JP3893615B2 - Vapor phase growth apparatus and epitaxial wafer manufacturing method - Google Patents

Vapor phase growth apparatus and epitaxial wafer manufacturing method Download PDF

Info

Publication number
JP3893615B2
JP3893615B2 JP2002370597A JP2002370597A JP3893615B2 JP 3893615 B2 JP3893615 B2 JP 3893615B2 JP 2002370597 A JP2002370597 A JP 2002370597A JP 2002370597 A JP2002370597 A JP 2002370597A JP 3893615 B2 JP3893615 B2 JP 3893615B2
Authority
JP
Japan
Prior art keywords
gas
flow
single crystal
silicon single
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002370597A
Other languages
Japanese (ja)
Other versions
JP2004200603A (en
Inventor
透 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2002370597A priority Critical patent/JP3893615B2/en
Publication of JP2004200603A publication Critical patent/JP2004200603A/en
Application granted granted Critical
Publication of JP3893615B2 publication Critical patent/JP3893615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコン単結晶基板の主表面にシリコン単結晶薄膜を気相成長させるための気相成長装置と、それを用いて実現されるエピタキシャルウェーハの製造方法に関するものである。
【0002】
【従来の技術】
シリコン単結晶基板(以下、単に「基板」と略称する)の主表面に、気相成長法によりシリコン単結晶薄膜(以下、単に「薄膜」と略称する)を形成したシリコンエピタキシャルウェーハは、バイポーラICやMOS−IC等の電子デバイスに広く使用されている。そして、電子デバイスの微細化等に伴い、素子を作りこむエピタキシャルウェーハ主表面のフラットネスに対する要求がますます厳しくなりつつある。フラットネスに影響を及ぼす因子としては、基板の平坦度と薄膜の膜厚分布とがある。ところで、近年、たとえば直径が200mmないしそれ以上のエピタキシャルウェーハの製造においては、複数枚のウェーハをバッチ処理する方法に代えて、枚葉式気相成長装置が主流になりつつある。これは、反応容器内に1枚の基板を水平に回転保持し、反応容器の一端から他端へ原料ガスを略水平かつ一方向に供給しながら薄膜を気相成長させるものである。
【0003】
上記のような枚葉式気相成長装置において、形成される薄膜の膜厚均一化を図る上で重要な因子として、反応容器内における原料ガスの流量あるいは流量分布がある。枚葉式気相成長装置においては、通常、ガス供給管を介して反応容器の一端部に形成されたガス導入口から原料ガスが供給され、基板表面に沿って原料ガスが流れた後、容器他端側の排出口から排出される構造となっている。このような構造の気相成長装置において、流量ムラを減ずるために、ガス導入口の下流側に多数の孔を形成した分散板を設けたり、あるいはガス流を幅方向に仕切る仕切板を設けたりした装置が提案されている。
【0004】
また、下記特許文献1には、ガス導入口からの原料ガスを、基板を支持するサセプタの周囲に配置された堤部材の外周面に向けて流し、堤部材を乗り越えさせる形で基板の表面に原料ガスを供給する装置の構成が開示されている。この方法の主旨は、原料ガス流を堤部材の外周面に当てることで原料ガスを分散させ、流量のムラを解消しようというものである。
【0005】
【特許文献1】
特開平7−193015号公報
【0006】
【発明が解決しようとする課題】
上記特許文献1に記載されている装置によれば、堤部材の外周面に当たった原料ガスは、堤部材を乗り越えようとする流れと、外周面に沿って横方向に向かおうとする流れとを生ずる形になる。この場合、その横方向の流れにより、堤部材の外周面ひいては上記の幅方向に沿って原料ガスが均等に分散することが、流量ムラを解消する上で重要である。しかしながら、堤部材の外周面形状によっては原料ガスが必ずしも幅方向に均等に分散せず、流れに偏りを生じてしまうことがある。特に、堤部材の外周面の形状が左右対称な円筒面状である場合、ガス流の流量分布も左右対称な分布となりやすい。したがって、基板の回転軸線に対して左右同じ位置に同じ傾向で流量ムラが生じやすくなり、回転する基板の半径方向の特定位置では、左右の流量ムラの影響が重なって、大きな膜厚異常につながりやすくなる。
【0007】
本発明の課題は、比較的単純な機構によりながら、流量分布の影響を効果的に減殺することができ、ひいては良好な膜厚分布を確保できる気相成長装置と、それを用いたエピタキシャルウェーハの製造方法とを提供することにある。
【0008】
【課題を解決するための手段及び作用・効果】
上記課題を解決するために本発明の気相成長装置は、
シリコン単結晶基板の主表面にシリコン単結晶薄膜を気相成長させる気相成長装置であって、
水平方向における第一端部側にガス導入口が形成され、同じく第二端部側にガス排出口が形成された反応容器本体を有し、シリコン単結晶薄膜形成のための原料ガスがガス導入口から反応容器本体内に導入され、該反応容器本体の内部空間にて略水平に回転保持されるシリコン単結晶基板の主表面に沿って原料ガスが流れた後、ガス排出口から排出されるように構成され、
内部空間内にて回転駆動される円盤状のサセプタ上にシリコン単結晶基板が配置される一方、サセプタを取り囲むとともに、上面が該サセプタの上面と一致する位置関係にて堤部材が配置され、
さらに、ガス導入口は堤部材の外周面に対向する形にて開口し、該ガス導入口からの原料ガスが、堤部材の外周面に当たって上面側に乗り上げた後、サセプタ上のシリコン単結晶基板の主表面に沿って流れるように構成され、
ガス導入口と堤部材との間に、ガス流通孔の形成されたバッフルが配置された気相成長装置において、
ガス流通孔を、複数の主流通孔と、その主流通孔よりも開口面積が小さい整流孔とを含んで構成したことを特徴とする。
【0009】
上記気相成長装置において、バッフルのガス流通孔を通過した原料ガスは、ガス流通孔の位置を反映して比較的まっすぐ進み、堤部材に到達する。堤部材に到達した原料ガスは、堤部材の外周面にぶつかって分散する。本発明は、そのときに生じる原料ガスの粗密を解消するために、バッフルのガス流通孔を、主流通孔と、それよりも開口面積の小さい整流孔とで構成したところに特徴を有するものである。整流孔は、主流通孔よりも開口面積が小さく、流通する原料ガスの量も主流通孔より小さいので、原料ガスの流れを微修正するのに適している。つまり、この整流孔の形成位置を適宜調整することにより、主流通孔を通じて堤部材に到達した原料ガスの流れを、整流孔からの原料ガスの流れで整え、基板上に流れる原料ガスの流量分布の均一化を図ることができる。これにより、極めて均一な膜厚分布のシリコン単結晶薄膜が得られる。
【0010】
また、課題を解決するために本発明の気相成長装置は、
シリコン単結晶基板の主表面にシリコン単結晶薄膜を気相成長させる気相成長装置であって、
水平方向における第一端部側にガス導入口が形成され、同じく第二端部側にガス排出口が形成された反応容器本体を有し、シリコン単結晶薄膜形成のための原料ガスが前記ガス導入口から反応容器本体内に導入され、該反応容器本体の内部空間にて略水平に回転保持されるシリコン単結晶基板の主表面に沿って原料ガスが流れた後、ガス排出口から排出されるように構成され、
内部空間内にて回転駆動される円盤状のサセプタ上にシリコン単結晶基板が配置される一方、サセプタを取り囲むとともに、上面が該サセプタの上面と一致する位置関係にて堤部材が配置され、
さらに、ガス導入口は堤部材の外周面に対向する形にて開口し、該ガス導入口からの原料ガスが、堤部材の外周面に当たって上面側に乗り上げた後、サセプタ上のシリコン単結晶基板の主表面に沿って流れるように構成され、
ガス導入口と前記堤部材との間に、ガス流通孔の形成されたバッフルが配置された気相成長装置において、
反応容器本体の第一端部からサセプタの回転軸線と直交して第二端部に至る原料ガスの流れ方向に沿った仮想的な中心線を水平基準線としたとき、反応容器本体は、幅方向において原料ガスの流れを水平基準線に対し左右に分断する支柱を、堤部材よりも原料ガスの流れ方向の上流側かつバッフルよりも下流側に備え、
ガス流通孔は、複数の主流通孔と、その主流通孔よりも開口面積が小さい、1対の整流孔とを含み、それら複数の主流通孔および1対の整流孔は、水平基準線と回転軸線とを含む面に関して対称となるように、幅方向に並んで形成され、
1対の整流孔は、複数の主流通孔のうち、支柱に最も近い主流通孔の外隣に形成されていることを特徴とする。
【0011】
上記気相成長装置において、バッフルのガス流通孔を通過した原料ガスは、ガス流通孔の位置を反映して比較的まっすぐ進んで堤部材に到達する。堤部材に到達した原料ガスは、堤部材の外周面にぶつかって分散する。本発明は、そのときに生じる原料ガスの粗密を解消するために、主流通孔よりも開口面積の小さい整流孔をバッフルに設けたものである。主流通孔および整流孔は、水平基準線と回転軸線とを含む面に関して対称に形成してあるので、基板の左右における流量分布も概ね対称となる。
【0012】
整流孔は、主流通孔よりも開口面積が小さく、流通する原料ガスの量も主流通孔より小さいので、原料ガスの流れを微修正するのに適している。つまり、この整流孔の形成位置を適宜調整することにより、主流通孔を通じて堤部材に到達した原料ガスの流れを、整流孔からの原料ガスの流れで整える。特に、反応容器本体の強度維持のために設けられた支柱の近傍において、原料ガスはその支柱の影響を受け、流量分布の粗密を生じやすいと考えられる。そこで、本発明者らは、支柱から最も近い主流通孔の外隣に1対の整流孔を設けてみたところ、基板上に流れる原料ガスの流量分布の均一化を図ることができることを見出した。すなわち、このようなバッフルを備えた気相成長装置を用いることにより、均一な膜厚分布のシリコン単結晶薄膜を得ることが可能となる。
【0013】
なお、堤部材の上面は、サセプタの上面と一致する位置関係であるとしているが、これは堤部材の上面とサセプタの上面とが完全に一致することを必ずしも意味するのではなく、2mm程度までの位置の違いは一致しているとみなす。
【0014】
また、本発明のエピタキシャルウェーハの製造方法は、上記の気相成長装置の反応容器内にシリコン単結晶基板を配置し、該反応容器内に原料ガスを流通させてシリコン単結晶基板上にシリコン単結晶薄膜を気相エピタキシャル成長させることによりエピタキシャルウェーハを得ることを特徴とする。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を、添付の図面に基づき説明する。
図1〜図4は、シリコン単結晶基板の主表面にシリコン単結晶薄膜を気相成長させる、本発明の気相成長装置1の一例を模式的に示すものである。図1はその側面断面図、図2は図1の原料ガス導入部付近の拡大図、図3は図1の気相成長装置1の平面図、図4は、図1の気相成長装置1の要部を一部切り欠いて示す分解斜視図である。この気相成長装置1は、図1に示すように、水平方向における第一端部31側にガス導入口21が形成され、同じく第二端部32側にガス排出口36が形成された反応容器本体2を有する。薄膜形成のための原料ガスGは、ガス導入口21から反応容器本体2内に導入され、該反応容器本体2の内部空間5にて略水平に回転保持される基板Wの主表面に沿う方向に沿って流れた後、ガス排出口36から排出管7を経て排出されるように構成されている。
【0016】
図1に示すように、反応容器本体2の内部空間5には、垂直な回転軸線Oの周りにモータ13により回転駆動される円盤状のサセプタ12が配置され、その上面に形成された浅い座ぐり12b内に、シリコンエピタキシャルウェーハを製造するための基板Wが1枚のみ配置される。すなわち、該気相成長装置1は枚葉式気相成長装置として構成されている。基板Wは、たとえば直径が100mmあるいはそれ以上のものである。また、基板Wの配置領域に対応して反応容器本体2の上下には、基板加熱のための赤外線加熱ランプ11が所定間隔にて配置されている。
【0017】
内部空間5内には、図3に示すようにサセプタ12を取り囲むように堤部材23が配置されている。図2に示すように、堤部材23は、その上面23aがサセプタ12の上面12a(ひいては基板Wの主表面)と略一致する位置関係にて配置される。図1に示すように、ガス導入口21は、堤部材23の外周面23bに対向する形にて開口しており、該ガス導入口21からの原料ガスGは、図2あるいは図4に示すように、堤部材23の外周面23bに当たって上面23a側に乗り上げた後、サセプタ12上の基板Wの主表面に沿って流れるようになっている。本実施形態では、堤部材23の外周面23bは、サセプタ12の形状に対応した円筒面状とされている。なお、堤部材23の内周縁に沿って、板状に形成された均熱用の予熱リング22が配置され、その内側に配置されるサセプタ12の上面12aが、該予熱リング22の上面22a(図2参照)と略同一面となっている。また、内部空間5内には、堤部材23と対をなすように、その堤部材23とほぼ同径の上部内張り材4が配置されている。
【0018】
図1に示すように、気相成長装置1においては、反応容器本体2の第一端部31からサセプタ12の回転軸線Oと直交して第二端部32に至る原料ガスGの流れ方向に沿った仮想的な中心線を水平基準線HSLとする。そして、水平基準線HSLとサセプタ12の回転軸線Oとの双方に直交する方向を幅方向WLとする。これにより、水平基準線HSLと回転軸線Oとを含む面α(基準面α)が定まる。
【0019】
次に、図3に示すように、ガス導入口21A,21Bと堤部材23との間には、原料ガスGの流通経路となるガス流通孔が形成されたバッフル26が配置されている。図4に示すように、ガス流通孔は、複数の主流通孔26aと、それら主流通孔26aよりも開口面積が小さい整流孔26bとを含んで構成されている。各孔を通り抜けようとする原料ガスGの圧力が等しい場合、原料ガスGの流通量は、整流孔26bよりも開口面積が大きい主流通孔26aのほうが必ず大きくなる。原料ガスGの流通量が主流通孔26aよりも小さい整流孔26bは、原料ガスGの流れを微修正するのに適している。つまり、主流通孔26aを通じて堤部材23に到達した原料ガスGの流れを、整流孔26bからの原料ガスGの流れで整えて、基板W上に流れる原料ガスGの流量分布の均一化を図ることができる。
【0020】
図4に示すように、バッフル26は板状の形態を有する。本実施形態では、一枚の石英長板をバッフル26として採用している。ただし、ガス導入口21A,21Bのそれぞれに個別に対応する複数部材でバッフルを構成することも可能である。また、主流通孔26aおよび整流孔26bは、バッフル26を厚さ方向に貫通しており、それぞれ一定の径の円筒状である。主流通孔26aと整流孔26bとの開口面積の比としては、たとえば整流孔26bの開口面積を、主流通孔26aの開口面積の1/16以上1/2以下とすることが望ましい。円の径に換算すると、整流孔26bの径は、主流通孔26aの径の1/4以上(1/2)−1以下の範囲内で適宜調整する。主流通孔26aに比べて整流孔26bが小さすぎると、原料ガスGの流れを整える効果を十分に得られない場合がある。逆に、大きすぎると原料ガスGの流れを整えるというよりも、むしろ流れを大きく変化させてしまい、流量分布の均一化を図ることが困難になる恐れがある。
【0021】
図5に、いくつかのバッフルの正面図を示す。図5(a)は、図1から図4に示した気相成長装置1が備えるバッフル26を示している。図5(b)は、好適な別形態のバッフル261を示している。図5(a)に示すように、主流通孔26aおよび整流孔26bは、水平基準線HSLと回転軸線Oとを含む面αに関して対称となるように、幅方向WLに並んで形成されている。このようにすると、幅方向WLについてのみ整流孔26bの形成位置を考慮すればよいうえ、1つの整流孔26bの位置を決めると、水平基準線HSLを挟んで反対側の1つの整流孔26bの位置も自ずと決まるので、施工時の微調整に費やされる時間の節約にもなる。なお、図5(c)に示すのは、主流通孔26aのみが形成された従来のバッフル262である。
【0022】
ところで、図3に示すように、反応容器本体2は、幅方向WLにおいて原料ガスGの流れを水平基準線HSLに対し左右に分断する支柱33を、堤部材23よりも原料ガスGの流れ方向の上流側かつバッフル26よりも下流側に備えている。支柱33は、反応容器本体2の強度を保つうえで重要であるが、流量分布の均一化の観点からすると歓迎される存在ではない。支柱33が影となって流量ムラの生成を招くからである。この場合、支柱33に最も近い主流通孔26aよりも、幅方向WLにおける外側に整流孔26bを形成すれば(図5(a)(b)参照)支柱33に起因すると考えられる流量ムラを効果的に減殺できる。
【0023】
なお、実際の製造現場においては、経年劣化等により、水平基準線HSLに向かって多くの原料ガスGが集まる傾向を持った装置もある。このような装置に対しては、整流孔26bを最内側に形成したほうが、流量分布を均一化する効果が高い場合もある。ただし、図5(a)(b)の形態でも望ましい効果は期待できる。
【0024】
また、図1、図3および図4に示すように、気相成長装置1は、ガス導入口21A,21Bからの原料ガスGを堤部材23に向けて導くガス案内部材24R,24Lを備えている。このようなガス案内部材24R,24Lは、ガス導入口21A,21Bと堤部材23との間に配置されているので、バッフル26は、それらガス案内部材24R,24Lとガス導入口21A,21Bとの間に配置されることになる。また、ガス案内部材24R,24Lは、支柱33を間に挟んで配置されており、その内部は、原料ガスGの流れを幅方向WLにさらに仕切るガス案内部材側仕切板34R,34Lにより、それぞれ内側案内路24Tと外側案内路24Sとに分離されている。そして、整流孔26bは、内側案内路24Tに対応して設けられている。換言すれば、整流孔26bは、内側案内路24Tに開口したガス流通孔である。整流孔26bを内側案内路24Tに対応して設けた場合、外側案内路24Sに対応して設けたときよりも原料ガスGの流れを整える効果が高いため、このような配置とするほうが、流量分布の均一化を図るうえで有利となる。ただし、外側案内路24Sに対応して設けることが無効ということではない。
【0025】
また、支柱33を基準に考えた場合、図5(a)に示すように、整流孔26bは、支柱33から最も近い位置にある主流通孔26aの外隣、つまり、支柱33に最も近い主流通孔26aと、2番目に近い主流通孔26aとの間に設けることができる。この形態によると、最内側の主流通孔26aからの原料ガスGの流れと、それより外側の主流通孔26aからの原料ガスGの流れとを整えることにより、支柱33の影響をなるべく小さくすることができる。なお、図5(a)の形態では、整流孔26bを1対のみ設けているが、これ限定されるわけではなく、たとえば図5(b)の別形態に示すように、基準面αに関して対称に、複数対の整流孔26bを設けてもよい。
【0026】
図3に示すように、右側のガス案内部材側仕切板34Rと左側のガス案内部材側仕切板34Lとのそれぞれに個別に対応してガス導入口21A,21Bが形成されている。具体的には、原料ガスGは、ガス配管50を経て各ガス導入口21A,21Bから反応容器本体2の内部空間5に導かれる。本実施形態では、ガス配管50は、内側案内路24Tにガスを供給する内側配管53と、同じく外側案内路24Sにガスを供給する外側配管51とに分岐し、各々原料ガスGの流量を、マスフローコントローラ(MFC)54,52により独立に制御できるようにしている。ここで、MFC54,52の替りに手動バルブを使用してもよい。また、内側配管53および外側配管51は、それぞれ分岐配管56,56および分岐配管55,55にさらに分れ、水平基準線HSLに対して両側にそれぞれ内側ガス導入口21A,21Aおよび外側ガス導入口21B,21Bを開口している。
【0027】
また、図4に示すように、ガス案内部材24R,24Lは、ガス導入口21側と堤部材23側とにそれぞれ開口する横長状断面を有する石英製の筒部材であり、ガス案内部材側仕切板34R,34Lは、互いに略平行に配置された上面板24aと下面板24bとの上端面と下端面とが各々溶接される形もしくは点支持される形にて配置されている。ガス案内部材側仕切板34R,34Lが一体化されたガス案内部材24R,24Lを、反応容器本体2に対して着脱可能に配置することで、たとえばガス案内部材側仕切板34R,34Lの位置を変更したい場合には、ガス案内部材24R,24Lの交換により簡単に対応することができる。
【0028】
一方、図3に示すように、堤部材23の外周面23bには、水平基準線HSLに対し左右対称に振り分けた形にて、原料ガスGの流れを幅方向WLにおける複数個所にて仕切る堤部材側仕切板35R,35Lが配置されている。原料ガスG,Gは、堤部材23の上面23aに乗り上げる際に幅方向WLに逃げやすい。そこで、前述したガス案内部材側仕切板34R,34Lとともに、堤部材側仕切板35R,35Lを設けることにより、原料ガスG,Gの流れる方向を適度に整えることに成功している。本実施形態では、堤部材側仕切板35R,35Lは、水平基準線HSLを挟んで左右に各々1個所ずつ配置されている。
【0029】
図4に示すように、堤部材23の上面23aの外周縁部を、ガス案内部材24R,24Lとの対向区間において凹状に切り欠くことにより弓形の切欠部23kが形成されている。図1に示すように、反応容器本体2は、下部容器2bと上部容器2aとからなり、上部内張り材4は上部容器2a、堤部材23は下部容器2bの内周面に沿って配置されている。図2に示すように、切欠部23kの底面23cは、ガス案内部材24R,24Lの下面板24bの内面の延長に略一致する形となっており、ガス案内面の役割を果たす。そして、原料ガスGは切欠部23kの側面23bに当たって上面23aに乗り上げる。なお、上部内張り材4は、堤部材23の上面23aに対向する第一面4aと、切欠部23kの側面23bに対向する第二面4bと、同じく底面23cに対向する第三面4cとを有する段部4dを有し、切欠部23kとの間にクランク状の断面を有するガス通路51を形成している。図4に示すように、堤部材側仕切板35R,35Lは、ガス通路51に対応したL字状(あるいは上面23a側まで延びるクランク状形態としてもよい)に形成されている。この構造によると、原料ガスGの流れが、L字型の狭いガス通路51を通過することにより横方向につぶれやすくなり、流量分布の極端な偏りを生じにくくすることができる。
【0030】
以下、上記気相成長装置1を用いたエピタキシャルウェーハの製造方法について説明する。図1から図4に示すように、反応容器2内のサセプタ12上に基板Wを配置し、必要に応じ自然酸化膜除去等の前処理を行った後、基板Wを回転させながら赤外線加熱ランプ11により所定の反応温度に加熱する。その状態で、反応容器2内に各ガス導入口21A,21Bから原料ガスGを所定の流速にて流通させて、基板W上にシリコン単結晶薄膜を気相エピタキシャル成長させることにより、エピタキシャルウェーハを得る。
【0031】
原料ガスGは、上記の基板W上にシリコン単結晶薄膜を気相成長させるためのものであり、SiHCl、SiCl、SiHCl、SiH等のシリコン化合物の中から選択される。原料ガスGには、ドーパンドガスとしてのBあるいはPHや、希釈ガスとしてのH、N、Ar等が適宜配合される。また、薄膜の気相成長処理に先立って基板前処理(たとえば自然酸化膜や付着有機物の除去処理)を行う際には、HCl、HF、ClF、NF等から適宜選択された腐蝕性ガスを希釈ガスにて希釈した前処理用ガスを反応容器本体2内に供給するか、または、H雰囲気中で高温熱処理を施す。
【0032】
反応容器2内に原料ガスGを流通させるときの作用について説明する。原料ガスGは、バッフル26を通り、ガス案内部材側仕切板34R,34Lの間を通る内側ガス流Gと、同じく外側を通る外側ガス流Gとに仕切られて、さらに堤部材23の外周面23bに向けて流れる。外周面23bに当たったガス流GおよびGは、堤部材23の上面23aに乗り上げて、基板Wの主表面に沿って流れ、排出側ガス案内部材25を経て排出管7に集められ、排出される。
【0033】
図6は、ガス流Gの流れ方を説明する概念図である。図6(a)は、従来のバッフル262(図5(c)参照)を用いた場合を示している。主流通孔26aから堤部材23の外周面23bにぶつかった後のガス流Gは、様々な方向に進みながら堤部材23の上面23aに乗り上げる。このとき、隣り合う主流通孔26a,26aからのガス流G同士は強く重なり合って、流量ムラの原因となりやすい。他方、図6(b)に示すように、整流孔26bを設けたバッフル26を用いると、整流孔26bからの少量のガス流Gが、隣り合う主流通孔26a,26aからのガス流G同士が強く重なり合うことを阻み、結果的に均一な流量分布が達成されると考えられる。
【0034】
なお、本明細書中において、主流通孔26aおよび整流孔26bは、水平基準線に関して対称としているが、たとえば1〜2mm程度の位置のずれ、形状や寸法の微小な相違は、対称の概念に含まれるものとする。
【0035】
【実験例】
(計算機による模擬実験)
図1から図4に示す気相成長装置1で、シリコン単結晶基板W上にシリコン単結晶薄膜を気相エピタキシャル成長させる場合の、そのシリコン単結晶薄膜の成長速度分布を、計算機シミュレーションにより見積もった。また、これと比較するために、バッフル26を、バッフル262(図5(c)参照)に変更した従来の気相成長装置で、シリコン単結晶薄膜をシリコン単結晶基板W上に気相エピタキシャル成長させる場合の、シリコン単結晶薄膜の成長速度分布を併せて見積もった。設定条件等は、以下に記す通りである。
【0036】
Fluent Ver 6.0(フルーエント・アジアパシフィック社より入手)
(寸法)
・反応容器直径=300mm
・反応容器高さ=20mm
・堤部材高さ(切欠き部23kの底面23cから堤部材23の上面23aまでの高さ)=16mm
・シリコン単結晶基板直径=200mm
(成長温度)
・シリコン単結晶基板…1400K
・反応容器上面…700K
(原料ガス)
・トリクロロシラン…3mol%
・水素…7mol%
(原料ガス流量)
・内側案内路…30リットル/分(標準状態)
・外側案内路…20リットル/分(標準状態)
【0037】
図7に示すのは、上記の計算機シミュレーションから得られた成長速度分布を示す等高線図であり、図7(a)が本発明の気相成長装置1の場合、図7(b)が従来の気相成長装置の場合である。シリコン単結晶基板Wは、回転しないと仮定しているので、図中右側に進むほど、成長速度が遅い等高線を示している。従来の気相成長装置の場合、等高線が大きく波打っているのに対し、本発明の気相成長装置1の場合、等高線は小さい波打ちを繰り返す結果となった。
【0038】
(実機を用いた実験)
CZ法により作製した直径200mmのシリコン単結晶基板Wを、図1から図4に示す気相成長装置1内に配置した。この気相成長装置1は、図5(a)に示したバッフル26を装備したものである。そして、以下の手順でシリコン単結晶薄膜をシリコン単結晶基板W上に気相エピタキシャル成長させた。また、これと比較するために、バッフル26を、従来のバッフル262(図5(c)参照)に変更し、同様の手順でシリコン単結晶薄膜をシリコン単結晶基板W上に気相エピタキシャル成長させた。
【0039】
まず、赤外線加熱ランプ11(図1参照)に通電し、基板Wの温度が1100℃になった後に、基板W表面の自然酸化膜を除去した。その後、基板Wの温度を1100℃に保持したまま内側ガス導入口21Aおよび外側ガス導入口21Bから原料ガスとしてトリクロロシランガスを含有する水素ガスを反応容器内に供給して、基板W上にシリコン単結晶薄膜を気相エピタキシャル成長させた。なお、内側ガス導入口21Aと外側ガス導入口21Bとの原料ガスの合計供給流量は、標準状態における値で50リットル/分に固定した。また、内側ガス導入口21Aと外側ガス導入口21Bとの供給流量比は種々に変えてシリコン単結晶薄膜の成長を行い、膜厚分布が最適となるものを選択するようにした。なお、シリコン単結晶薄膜は厚さ6μmを目標として、膜厚をモニターしながら成長させた。
【0040】
次に、得られた薄膜付きの基板すなわちシリコンエピタキシャルウェーハの、直径方向の膜厚分布プロファイルをFT−IR法により測定し、グラフにプロットした。図8(a)は、本発明の気相成長装置1で作製したシリコンエピタキシャルについての測定結果であり、図8(b)は、従来の気相成長装置で作製したシリコンエピタキシャルウェーハについての測定結果である。
【0041】
本発明にかかる気相成長装置1で作製したシリコンエピタキシャルウェーハは、従来の気相成長装置で作製したシリコンエピタキシャルウェーハよりも均一な膜厚分布を示した。また、シリコン単結晶薄膜の最大膜厚値をtmax、同じく最小膜厚値をtminとし、100×(tmax−tmin)/(tmax+tmin)で定義される値をシリコン単結晶薄膜の膜厚分布(±%)としたとき、図8(a)のプロファイルから±0.5(%)という値が導出された。これに対し、従来の気相成長装置で作製したシリコンエピタキシャルウェーハは、±1.5(%)であった。なお、本実験では直径200mmのシリコン単結晶基板を使用したが、直径300mmのものについても同様の効果が得られることはもちろんである。
【図面の簡単な説明】
【図1】本発明の気相成長装置の一例を示す側面断面図。
【図2】本発明の気相成長装置の要部を拡大した断面図。
【図3】本発明の気相成長装置の平面図。
【図4】本発明の気相成長装置の要部を一部切り欠いて示す分解斜視図。
【図5】いくつかのバッフルの拡大正面図。
【図6】ガス流Gの流れ方を説明する概念図。
【図7】計算機シミュレーションから得られた成長速度分布を示す等高線図。
【図8】シリコン単結晶薄膜の膜厚分布を示すグラフ。
【符号の説明】
1 気相成長装置
2 反応容器本体
5 内部空間
12 サセプタ
12a サセプタの上面
21 ガス導入口
23 堤部材
23a 堤部材の上面
24R,24L ガス案内部材
24T 内側案内路
24S 外側案内路
26,261 バッフル
26a 主流通孔
26b 整流孔
31 第一端部
32 第二端部
33 支柱
34R,34L ガス案内部材側仕切板
36 ガス排出口
W 基板
G 原料ガス
O 回転軸線
HSL 水平基準線
WL 幅方向
α 基準面(水平基準線および回転軸線を含む面)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vapor phase growth apparatus for vapor phase growth of a silicon single crystal thin film on a main surface of a silicon single crystal substrate, and an epitaxial wafer manufacturing method realized using the vapor phase growth apparatus.
[0002]
[Prior art]
A silicon epitaxial wafer in which a silicon single crystal thin film (hereinafter simply abbreviated as “thin film”) is formed on the main surface of a silicon single crystal substrate (hereinafter simply abbreviated as “substrate”) by vapor phase growth is a bipolar IC. And widely used in electronic devices such as MOS-IC. With the miniaturization of electronic devices, the demand for flatness of the main surface of the epitaxial wafer that forms the elements is becoming stricter. Factors affecting the flatness include the flatness of the substrate and the film thickness distribution of the thin film. By the way, in recent years, for example, in the manufacture of an epitaxial wafer having a diameter of 200 mm or more, a single-wafer type vapor phase growth apparatus is becoming mainstream instead of a method of batch processing a plurality of wafers. In this method, a single substrate is rotated and held horizontally in a reaction vessel, and a thin film is grown in a vapor phase while supplying a source gas substantially horizontally and in one direction from one end to the other end of the reaction vessel.
[0003]
In the single-wafer type vapor phase growth apparatus as described above, an important factor for achieving uniform film thickness of the thin film to be formed is the flow rate or flow rate distribution of the source gas in the reaction vessel. In a single wafer type vapor phase growth apparatus, a source gas is usually supplied from a gas inlet formed at one end of a reaction vessel via a gas supply pipe, and after the source gas flows along the substrate surface, the vessel It is structured to be discharged from the discharge port on the other end side. In the vapor phase growth apparatus having such a structure, in order to reduce flow rate unevenness, a dispersion plate having a large number of holes is provided on the downstream side of the gas introduction port, or a partition plate for partitioning the gas flow in the width direction is provided. An apparatus has been proposed.
[0004]
Further, in Patent Document 1 below, the source gas from the gas introduction port is caused to flow toward the outer peripheral surface of the bank member arranged around the susceptor that supports the substrate, and over the bank member in the form of getting over the bank member. A configuration of an apparatus for supplying a source gas is disclosed. The gist of this method is to disperse the raw material gas by applying the raw material gas flow to the outer peripheral surface of the bank member, thereby eliminating the uneven flow rate.
[0005]
[Patent Document 1]
JP-A-7-193015
[0006]
[Problems to be solved by the invention]
According to the apparatus described in Patent Document 1, the raw material gas that has hit the outer peripheral surface of the bank member is a flow that attempts to get over the bank member, and a flow that is directed laterally along the outer surface. To form. In this case, it is important for eliminating the uneven flow rate that the raw material gas is evenly dispersed along the outer circumferential surface of the bank member and the width direction by the lateral flow. However, depending on the shape of the outer peripheral surface of the bank member, the source gas is not necessarily uniformly distributed in the width direction, and the flow may be biased. In particular, when the shape of the outer peripheral surface of the bank member is a symmetrical cylindrical surface, the flow distribution of the gas flow tends to be a symmetrical distribution. Therefore, flow unevenness is likely to occur at the same position on the left and right with respect to the rotation axis of the substrate, and the influence of flow unevenness on the left and right overlaps at a specific position in the radial direction of the rotating substrate, leading to a large film thickness abnormality. It becomes easy.
[0007]
An object of the present invention is to provide a vapor phase growth apparatus capable of effectively reducing the influence of the flow rate distribution and thus ensuring a good film thickness distribution, and an epitaxial wafer using the same, by a relatively simple mechanism. It is to provide a manufacturing method.
[0008]
[Means for solving the problems and actions / effects]
In order to solve the above problems, the vapor phase growth apparatus of the present invention is:
A vapor phase growth apparatus for vapor phase growing a silicon single crystal thin film on a main surface of a silicon single crystal substrate,
It has a reaction vessel body with a gas inlet formed on the first end side in the horizontal direction and a gas outlet formed on the second end side, and the source gas for forming the silicon single crystal thin film is introduced into the gas. After the raw material gas flows along the main surface of the silicon single crystal substrate, which is introduced into the reaction vessel main body through the mouth and rotated and held substantially horizontally in the internal space of the reaction vessel main body, it is discharged from the gas discharge port. Configured as
While the silicon single crystal substrate is disposed on a disk-shaped susceptor that is rotationally driven in the internal space, the dam member is disposed in a positional relationship that surrounds the susceptor and that the upper surface coincides with the upper surface of the susceptor.
Furthermore, the gas inlet port is opened in a shape facing the outer peripheral surface of the bank member, and after the source gas from the gas inlet hits the outer peripheral surface of the bank member and rides on the upper surface side, the silicon single crystal substrate on the susceptor Configured to flow along the main surface of the
In the vapor phase growth apparatus in which a baffle in which a gas flow hole is formed is disposed between the gas inlet and the bank member,
The gas circulation hole is configured to include a plurality of main circulation holes and a rectification hole having an opening area smaller than that of the main circulation holes.
[0009]
In the vapor phase growth apparatus, the raw material gas that has passed through the gas flow hole of the baffle advances relatively straight reflecting the position of the gas flow hole and reaches the bank member. The source gas that has reached the bank member collides with the outer peripheral surface of the bank member and is dispersed. The present invention is characterized in that the gas flow hole of the baffle is composed of a main flow hole and a rectifying hole having a smaller opening area than that in order to eliminate the density of the raw material gas generated at that time. is there. The rectifying hole has an opening area smaller than that of the main flow hole, and the amount of the raw material gas to be circulated is smaller than that of the main flow hole. That is, by appropriately adjusting the formation position of the flow straightening holes, the flow of the raw material gas that has reached the bank member through the main flow holes is adjusted by the flow of the raw material gas from the straightening holes, and the flow rate distribution of the raw material gas flowing on the substrate Can be made uniform. Thereby, a silicon single crystal thin film having a very uniform film thickness distribution can be obtained.
[0010]
In order to solve the problem, the vapor phase growth apparatus of the present invention includes:
A vapor phase growth apparatus for vapor phase growing a silicon single crystal thin film on a main surface of a silicon single crystal substrate,
A reaction vessel body having a gas inlet formed on the first end side in the horizontal direction and a gas outlet formed on the second end side, and a raw material gas for forming a silicon single crystal thin film is the gas. After the source gas flows along the main surface of the silicon single crystal substrate, which is introduced into the reaction vessel body from the introduction port and rotated and held substantially horizontally in the internal space of the reaction vessel body, it is discharged from the gas discharge port. Configured to
While the silicon single crystal substrate is disposed on a disk-shaped susceptor that is rotationally driven in the internal space, the dam member is disposed in a positional relationship that surrounds the susceptor and that the upper surface coincides with the upper surface of the susceptor.
Furthermore, the gas inlet port is opened in a shape facing the outer peripheral surface of the bank member, and after the source gas from the gas inlet hits the outer peripheral surface of the bank member and rides on the upper surface side, the silicon single crystal substrate on the susceptor Configured to flow along the main surface of the
In the vapor phase growth apparatus in which a baffle in which a gas flow hole is formed is arranged between the gas inlet and the bank member,
When the virtual center line along the flow direction of the source gas from the first end of the reaction vessel main body to the second end perpendicular to the rotation axis of the susceptor is taken as the horizontal reference line, the reaction vessel main body has a width A column that divides the flow of the source gas in the direction to the left and right with respect to the horizontal reference line is provided on the upstream side of the flow direction of the source gas and on the downstream side of the baffle with respect to the bank member,
The gas flow holes include a plurality of main flow holes and a pair of rectification holes having an opening area smaller than that of the main flow holes, and the plurality of main flow holes and the pair of rectification holes include a horizontal reference line. It is formed side by side in the width direction so as to be symmetric with respect to the plane including the rotation axis,
The pair of rectifying holes is formed on the outside of the main circulation hole closest to the column among the plurality of main circulation holes.
[0011]
In the vapor phase growth apparatus, the raw material gas that has passed through the gas flow hole of the baffle travels relatively straight reflecting the position of the gas flow hole and reaches the bank member. The source gas that has reached the bank member collides with the outer peripheral surface of the bank member and is dispersed. In the present invention, in order to eliminate the density of the raw material gas generated at that time, baffles are provided with rectifying holes having an opening area smaller than that of the main flow holes. Since the main flow hole and the rectifying hole are formed symmetrically with respect to the plane including the horizontal reference line and the rotation axis, the flow distribution on the left and right sides of the substrate is also generally symmetrical.
[0012]
The rectifying hole has an opening area smaller than that of the main flow hole, and the amount of the raw material gas to be circulated is smaller than that of the main flow hole. That is, by appropriately adjusting the formation position of the rectifying hole, the flow of the raw material gas that has reached the bank member through the main flow hole is adjusted by the flow of the raw material gas from the rectifying hole. In particular, it is considered that in the vicinity of the support provided for maintaining the strength of the reaction vessel main body, the raw material gas is affected by the support and the flow distribution is likely to become dense. Therefore, the present inventors have found that a flow distribution of the source gas flowing on the substrate can be made uniform when a pair of rectifying holes are provided on the outside of the main circulation hole closest to the support column. . That is, by using a vapor phase growth apparatus provided with such a baffle, a silicon single crystal thin film having a uniform film thickness distribution can be obtained.
[0013]
The top surface of the bank member is assumed to be in a positional relationship that coincides with the top surface of the susceptor, but this does not necessarily mean that the top surface of the bank member and the top surface of the susceptor are completely aligned, up to about 2 mm. The difference in position is considered to be the same.
[0014]
The epitaxial wafer manufacturing method of the present invention also includes a silicon single crystal substrate placed in a reaction vessel of the vapor phase growth apparatus, and a raw material gas is circulated in the reaction vessel to form a silicon single crystal on the silicon single crystal substrate. An epitaxial wafer is obtained by vapor phase epitaxial growth of a crystal thin film.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
1 to 4 schematically show an example of a vapor phase growth apparatus 1 of the present invention for vapor phase growth of a silicon single crystal thin film on the main surface of a silicon single crystal substrate. 1 is a side cross-sectional view thereof, FIG. 2 is an enlarged view of the vicinity of the raw material gas introduction portion of FIG. 1, FIG. 3 is a plan view of the vapor phase growth apparatus 1 of FIG. It is a disassembled perspective view which partially cuts and shows the principal part. As shown in FIG. 1, the vapor phase growth apparatus 1 has a reaction in which a gas introduction port 21 is formed on the first end portion 31 side in the horizontal direction and a gas discharge port 36 is formed on the second end portion 32 side. It has a container body 2. The raw material gas G for forming a thin film is introduced into the reaction vessel main body 2 from the gas inlet 21 and is along the main surface of the substrate W rotated and held substantially horizontally in the internal space 5 of the reaction vessel main body 2. Then, the gas is discharged from the gas discharge port 36 through the discharge pipe 7.
[0016]
As shown in FIG. 1, a disc-shaped susceptor 12 that is rotationally driven by a motor 13 around a vertical rotation axis O is disposed in the internal space 5 of the reaction vessel body 2, and a shallow seat formed on the upper surface thereof. Only one substrate W for manufacturing a silicon epitaxial wafer is disposed in the bore 12b. That is, the vapor phase growth apparatus 1 is configured as a single wafer type vapor phase growth apparatus. The substrate W has a diameter of, for example, 100 mm or more. In addition, infrared heating lamps 11 for heating the substrate are arranged at predetermined intervals above and below the reaction vessel main body 2 corresponding to the arrangement region of the substrate W.
[0017]
In the internal space 5, a bank member 23 is disposed so as to surround the susceptor 12 as shown in FIG. As shown in FIG. 2, the bank member 23 is arranged in a positional relationship in which the upper surface 23 a substantially coincides with the upper surface 12 a of the susceptor 12 (and eventually the main surface of the substrate W). As shown in FIG. 1, the gas inlet 21 is opened in a shape facing the outer peripheral surface 23b of the bank member 23, and the raw material gas G from the gas inlet 21 is shown in FIG. 2 or FIG. As described above, after hitting the outer peripheral surface 23b of the bank member 23 and riding on the upper surface 23a side, the current flows along the main surface of the substrate W on the susceptor 12. In the present embodiment, the outer peripheral surface 23 b of the bank member 23 has a cylindrical surface shape corresponding to the shape of the susceptor 12. A plate-shaped preheating ring 22 for heat equalization formed in a plate shape is disposed along the inner peripheral edge of the bank member 23, and the upper surface 12 a of the susceptor 12 disposed inside thereof is an upper surface 22 a ( It is substantially the same plane as that of FIG. In the inner space 5, an upper lining material 4 having substantially the same diameter as that of the bank member 23 is disposed so as to form a pair with the bank member 23.
[0018]
As shown in FIG. 1, in the vapor phase growth apparatus 1, in the flow direction of the source gas G from the first end 31 of the reaction vessel body 2 to the second end 32 perpendicular to the rotation axis O of the susceptor 12. A virtual center line along the horizontal line is defined as a horizontal reference line HSL. A direction perpendicular to both the horizontal reference line HSL and the rotation axis O of the susceptor 12 is defined as a width direction WL. Thereby, a plane α (reference plane α) including the horizontal reference line HSL and the rotation axis O is determined.
[0019]
Next, as shown in FIG. 3, a baffle 26 in which a gas flow hole serving as a flow path for the source gas G is formed between the gas inlets 21 </ b> A and 21 </ b> B and the bank member 23. As shown in FIG. 4, the gas flow hole includes a plurality of main flow holes 26 a and rectifying holes 26 b having an opening area smaller than those main flow holes 26 a. When the pressure of the raw material gas G that tries to pass through each hole is equal, the flow amount of the raw material gas G is necessarily larger in the main circulation hole 26a having a larger opening area than the rectifying hole 26b. The flow straightening hole 26b in which the flow rate of the raw material gas G is smaller than the main flow hole 26a is suitable for finely correcting the flow of the raw material gas G. That is, the flow of the raw material gas G that has reached the bank member 23 through the main flow hole 26a is adjusted by the flow of the raw material gas G from the rectifying hole 26b, and the flow distribution of the raw material gas G flowing on the substrate W is made uniform. be able to.
[0020]
As shown in FIG. 4, the baffle 26 has a plate shape. In the present embodiment, one long quartz plate is used as the baffle 26. However, it is also possible to configure the baffle with a plurality of members individually corresponding to the gas introduction ports 21A and 21B. Further, the main circulation hole 26a and the rectifying hole 26b penetrate the baffle 26 in the thickness direction, and each has a cylindrical shape with a constant diameter. As a ratio of the opening area of the main flow hole 26a and the rectifying hole 26b, for example, it is desirable that the opening area of the rectifying hole 26b is 1/16 or more and 1/2 or less of the opening area of the main flow hole 26a. When converted into the diameter of a circle, the diameter of the rectifying hole 26b is 1/4 or more (1/2) the diameter of the main flow hole 26a. -1 Adjust appropriately within the following range. If the rectifying hole 26b is too small compared to the main flow hole 26a, the effect of adjusting the flow of the source gas G may not be sufficiently obtained. On the other hand, if it is too large, rather than adjusting the flow of the raw material gas G, the flow is largely changed, and it may be difficult to make the flow rate distribution uniform.
[0021]
FIG. 5 shows a front view of several baffles. FIG. 5A shows the baffle 26 provided in the vapor phase growth apparatus 1 shown in FIGS. FIG. 5B shows another preferred form of baffle 261. As shown in FIG. 5A, the main flow hole 26a and the rectifying hole 26b are formed side by side in the width direction WL so as to be symmetric with respect to the plane α including the horizontal reference line HSL and the rotation axis O. . In this way, it is only necessary to consider the formation position of the rectifying hole 26b only in the width direction WL. When the position of one rectifying hole 26b is determined, the position of one rectifying hole 26b on the opposite side across the horizontal reference line HSL is determined. Since the position is naturally determined, it also saves time spent on fine adjustment during construction. FIG. 5C shows a conventional baffle 262 in which only the main flow hole 26a is formed.
[0022]
By the way, as shown in FIG. 3, the reaction vessel main body 2 has a column 33 that divides the flow of the raw material gas G in the width direction WL to the left and right with respect to the horizontal reference line HSL. Upstream of the baffle 26 and downstream of the baffle 26. The column 33 is important for maintaining the strength of the reaction vessel main body 2, but is not welcomed from the viewpoint of uniforming the flow rate distribution. This is because the column 33 is shaded to cause uneven flow. In this case, if the flow straightening hole 26b is formed outside the main flow hole 26a closest to the support column 33 in the width direction WL (see FIGS. 5 (a) and 5 (b)), the flow rate unevenness considered to be caused by the support column 33 is effective. Can be reduced.
[0023]
In an actual manufacturing site, there is also an apparatus that has a tendency to collect a large amount of source gas G toward the horizontal reference line HSL due to deterioration over time. For such a device, the effect of making the flow rate distribution uniform may be higher when the rectifying hole 26b is formed on the innermost side. However, a desirable effect can be expected even in the forms of FIGS.
[0024]
As shown in FIGS. 1, 3, and 4, the vapor phase growth apparatus 1 includes gas guide members 24 </ b> R and 24 </ b> L that guide the raw material gas G from the gas introduction ports 21 </ b> A and 21 </ b> B toward the bank member 23. Yes. Since such gas guide members 24R and 24L are disposed between the gas inlets 21A and 21B and the bank member 23, the baffle 26 includes the gas guide members 24R and 24L and the gas inlets 21A and 21B. Will be placed between. Further, the gas guide members 24R and 24L are arranged with the strut 33 interposed therebetween, and the inside thereof is respectively provided by gas guide member side partition plates 34R and 34L that further partition the flow of the raw material gas G in the width direction WL. The inner guide path 24T and the outer guide path 24S are separated. And the baffle hole 26b is provided corresponding to the inner side guide path 24T. In other words, the rectifying hole 26b is a gas flow hole opened in the inner guide path 24T. When the rectifying hole 26b is provided corresponding to the inner guide path 24T, the effect of adjusting the flow of the raw material gas G is higher than when the rectifying hole 26b is provided corresponding to the outer guide path 24S. This is advantageous for achieving a uniform distribution. However, it is not ineffective to provide the outer guide path 24S.
[0025]
Further, when considering the column 33 as a reference, as shown in FIG. 5A, the rectifying hole 26 b is adjacent to the main flow hole 26 a closest to the column 33, that is, the main column closest to the column 33. It can be provided between the circulation hole 26a and the second closest main circulation hole 26a. According to this embodiment, by adjusting the flow of the source gas G from the innermost main circulation hole 26a and the flow of the source gas G from the outer main circulation hole 26a, the influence of the support column 33 is made as small as possible. be able to. In the form of FIG. 5A, only one pair of rectifying holes 26b is provided. However, the present invention is not limited to this. For example, as shown in another form of FIG. A plurality of pairs of rectifying holes 26b may be provided.
[0026]
As shown in FIG. 3, gas inlets 21 </ b> A and 21 </ b> B are formed respectively corresponding to the right gas guide member side partition plate 34 </ b> R and the left gas guide member side partition plate 34 </ b> L. Specifically, the raw material gas G is guided to the internal space 5 of the reaction vessel main body 2 from the gas introduction ports 21A and 21B via the gas pipe 50. In the present embodiment, the gas pipe 50 branches into an inner pipe 53 that supplies gas to the inner guide path 24T and an outer pipe 51 that also supplies gas to the outer guide path 24S. The mass flow controllers (MFC) 54 and 52 can be controlled independently. Here, a manual valve may be used instead of the MFCs 54 and 52. The inner pipe 53 and the outer pipe 51 are further divided into branch pipes 56 and 56 and branch pipes 55 and 55, respectively, and the inner gas inlets 21A and 21A and the outer gas inlets are provided on both sides of the horizontal reference line HSL. 21B and 21B are opened.
[0027]
Further, as shown in FIG. 4, the gas guide members 24R, 24L are quartz cylindrical members having laterally long cross sections that open to the gas introduction port 21 side and the bank member 23 side, respectively. The plates 34R and 34L are arranged such that the upper end surface and the lower end surface of the upper surface plate 24a and the lower surface plate 24b, which are disposed substantially parallel to each other, are welded or point-supported. The gas guide members 24R and 24L, in which the gas guide member side partition plates 34R and 34L are integrated, are detachably arranged with respect to the reaction vessel main body 2, so that, for example, the positions of the gas guide member side partition plates 34R and 34L are changed. If it is desired to change, it can be easily handled by replacing the gas guide members 24R and 24L.
[0028]
On the other hand, as shown in FIG. 3, on the outer peripheral surface 23b of the bank member 23, there is a bank that divides the flow of the source gas G at a plurality of locations in the width direction WL in a form distributed symmetrically with respect to the horizontal reference line HSL. Member side partition plates 35R and 35L are arranged. Source gas G 1 , G 2 Is easy to escape in the width direction WL when riding on the upper surface 23a of the bank member 23. Therefore, by providing the bank member side partition plates 35R and 35L together with the gas guide member side partition plates 34R and 34L, the raw material gas G is provided. 1 , G 2 It has succeeded in arranging the direction of the flow appropriately. In the present embodiment, the bank member-side partition plates 35R and 35L are arranged on the left and right sides of the horizontal reference line HSL.
[0029]
As shown in FIG. 4, an arcuate notch 23k is formed by notching the outer peripheral edge of the upper surface 23a of the bank member 23 in a concave shape in the section facing the gas guide members 24R and 24L. As shown in FIG. 1, the reaction vessel main body 2 includes a lower vessel 2b and an upper vessel 2a. The upper lining material 4 is arranged along the inner circumferential surface of the upper vessel 2a, and the bank member 23 is arranged along the inner circumferential surface of the lower vessel 2b. Yes. As shown in FIG. 2, the bottom surface 23c of the notch 23k is substantially coincident with the extension of the inner surface of the lower surface plate 24b of the gas guide members 24R and 24L, and serves as a gas guide surface. The source gas G hits the side surface 23b of the notch 23k and rides on the upper surface 23a. The upper lining material 4 includes a first surface 4a that faces the upper surface 23a of the bank member 23, a second surface 4b that faces the side surface 23b of the notch 23k, and a third surface 4c that also faces the bottom surface 23c. A gas passage 51 having a crank-like cross section is formed between the step portion 4d and the notch portion 23k. As shown in FIG. 4, the bank member-side partition plates 35R and 35L are formed in an L shape corresponding to the gas passage 51 (or a crank shape extending to the upper surface 23a side). According to this structure, the flow of the raw material gas G is easily crushed in the lateral direction by passing through the narrow L-shaped gas passage 51, and it is possible to make it difficult for the flow rate distribution to be extremely biased.
[0030]
Hereinafter, an epitaxial wafer manufacturing method using the vapor phase growth apparatus 1 will be described. As shown in FIGS. 1 to 4, the substrate W is placed on the susceptor 12 in the reaction vessel 2, and after performing pretreatment such as natural oxide film removal as necessary, an infrared heating lamp is rotated while the substrate W is rotated. 11 to the predetermined reaction temperature. In this state, the source gas G is circulated from the gas inlets 21A and 21B into the reaction vessel 2 at a predetermined flow rate, and a silicon single crystal thin film is vapor-phase epitaxially grown on the substrate W, thereby obtaining an epitaxial wafer. .
[0031]
The source gas G is for vapor-phase growth of a silicon single crystal thin film on the substrate W described above. 3 , SiCl 4 , SiH 2 Cl 2 , SiH 4 Or the like selected from silicon compounds such as The source gas G contains B as dopant gas 2 H 6 Or PH 3 H as dilution gas 2 , N 2 , Ar and the like are appropriately blended. In addition, when substrate pretreatment (for example, removal of a natural oxide film or attached organic substances) is performed prior to the vapor phase growth of the thin film, HCl, HF, ClF 3 , NF 3 A pretreatment gas obtained by diluting a corrosive gas appropriately selected from the above with a diluent gas is supplied into the reaction vessel main body 2, or H 2 High-temperature heat treatment is performed in the atmosphere.
[0032]
The operation when the source gas G is circulated in the reaction vessel 2 will be described. The source gas G passes through the baffle 26 and passes between the gas guide member side partition plates 34R and 34L. 1 And the outer gas flow G that also passes outside 2 And flow toward the outer peripheral surface 23b of the bank member 23. Gas flow G hitting the outer peripheral surface 23b 1 And G 2 Rides on the upper surface 23 a of the bank member 23, flows along the main surface of the substrate W, is collected in the discharge pipe 7 through the discharge-side gas guide member 25, and is discharged.
[0033]
6 shows the gas flow G 1 It is a conceptual diagram explaining how to flow. FIG. 6A shows a case where a conventional baffle 262 (see FIG. 5C) is used. Gas flow G after hitting the outer peripheral surface 23b of the bank member 23 from the main flow hole 26a 1 Rides on the upper surface 23a of the bank member 23 while proceeding in various directions. At this time, the gas flow G from the adjacent main circulation holes 26a, 26a 1 They overlap each other and tend to cause flow unevenness. On the other hand, as shown in FIG. 6B, when a baffle 26 provided with a rectifying hole 26b is used, a small amount of gas flow G from the rectifying hole 26b is used. 1 Is the gas flow G from the adjacent main circulation holes 26a, 26a. 1 It is considered that a strong flow overlap is prevented, and as a result, a uniform flow distribution is achieved.
[0034]
In the present specification, the main flow hole 26a and the rectifying hole 26b are symmetric with respect to the horizontal reference line. However, for example, a positional shift of about 1 to 2 mm, a minute difference in shape and size is a symmetric concept. Shall be included.
[0035]
[Experimental example]
(Simulation experiment by computer)
In the vapor phase growth apparatus 1 shown in FIGS. 1 to 4, the growth rate distribution of the silicon single crystal thin film when the silicon single crystal thin film is vapor phase epitaxially grown on the silicon single crystal substrate W was estimated by computer simulation. Further, for comparison with this, a conventional vapor phase growth apparatus in which the baffle 26 is changed to the baffle 262 (see FIG. 5C) is used for vapor phase epitaxial growth of the silicon single crystal thin film on the silicon single crystal substrate W. In this case, the growth rate distribution of the silicon single crystal thin film was also estimated. The setting conditions and the like are as described below.
[0036]
Fluent Ver 6.0 (obtained from Fluent Asia Pacific)
(Size)
・ Reaction vessel diameter = 300 mm
・ Reaction vessel height = 20 mm
・ Heave member height (height from the bottom surface 23c of the notch 23k to the upper surface 23a of the bank member 23) = 16 mm
・ Silicon single crystal substrate diameter = 200mm
(Growth temperature)
・ Silicon single crystal substrate ... 1400K
・ Reaction vessel top surface ... 700K
(Raw material gas)
・ Trichlorosilane: 3 mol%
・ Hydrogen: 7 mol%
(Raw material gas flow)
・ Inner guideway: 30 liters / minute (standard condition)
・ External guideway: 20 liters / minute (standard condition)
[0037]
FIG. 7 is a contour diagram showing the growth rate distribution obtained from the above-mentioned computer simulation. FIG. 7A shows the vapor phase growth apparatus 1 of the present invention, and FIG. This is the case of a vapor phase growth apparatus. Since it is assumed that the silicon single crystal substrate W does not rotate, the contour line with a slower growth rate is shown as it proceeds to the right side in the figure. In the case of the conventional vapor phase growth apparatus, the contour line is greatly undulated, whereas in the case of the vapor phase growth apparatus 1 of the present invention, the contour line repeatedly repeats the small undulation.
[0038]
(Experiment using actual machine)
A silicon single crystal substrate W having a diameter of 200 mm produced by the CZ method was placed in the vapor phase growth apparatus 1 shown in FIGS. This vapor phase growth apparatus 1 is equipped with the baffle 26 shown in FIG. Then, the silicon single crystal thin film was vapor-phase epitaxially grown on the silicon single crystal substrate W by the following procedure. For comparison, the baffle 26 is changed to a conventional baffle 262 (see FIG. 5C), and a silicon single crystal thin film is vapor-phase epitaxially grown on the silicon single crystal substrate W in the same procedure. .
[0039]
First, the infrared heating lamp 11 (see FIG. 1) was energized, and after the temperature of the substrate W reached 1100 ° C., the natural oxide film on the surface of the substrate W was removed. Thereafter, while maintaining the temperature of the substrate W at 1100 ° C., hydrogen gas containing trichlorosilane gas as a source gas is supplied into the reaction vessel from the inner gas introduction port 21A and the outer gas introduction port 21B, and the silicon W is supplied onto the substrate W. Crystal thin films were grown by vapor phase epitaxy. In addition, the total supply flow rate of the source gas at the inner gas inlet 21A and the outer gas inlet 21B was fixed at 50 liters / minute as a value in the standard state. In addition, the supply flow rate ratio between the inner gas inlet 21A and the outer gas inlet 21B is changed variously to grow a silicon single crystal thin film, and the one having the optimum film thickness distribution is selected. The silicon single crystal thin film was grown while monitoring the film thickness with a target thickness of 6 μm.
[0040]
Next, the film thickness distribution profile in the diameter direction of the obtained substrate with a thin film, that is, a silicon epitaxial wafer was measured by the FT-IR method and plotted on a graph. FIG. 8A shows the measurement result for the silicon epitaxial produced by the vapor phase growth apparatus 1 of the present invention, and FIG. 8B shows the measurement result for the silicon epitaxial wafer produced by the conventional vapor phase growth apparatus. It is.
[0041]
The silicon epitaxial wafer produced by the vapor phase growth apparatus 1 according to the present invention showed a more uniform film thickness distribution than the silicon epitaxial wafer produced by the conventional vapor phase growth apparatus. Further, assuming that the maximum film thickness value of the silicon single crystal thin film is tmax and the minimum film thickness value is tmin, the value defined by 100 × (tmax−tmin) / (tmax + tmin) is the film thickness distribution (± %), A value of ± 0.5 (%) was derived from the profile of FIG. On the other hand, the silicon epitaxial wafer produced by the conventional vapor phase growth apparatus was ± 1.5 (%). In this experiment, a silicon single crystal substrate having a diameter of 200 mm was used, but it is needless to say that the same effect can be obtained for a substrate having a diameter of 300 mm.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing an example of a vapor phase growth apparatus of the present invention.
FIG. 2 is an enlarged cross-sectional view of a main part of the vapor phase growth apparatus of the present invention.
FIG. 3 is a plan view of the vapor phase growth apparatus of the present invention.
FIG. 4 is an exploded perspective view showing a main part of the vapor phase growth apparatus of the present invention with a part cut away.
FIG. 5 is an enlarged front view of several baffles.
FIG. 6 Gas flow G 1 The conceptual diagram explaining how to flow.
FIG. 7 is a contour map showing a growth rate distribution obtained from a computer simulation.
FIG. 8 is a graph showing the film thickness distribution of a silicon single crystal thin film.
[Explanation of symbols]
1 Vapor growth equipment
2 Reaction vessel body
5 Internal space
12 Susceptor
12a Top surface of susceptor
21 Gas inlet
23 Embankment member
23a Upper surface of the bank member
24R, 24L Gas guide member
24T inside guideway
24S outside guideway
26,261 baffle
26a Main distribution hole
26b Rectification hole
31 First end
32 Second end
33 prop
34R, 34L Gas guide member side partition plate
36 Gas outlet
W substrate
G Raw material gas
O rotation axis
HSL horizontal reference line
WL width direction
α Reference plane (plane including horizontal reference line and rotation axis)

Claims (5)

シリコン単結晶基板の主表面にシリコン単結晶薄膜を気相成長させる気相成長装置であって、
水平方向における第一端部側にガス導入口が形成され、同じく第二端部側にガス排出口が形成された反応容器本体を有し、シリコン単結晶薄膜形成のための原料ガスが前記ガス導入口から前記反応容器本体内に導入され、該反応容器本体の内部空間にて略水平に回転保持される前記シリコン単結晶基板の前記主表面に沿って前記原料ガスが流れた後、前記ガス排出口から排出されるように構成され、
前記内部空間内にて回転駆動される円盤状のサセプタ上に前記シリコン単結晶基板が配置される一方、前記サセプタを取り囲むとともに、上面が該サセプタの上面と一致する位置関係にて堤部材が配置され、
さらに、前記ガス導入口は前記堤部材の外周面に対向する形にて開口し、該ガス導入口からの前記原料ガスが、前記堤部材の外周面に当たって上面側に乗り上げた後、前記サセプタ上の前記シリコン単結晶基板の主表面に沿って流れるように構成され、
前記ガス導入口と前記堤部材との間に、ガス流通孔の形成されたバッフルが配置された気相成長装置において、
前記ガス流通孔を、複数の主流通孔と、その主流通孔よりも開口面積が小さい整流孔とを含んで構成するとともに、
前記反応容器本体の前記第一端部から前記サセプタの回転軸線と直交して前記第二端部に至る前記原料ガスの流れ方向に沿った仮想的な中心線を水平基準線とし、該水平基準線と前記回転軸線との双方に直交する方向を幅方向としたとき、
前記主流通孔および前記整流孔は、前記水平基準線と前記回転軸線とを含む面に関して対称となるように、前記幅方向に並んで形成され、
前記反応容器本体は、前記幅方向において前記原料ガスの流れを前記水平基準線に対し左右に分断する支柱を、前記堤部材よりも前記原料ガスの流れ方向の上流側かつ前記バッフルよりも下流側に備え、
前記整流孔は、前記支柱に最も近い前記主流通孔よりも、前記幅方向における外側に形成されていることを特徴とする気相成長装置。
A vapor phase growth apparatus for vapor phase growing a silicon single crystal thin film on a main surface of a silicon single crystal substrate,
A reaction vessel body having a gas inlet formed on the first end side in the horizontal direction and a gas outlet formed on the second end side, and a raw material gas for forming a silicon single crystal thin film is the gas. After the source gas flows along the main surface of the silicon single crystal substrate, which is introduced into the reaction vessel body from the introduction port and is rotated and held substantially horizontally in the internal space of the reaction vessel body, the gas Configured to be discharged from the outlet,
The silicon single crystal substrate is disposed on a disk-shaped susceptor that is rotationally driven in the internal space, and the bank member is disposed in a positional relationship that surrounds the susceptor and that the upper surface coincides with the upper surface of the susceptor. And
Further, the gas introduction port opens in a shape facing the outer peripheral surface of the bank member, and after the raw material gas from the gas inlet hits the outer peripheral surface of the bank member and rides on the upper surface side, Configured to flow along the main surface of the silicon single crystal substrate,
In the vapor phase growth apparatus in which a baffle in which a gas flow hole is formed is disposed between the gas inlet and the bank member,
The gas flow hole includes a plurality of main flow holes and a flow straightening hole having a smaller opening area than the main flow holes ,
A virtual center line along the flow direction of the source gas from the first end of the reaction vessel main body to the second end perpendicular to the rotation axis of the susceptor is defined as a horizontal reference line, and the horizontal reference When the direction perpendicular to both the line and the rotation axis is the width direction,
The main flow hole and the rectifying hole are formed side by side in the width direction so as to be symmetric with respect to a plane including the horizontal reference line and the rotation axis.
The reaction vessel main body has a column that divides the flow of the source gas in the width direction to the left and right with respect to the horizontal reference line, upstream of the bank member in the flow direction of the source gas and downstream of the baffle. In preparation for
The rectifying hole is formed on the outer side in the width direction with respect to the main circulation hole closest to the support column .
前記支柱を挟んで配置され、前記ガス導入口からの前記原料ガスを前記堤部材に向けて導くガス案内部材を備え、そのガス案内部材の内部は、前記原料ガスの流れを前記幅方向にさらに仕切るガス案内部材側仕切板により内側案内路と外側案内路とに分離されており、
前記整流孔は、前記内側案内路に対応して設けられていることを特徴とする請求項1記載の気相成長装置。
The gas guide member is disposed across the support column and guides the source gas from the gas inlet toward the bank member, and the inside of the gas guide member further flows the source gas in the width direction. It is separated into an inner guide path and an outer guide path by a partitioning plate on the gas guide member side to partition,
The vapor phase growth apparatus according to claim 1, wherein the rectifying hole is provided corresponding to the inner guide path .
前記支柱から最も近い位置にある前記主流通孔の外隣に、前記整流孔を設けたことを特徴とする請求項1または2に記載の気相成長装置。 3. The vapor phase growth apparatus according to claim 1, wherein the rectifying hole is provided outside the main circulation hole located closest to the support column . シリコン単結晶基板の主表面にシリコン単結晶薄膜を気相成長させる気相成長装置であって、
水平方向における第一端部側にガス導入口が形成され、同じく第二端部側にガス排出口が形成された反応容器本体を有し、シリコン単結晶薄膜形成のための原料ガスが前記ガス導入口から前記反応容器本体内に導入され、該反応容器本体の内部空間にて略水平に回転保持される前記シリコン単結晶基板の前記主表面に沿って前記原料ガスが流れた後、前記ガス排出口から排出されるように構成され、
前記内部空間内にて回転駆動される円盤状のサセプタ上に前記シリコン単結晶基板が配置される一方、前記サセプタを取り囲むとともに、上面が該サセプタの上面と一致する位置関係にて堤部材が配置され、
さらに、前記ガス導入口は前記堤部材の外周面に対向する形にて開口し、該ガス導入口からの前記原料ガスが、前記堤部材の外周面に当たって上面側に乗り上げた後、前記サセプタ上の前記シリコン単結晶基板の主表面に沿って流れるように構成され、
前記ガス導入口と前記堤部材との間に、ガス流通孔の形成されたバッフルが配置された 気相成長装置において、
前記反応容器本体の前記第一端部から前記サセプタの回転軸線と直交して前記第二端部に至る前記原料ガスの流れ方向に沿った仮想的な中心線を水平基準線としたとき、前記反応容器本体は、前記幅方向において前記原料ガスの流れを前記水平基準線に対し左右に分断する支柱を、前記堤部材よりも前記原料ガスの流れ方向の上流側かつ前記バッフルよりも下流側に備え、
前記ガス流通孔は、複数の主流通孔と、その主流通孔よりも開口面積が小さい、1対の整流孔とを含み、それら複数の主流通孔および1対の整流孔は、前記水平基準線と前記回転軸線とを含む面に関して対称となるように、前記幅方向に並んで形成され、
前記1対の整流孔は、前記複数の主流通孔のうち、前記支柱に最も近い前記主流通孔の外隣に形成されていることを特徴とする気相成長装置。
A vapor phase growth apparatus for vapor phase growing a silicon single crystal thin film on a main surface of a silicon single crystal substrate,
A reaction vessel body having a gas inlet formed on the first end side in the horizontal direction and a gas outlet formed on the second end side, and a raw material gas for forming a silicon single crystal thin film is the gas. After the source gas flows along the main surface of the silicon single crystal substrate, which is introduced into the reaction vessel body from the introduction port and is rotated and held substantially horizontally in the internal space of the reaction vessel body, the gas Configured to be discharged from the outlet,
The silicon single crystal substrate is disposed on a disk-shaped susceptor that is rotationally driven in the internal space, and the bank member is disposed in a positional relationship that surrounds the susceptor and that the upper surface coincides with the upper surface of the susceptor. And
Further, the gas introduction port opens in a shape facing the outer peripheral surface of the bank member, and after the raw material gas from the gas inlet hits the outer peripheral surface of the bank member and rides on the upper surface side, Configured to flow along the main surface of the silicon single crystal substrate,
In the vapor phase growth apparatus in which a baffle in which a gas flow hole is formed is disposed between the gas inlet and the bank member ,
When a virtual center line along the flow direction of the source gas from the first end of the reaction vessel main body to the second end perpendicular to the rotation axis of the susceptor is a horizontal reference line, The reaction vessel main body has a support column that divides the flow of the source gas in the width direction to the left and right with respect to the horizontal reference line, upstream of the bank member and in the downstream of the baffle. Prepared,
The gas flow hole includes a plurality of main flow holes and a pair of rectification holes having an opening area smaller than that of the main flow holes, and the plurality of main flow holes and the pair of rectification holes are the horizontal reference. Formed side by side in the width direction so as to be symmetric with respect to a plane including the line and the rotation axis,
The pair of flow straightening holes is formed on the outside of the main circulation hole closest to the support column among the plurality of main circulation holes .
請求項1ないし4のいずれか1項に記載の気相成長装置の前記反応容器内に前記シリコン単結晶基板を配置し、該反応容器内に前記原料ガスを流通させて前記シリコン単結晶基板上に前記シリコン単結晶薄膜を気相エピタキシャル成長させることによりエピタキシャルウェーハを得ることを特徴とするエピタキシャルウェーハの製造方法。5. The silicon single crystal substrate is disposed in the reaction vessel of the vapor phase growth apparatus according to claim 1, and the raw material gas is circulated in the reaction vessel so as to be on the silicon single crystal substrate. An epitaxial wafer is obtained by vapor phase epitaxially growing the silicon single crystal thin film.
JP2002370597A 2002-12-20 2002-12-20 Vapor phase growth apparatus and epitaxial wafer manufacturing method Expired - Fee Related JP3893615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002370597A JP3893615B2 (en) 2002-12-20 2002-12-20 Vapor phase growth apparatus and epitaxial wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002370597A JP3893615B2 (en) 2002-12-20 2002-12-20 Vapor phase growth apparatus and epitaxial wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2004200603A JP2004200603A (en) 2004-07-15
JP3893615B2 true JP3893615B2 (en) 2007-03-14

Family

ID=32766472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002370597A Expired - Fee Related JP3893615B2 (en) 2002-12-20 2002-12-20 Vapor phase growth apparatus and epitaxial wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP3893615B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277785A (en) * 2008-05-13 2009-11-26 Sumco Corp Semiconductor manufacturing device, and method of manufacturing semiconductor using the device
JP5267189B2 (en) * 2009-02-18 2013-08-21 株式会社Sumco Epitaxial wafer manufacturing method
JP5170056B2 (en) * 2009-10-19 2013-03-27 信越半導体株式会社 Epitaxial growth apparatus and epitaxial growth method
KR101884003B1 (en) * 2011-03-22 2018-07-31 어플라이드 머티어리얼스, 인코포레이티드 Liner assembly for chemical vapor deposition chamber
US20120270384A1 (en) * 2011-04-22 2012-10-25 Applied Materials, Inc. Apparatus for deposition of materials on a substrate
JP5602903B2 (en) * 2013-03-14 2014-10-08 アプライド マテリアルズ インコーポレイテッド Epitaxial film formation method and epitaxial growth apparatus
JP5386046B1 (en) 2013-03-27 2014-01-15 エピクルー株式会社 Susceptor support and epitaxial growth apparatus provided with this susceptor support
WO2015195271A1 (en) * 2014-06-20 2015-12-23 Applied Materials, Inc. Apparatus for gas injection to epitaxial chamber
US10446420B2 (en) 2016-08-19 2019-10-15 Applied Materials, Inc. Upper cone for epitaxy chamber
US10697062B2 (en) * 2018-07-11 2020-06-30 Applied Materials, Inc. Gas flow guide design for uniform flow distribution and efficient purge

Also Published As

Publication number Publication date
JP2004200603A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP4379585B2 (en) Vapor phase growth apparatus and epitaxial wafer manufacturing method
JP3893615B2 (en) Vapor phase growth apparatus and epitaxial wafer manufacturing method
JP7365761B2 (en) Vapor phase growth equipment
JP4588894B2 (en) Vapor phase growth apparatus and epitaxial wafer manufacturing method
JP3801957B2 (en) Vapor phase growth apparatus and epitaxial wafer manufacturing method
JP2005183511A (en) Vapor phase growing apparatus and method of manufacturing epitaxial wafer
JP3915984B2 (en) Method for manufacturing silicon epitaxial wafer and silicon epitaxial wafer
TWI754765B (en) Inject assembly for epitaxial deposition processes
JP3516654B2 (en) Vapor phase growth apparatus and method for manufacturing epitaxial wafer
JP4581868B2 (en) Epitaxial growth apparatus and manufacturing method thereof
JP5206282B2 (en) Epitaxial wafer manufacturing method
JP2003168650A (en) Vapor phase growth unit and method of manufacturing epitaxial wafer
JP2003203866A (en) Vapor growth apparatus and method of manufacturing epitaxial wafer
JP2013201317A (en) Surface treatment device
JP2000349030A (en) Gas-phase reactor
JP2010040590A (en) Epitaxial silicon wafer and method of manufacturing the same
JP4655801B2 (en) Epitaxial growth apparatus and epitaxial wafer manufacturing method
JP6179790B2 (en) Vapor growth apparatus and epitaxial wafer manufacturing method
JP5267189B2 (en) Epitaxial wafer manufacturing method
JP2004134625A (en) Method and apparatus for manufacturing semiconductor device
JP4215572B2 (en) Method for manufacturing silicon epitaxial wafer and silicon epitaxial wafer
WO2023223691A1 (en) Method for growing single-crystal silicon, method for producing silicon wafer, and single-crystal pulling device
JPH08250430A (en) Manufacture of single-crystal thin film
JP2010040541A (en) Epitaxial growth apparatus
JPS58145117A (en) Manufacturing apparatus of semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3893615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees