in Numerical Example 3, a zoom lens having a large aperture and an ultra-high magnification zoom lens with high optical performance is achieved.
[0053]
The aspherical surface provided in the fourth group is mainly used for correcting higher-order flare components and astigmatism of spherical aberration. For this purpose, it is effective to apply it to a stronger convex surface. Therefore, it is best to use an aspherical surface for the positive lens having the largest positive refractive power in the fourth group.
[0054]
[A6] In the 42nd group from the object side, a positive 421 lens having a convex surface on the image side, a meniscus negative 422 lens having a convex surface directed toward the object side, and a positive surface having both convex surfaces When the radius of curvature of the lens surface on the image plane side of the 422 lens and the lens surface on the object side of the 423 lens are Ra and Rb, respectively, and the focal length at the wide angle end of the entire system is fW. 0 ≦ | 1 / Ra−1 / Rb | · fW <0.11 (4)
Is satisfied.
[0055]
Conditional expression (4) is intended to suppress high-order astigmatism and spherical aberration components occurring in the fourth group between the positive lens and the negative lens. The lower limit value has a cemented lens or an equivalent effect, and is in a very stable state. If the upper limit is exceeded, correction of higher-order flare components concentrates on higher-order terms of the aspheric surface provided in the fourth group, and therefore, it is likely to become very unstable in consideration of manufacturing errors.
[0056]
The aspherical surface provided in the fourth group is basically intended for correction of spherical aberration, and therefore it is desirable that the aspherical surface has a shape in which the positive refractive power becomes weaker toward the periphery of the lens.
[0057]
Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing in order from the object side, and Ni and νi are the i-th lens in order from the object side. The refractive index and Abbe number of the glass. The aspherical surface has a radius of curvature R at the center of the lens surface, the optical axis direction (light traveling direction) is the X axis, the vertical direction to the optical axis is the Y axis, and B, C, D, and E are respectively non-circular. When using spherical coefficient [0058]
[Equation 5]
It is expressed by the following formula. “E-0X” means “× 10 −X ”. Table 1 shows the relationship between the conditional expressions described above and the numerical values in the numerical examples.
[0059]
In addition, R25 to R28 in Numerical Examples 1 to 3 and R28 to R31 in Numerical Example 4 indicate glass blocks such as a color separation prism, an optical filter, and a face plate.
[0060]
[Table 1]
[0061]
[Table 2]
[0062]
[Table 3]
[0063]
[Table 4]
[0064]
[Table 1]
[0065]
【The invention's effect】
As described above, according to the present invention, by setting each element, the rear focus method is adopted, and the back focus is long enough to arrange a color separation prism, an optical filter, or the like on the image plane side. In addition, with a large aperture ratio, it has a high zoom ratio of 14 to 16 times, covers the entire zoom range from the wide-angle end to the telephoto end, and the overall object distance from an infinite object to an extremely close object Thus, a rear focus type zoom lens having good optical performance and an image pickup apparatus using the same can be achieved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of an imaging apparatus having a rear focus zoom lens according to a first embodiment of the present invention. Fig. 3 is an aberration diagram at the wide-angle end. Fig. 3 is an aberration diagram in the middle of Embodiment 1 of the imaging device having the rear focus zoom lens of the present invention. Fig. 4 is an imaging device having the rear focus zoom lens of the present invention. FIG. 5 is a cross-sectional view of the main part of Embodiment 2 of the imaging apparatus having the rear focus zoom lens of the present invention. FIG. 6 is a rear focus zoom lens of the present invention. FIG. 7 is an aberration diagram at the wide-angle end of Embodiment 2 of the image pickup apparatus having a zoom lens. FIG. 7 is an aberration diagram in the middle of Embodiment 2 of the image pickup apparatus having the rear focus zoom lens of the present invention. Focus type Aberration diagram at the telephoto end of Embodiment 2 of the imaging apparatus having a zoom lens. FIG. 9 is a cross-sectional view of a main part of Embodiment 3 of the imaging apparatus having a rear focus zoom lens according to the present invention. FIG. 11 is an aberration diagram at the wide-angle end of Embodiment 3 of the imaging device having the rear focus zoom lens. FIG. 11 is an aberration diagram in the middle of Embodiment 3 of the imaging device having the rear focus zoom lens of the present invention. FIG. 12 is an aberration diagram at the telephoto end of Embodiment 3 of the imaging apparatus having the rear focus zoom lens of the present invention. FIG. 13 is an aberration chart of Embodiment 4 of the imaging apparatus having the rear focus zoom lens of the present invention. FIG. 14 is an aberration diagram at the wide-angle end of Embodiment 4 of the imaging apparatus having the rear focus zoom lens of the present invention. FIG. 15 has the rear focus zoom lens of the present invention. Aberration diagram at the telephoto end in the fourth embodiment of an imaging device having a rear focus type zoom lens aberration view of the intermediate [16] The present invention according to a fourth embodiment of an imaging apparatus [Description of symbols]
L1 1st group L2 2nd group L3 3rd group L4 4th group L41 41st group L42 42nd group SP Aperture IP Image plane d d line g g line S Sagittal image plane M Meridional image plane GB Glass block

Claims (6)

物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、そして正の屈折力の第4群の4つのレンズ群のみをレンズ群として有し、該第2群と第3群を互いに逆方向に単調移動させて変倍を行い、該第4群の一部又は全部を移動させてフォーカスを行
該第2群と該第3群との間に開口絞りが配置されており、
広角端のズーム位置における該第2群と該第3群の間隔、該第2群と該開口絞りの間隔を各々D23W,D2SW、
広角端で無限遠物体にフォーカスしたときの該第4群から像面までの空気換算量をBFW、広角端における全系の焦点距離、Fナンバー、そして半画角を順にfW,FNW,ωwとしたとき、
0.3<D2SW/D23W<0.65
なる条件を満足することを特徴とするリヤーフォーカス式のズームレンズを有する撮像装置。
In order from the object side, a first lens unit of positive refractive power, a second lens unit of negative refractive power, a third lens unit of positive refractive power, and a positive fourth lens group only four lens groups group refractive power as a, a third group second group by monotonously moving in opposite directions do scaling, have rows focusing by moving a part or all of the fourth group,
An aperture stop is disposed between the second group and the third group;
The distance between the second group and the third group at the zoom position at the wide-angle end, and the distance between the second group and the aperture stop are D23W, D2SW,
When focusing on an object at infinity at the wide angle end, the air equivalent amount from the fourth group to the image plane is BFW, the focal length of the entire system at the wide angle end, the F number, and the half angle of view in order of fW, FNW, ωw. When
0.3 <D2SW / D23W <0.65
An imaging apparatus having a rear focus type zoom lens, characterized in that:
物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、そして正の屈折力の第4群の4つのレンズ群のみをレンズ群として有し、該第2群と第3群を互いに逆方向に単調移動させて変倍を行い、該第4群は負の屈折力の第41群と正の屈折力の第42群の2つのレンズ群のみをレンズ群として有し、該第41群又は第42群のいずれか一方又は双方を移動させてフォーカスを行
該第2群と該第3群との間に開口絞りが配置されており、
広角端のズーム位置における該第2群と該第3群の間隔、該第2群と該開口絞りの間隔を各々D23W,D2SW、
広角端で無限遠物体にフォーカスしたときの該第4群から像面までの空気換算量をBFW、広角端における全系の焦点距離、Fナンバー、そして半画角を順にfW,FNW,ωwとしたとき、
0.3<D2SW/D23W<0.65
なる条件を満足することを特徴とするリヤーフォーカス式のズームレンズを有する撮像装置。
In order from the object side, a first lens unit of positive refractive power, a second lens unit of negative refractive power, a third lens unit of positive refractive power, and a positive fourth lens group only four lens groups group refractive power The second group and the third group are monotonically moved in opposite directions to perform zooming, and the fourth group is a negative power of the 41st group and a positive power of the 42nd group. one of a lens group only as a lens group, have line focus by moving one or both of said 41 groups or 42 groups,
An aperture stop is disposed between the second group and the third group;
The distance between the second group and the third group at the zoom position at the wide-angle end, and the distance between the second group and the aperture stop are D23W, D2SW,
When focusing on an object at infinity at the wide angle end, the air equivalent amount from the fourth group to the image plane is BFW, the focal length of the entire system at the wide angle end, the F number, and the half angle of view in order of fW, FNW, ωw. When
0.3 <D2SW / D23W <0.65
An imaging apparatus having a rear focus type zoom lens, characterized in that:
前記第2群の焦点距離をf2、広角端における全系のFナンバーと焦点距離を各々FNW,fW、望遠端における全系の焦点距離をfTとし、
とおいたとき
0.53<|f2|×FNW/fM<0.84
なる条件を満足することを特徴とする請求項1又は2のリヤーフォーカス式のズームレンズを有する撮像装置。
The focal length of the second group is f2, the F number and focal length of the entire system at the wide angle end are FNW and fW, respectively, and the focal length of the entire system at the telephoto end is fT.
0.53 <| f2 | × FNW / fM <0.84
The imaging apparatus having a rear focus zoom lens according to claim 1 or 2 , wherein the following condition is satisfied.
前記第41群は両レンズ面が凹面の負レンズより成り、該第41群を移動させてフォーカスを行っていることを特徴とする請求項2のリヤーフォーカス式のズームレンズを有する撮像装置。The imaging apparatus having a rear focus type zoom lens according to claim 2 , wherein the forty-first group comprises a negative lens having both concave lens surfaces, and focusing is performed by moving the forty-first group. 前記第41群は両レンズ面が凹面の負レンズより成り、前記第42群は像面側のレンズ面が凸面の正レンズ、物体側に凸面を向けたメニスカス状の負レンズ、そして両レンズ面が凸面の正レンズの3つのレンズより成り、該第41群を移動させてフォーカスを行っていることを特徴とする請求項2又は4のリヤーフォーカス式のズームレンズを有する撮像装置。The forty-first group consists of negative lenses whose concave surfaces are concave, and the forty-second group consists of a positive lens whose convex surface is the image surface side, a meniscus negative lens whose convex surface faces the object side, and both lens surfaces The imaging apparatus having a rear focus type zoom lens according to claim 2 or 4 , comprising a positive lens having a convex surface, and focusing by moving the forty-first group. 前記リヤーフォーカス式のズームレンズの像面側に色分解光学系を有していることを特徴とする請求項1から5のいずれか1項記載のリヤーフォーカス式のズームレンズを有する撮像装置。 The rear focus type image pickup apparatus having a rear focus type zoom lens according to any one of claims 1 5, characterized in that it has a color separation optical system to the image plane side of the Zumuren's of.
JP21419797A 1997-07-24 1997-07-24 Rear focus zoom lens and imaging apparatus using the same Expired - Fee Related JP3919301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21419797A JP3919301B2 (en) 1997-07-24 1997-07-24 Rear focus zoom lens and imaging apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21419797A JP3919301B2 (en) 1997-07-24 1997-07-24 Rear focus zoom lens and imaging apparatus using the same

Publications (2)

Publication Number Publication Date
JPH1144847A JPH1144847A (en) 1999-02-16
JP3919301B2 true JP3919301B2 (en) 2007-05-23

Family

ID=16651845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21419797A Expired - Fee Related JP3919301B2 (en) 1997-07-24 1997-07-24 Rear focus zoom lens and imaging apparatus using the same

Country Status (1)

Country Link
JP (1) JP3919301B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264032A (en) * 2006-03-27 2007-10-11 Pentax Corp Condensing optical system, confocal optical system, and scanning confocal endoscope
JP2009251115A (en) * 2008-04-02 2009-10-29 Panasonic Corp Zoom lens system, interchangeable lens device and camera system
JP5247212B2 (en) * 2008-04-02 2013-07-24 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2009251118A (en) * 2008-04-02 2009-10-29 Panasonic Corp Zoom lens system, interchangeable lens device and camera system
JP2009251117A (en) * 2008-04-02 2009-10-29 Panasonic Corp Zoom lens system, interchangeable lens device and camera system

Also Published As

Publication number Publication date
JPH1144847A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
JP2538526B2 (en) Zoom lens
JP3081698B2 (en) 3-group zoom lens
JP3584107B2 (en) Zoom lens
JP3927670B2 (en) Zoom lens
JP2628633B2 (en) Compact zoom lens
JP2004061910A (en) Zoom lens provided with vibration-proofing function
JP4823680B2 (en) High magnification zoom lens
JP2007178769A (en) Zoom lens
JP3710261B2 (en) Rear focus zoom lens and imaging apparatus using the same
JPH06281861A (en) Small variable power lens
JP4950645B2 (en) Optical system and imaging apparatus having the same
JP3352264B2 (en) Retrofocus type lens and camera having the same
JP4205461B2 (en) Zoom lens, camera, and portable information terminal device
JP2006139187A (en) Zoom lens
JP3184581B2 (en) Zoom lens
JP3029148B2 (en) Rear focus zoom lens
JP3667054B2 (en) Rear focus zoom lens and camera having the same
JP3696966B2 (en) Rear focus zoom lens
JP4817551B2 (en) Zoom lens
JP3919301B2 (en) Rear focus zoom lens and imaging apparatus using the same
JP3706827B2 (en) Zoom lens and optical apparatus having the same
JP3679502B2 (en) Rear focus zoom lens
JP2676367B2 (en) Small variable focal length lens
JPH08110470A (en) Wide angle zoom lens
JP2533779B2 (en) Zoom lens

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees