JP3865048B2 - Resist material and pattern forming method - Google Patents

Resist material and pattern forming method Download PDF

Info

Publication number
JP3865048B2
JP3865048B2 JP2001325907A JP2001325907A JP3865048B2 JP 3865048 B2 JP3865048 B2 JP 3865048B2 JP 2001325907 A JP2001325907 A JP 2001325907A JP 2001325907 A JP2001325907 A JP 2001325907A JP 3865048 B2 JP3865048 B2 JP 3865048B2
Authority
JP
Japan
Prior art keywords
group
bis
carbon atoms
acid
resist material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001325907A
Other languages
Japanese (ja)
Other versions
JP2002202610A (en
Inventor
隆信 武田
畠山  潤
修 渡辺
寛 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001325907A priority Critical patent/JP3865048B2/en
Publication of JP2002202610A publication Critical patent/JP2002202610A/en
Application granted granted Critical
Publication of JP3865048B2 publication Critical patent/JP3865048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有し、優れたエッチング耐性を示す、特に超LSI製造用の微細パターン形成材料として好適な化学増幅ポジ型レジスト材料関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、LSIの高集積化と高速度化に伴い、パターンルールの微細化が求められているなか、次世代の微細加工技術として遠紫外線リソグラフィーが有望視されている。遠紫外線リソグラフィーは、0.5μm以下の加工も可能であり、光吸収の低いレジスト材料を用いた場合、基板に対して垂直に近い側壁を有したパターン形成が可能になる。
【0003】
近年開発された酸を触媒とした化学増幅ポジ型レジスト材料(特公平2−27660号、特開昭63−27829号公報等記載)は、遠紫外線の光源として高輝度なKrFエキシマレーザーを利用し、感度、解像性、ドライエッチング耐性が高く、優れた特徴を有した遠紫外線リソグラフィーに特に有望なレジスト材料として期待されている。
【0004】
このような化学増幅ポジ型レジスト材料としては、ベースポリマー、酸発生剤からなる二成分系、ベースポリマー、酸発生剤、酸不安定基を有する溶解阻止剤からなる三成分系が知られている。
【0005】
例えば、特開昭62−115440号公報にはポリ−p−tert−ブトキシスチレンと酸発生剤からなるレジスト材料が提案され、この提案と類似したものとして特開平3−223858号公報に分子内にtert−ブトキシ基を有する樹脂と酸発生剤からなる二成分系レジスト材料、更には特開平4−211258号公報にはメチル基、イソプロピル基、tert−ブチル基、テトラヒドロピラニル基、トリメチルシリル基含有ポリヒドロキシスチレンと酸発生剤からなる二成分系のレジスト材料が提案されている。
【0006】
更に、特開平6−100488号公報にはポリ[3,4−ビス(2−テトラヒドロピラニルオキシ)スチレン]、ポリ[3,4−ビス(tert−ブトキシカルボニルオキシ)スチレン]、ポリ[3,5−ビス(2−テトラヒドロピラニルオキシ)スチレン]等のポリジヒドロキシスチレン誘導体と酸発生剤からなるレジスト材料が提案されている。
【0007】
しかしながら、これらレジスト材料のベース樹脂は、酸不安定基を側鎖に有するものであり、酸不安定基がtert−ブチル基、tert−ブトキシカルボニル基のように強酸で分解されるものであると、そのレジスト材料のパターン形状がT−トップ形状になり易く、一方、エトキシエチル基等のようなアルコキシアルキル基は弱酸で分解されるため、露光から加熱処理までの時間経過に伴ってパターン形状が著しく細るという欠点を有したり、側鎖にかさ高い基を有しているので、耐熱性が下がったり、感度及び解像度が満足できるものでないなど、いずれも問題を有している。
【0008】
また、より高い透明性及び基板への密着性の実現と、基板までの裾引き改善、エッチング耐性向上のためヒドロキシスチレンと、(メタ)アクリル酸3級エステルとの共重合体を使用したレジスト材料も報告されているが(特開平3−275149号公報、特開平6−289608号公報)、この種のレジスト材料は耐熱性や、露光後のパターン形状が悪い等の問題があり、またエッチング耐性も満足できるものではなかった。更に、現在、高解像度化が進むにつれ、パターンの薄膜化も同時に進行し、これに伴い、より高いエッチング耐性を有するレジスト材料が望まれている。
【0009】
本発明は上記事情に鑑みなされたもので、従来のレジスト材料を上回る高感度及び高解像度、露光余裕度、プロセス適応性を有し、露光後のパターン形状が良好であり、更に優れたエッチング耐性を示す学増幅ポジ型レジスト材料及びパターン形成方法を提供することを目的とする。
【0010】
【課題を解決するための手段及び発明の実施の形態】
本発明者は上記目的を達成するため鋭意検討を重ねた結果、下記一般式(1)又は(2)で示される繰り返し単位を有し、重量平均分子量が1,000〜500,000の高分子化合物が学増幅ポジ型レジスト材料のベース樹脂として有効で、この高分子化合物と酸発生剤と有機溶剤とを含む化学増幅ポジ型レジスト材料が、レジスト膜の溶解コントラスト、解像性が高く、露光余裕度があり、プロセス適応性に優れ、露光後のパターン形状が良好でありながら、より優れたエッチング耐性を示し、これらのことから実用性が高く、超LSI用レジスト材料として非常に有効であることを知見した。
【0011】
即ち、本発明は、下記のレジスト材料及びパターン形成方法を提供する。
請求項1:
(A)有機溶剤、
(B)ベース樹脂として、下記一般式(1)で示される繰り返し単位を有すると共に、酸不安定基が酸の作用により分解してアルカリに対する溶解性を増加させる繰り返し単位を含む、重量平均分子量が1,000〜500,000である高分子化合物
【化4】

Figure 0003865048
(式中、R1、R2は水素原子、ヒドロキシ基、置換可ヒドロキシアルキル基、直鎖状もしくは分岐状のアルキル基、置換可アルコキシ基、又はハロゲン原子を表す。また、nは0又は1〜4の正の整数である。)
(C)酸発生剤
を含有してなることを特徴とする化学増幅ポジ型レジスト材料。
請求項2:
(A)有機溶剤、
(B)ベース樹脂として、下記一般式(2)で示される繰り返し単位を有する、重量平均分子量が1,000〜500,000である高分子化合物
【化5】
Figure 0003865048
(式中、R1、R2、R4は水素原子、ヒドロキシ基、置換可ヒドロキシアルキル基、直鎖状もしくは分岐状のアルキル基、置換可アルコキシ基、又はハロゲン原子を表し、R3、R5は水素原子又はメチル基を表し、R6は水素原子、メチル基、アルコキシカルボニル基、シアノ基、又はハロゲン原子を表し、R7は炭素数1〜20のアルキル基を表す。また、nは0又は1〜4の正の整数であり、mは0又は1〜5の正の整数である。p、q、sは0又は正数であり、rは正数である。)
(C)酸発生剤
を含有してなることを特徴とする化学増幅ポジ型レジスト材料。
請求項3:
式(2)において、R1、R4の一方又は双方が、下記式(3)、(4)で示される基、炭素数4〜20の直鎖状、分岐状又は環状の3級アルコキシ基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシロキシ基、炭素数4〜20のオキソアルコキシ基から選ばれるものである請求項2記載の化学増幅ポジ型レジスト材料。
【化6】
Figure 0003865048
(式中、R8、R9、R11、R12は各々独立して水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基を示し、R10は炭素数1〜18の酸素原子を介在してもよい1価の炭化水素基、R8とR9、R8とR10、R9とR10とは環を形成してもよく、環を形成する場合はR8、R9、R10はそれぞれ炭素数1〜18の直鎖状又は分岐状のアルキレン基を示す。R13は炭素数4〜40の直鎖状、分岐状又は環状のアルキル基を示す。また、aは0又は1〜5の整数である。)
請求項4:
更に、(D)溶解阻止剤を含有してなることを特徴とする請求項1、2又は3記載の化学増幅ポジ型レジスト材料。
請求項
更に、(E)添加剤として塩基性化合物を配合したことを特徴とする請求項1乃至4のいずれか1項記載の化学増幅ポジ型レジスト材料。
請求項
請求項1乃至5のいずれか1項に記載のレジスト材料を基板上に塗布する工程と、加熱処理後、フォトマスクを介して高エネルギー線もしくは電子線で露光する工程と、必要に応じて加熱処理した後、現像液を用いて現像する工程とを含むことを特徴とするパターン形成方法。
【0012】
以下、本発明につき更に詳しく説明する。
本発明のレジスト材料は、下記一般式(1)で示される繰り返し単位と、酸不安定基を有し、この酸不安定基が酸の作用により分解してアルカリに対する溶解性を増加させる繰り返し単位を含み、重量平均分子量が1,000〜500,000であるアルカリ水溶液(アルカリ現像液)に不溶又は難溶な高分子化合物をベース樹脂として含有する。この場合、かかる高分子化合物としては、下記一般式(2)で示される繰り返し単位を有するものを挙げることができる。
【0013】
【化7】
Figure 0003865048
【0014】
式中、R1、R2、R4は水素原子、ヒドロキシ基、置換可ヒドロキシアルキル基、直鎖状もしくは分岐状のアルキル基、置換可アルコキシ基、又はハロゲン原子を表し、R3、R5は水素原子又はメチル基を表し、R6は水素原子、メチル基、アルコキシカルボニル基、シアノ基、又はハロゲン原子を表し、R7は炭素数1〜20のアルキル基を表す。また、nは0又は1〜4の正の整数であり、mは0又は1〜5の正の整数である。p、q、sは0又は正数であり、rは正数である。
【0015】
ここで、R1、R2、R4の置換可ヒドロキシアルキル基としては、ヒドロキシメチル基、トリフルオロメチル化ヒドロキシメチル基、ジトリフルオロメチル化ヒドロキシメチル基等が挙げられる。R1、R2、R4の直鎖状、分岐状のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基等の炭素数1〜20、特に1〜10のアルキル基が挙げられる。また、置換可アルコキシ基としては、炭素数1〜20、特に1〜10のものが挙げられ、具体的には、メトキシ基、エトキシ基、イソプロポキシ基等が挙げられる。
【0016】
またこの場合、上記R1、R4において、これらが酸不安定基の機能を示す場合、種々選定されるが、特に下記式(3)、(4)で示される基、炭素数4〜20の直鎖状、分岐状又は環状の3級アルコキシ基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシロキシ基、又は炭素数4〜20のオキソアルコキシ基であることが好ましい。
【0017】
【化8】
Figure 0003865048
(式中、R8、R9、R11、R12は各々独立して水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基を示し、R10は炭素数1〜18の酸素原子を介在してもよいアルキル基、アルケニル基、アリール基、アラルキル基等の1価の炭化水素基、R8とR9、R8とR10、R9とR10とは環を形成してもよく、環を形成する場合はR8、R9、R10はそれぞれ炭素数1〜18の直鎖状又は分岐状のアルキレン基を示す。R13は炭素数4〜40の直鎖状、分岐状又は環状のアルキル基を示す。また、aは0又は1〜5の整数である。)
【0018】
ここで、上記式(3)で示される酸不安定基として、具体的には、酸素原子を介在したメトキシエチルオキシ基、エトキシエチルオキシ基、n−プロポキシエチルオキシ基、iso−プロポキシエチルオキシ基、n−ブトキシエチルオキシ基、iso−ブトキシエチルオキシ基、tert−ブトキシエチルオキシ基、シクロヘキシロキシエチルオキシ基、メトキシプロピルオキシ基、エトキシプロピルオキシ基、1−メトキシ−1−メチル−エチルオキシ基、1−エトキシ−1−メチル−エチルオキシ基、テトラヒドロピラニルオキシ基、テトラヒドロフラニルオキシ基等が挙げられる。一方、上記式(4)の酸不安定基として、例えばtert−ブトキシカルボニルオキシ基、tert−ブトキシカルボニルメチルオキシ基、エチルシクロペンチルカルボニルオキシ基、エチルシクロヘキシルカルボニルオキシ基、メチルシクロペンチルカルボニルオキシ基が挙げられる。また、上記トリアルキルシロキシ基としては、トリメチルシロキシ基、トリエチルシロキシ基、tert−ブチルジメチルシロキシ基等の各アルキル基の炭素数が1〜6のものが挙げられる。炭素数4〜20のオキソアルコキシ基としては、3−オキソシクロヘキシロキシ基又は下記式で示される基等が挙げられる。
【0019】
【化9】
Figure 0003865048
【0020】
上記R1、R2、R4において、これらがハロゲン原子を示す場合、フッ素原子、塩素原子、臭素原子が挙げられる。
【0021】
6のアルコキシカルボニル基としては、炭素数2〜20、特に2〜6のものが好ましく、具体的には、メトキシカルボニル基、tert−ブトキシカルボニル基等が挙げられる。また、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子が挙げられる。
【0022】
7のアルキル基は、直鎖状、分岐状、環状のいずれでもよいが、3級アルキル基が好ましい。R7のアルキル基が3級アルキル基の場合、種々選定されるが、特に下記一般式(5)、(6)で示される基が特に好ましい。
【0023】
【化10】
Figure 0003865048
(式中、R14は、メチル基、エチル基、イソプロピル基、シクロヘキシル基、シクロペンチル基、ビニル基、アセチル基、フェニル基、ベンジル基又はシアノ基であり、bは0又は1〜3の整数である。)
【0024】
【化11】
Figure 0003865048
(式中、R15は、メチル基、エチル基、イソプロピル基、シクロヘキシル基、シクロペンチル基、ビニル基、フェニル基、ベンジル基又はシアノ基である。)
【0025】
一般式(5)の環状アルキル基としては、5員環又は6員環がより好ましい。具体例としては、1−メチルシクロペンチル、1−エチルシクロペンチル、1−イソプロピルシクロペンチル、1−ビニルシクロペンチル、1−アセチルシクロペンチル、1−フェニルシクロペンチル、1−シアノシクロペンチル、1−メチルシクロヘキシル、1−エチルシクロヘキシル、1−イソプロピルシクロヘキシル、1−ビニルシクロヘキシル、1−アセチルシクロヘキシル、1−フェニルシクロヘキシル、1−シアノシクロヘキシルなどが挙げられる。
【0026】
一般式(6)の具体例としては、tert−ブチル基、1−ビニルジメチル、1−ベンジルジメチル、1−フェニルジメチル、1−シアノジメチルなどの基が挙げられる。
更に、R7のアルキル基としては、2−メチルアダマンチル、2−エチルアダマンチル、2−メチルノルボルニル、2−エチルノルボルニルなどの基も好ましい。
また、更に、レジスト材料の特性を考慮すると、上記式(2)において、rは正数、p、q、sは0又は正数で、下記式を満足する数であることが好ましい。
【0027】
0<r/(p+q+r+s)≦0.5、更に好ましくは0.05<r/(p+q+r+s)≦0.40である。0≦p/(p+q+r+s)≦0.8、更に好ましくは0.3≦p/(p+q+r+s)≦0.8である。0≦q/(p+q+r+s)≦0.35である。0≦s/(p+q+r+s)≦0.35である。
【0028】
q又はsが0となり、上記式(2)の高分子化合物がこの単位を含まない構造となると、アルカリ溶解速度のコントラストがなくなり、解像度が悪くなるおそれがある。pの割合が多すぎると、未露光部のアルカリ溶解速度が大きくなりすぎるおそれがある。rが0の場合は解像性が悪化したり、ドライエッチング耐性が改善できない場合がある。p、q、r、sはその値を上記範囲内で適宜選定することによりパターンの寸法制御、パターンの形状コントロールを任意に行うことができる。
【0029】
本発明の高分子化合物は、それぞれ重量平均分子量が1,000〜500,000、好ましくは2,000〜30,000である必要がある。重量平均分子量が小さすぎるとレジスト材料が耐熱性に劣るものとなり、大きすぎるとアルカリ溶解性が低下し、パターン形成後に裾引き現象が生じ易くなってしまう。
【0030】
更に、本発明の高分子化合物においては、上記式(2)の多成分共重合体の分子量分布(Mw/Mn)が広い場合は低分子量や高分子量のポリマーが存在するために露光後、パターン上に異物が見られたり、パターンの形状が悪化したりする。それ故、パターンルールが微細化するに従ってこのような分子量、分子量分布の影響が大きくなり易いことから、微細なパターン寸法に好適に用いられるレジスト材料を得るには、使用する多成分共重合体の分子量分布は1.0〜2.0、特に1.0〜1.5と狭分散であることが好ましい。
【0031】
これら、高分子化合物を合成するには、1つの方法としてはアセトキシスチレンモノマーと(メタ)アクリル酸3級アルキルエステルモノマーとインデンモノマーを、有機溶剤中、ラジカル開始剤を加えて加熱重合を行い、得られた高分子化合物を有機溶剤中アルカリ加水分解を行い、アセトキシ基を脱保護し、ヒドロキシスチレンと(メタ)アクリル酸3級アルキルエステルとインデンの三成分共重合体の高分子化合物を得ることができる。重合時に使用する有機溶剤としはトルエン、ベンゼン、テトラヒドロフラン、ジエチルエーテル、ジオキサン等が例示できる。重合開始剤としては、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル−2,2−アゾビス(2−メチルプロピオネート)、ベンゾイルパーオキシド、ラウロイルパーオキシド等が例示でき、好ましくは50〜80℃に加熱して重合できる。反応時間としては2〜100時間、好ましくは5〜20時間である。アルカリ加水分解時の塩基としては、アンモニア水、トリエチルアミン等が使用できる。また反応温度としては−20〜100℃、好ましくは0〜60℃であり、反応時間としては0.2〜100時間、好ましくは0.5〜20時間である。
【0032】
更に、このようにして得られた高分子化合物を単離後、フェノール性水酸基部分に対して、一般式(3)、一般式(4)で示される酸不安定基を導入することも可能である。例えば、高分子化合物のフェノール性水酸基をアルケニルエーテル化合物と酸触媒下反応させて、部分的にフェノール性水酸基がアルコキシアルキル基で保護された高分子化合物を得ることが可能である。
【0033】
この時、反応溶媒としては、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、酢酸エチル等の非プロトン性極性溶媒が好ましく、単独でも2種以上混合して使用してもかまわない。触媒の酸としては、塩酸、硫酸、トリフルオロメタンスルホン酸、p−トルエンスルホン酸、メタンスルホン酸、p−トルエンスルホン酸ピリジニウム塩等が好ましい。酸不安定基の導入量は反応する高分子化合物のフェノール性水酸基の1モルに対して0.1〜10モル%となるような量であることが好ましい。反応温度としては−20〜100℃、好ましくは0〜60℃であり、反応時間としては0.2〜100時間、好ましくは0.5〜20時間である。
【0034】
また、ハロゲン化アルキルエーテル化合物を用いて、塩基の存在下、高分子化合物と反応させることにより、部分的にフェノール性水酸基がアルコキシアルキル基で保護された高分子化合物を得ることも可能である。
【0035】
この時、反応溶媒としては、アセトニトリル、アセトン、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、ジメチルスルホキシド等の非プロトン性極性溶媒が好ましく、単独でも2種以上混合して使用してもかまわない。塩基としては、トリエチルアミン、ピリジン、ジイソプロピルアミン、炭酸カリウム等が好ましい。酸不安定基の導入量は反応する高分子化合物のフェノール性水酸基の1モルに対して10モル%以上となるような量であることが好ましい。反応温度としては−50〜100℃、好ましくは0〜60℃であり、反応時間としては0.5〜100時間、好ましくは1〜20時間である。
【0036】
更に、上記式(4)の酸不安定基の導入は、二炭酸ジアルキル化合物又はアルコキシカルボニルアルキルハライドと高分子化合物を、溶媒中において塩基の存在下反応を行うことで可能である。反応溶媒としては、アセトニトリル、アセトン、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、ジメチルスルホキシド等の非プロトン性極性溶媒が好ましく、単独でも2種以上混合して使用してもかまわない。
【0037】
塩基としては、トリエチルアミン、ピリジン、イミダゾール、ジイソプロピルアミン、炭酸カリウム等が好ましい。酸不安定基の導入量は元の高分子化合物のフェノール性水酸基の1モルに対して10モル%以上となるような量であることが好ましい。
【0038】
反応温度としては0〜100℃、好ましくは0〜60℃である。反応時間としては0.2〜100時間、好ましくは1〜10時間である。
【0039】
二炭酸ジアルキル化合物としては二炭酸ジ−tert−ブチル、二炭酸ジ−tert−アミル等が挙げられ、アルコキシカルボニルアルキルハライドとしてはtert−ブトキシカルボニルメチルクロライド、tert−アミロキシカルボニルメチルクロライド、tert−ブトキシカルボニルメチルブロマイド、tert−ブトキシカルボニルエチルクロライド等が挙げられる。
但しこれら合成手法に限定されるものではない。
【0040】
本発明のレジスト材料は、ポジ型、特に化学増幅ポジ型として好適に用いられるもので、上記高分子化合物をベースポリマーとするものであるが、この場合、本発明のレジスト材料は、
(A)有機溶剤
(B)ベース樹脂として上記高分子化合物
(C)酸発生剤
更に必要に応じ、
(D)溶解阻止剤
(E)塩基性化合物
などを添加した組成とすることが好ましい。
【0041】
ここで、本発明の化学増幅ポジ型レジスト材料において、(A)成分の有機溶剤としては、酢酸ブチル、酢酸アミル、酢酸シクロヘキシル、酢酸3−メトキシブチル、メチルエチルケトン、メチルアミルケトン、シクロヘキサノン、シクロペンタノン、3−エトキシエチルプロピオネート、3−エトキシメチルプロピオネート、3−メトキシメチルプロピオネート、アセト酢酸メチル、アセト酢酸エチル、ジアセトンアルコール、ピルビン酸メチル、ピルビン酸エチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルプロピオネート、プロピレングリコールモノエチルエーテルプロピオネート、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、3−メチル−3−メトキシブタノール、N−メチルピロリドン、ジメチルスルホキシド、γブチロラクトン、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸プロピル、テトラメチレンスルホン等が挙げられるが、これらに限定されるものではない。特に好ましいものは、プロピレングリコールアルキルエーテルアセテート、乳酸アルキルエステルである。これらの溶剤は単独でも2種以上混合してもよい。好ましい混合溶剤の例はプロピレングリコールアルキルエーテルアセテートと乳酸アルキルエステルである。なお、本発明におけるプロピレングリコールアルキルエーテルアセテートのアルキル基は炭素数1〜4のもの、例えばメチル基、エチル基、プロピル基等が挙げられるが、中でもメチル基、エチル基が好適である。また、このプロピレングリコールアルキルエーテルアセテートには1,2置換体と1,3置換体があり、置換位置の組み合わせで3種の異性体があるが、単独あるいは混合物のいずれの場合でもよい。
【0042】
また、上記の乳酸アルキルエステルのアルキル基は炭素数1〜4のもの、例えばメチル基、エチル基、プロピル基等が挙げられるが、中でもメチル基、エチル基が好適である。
【0043】
溶剤としてプロピレングリコールアルキルエーテルアセテートを添加する際には全溶剤に対して50重量%以上とすることが好ましく、乳酸アルキルエステルを添加する際には全溶剤に対して50重量%以上とすることが好ましい。また、プロピレングリコールアルキルエーテルアセテートと乳酸アルキルエステルの混合溶剤を溶剤として用いる際には、その合計量が全溶剤に対して50重量%以上であることが好ましい。この場合、更に好ましくは、プロピレングリコールアルキルエーテルアセテートを60〜95重量%、乳酸アルキルエステルを5〜40重量%の割合とすることが好ましい。プロピレングリコールアルキルエーテルアセテートが少ないと、塗布性劣化等の問題があり、多すぎると溶解性不十分、パーティクル、異物の発生の問題がある。乳酸アルキルエステルが少ないと溶解性不十分、パーティクル、異物の増加等の問題があり、多すぎると粘度が高くなり塗布性が悪くなる上、保存安定性の劣化等の問題がある。これら溶剤の添加量は化学増幅ポジ型レジスト材料の固形分100重量部に対して300〜2,000重量部、好ましくは400〜1,000重量部であるが、既存の成膜方法で可能な濃度であればこれに限定されるものではない。
【0044】
(C)成分の光酸発生剤としては、高エネルギー線照射により酸を発生する化合物であればいずれでもかまわない。好適な光酸発生剤としてはスルホニウム塩、ヨードニウム塩、スルホニルジアゾメタン、N−スルホニルオキシイミド型酸発生剤等がある。以下に詳述するがこれらは単独或いは2種以上混合して用いることができる。
【0045】
スルホニウム塩はスルホニウムカチオンとスルホネートの塩であり、スルホニウムカチオンとしてトリフェニルスルホニウム、(4−tert−ブトキシフェニル)ジフェニルスルホニウム、ビス(4−tert−ブトキシフェニル)フェニルスルホニウム、トリス(4−tert−ブトキシフェニル)スルホニウム、(3−tert−ブトキシフェニル)ジフェニルスルホニウム、ビス(3−tert−ブトキシフェニル)フェニルスルホニウム、トリス(3−tert−ブトキシフェニル)スルホニウム、(3,4−ジtert−ブトキシフェニル)ジフェニルスルホニウム、ビス(3,4−ジtert−ブトキシフェニル)フェニルスルホニウム、トリス(3,4−ジtert−ブトキシフェニル)スルホニウム、ジフェニル(4−チオフェノキシフェニル)スルホニウム、(4−tert−ブトキシカルボニルメチルオキシフェニル)ジフェニルスルホニウム、トリス(4−tert−ブトキシカルボニルメチルオキシフェニル)スルホニウム、(4−tert−ブトキシフェニル)ビス(4−ジメチルアミノフェニル)スルホニウム、トリス(4−ジメチルアミノフェニル)スルホニウム、2−ナフチルジフェニルスルホニウム、ジメチル−2−ナフチルスルホニウム、4−ヒドロキシフェニルジメチルスルホニウム、4−メトキシフェニルジメチルスルホニウム、トリメチルスルホニウム、2−オキソシクロヘキシルシクロヘキシルメチルスルホニウム、トリナフチルスルホニウム、トリベンジルスルホニウム等が挙げられ、スルホネートとしては、トリフルオロメタンスルホネート、ノナフルオロブタンスルホネート、ヘプタデカフルオロオクタンスルホネート、2,2,2−トリフルオロエタンスルホネート、ペンタフルオロベンゼンスルホネート、4−トリフルオロメチルベンゼンスルホネート、4−フルオロベンゼンスルホネート、トルエンスルホネート、ベンゼンスルホネート、4−(4−トルエンスルホニルオキシ)ベンゼンスルホネート、ナフタレンスルホネート、カンファースルホネート、オクタンスルホネート、ドデシルベンゼンスルホネート、ブタンスルホネート、メタンスルホネート等が挙げられ、これらの組み合わせのスルホニウム塩が挙げられる。
【0046】
ヨードニウム塩はヨードニウムカチオンとスルホネートの塩であり、ジフェニルヨードニウム、ビス(4−tert−ブチルフェニル)ヨードニウム、4−tert−ブトキシフェニルフェニルヨードニウム、4−メトキシフェニルフェニルヨードニウム等のアリールヨードニウムカチオンとスルホネートとしてトリフルオロメタンスルホネート、ノナフルオロブタンスルホネート、ヘプタデカフルオロオクタンスルホネート、2,2,2−トリフルオロエタンスルホネート、ペンタフルオロベンゼンスルホネート、4−トリフルオロメチルベンゼンスルホネート、4−フルオロベンゼンスルホネート、トルエンスルホネート、ベンゼンスルホネート、4−(4−トルエンスルホニルオキシ)ベンゼンスルホネート、ナフタレンスルホネート、カンファースルホネート、オクタンスルホネート、ドデシルベンゼンスルホネート、ブタンスルホネート、メタンスルホネート等が挙げられ、これらの組み合わせのヨードニウム塩が挙げられる。
【0047】
スルホニルジアゾメタンとしては、ビス(エチルスルホニル)ジアゾメタン、ビス(1−メチルプロピルスルホニル)ジアゾメタン、ビス(2−メチルプロピルスルホニル)ジアゾメタン、ビス(1,1−ジメチルエチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(パーフルオロイソプロピルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン、ビス(4−メチルフェニルスルホニル)ジアゾメタン、ビス(2,4−ジメチルフェニルスルホニル)ジアゾメタン、ビス(2−ナフチルスルホニル)ジアゾメタン、4−メチルフェニルスルホニルベンゾイルジアゾメタン、tert−ブチルカルボニル−4−メチルフェニルスルホニルジアゾメタン、2−ナフチルスルホニルベンゾイルジアゾメタン、4−メチルフェニルスルホニル−2−ナフトイルジアゾメタン、メチルスルホニルベンゾイルジアゾメタン、tert−ブトキシカルボニル−4−メチルフェニルスルホニルジアゾメタン等のビススルホニルジアゾメタンとスルホニルカルボニルジアゾメタンが挙げられる。
【0048】
N−スルホニルオキシイミド型光酸発生剤としては、コハク酸イミド、ナフタレンジカルボン酸イミド、フタル酸イミド、シクロヘキシルジカルボン酸イミド、5−ノルボルネン−2,3−ジカルボン酸イミド、7−オキサビシクロ[2.2.1]−5−ヘプテン−2,3−ジカルボン酸イミド等のイミド骨格とトリフルオロメタンスルホネート、ノナフルオロブタンスルホネート、ヘプタデカフオロオクタンスルホネート、2,2,2−トリフルオロエタンスルホネート、ペンタフルオロベンゼンスルホネート、4−トリフルオロメチルベンゼンスルホネート、4−フルオロベンゼンスルホネート、トルエンスルホネート、ベンゼンスルホネート、ナフタレンスルホネート、カンファースルホネート、オクタンスルホネート、ドデシルベンゼンスルホネート、ブタンスルホネート、メタンスルホネート等の組み合わせの化合物が挙げられる。
【0049】
ベンゾインスルホネート型光酸発生剤としては、ベンゾイントシレート、ベンゾインメシレート、ベンゾインブタンスルホネート等が挙げられる。
【0050】
ピロガロールトリスルホネート型光酸発生剤としては、ピロガロール、フロログリシン、カテコール、レゾルシノール、ヒドロキノンのヒドロキシル基の全てをトリフルオロメタンスルホネート、ノナフルオロブタンスルホネート、ヘプタデカフルオロオクタンスルホネート、2,2,2−トリフルオロエタンスルホネート、ペンタフルオロベンゼンスルホネート、4−トリフルオロメチルベンゼンスルホネート、4−フルオロベンゼンスルホネート、トルエンスルホネート、ベンゼンスルホネート、ナフタレンスルホネート、カンファースルホネート、オクタンスルホネート、ドデシルベンゼンスルホネート、ブタンスルホネート、メタンスルホネート等で置換した化合物が挙げられる。
【0051】
ニトロベンジルスルホネート型光酸発生剤としては、2,4−ジニトロベンジルスルホネート、2−ニトロベンジルスルホネート、2,6−ジニトロベンジルスルホネートが挙げられ、スルホネートとしては、具体的にトリフルオロメタンスルホネート、ノナフルオロブタンスルホネート、ヘプタデカフルオロオクタンスルホネート、2,2,2−トリフルオロエタンスルホネート、ペンタフルオロベンゼンスルホネート、4−トリフルオロメチルベンゼンスルホネート、4−フルオロベンゼンスルホネート、トルエンスルホネート、ベンゼンスルホネート、ナフタレンスルホネート、カンファースルホネート、オクタンスルホネート、ドデシルベンゼンスルホネート、ブタンスルホネート、メタンスルホネート等が挙げられる。またベンジル側のニトロ基をトリフルオロメチル基で置き換えた化合物も同様に用いることができる。
【0052】
スルホン型光酸発生剤の例としては、ビス(フェニルスルホニル)メタン、ビス(4−メチルフェニルスルホニル)メタン、ビス(2−ナフチルスルホニル)メタン、2,2−ビス(フェニルスルホニル)プロパン、2,2−ビス(4−メチルフェニルスルホニル)プロパン、2,2−ビス(2−ナフチルスルホニル)プロパン、2−メチル−2−(p−トルエンスルホニル)プロピオフェノン、2−(シクロヘキシルカルボニル)−2−(p−トルエンスルホニル)プロパン、2,4−ジメチル−2−(p−トルエンスルホニル)ペンタン−3−オン等が挙げられる。
【0053】
グリオキシム誘導体型の光酸発生剤の例としては、ビス−o−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−o−(p−トルエンスルホル)−α−ジフェニルグリオキシム、ビス−o−(p−トルエンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−o−(p−トルエンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−o−(p−トルエンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−o−(n−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(n−ブタンスルホニル)−α−ジフェニルグリオキシム、ビス−o−(n−ブタンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−o−(n−ブタンスルホニル)−2,3
−ペンタンジオングリオキシム、ビス−o−(n−ブタンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−o−(メタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(トリフルオロメタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(1,1,1−トリフルオロエタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(tert−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(パーフルオロオクタンスルホニル)−α−ジメチルグリオキシム、ビス−o−(シクロヘキシルスルホニル)−α−ジメチルグリオキシム、ビス−o−(ベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−o−(p−フルオロベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−o−(p−tert−ブチルベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−o−(キシレンスルホニル)−α−ジメチルグリオキシム、ビス−o−(カンファースルホニル)−α−ジメチルグリオキシム等が挙げられる。
【0054】
中でも好ましく用いられる光酸発生剤としては、スルホニウム塩、ビススルホニルジアゾメタン、N−スルホニルオキシイミドである。
【0055】
ポリマーに用いられる酸不安定基の切れ易さ等により最適な発生酸のアニオンは異なるが、一般的には揮発性がないもの、極端に拡散性の高くないものが選ばれる。この場合好適なアニオンは、ベンゼンスルホン酸アニオン、トルエンスルホン酸アニオン、4−(4−トルエンスルホニルオキシ)ベンゼンスルホン酸アニオン、ペンタフルオロベンゼンスルホン酸アニオン、2,2,2−トリフルオロエタンスルホン酸アニオン、ノナフルオロブタンスルホン酸アニオン、ヘプタデカフルオロオクタンスルホン酸アニオン、カンファースルホン酸アニオンである。
【0056】
本発明の化学増幅ポジ型レジスト材料における光酸発生剤(C)の添加量としては、レジスト材料中の固形分100重量部に対して0〜20重量部、好ましくは1〜10重量部である。上記光酸発生剤(C)は単独又は2種以上混合して用いることができる。更に露光波長における透過率が低い光酸発生剤を用い、その添加量でレジスト膜中の透過率を制御することもできる。
【0057】
(D)成分の溶解阻止剤としては、重量平均分子量が100〜1,000で、かつ分子内にフェノール性水酸基を2つ以上有する化合物の該フェノール性水酸基の水素原子を酸不安定基により全体として平均10〜100モル%の割合で置換した化合物が好ましい。なお、上記化合物の重量平均分子量は100〜1,000、好ましくは150〜800である。溶解阻止剤の配合量は、ベース樹脂100重量部に対して0〜50重量部、好ましくは5〜50重量部、より好ましくは10〜30重量部であり、単独又は2種以上を混合して使用できる。配合量が少ないと解像性の向上がない場合があり、多すぎるとパターンの膜減りが生じ、解像度が低下する傾向がある。
【0058】
このような好適に用いられる(D)成分の溶解阻止剤の例としては、ビス(4−(2’−テトラヒドロピラニルオキシ)フェニル)メタン、ビス(4−(2’−テトラヒドロフラニルオキシ)フェニル)メタン、ビス(4−tert−ブトキシフェニル)メタン、ビス(4−tert−ブトキシカルボニルオキシフェニル)メタン、ビス(4−tert−ブトキシカルボニルメチルオキシフェニル)メタン、ビス(4−(1’−エトキシエトキシ)フェニル)メタン、ビス(4−(1’−エトキシプロピルオキシ)フェニル)メタン、2,2−ビス(4’−(2’’−テトラヒドロピラニルオキシ))プロパン、2,2−ビス(4’−(2’’−テトラヒドロフラニルオキシ)フェニル)プロパン、2,2−ビス(4’−tert−ブトキシフェニル)プロパン、2,2−ビス(4’−tert−ブトキシカルボニルオキシフェニル)プロパン、2,2−ビス(4−tert−ブトキシカルボニルメチルオキシフェニル)プロパン、2,2−ビス(4’−(1’’−エトキシエトキシ)フェニル)プロパン、2,2−ビス(4’−(1’’−エトキシプロピルオキシ)フェニル)プロパン、4,4−ビス(4’−(2’’−テトラヒドロピラニルオキシ)フェニル)吉草酸tertブチル、4,4−ビス(4’−(2’’−テトラヒドロフラニルオキシ)フェニル)吉草酸tertブチル、4,4−ビス(4’−tert−ブトキシフェニル)吉草酸tertブチル、4,4−ビス(4−tert−ブトキシカルボニルオキシフェニル)吉草酸tertブチル、4,4−ビス(4’−tert−ブトキシカルボニルメチルオキシフェニル)吉草酸tertブチル、4,4−ビス(4’−(1’’−エトキシエトキシ)フェニル)吉草酸tertブチル、4,4−ビス(4’−(1’’−エトキシプロピルオキシ)フェニル)吉草酸tertブチル、トリス(4−(2’−テトラヒドロピラニルオキシ)フェニル)メタン、トリス(4−(2’−テトラヒドロフラニルオキシ)フェニル)メタン、トリス(4−tert−ブトキシフェニル)メタン、トリス(4−tert−ブトキシカルボニルオキシフェニル)メタン、トリス(4−tert−ブトキシカルボニルオキシメチルフェニル)メタン、トリス(4−(1’−エトキシエトキシ)フェニル)メタン、トリス(4−(1’−エトキシプロピルオキシ)フェニル)メタン、1,1,2−トリス(4’−(2’’−テトラヒドロピラニルオキシ)フェニル)エタン、1,1,2−トリス(4’−(2’’−テトラヒドロフラニルオキシ)フェニル)エタン、1,1,2−トリス(4’−tert−ブトキシフェニル)エタン、1,1,2−トリス(4’−tert−ブトキシカルボニルオキシフェニル)エタン、1,1,2−トリス(4’−tert−ブトキシカルボニルメチルオキシフェニル)エタン、1,1,2−トリス(4’−(1’−エトキシエトキシ)フェニル)エタン、1,1,2−トリス(4’−(1’−エトキシプロピルオキシ)フェニル)エタン等が挙げられる。
【0059】
(E)成分の塩基性化合物は、光酸発生剤より発生する酸がレジスト膜中に拡散する際の拡散速度を抑制することができる化合物が適しており、このような塩基性化合物の配合により、レジスト膜中での酸の拡散速度が抑制されて解像度が向上し、露光後の感度変化を抑制したり、基板や環境依存性を少なくし、露光余裕度やパターンプロファイル等を向上することができる。
【0060】
このような(E)成分の塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、ヒドロキシ基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。
【0061】
具体的には、第一級の脂肪族アミン類として、アンモニア、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、tert−アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示され、第二級の脂肪族アミン類として、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N−ジメチルメチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルテトラエチレンペンタミン等が例示され、第三級の脂肪族アミン類として、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリ−sec−ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’−テトラメチルメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルテトラエチレンペンタミン等が例示される。
【0062】
また、混成アミン類としては、例えば、ジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えば、アニリン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メルアニリン、4−メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2−ニトロアニリン、3−ニトロアニリン、4−ニトロアニリン、2,4−ジニトロアニリン、2,6−ジニトロアニリン、3,5−ジニトロアニリン、N,N−ジメチルトルイジン等)、ジフェニル(p−トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えば、ピロール、2H−ピロール、1−メチルピロール、2,4−ジメチルピロール、2,5−ジメチルピロール、N−メチルピロール等)、オキサゾール誘導体(例えば、オキサゾール、イソオキサゾール等)、チアゾール誘導体(例えば、チアゾール、イソチアゾール等)、イミダゾール誘導体(例えば、イミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えば、ピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えば、ピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えば、ピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリジン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えば、キノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
【0063】
更に、カルボキシル基を有する含窒素化合物としては、例えば、アミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えば、ニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3−アミノピラジン−2−カルボン酸、メトキシアラニン等)などが例示され、スルホニル基を有する含窒素化合物として、3−ピリジンスルホン酸、p−トルエンスルホン酸ピリジニウム等が例示され、ヒドロキシ基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物としては、2−ヒドロキシピリジン、アミノクレゾール、2,4−キノリンジオール、3−インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’−イミノジエタノール、2−アミノエタノール、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、4−(2−ヒドロキシエチル)モルホリン、2−(2−ヒドロキシエチル)ピリジン、1−(2−ヒドロキシエチル)ピペラジン、1−[2−(2−ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1−(2−ヒドロキシエチル)ピロリジン、1−(2−ヒドロキシエチル)−2−ピロリジノン、3−ピペリジノ−1,2−プロパンジオール、3−ピロリジノ−1,2−プロパンジオール、8−ヒドロキシユロリジン、3−クイヌクリジノール、3−トロパノール、1−メチル−2−ピロリジンエタノール、1−アジリジンエタノール、N−(2−ヒドロキシエチル)フタルイミド、N−(2−ヒドロキシエチル)イソニコチンアミド等が例示される。アミド誘導体としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。イミド誘導体としては、フタルイミド、サクシンイミド、マレイミド等が例示される。
【0064】
更に下記一般式(B)−1で示される塩基性化合物から選ばれる1種又は2種以上を添加することもできる。
N(X)n(Y)3-n (B)−1
式中、n=1、2又は3である。側鎖Xは同一でも異なっていてもよく、下記一般式(X)−1〜(X)−3で表すことができる。側鎖Yは同一又は異種の、水素原子、又は直鎖状、分岐状又は環状の炭素数1〜20のアルキル基を示し、エーテル基もしくはヒドロキシル基を含んでもよい。また、X同士が結合して環を形成してもよい。
【0065】
【化12】
Figure 0003865048
【0066】
ここでR300、R302、R305は炭素数1〜4の直鎖状又は分岐状のアルキレン基であり、R301、R304は水素原子、又は炭素数1〜20の直鎖状、分岐状又は環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基又はラクトン環を1あるいは複数含んでいてもよい。
【0067】
303は単結合、又は炭素数1〜4の直鎖状又は分岐状のアルキレン基であり、R306は炭素数1〜20の直鎖状、分岐状又は環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基又はラクトン環を1あるいは複数含んでいてもよい。
【0068】
一般式(B)−1で表される化合物は具体的には下記に例示される。
トリス(2−メトキシメトキシエチル)アミン、トリス{2−(2−メトキシエトキシ)エチル}アミン、トリス{2−(2−メトキシエトキシメトキシ)エチル}アミン、トリス{2−(1−メトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシプロポキシ)エチル}アミン、トリス[2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル]アミン、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]ヘキサコサン、4,7,13,18−テトラオキサ−1,10−ジアザビシクロ[8.5.5]エイコサン、1,4,10,13−テトラオキサ−7,16−ジアザビシクロオクタデカン、1−アザ−12−クラウン−4、1−アザ−15−クラウン−5、1−アザ−18−クラウン−6、トリス(2−フォルミルオキシエチル)アミン、トリス(2−ホルミルオキシエチル)アミン、トリス(2−アセトキシエチル)アミン、トリス(2−プロピオニルオキシエチル)アミン、トリス(2−ブチリルオキシエチル)アミン、トリス(2−イソブチリルオキシエチル)アミン、トリス(2−バレリルオキシエチル)アミン、トリス(2−ピバロイルオキシキシエチル)アミン、N,N−ビス(2−アセトキシエチル)2−(アセトキシアセトキシ)エチルアミン、トリス(2−メトキシカルボニルオキシエチル)アミン、トリス(2−tert−ブトキシカルボニルオキシエチル)アミン、トリス[2−(2−オキソプロポキシ)エチル]アミン、トリス[2−(メトキシカルボニルメチル)オキシエチル]アミン、トリス[2−(tert−ブトキシカルボニルメチルオキシ)エチル]アミン、トリス[2−(シクロヘキシルオキシカルボニルメチルオキシ)エチル]アミン、トリス(2−メトキシカルボニルエチル)アミン、トリス(2−エトキシカルボニルエチル)アミン、N,N−ビス(2−ヒドロキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−ヒドロキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−アセトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(4−ヒドロキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(4−ホルミルオキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(2−ホルミルオキシエトキシカルボニル)エチルアミン、N,N−ビス(2−メトキシエチル)2−(メトキシカルボニル)エチルアミン、N−(2−ヒドロキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−ヒドロキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(3−ヒドロキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(3−アセトキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−メトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(2−メトキシエトキシカルボニル)エチル]アミン、N−メチルビス(2−アセトキシエチル)アミン、N−エチルビス(2−アセトキシエチル)アミン、N−メチルビス(2−ピバロイルオキシキシエチル)アミン、N−エチルビス[2−(メトキシカルボニルオキシ)エチル]アミン、N−エチルビス[2−(tert−ブトキシカルボニルオキシ)エチル]アミン、トリス(メトキシカルボニルメチル)アミン、トリス(エトキシカルボニルメチル)アミン、N−ブチルビス(メトキシカルボニルメチル)アミン、N−ヘキシルビス(メトキシカルボニルメチル)アミン、β−(ジエチルアミノ)−δ−バレロラクトンを例示できるが、これらに制限されない。
【0069】
なお、塩基性化合物は、1種を単独で又は2種以上を組み合わせて用いることができ、その配合量は、レジスト材料中の固形分100重量部に対して0〜2重量部、特に0.01〜1重量部を混合したものが好適である。配合量が2重量部を超えると感度が低下しすぎる場合がある。
【0070】
本発明の化学増幅ポジ型レジスト材料中には、更に、塗布性を向上させるための界面活性剤を加えることができる。
【0071】
界面活性剤の例としては、特に限定されるものではないが、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステリアルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレインエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレンポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステルのノニオン系界面活性剤、エフトップEF301,EF303,EF352(トーケムプロダクツ)、メガファックF171,F172,F173(大日本インキ化学工業)、フロラードFC430,FC431(住友スリーエム)、アサヒガードAG710,サーフロンS−381,S−382,SC101,SC102,SC103,SC104,SC105,SC106、サーフィノールE1004,KH−10,KH−20,KH−30,KH−40(旭硝子)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341,X−70−092,X−70−093(信越化学工業)、アクリル酸系又はメタクリル酸系ポリフローNo.75,No.95(共栄社油脂化学工業)が挙げられ、中でもFC430、サーフロンS−381、サーフィノールE1004,KH−20,KH−30が好適である。これらは単独あるいは2種以上の組み合わせで用いることができる。
【0072】
本発明の化学増幅ポジ型レジスト材料中の界面活性剤の添加量としては、レジスト材料組成物中の固形分100重量部に対して2重量部以下、好ましくは1重量部以下である。
【0073】
本発明の(A)有機溶剤と、(B)上記一般式(1)及び、一般式(2)で示される高分子化合物と、(C)酸発生剤を含む化学増幅ポジ型レジスト材料を種々の集積回路製造に用いる場合は、特に限定されないが公知のリソグラフィー技術を用いることができる。
【0074】
集積回路製造用の基板(Si,SiO2,SiN,SiON,TiN,WSi,BPSG,SOG,有機反射防止膜等)上にスピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の適当な塗布方法により塗布膜厚が0.1〜2.0μmとなるように塗布し、ホットプレート上で60〜150℃、1〜10分間、好ましくは80〜120℃、1〜5分間プリベークする。次いで、紫外線、遠紫外線、電子線、X線、エキシマレーザー、γ線、シンクロトロン放射線などから選ばれる光源、好ましくは300nm以下の露光波長で目的とするパターンを所定のマスクを通じて露光を行う。露光量は1〜200mJ/cm2程度、好ましくは10〜100mJ/cm2程度となるように露光することが好ましい。ホットプレート上で60〜150℃、1〜5分間、好ましくは80〜120℃、1〜3分間ポストエクスポージャベーク(PEB)する。
【0075】
更に、0.1〜5%、好ましくは2〜3%のテトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ水溶液の現像液を用い、0.1〜3分間、好ましくは0.5〜2分間、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の常法により現像することにより基板上に目的のパターンが形成される。なお、本発明のレジスト材料は、特に高エネルギー線の中でも193〜254nmの遠紫外線、157nmの真空紫外線、電子線、軟X線、X線、エキシマレーザー、γ線、シンクロトロン放射線による微細パターンニングに最適である。また、上記範囲を上限及び下限から外れる場合は、目的のパターンを得ることができない場合がある。
【0076】
【実施例】
以下、合成例、比較合成例、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。
【0077】
[合成例1]
2Lのフラスコにアセトキシスチレン13.3g、インデン58.6g、メタクリル酸1−エチルシクロペンチルエステル8.0g、溶媒としてトルエンを80g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを4.1g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール4.5L、水0.5Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体57gを得た。このポリマーをメタノール0.5L、テトラヒドロフラン1.0Lに再度溶解し、トリエチルアミン70g、水15gを加え、脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン0.5Lに溶解し、上記と同様の沈殿、濾過、乾燥を行い、白色重合体45gを得た。
【0078】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
ヒドロキシスチレン:インデン:メタクリル酸1−エチルシクロペンチルエステル=37.9:40.8:21.3
重量平均分子量(Mw)=5,500
分子量分布(Mw/Mn)=1.72
これを(poly−A)とする。
【0079】
[合成例2]
2Lのフラスコにアセトキシスチレン22.7g、インデン49.5g、メタクリル酸1−エチルシクロペンチルエステル7.8g、溶媒としてトルエンを80g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを4.0g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール4.5L、水0.5Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体59gを得た。このポリマーをメタノール0.5L、テトラヒドロフラン1.0Lに再度溶解し、トリエチルアミン70g、水15gを加え、脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン0.5Lに溶解し、上記と同様の沈殿、濾過、乾燥を行い、白色重合体46gを得た。
【0080】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
ヒドロキシスチレン:インデン:メタクリル酸1−エチルシクロペンチルエステル=53.8:28.8:17.4
重量平均分子量(Mw)=6,500
分子量分布(Mw/Mn)=1.75
これを(poly−B)とする。
【0081】
[合成例3]
2Lのフラスコにアセトキシスチレン36.8g、インデン32.9g、メタクリル酸1−エチルシクロペンチルエステル10.3g、溶媒としてトルエンを70g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを3.7g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール4.5L、水0.5Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体65gを得た。このポリマーをメタノール0.5L、テトラヒドロフラン1.0Lに再度溶解し、トリエチルアミン70g、水15gを加え、脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン0.5Lに溶解し、上記と同様の沈殿、濾過、乾燥を行い、白色重合体52gを得た。
【0082】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
ヒドロキシスチレン:インデン:メタクリル酸1−エチルシクロペンチルエステル=63.6:20.0:16.4
重量平均分子量(Mw)=8,800
分子量分布(Mw/Mn)=1.78
これを(poly−C)とする。
【0083】
[合成例4]
2Lのフラスコにアセトキシスチレン37.8g、インデン33.9g、メタクリル酸t−ブチルエステル8.3g、溶媒としてトルエンを70g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを3.8g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール4.5L、水0.5Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体68gを得た。このポリマーをメタノール0.5L、テトラヒドロフラン1.0Lに再度溶解し、トリエチルアミン70g、水15gを加え、脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン0.5Lに溶解し、上記と同様の沈殿、濾過、乾燥を行い、白色重合体54gを得た。
【0084】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
ヒドロキシスチレン:インデン:メタクリル酸t−ブチルエステル=63.3:19.8:16.9
重量平均分子量(Mw)=8,500
分子量分布(Mw/Mn)=1.73
これを(poly−D)とする。
【0085】
[合成例5]
2Lのフラスコにアセトキシスチレン30.8g、インデン117.9g、溶媒としてトルエンを20g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを6.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール4.5L、水0.5Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体77gを得た。このポリマーをメタノール0.5L、テトラヒドロフラン1.0Lに再度溶解し、トリエチルアミン70g、水15gを加え、脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン0.5Lに溶解し、上記と同様の沈殿、濾過、乾燥を行い、白色重合体52gを得た。このポリマーをテトラヒドロフラン溶媒500mLに溶解し、更に炭酸カリウム13.8g、t−ブチルクロロアセテート10.2gを加え、室温で10時間反応させた。この反応溶液を酢酸5.0gで中和し、4Lの水に晶出沈殿させ、更に2回の水洗を行い、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体58gを得た。
【0086】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
ヒドロキシスチレン:インデン:p−t−ブトキシカルボニルメチルオキシスチレン=29.0:62.0:9.0
重量平均分子量(Mw)=4,600
分子量分布(Mw/Mn)=1.77
これを(poly−E)とする。
【0087】
[合成例6]
2Lのフラスコに、5−ヒドロキシインデン63g、メタクリル酸1−エチルシクロペンチルエステル20.6g、溶媒としてトルエンを50g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを4.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール4.5L、水0.5Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体61gを得た。
【0088】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
5−ヒドロキシインデン:メタクリル酸1−エチルシクロペンチルエステル=71.0:29.0
重量平均分子量(Mw)=7,100
分子量分布(Mw/Mn)=1.70
これを(poly−F)とする。
【0089】
[比較合成例]
上記合成例と同様の方法で合成した二成分ポリマーの品名、分析結果を示す。ヒドロキシスチレン:メタクリル酸1−エチルシクロペンチルエステル=71:29
重量平均分子量(Mw)=16,100
分子量分布(Mw/Mn)=1.70
これを(poly−G)とする。
【0090】
また、2Lのフラスコを用いて、ポリヒドロキシスチレン(Mw=11,000、Mw/Mn=1.08)40gをテトラヒドロフラン400mLに溶解し、メタンスルホン酸1.4g、エチルビニルエーテル12.3gを加え、室温下1時間反応し、アンモニア水(30%)2.5gを加え反応を停止させ、この反応溶液を酢酸水5Lを用いて晶出沈殿させ、更に2回の水洗を行い、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体47gを得た。
【0091】
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
ヒドロキシスチレン:p−エトキシエトキシスチレン=63.5:36.5
重量平均分子量(Mw)=13,000
分子量分布(Mw/Mn)=1.10
これを(poly−H)とする。
【0092】
[実施例、比較例]
表1、2に示すレジスト材料を調製した。そのとき、表1、2に挙げるレジスト材料の高分子化合物は上記合成例、比較合成例に示したpoly−A〜Hを使用し、他の成分は次の通りで行った。
PAG1:4−(4’−メチルフェニルスルホニルオキシ)フェニルスルホン酸トリフェニルスルホニウム
PAG2:4−(4’−メチルフェニルスルホニルオキシ)フェニルスルホン酸(4−tertブチルフェニル)ジフェニルスルホニウム
PAG3:ビス(シクロヘキシルスルホニル)ジアゾメタン
PAG4:ビス(2,4−ジメチルフェニルスルホニル)ジアゾメタン
溶解阻止剤A:ビス(4−(2’−テトラヒドロピラニルオキシ)フェニル)メタン
塩基性化合物A:トリス(2−メトキシエチル)アミン
界面活性剤A:FC−430(住友スリーエム社製)
界面活性剤B:サーフロンS−381(旭硝子社製)
溶剤A:プロピレングリコールメチルエーテルアセテート
溶剤B:乳酸エチル
【0093】
【表1】
Figure 0003865048
【0094】
【表2】
Figure 0003865048
【0095】
得られたレジスト材料を0.2μmのテフロン(登録商標)製フィルターで濾過した後、このレジスト液をシリコンウエハー上へスピンコーティングし、0.6μmに塗布した。
次いで、このシリコンウエハーを100℃のホットプレート上で90秒間ベークした。更に、エキシマレーザーステッパー(ニコン社、NSR2005EX NA=0.5)を用いて露光し、110℃で90秒間ベーク(PEB:post exposure bake)を施し、2.38%のテトラメチルアンモニウムヒドロキシドの水溶液で現像を行うと、ポジ型のパターン(実施例1〜6、比較例1,2)を得ることができた。
【0096】
得られたレジストパターンを次のように評価した。
レジストパターン評価方法:
0.18μmのラインアンドスペースのトップとボトムを1:1で解像する露光量を最適露光量(感度:Eop)として、この露光量における分離しているラインアンドスペースの最小線幅を評価レジストの解像度とした。また、解像したレジストパターンの形状は、走査型電子顕微鏡を用いてレジスト断面を観察した。
なお、レジストのPED安定性は、最適露光量で露光後、24時間の放置後PEB(post exposure bake)を行い、線幅の変動値で評価した。この変動値が少ないほどPED安定性に富む。
レジストパターン評価結果を表3に示す。
【0097】
パターン評価以外の評価方法:
レジスト材料の現像後のドライエッチング耐性は、東京エレクトロン社製TE8500Sを用いて実際にエッチングを行い、その後のパターン形状を、走査型電子顕微鏡を用いてレジスト断面を観察し、比較例2のエッチング後の膜厚減少量を1.0とした時の、他のレジストは減少量の相対比率で示した。即ち、数値が小さいほどエッチング耐性に優れたレジストであることを示す。また、エッチングは以下に示した条件で行った。
Figure 0003865048
【0098】
【表3】
Figure 0003865048
【0099】
また、ドライエッチング耐性が、使用するポリマーの構造やレジスト組成よりも、ポリマー中のインデンの比率とかなりの相関性を持つことを示したものを、図1に表した。
【0100】
【発明の効果】
本発明によれば、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有し、その上特に優れたエッチング耐性を示す、特に超LSI製造用の微細パターン形成材料として好適な化学増幅型レジスト材料与えることが可能である。
【図面の簡単な説明】
【図1】インデン比率によるドライエッチング耐性の関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
  The present invention provides a chemically amplified positive electrode having a significantly high alkali dissolution rate contrast before and after exposure, high sensitivity, high resolution, and excellent etching resistance. Type resist materialInRelated.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, along with the high integration and high speed of LSIs, far ultraviolet lithography is considered promising as a next-generation microfabrication technique, while miniaturization of pattern rules is required. Far-ultraviolet lithography can process 0.5 μm or less, and when a resist material with low light absorption is used, it is possible to form a pattern having sidewalls that are nearly perpendicular to the substrate.
[0003]
The recently developed acid-catalyzed chemically amplified positive resist materials (described in Japanese Patent Publication No. 2-27660, Japanese Patent Application Laid-Open No. 63-27829, etc.) use a high-brightness KrF excimer laser as a light source for far ultraviolet rays. It is expected to be a particularly promising resist material for deep ultraviolet lithography, which has high sensitivity, resolution and dry etching resistance and has excellent characteristics.
[0004]
As such a chemically amplified positive resist material, a two-component system comprising a base polymer and an acid generator, a three-component system comprising a base polymer, an acid generator and a dissolution inhibitor having an acid labile group are known. .
[0005]
For example, Japanese Laid-Open Patent Publication No. 62-115440 proposes a resist material comprising poly-p-tert-butoxystyrene and an acid generator. Japanese Patent Laid-Open No. 3-223858 discloses a resist material similar to this proposal. A two-component resist material composed of a resin having a tert-butoxy group and an acid generator, and further disclosed in JP-A-4-21258 is a polymethyl group containing a methyl group, an isopropyl group, a tert-butyl group, a tetrahydropyranyl group, and a trimethylsilyl group. A two-component resist material composed of hydroxystyrene and an acid generator has been proposed.
[0006]
Further, JP-A-6-1000048 discloses poly [3,4-bis (2-tetrahydropyranyloxy) styrene], poly [3,4-bis (tert-butoxycarbonyloxy) styrene], poly [3, Resist materials comprising polydihydroxystyrene derivatives such as 5-bis (2-tetrahydropyranyloxy) styrene] and acid generators have been proposed.
[0007]
However, the base resin of these resist materials has an acid labile group in the side chain, and the acid labile group is decomposed with a strong acid such as tert-butyl group and tert-butoxycarbonyl group. The pattern shape of the resist material tends to be a T-top shape. On the other hand, an alkoxyalkyl group such as an ethoxyethyl group is decomposed by a weak acid, so that the pattern shape changes with time from exposure to heat treatment. Both have the disadvantage of being extremely thin and have a bulky group in the side chain, so that both have problems such as reduced heat resistance and unsatisfactory sensitivity and resolution.
[0008]
Resist material using a copolymer of hydroxystyrene and (meth) acrylic acid tertiary ester to achieve higher transparency and adhesion to the substrate, improve tailing to the substrate, and improve etching resistance Have been reported (JP-A-3-275149, JP-A-6-289608), but this type of resist material has problems such as heat resistance and poor pattern shape after exposure, and etching resistance. Was not satisfactory. Furthermore, at present, as the resolution increases, the pattern thinning progresses at the same time, and accordingly, a resist material having higher etching resistance is desired.
[0009]
  The present invention has been made in view of the above circumstances, has higher sensitivity and higher resolution than conventional resist materials, exposure margin, process adaptability, good pattern shape after exposure, and excellent etching resistance. IndicateConversionIt is an object to provide a chemically amplified positive resist material and a pattern forming method.
[0010]
Means for Solving the Problem and Embodiment of the Invention
  As a result of intensive studies to achieve the above object, the present inventor has a repeating unit represented by the following general formula (1) or (2) and has a weight average molecular weight of 1,000 to 500,000. Compound isConversionChemically amplified positive resist material that is effective as a base resin for chemically amplified positive resist materials. This chemically amplified positive resist material containing a polymer compound, acid generator, and organic solvent has high dissolution contrast and resolution of the resist film, and exposure margin. It is excellent in process adaptability, has a good pattern shape after exposure, and exhibits better etching resistance. Therefore, it is highly practical and very effective as a resist material for VLSI. I found out.
[0011]
  That is, the present invention provides the following resist material and pattern forming method.
Claim 1:
(A) an organic solvent,
(B) As a base resin,The weight average molecular weight is 1,000 to 500,000, which has a repeating unit represented by the following general formula (1) and includes a repeating unit in which an acid labile group is decomposed by the action of an acid to increase the solubility in alkali. Is a high molecular compound,
[Formula 4]
Figure 0003865048
(Wherein R1, R2Represents a hydrogen atom, a hydroxy group, a substituted hydroxyalkyl group, a linear or branched alkyl group, a substituted alkoxy group, or a halogen atom. N is 0 or a positive integer of 1 to 4. )
(C) Acid generator
ContainingIt is characterized byChemical amplification positive typeResist material.
Claim 2:
(A) an organic solvent,
(B) As a base resin,A polymer compound having a repeating unit represented by the following general formula (2) and having a weight average molecular weight of 1,000 to 500,000,
[Chemical formula 5]
Figure 0003865048
(Wherein R1, R2, RFourRepresents a hydrogen atom, a hydroxy group, a substituted hydroxyalkyl group, a linear or branched alkyl group, a substituted alkoxy group, or a halogen atom;Three, RFiveRepresents a hydrogen atom or a methyl group, R6Represents a hydrogen atom, a methyl group, an alkoxycarbonyl group, a cyano group, or a halogen atom;7Represents an alkyl group having 1 to 20 carbon atoms. N is a positive integer of 0 or 1 to 4, and m is a positive integer of 0 or 1 to 5. p, q, and s are 0 or a positive number, and r is a positive number. )
(C) Acid generator
ContainingIt is characterized byChemical amplification positive typeResist material.
Claim 3:
  In formula (2), R1, RFourOne or both of these are groups represented by the following formulas (3) and (4), a linear, branched or cyclic tertiary alkoxy group having 4 to 20 carbon atoms, and each alkyl group having 1 to 6 carbon atoms. The trialkylsiloxy group according to claim 2, or an oxoalkoxy group having 4 to 20 carbon atoms.Chemical amplification positive typeResist material.
[Chemical 6]
Figure 0003865048
(Wherein R8, R9, R11, R12Each independently represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms;TenIs a monovalent hydrocarbon group which may contain an oxygen atom having 1 to 18 carbon atoms, R8And R9, R8And RTen, R9And RTenMay form a ring, and in the case of forming a ring, R8, R9, RTenEach represents a linear or branched alkylene group having 1 to 18 carbon atoms. R13Represents a linear, branched or cyclic alkyl group having 4 to 40 carbon atoms. Moreover, a is 0 or an integer of 1-5. )
Claim 4:
  Furthermore, (D) dissolution inhibitor is contained, The claim 1, 2, or 3 characterized by the above-mentionedChemically amplified positive resist material.
Claim5:
  Furthermore, (E) A basic compound is blended as an additive.Any one of 1 to 4The chemically amplified positive resist material described.
Claim6:
  ClaimAny one of 1 to 5The step of applying the resist material described in the above to the substrate, the step of heat treatment, exposure to a high energy beam or electron beam through a photomask, and heat treatment as necessary, followed by development using a developer The pattern formation method characterized by including the process to perform.
[0012]
Hereinafter, the present invention will be described in more detail.
The resist material of the present invention has a repeating unit represented by the following general formula (1) and an acid labile group, and the acid labile group is decomposed by the action of an acid to increase the solubility in alkali. And a polymer compound insoluble or hardly soluble in an alkaline aqueous solution (alkaline developer) having a weight average molecular weight of 1,000 to 500,000 as a base resin. In this case, examples of the polymer compound include those having a repeating unit represented by the following general formula (2).
[0013]
[Chemical 7]
Figure 0003865048
[0014]
Where R1, R2, RFourRepresents a hydrogen atom, a hydroxy group, a substituted hydroxyalkyl group, a linear or branched alkyl group, a substituted alkoxy group, or a halogen atom;Three, RFiveRepresents a hydrogen atom or a methyl group, R6Represents a hydrogen atom, a methyl group, an alkoxycarbonyl group, a cyano group, or a halogen atom;7Represents an alkyl group having 1 to 20 carbon atoms. N is a positive integer of 0 or 1 to 4, and m is a positive integer of 0 or 1 to 5. p, q, and s are 0 or a positive number, and r is a positive number.
[0015]
Where R1, R2, RFourExamples of the replaceable hydroxyalkyl group include a hydroxymethyl group, a trifluoromethylated hydroxymethyl group, and a ditrifluoromethylated hydroxymethyl group. R1, R2, RFourExamples of the linear or branched alkyl group of 1 to 20 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, iso-butyl group, and tert-butyl group, 10 alkyl groups are mentioned. Examples of the substitutable alkoxy group include those having 1 to 20 carbon atoms, particularly 1 to 10 carbon atoms, and specific examples include a methoxy group, an ethoxy group, and an isopropoxy group.
[0016]
In this case, the above R1, RFourIn these, when these show the function of an acid labile group, they are variously selected, and in particular, groups represented by the following formulas (3) and (4), linear, branched or cyclic groups having 4 to 20 carbon atoms A tertiary alkoxy group and each alkyl group are preferably a trialkylsiloxy group having 1 to 6 carbon atoms or an oxoalkoxy group having 4 to 20 carbon atoms.
[0017]
[Chemical 8]
Figure 0003865048
(Wherein R8, R9, R11, R12Each independently represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms;TenIs a monovalent hydrocarbon group such as an alkyl group, an alkenyl group, an aryl group or an aralkyl group, which may contain an oxygen atom having 1 to 18 carbon atoms, R8And R9, R8And RTen, R9And RTenMay form a ring, and in the case of forming a ring, R8, R9, RTenEach represents a linear or branched alkylene group having 1 to 18 carbon atoms. R13Represents a linear, branched or cyclic alkyl group having 4 to 40 carbon atoms. Moreover, a is 0 or an integer of 1-5. )
[0018]
Here, as the acid labile group represented by the above formula (3), specifically, a methoxyethyloxy group, ethoxyethyloxy group, n-propoxyethyloxy group, iso-propoxyethyloxy group having an oxygen atom interposed N-butoxyethyloxy group, iso-butoxyethyloxy group, tert-butoxyethyloxy group, cyclohexyloxyethyloxy group, methoxypropyloxy group, ethoxypropyloxy group, 1-methoxy-1-methyl-ethyloxy group, 1 -Ethoxy-1-methyl-ethyloxy group, tetrahydropyranyloxy group, tetrahydrofuranyloxy group and the like. On the other hand, examples of the acid labile group of the above formula (4) include a tert-butoxycarbonyloxy group, a tert-butoxycarbonylmethyloxy group, an ethylcyclopentylcarbonyloxy group, an ethylcyclohexylcarbonyloxy group, and a methylcyclopentylcarbonyloxy group. . Examples of the trialkylsiloxy group include those having 1 to 6 carbon atoms in each alkyl group such as a trimethylsiloxy group, a triethylsiloxy group, and a tert-butyldimethylsiloxy group. Examples of the oxoalkoxy group having 4 to 20 carbon atoms include a 3-oxocyclohexyloxy group or a group represented by the following formula.
[0019]
[Chemical 9]
Figure 0003865048
[0020]
R above1, R2, RFourIn these, when these show a halogen atom, a fluorine atom, a chlorine atom, and a bromine atom are mentioned.
[0021]
R6As the alkoxycarbonyl group, those having 2 to 20 carbon atoms, particularly 2 to 6 carbon atoms are preferable, and specific examples include a methoxycarbonyl group and a tert-butoxycarbonyl group. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
[0022]
R7The alkyl group may be linear, branched or cyclic, but is preferably a tertiary alkyl group. R7When the alkyl group is a tertiary alkyl group, various groups are selected, and groups represented by the following general formulas (5) and (6) are particularly preferable.
[0023]
Embedded image
Figure 0003865048
(Wherein R14Is a methyl group, ethyl group, isopropyl group, cyclohexyl group, cyclopentyl group, vinyl group, acetyl group, phenyl group, benzyl group or cyano group, and b is an integer of 0 or 1-3. )
[0024]
Embedded image
Figure 0003865048
(Wherein R15Is a methyl group, an ethyl group, an isopropyl group, a cyclohexyl group, a cyclopentyl group, a vinyl group, a phenyl group, a benzyl group or a cyano group. )
[0025]
As the cyclic alkyl group of the general formula (5), a 5-membered ring or a 6-membered ring is more preferable. Specific examples include 1-methylcyclopentyl, 1-ethylcyclopentyl, 1-isopropylcyclopentyl, 1-vinylcyclopentyl, 1-acetylcyclopentyl, 1-phenylcyclopentyl, 1-cyanocyclopentyl, 1-methylcyclohexyl, 1-ethylcyclohexyl, Examples include 1-isopropylcyclohexyl, 1-vinylcyclohexyl, 1-acetylcyclohexyl, 1-phenylcyclohexyl, 1-cyanocyclohexyl and the like.
[0026]
Specific examples of the general formula (6) include groups such as tert-butyl group, 1-vinyldimethyl, 1-benzyldimethyl, 1-phenyldimethyl, 1-cyanodimethyl and the like.
In addition, R7As the alkyl group, groups such as 2-methyladamantyl, 2-ethyladamantyl, 2-methylnorbornyl, 2-ethylnorbornyl are also preferable.
Further, in consideration of the characteristics of the resist material, in the above formula (2), r is a positive number, p, q, and s are 0 or a positive number, and are preferably numbers satisfying the following formula.
[0027]
0 <r / (p + q + r + s) ≦ 0.5, more preferably 0.05 <r / (p + q + r + s) ≦ 0.40. 0 ≦ p / (p + q + r + s) ≦ 0.8, more preferably 0.3 ≦ p / (p + q + r + s) ≦ 0.8. It is 0 <= q / (p + q + r + s) <= 0.35. 0 ≦ s / (p + q + r + s) ≦ 0.35.
[0028]
When q or s is 0 and the polymer compound of the above formula (2) has a structure not containing this unit, the contrast of the alkali dissolution rate is lost and the resolution may be deteriorated. If the ratio of p is too large, the alkali dissolution rate in the unexposed area may be too high. When r is 0, resolution may be deteriorated or dry etching resistance may not be improved. By appropriately selecting the values of p, q, r, and s within the above range, pattern dimension control and pattern shape control can be arbitrarily performed.
[0029]
The polymer compound of the present invention has a weight average molecular weight of 1,000 to 500,000, preferably 2,000 to 30,000. If the weight average molecular weight is too small, the resist material is inferior in heat resistance. If the weight average molecular weight is too large, the alkali solubility is lowered, and a trailing phenomenon is likely to occur after pattern formation.
[0030]
Further, in the polymer compound of the present invention, when the molecular weight distribution (Mw / Mn) of the multi-component copolymer of the above formula (2) is wide, a low molecular weight or high molecular weight polymer exists, so that after exposure, the pattern Foreign matter is seen on the top or the shape of the pattern is deteriorated. Therefore, since the influence of such molecular weight and molecular weight distribution tends to increase as the pattern rule becomes finer, in order to obtain a resist material suitably used for fine pattern dimensions, the multi-component copolymer to be used is obtained. The molecular weight distribution is preferably from 1.0 to 2.0, particularly preferably from 1.0 to 1.5 and narrow dispersion.
[0031]
In order to synthesize these polymer compounds, as one method, an acetoxystyrene monomer, a (meth) acrylic acid tertiary alkyl ester monomer and an indene monomer are heated and polymerized in an organic solvent by adding a radical initiator, The obtained polymer compound is subjected to alkali hydrolysis in an organic solvent to deprotect the acetoxy group to obtain a polymer compound of a ternary copolymer of hydroxystyrene, (meth) acrylic acid tertiary alkyl ester and indene. Can do. Examples of the organic solvent used at the time of polymerization include toluene, benzene, tetrahydrofuran, diethyl ether, dioxane and the like. As polymerization initiators, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), dimethyl-2,2-azobis (2-methylpropionate), Examples thereof include benzoyl peroxide and lauroyl peroxide, and the polymerization is preferably performed by heating to 50 to 80 ° C. The reaction time is 2 to 100 hours, preferably 5 to 20 hours. Ammonia water, triethylamine, etc. can be used as the base during the alkali hydrolysis. The reaction temperature is −20 to 100 ° C., preferably 0 to 60 ° C., and the reaction time is 0.2 to 100 hours, preferably 0.5 to 20 hours.
[0032]
Furthermore, after the polymer compound thus obtained is isolated, an acid labile group represented by the general formula (3) or general formula (4) can be introduced into the phenolic hydroxyl group. is there. For example, it is possible to obtain a polymer compound in which the phenolic hydroxyl group is partially protected with an alkoxyalkyl group by reacting the phenolic hydroxyl group of the polymer compound with an alkenyl ether compound in the presence of an acid catalyst.
[0033]
At this time, the reaction solvent is preferably an aprotic polar solvent such as dimethylformamide, dimethylacetamide, tetrahydrofuran or ethyl acetate, and may be used alone or in combination. As the catalyst acid, hydrochloric acid, sulfuric acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid pyridinium salt and the like are preferable. The amount of the acid labile group introduced is preferably 0.1 to 10 mol% with respect to 1 mol of the phenolic hydroxyl group of the polymer compound to be reacted. The reaction temperature is −20 to 100 ° C., preferably 0 to 60 ° C., and the reaction time is 0.2 to 100 hours, preferably 0.5 to 20 hours.
[0034]
It is also possible to obtain a polymer compound in which a phenolic hydroxyl group is partially protected with an alkoxyalkyl group by reacting with a polymer compound in the presence of a base using a halogenated alkyl ether compound.
[0035]
At this time, the reaction solvent is preferably an aprotic polar solvent such as acetonitrile, acetone, dimethylformamide, dimethylacetamide, tetrahydrofuran, or dimethylsulfoxide, and may be used alone or in combination. As the base, triethylamine, pyridine, diisopropylamine, potassium carbonate and the like are preferable. The amount of the acid labile group introduced is preferably such that it is 10 mol% or more based on 1 mol of the phenolic hydroxyl group of the polymer compound to be reacted. The reaction temperature is −50 to 100 ° C., preferably 0 to 60 ° C., and the reaction time is 0.5 to 100 hours, preferably 1 to 20 hours.
[0036]
Furthermore, the acid labile group of the above formula (4) can be introduced by reacting a dialkyl dicarbonate compound or alkoxycarbonylalkyl halide with a polymer compound in a solvent in the presence of a base. The reaction solvent is preferably an aprotic polar solvent such as acetonitrile, acetone, dimethylformamide, dimethylacetamide, tetrahydrofuran, or dimethyl sulfoxide, and may be used alone or in admixture of two or more.
[0037]
As the base, triethylamine, pyridine, imidazole, diisopropylamine, potassium carbonate and the like are preferable. The amount of the acid labile group introduced is preferably such that it is 10 mol% or more based on 1 mol of the phenolic hydroxyl group of the original polymer compound.
[0038]
The reaction temperature is 0 to 100 ° C, preferably 0 to 60 ° C. The reaction time is 0.2 to 100 hours, preferably 1 to 10 hours.
[0039]
Examples of the dialkyl dicarbonate compound include di-tert-butyl dicarbonate and di-tert-amyl dicarbonate. Examples of the alkoxycarbonylalkyl halide include tert-butoxycarbonylmethyl chloride, tert-amyloxycarbonylmethyl chloride, and tert-butoxy. Examples thereof include carbonylmethyl bromide and tert-butoxycarbonylethyl chloride.
However, it is not limited to these synthesis methods.
[0040]
The resist material of the present invention is suitably used as a positive type, particularly a chemically amplified positive type, and is based on the above polymer compound. In this case, the resist material of the present invention is
(A) Organic solvent
(B) The polymer compound as a base resin
(C) Acid generator
If necessary,
(D) Dissolution inhibitor
(E) Basic compound
It is preferable that the composition is added.
[0041]
Here, in the chemically amplified positive resist material of the present invention, the organic solvent of component (A) is butyl acetate, amyl acetate, cyclohexyl acetate, 3-methoxybutyl acetate, methyl ethyl ketone, methyl amyl ketone, cyclohexanone, cyclopentanone. 3-ethoxyethyl propionate, 3-ethoxymethyl propionate, 3-methoxymethyl propionate, methyl acetoacetate, ethyl acetoacetate, diacetone alcohol, methyl pyruvate, ethyl pyruvate, propylene glycol monomethyl ether, Propylene glycol monoethyl ether, propylene glycol monomethyl ether propionate, propylene glycol monoethyl ether propionate, ethylene glycol monomethyl ether, ethylene glycol Noethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, 3-methyl-3-methoxybutanol, N-methylpyrrolidone, dimethyl sulfoxide, γ-butyrolactone, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate , Methyl lactate, ethyl lactate, propyl lactate, tetramethylene sulfone and the like, but are not limited thereto. Particularly preferred are propylene glycol alkyl ether acetate and alkyl lactate. These solvents may be used alone or in combination of two or more. Examples of preferred mixed solvents are propylene glycol alkyl ether acetate and alkyl lactate ester. In addition, although the alkyl group of the propylene glycol alkyl ether acetate in this invention has a C1-C4 thing, for example, a methyl group, an ethyl group, a propyl group etc., a methyl group and an ethyl group are suitable especially. In addition, this propylene glycol alkyl ether acetate has a 1,2-substituent and a 1,3-substituent, and there are three types of isomers depending on the combination of substitution positions, but either one or a mixture may be used.
[0042]
In addition, examples of the alkyl group of the lactic acid alkyl ester include those having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, and a propyl group. Among them, a methyl group and an ethyl group are preferable.
[0043]
When adding propylene glycol alkyl ether acetate as a solvent, it is preferably 50% by weight or more based on the total solvent, and when adding a lactate alkyl ester, it should be 50% by weight or more based on the total solvent. preferable. Moreover, when using the mixed solvent of propylene glycol alkyl ether acetate and the alkyl lactate ester as a solvent, it is preferable that the total amount is 50 weight% or more with respect to all the solvents. In this case, it is more preferable that the proportion of propylene glycol alkyl ether acetate is 60 to 95% by weight and the amount of lactate alkyl ester is 5 to 40% by weight. When there are few propylene glycol alkyl ether acetates, there exists a problem of applicability | degradability, etc., when there are too many, there exists a problem of insufficient solubility, generation | occurrence | production of a particle | grain and foreign material. When the amount of alkyl lactate is small, there are problems such as insufficient solubility and an increase in particles and foreign matters. When the amount is too large, the viscosity becomes high and the coating property is deteriorated, and the storage stability is deteriorated. The amount of these solvents added is 300 to 2,000 parts by weight, preferably 400 to 1,000 parts by weight, based on 100 parts by weight of the solid content of the chemically amplified positive resist material. The concentration is not limited to this.
[0044]
As the photoacid generator of component (C), any compound can be used as long as it generates an acid upon irradiation with high energy rays. Suitable photoacid generators include sulfonium salts, iodonium salts, sulfonyldiazomethane, N-sulfonyloxyimide type acid generators, and the like. Although described in detail below, these can be used alone or in combination of two or more.
[0045]
The sulfonium salt is a salt of a sulfonium cation and a sulfonate. As the sulfonium cation, triphenylsulfonium, (4-tert-butoxyphenyl) diphenylsulfonium, bis (4-tert-butoxyphenyl) phenylsulfonium, tris (4-tert-butoxyphenyl) are used. ) Sulfonium, (3-tert-butoxyphenyl) diphenylsulfonium, bis (3-tert-butoxyphenyl) phenylsulfonium, tris (3-tert-butoxyphenyl) sulfonium, (3,4-ditert-butoxyphenyl) diphenylsulfonium Bis (3,4-ditert-butoxyphenyl) phenylsulfonium, tris (3,4-ditert-butoxyphenyl) sulfonium, diphenyl (4-thi Phenoxyphenyl) sulfonium, (4-tert-butoxycarbonylmethyloxyphenyl) diphenylsulfonium, tris (4-tert-butoxycarbonylmethyloxyphenyl) sulfonium, (4-tert-butoxyphenyl) bis (4-dimethylaminophenyl) sulfonium , Tris (4-dimethylaminophenyl) sulfonium, 2-naphthyldiphenylsulfonium, dimethyl-2-naphthylsulfonium, 4-hydroxyphenyldimethylsulfonium, 4-methoxyphenyldimethylsulfonium, trimethylsulfonium, 2-oxocyclohexylcyclohexylmethylsulfonium, tri Naphthylsulfonium, tribenzylsulfonium, etc. are mentioned, and examples of sulfonate include trifluorometa Sulfonate, nonafluorobutane sulfonate, heptadecafluorooctane sulfonate, 2,2,2-trifluoroethane sulfonate, pentafluorobenzene sulfonate, 4-trifluoromethylbenzene sulfonate, 4-fluorobenzene sulfonate, toluene sulfonate, benzene sulfonate, 4 -(4-Toluenesulfonyloxy) benzenesulfonate, naphthalenesulfonate, camphorsulfonate, octanesulfonate, dodecylbenzenesulfonate, butanesulfonate, methanesulfonate, and the like, and sulfonium salts of these combinations.
[0046]
The iodonium salt is a salt of an iodonium cation and a sulfonate, and an aryliodonium cation such as diphenyliodonium, bis (4-tert-butylphenyl) iodonium, 4-tert-butoxyphenylphenyliodonium, 4-methoxyphenylphenyliodonium, and trifluoronate as a sulfonate. Lomethanesulfonate, nonafluorobutanesulfonate, heptadecafluorooctanesulfonate, 2,2,2-trifluoroethanesulfonate, pentafluorobenzenesulfonate, 4-trifluoromethylbenzenesulfonate, 4-fluorobenzenesulfonate, toluenesulfonate, benzenesulfonate, 4- (4-Toluenesulfonyloxy) benzenesulfonate, naphthalenesulfonate Camphorsulfonate, octanesulfonate, dodecylbenzenesulfonate, butanesulfonate, methanesulfonate, and the like, iodonium salts and combinations thereof.
[0047]
As the sulfonyldiazomethane, bis (ethylsulfonyl) diazomethane, bis (1-methylpropylsulfonyl) diazomethane, bis (2-methylpropylsulfonyl) diazomethane, bis (1,1-dimethylethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane Bis (perfluoroisopropylsulfonyl) diazomethane, bis (phenylsulfonyl) diazomethane, bis (4-methylphenylsulfonyl) diazomethane, bis (2,4-dimethylphenylsulfonyl) diazomethane, bis (2-naphthylsulfonyl) diazomethane, 4- Methylphenylsulfonylbenzoyldiazomethane, tert-butylcarbonyl-4-methylphenylsulfonyldiazomethane, 2-naphthylsulfonylbenzo Diazomethane, 4-methylphenyl sulfonyl-2-naphthoyl diazomethane, methylsulfonyl benzoyl diazomethane, and a bis-sulfonyl diazomethane and sulfonyl carbonyl diazomethane such as tert- butoxycarbonyl-4-methylphenyl sulfonyl diazomethane.
[0048]
Examples of the N-sulfonyloxyimide type photoacid generator include succinimide, naphthalene dicarboxylic imide, phthalic imide, cyclohexyl dicarboxylic imide, 5-norbornene-2,3-dicarboxylic imide, 7-oxabicyclo [2. 2.1] An imide skeleton such as 5-heptene-2,3-dicarboxylic acid imide and trifluoromethanesulfonate, nonafluorobutanesulfonate, heptadecafluorooctanesulfonate, 2,2,2-trifluoroethanesulfonate, pentafluorobenzene Sulfonate, 4-trifluoromethylbenzene sulfonate, 4-fluorobenzene sulfonate, toluene sulfonate, benzene sulfonate, naphthalene sulfonate, camphor sulfonate, octane sulfonate, dodecylben Nsuruhoneto, butane sulfonate, compounds of the combination, such as methane sulfonates.
[0049]
Examples of the benzoin sulfonate photoacid generator include benzoin tosylate, benzoin mesylate, and benzoin butane sulfonate.
[0050]
Pyrogallol trisulfonate photoacid generators include pyrogallol, phloroglysin, catechol, resorcinol, hydroquinone all hydroxyl groups trifluoromethanesulfonate, nonafluorobutanesulfonate, heptadecafluorooctanesulfonate, 2,2,2-trifluoro Substituted with ethanesulfonate, pentafluorobenzenesulfonate, 4-trifluoromethylbenzenesulfonate, 4-fluorobenzenesulfonate, toluenesulfonate, benzenesulfonate, naphthalenesulfonate, camphorsulfonate, octanesulfonate, dodecylbenzenesulfonate, butanesulfonate, methanesulfonate, etc. Compounds.
[0051]
Examples of the nitrobenzyl sulfonate photoacid generator include 2,4-dinitrobenzyl sulfonate, 2-nitrobenzyl sulfonate, and 2,6-dinitrobenzyl sulfonate. Specific examples of the sulfonate include trifluoromethane sulfonate and nonafluorobutane. Sulfonate, heptadecafluorooctane sulfonate, 2,2,2-trifluoroethane sulfonate, pentafluorobenzene sulfonate, 4-trifluoromethylbenzene sulfonate, 4-fluorobenzene sulfonate, toluene sulfonate, benzene sulfonate, naphthalene sulfonate, camphor sulfonate, Examples include octane sulfonate, dodecyl benzene sulfonate, butane sulfonate, methane sulfonate, and the like. A compound in which the nitro group on the benzyl side is replaced with a trifluoromethyl group can also be used.
[0052]
Examples of the sulfone photoacid generator include bis (phenylsulfonyl) methane, bis (4-methylphenylsulfonyl) methane, bis (2-naphthylsulfonyl) methane, 2,2-bis (phenylsulfonyl) propane, 2, 2-bis (4-methylphenylsulfonyl) propane, 2,2-bis (2-naphthylsulfonyl) propane, 2-methyl-2- (p-toluenesulfonyl) propiophenone, 2- (cyclohexylcarbonyl) -2- (P-toluenesulfonyl) propane, 2,4-dimethyl-2- (p-toluenesulfonyl) pentan-3-one and the like can be mentioned.
[0053]
Examples of glyoxime derivative-type photoacid generators include bis-o- (p-toluenesulfonyl) -α-dimethylglyoxime, bis-o- (p-toluenesulfol) -α-diphenylglyoxime, bis- o- (p-toluenesulfonyl) -α-dicyclohexylglyoxime, bis-o- (p-toluenesulfonyl) -2,3-pentanedione glyoxime, bis-o- (p-toluenesulfonyl) -2-methyl- 3,4-pentanedione glyoxime, bis-o- (n-butanesulfonyl) -α-dimethylglyoxime, bis-o- (n-butanesulfonyl) -α-diphenylglyoxime, bis-o- (n- Butanesulfonyl) -α-dicyclohexylglyoxime, bis-o- (n-butanesulfonyl) -2,3
-Pentanedione glyoxime, bis-o- (n-butanesulfonyl) -2-methyl-3,4-pentanedione glyoxime, bis-o- (methanesulfonyl) -α-dimethylglyoxime, bis-o- ( Trifluoromethanesulfonyl) -α-dimethylglyoxime, bis-o- (1,1,1-trifluoroethanesulfonyl) -α-dimethylglyoxime, bis-o- (tert-butanesulfonyl) -α-dimethylglyoxime Bis-o- (perfluorooctanesulfonyl) -α-dimethylglyoxime, bis-o- (cyclohexylsulfonyl) -α-dimethylglyoxime, bis-o- (benzenesulfonyl) -α-dimethylglyoxime, bis- o- (p-fluorobenzenesulfonyl) -α-dimethylglyoxime, bis-o- (P-tert-butylbenzenesulfonyl) -α-dimethylglyoxime, bis-o- (xylenesulfonyl) -α-dimethylglyoxime, bis-o- (camphorsulfonyl) -α-dimethylglyoxime and the like can be mentioned.
[0054]
Among them, preferred photoacid generators are sulfonium salt, bissulfonyldiazomethane, and N-sulfonyloxyimide.
[0055]
The optimum anion of the generated acid differs depending on the ease of cleavage of the acid labile group used in the polymer, but generally, a non-volatile or extremely non-diffusible one is selected. Suitable anions in this case are benzenesulfonate anion, toluenesulfonate anion, 4- (4-toluenesulfonyloxy) benzenesulfonate anion, pentafluorobenzenesulfonate anion, 2,2,2-trifluoroethanesulfonate anion. , Nonafluorobutanesulfonate anion, heptadecafluorooctanesulfonate anion, camphorsulfonate anion.
[0056]
The addition amount of the photoacid generator (C) in the chemically amplified positive resist material of the present invention is 0 to 20 parts by weight, preferably 1 to 10 parts by weight with respect to 100 parts by weight of the solid content in the resist material. . The photoacid generator (C) can be used alone or in combination of two or more. Further, a photoacid generator having a low transmittance at the exposure wavelength can be used, and the transmittance in the resist film can be controlled by the addition amount.
[0057]
(D) As a dissolution inhibitor of component, the hydrogen atom of the phenolic hydroxyl group of the compound having a weight average molecular weight of 100 to 1,000 and having two or more phenolic hydroxyl groups in the molecule is formed entirely by an acid labile group. Are preferably substituted at an average ratio of 10 to 100 mol%. In addition, the weight average molecular weight of the said compound is 100-1,000, Preferably it is 150-800. The blending amount of the dissolution inhibitor is 0 to 50 parts by weight, preferably 5 to 50 parts by weight, more preferably 10 to 30 parts by weight, based on 100 parts by weight of the base resin. Can be used. If the blending amount is small, the resolution may not be improved. If the blending amount is too large, the pattern film is reduced and the resolution tends to decrease.
[0058]
Examples of such a suitably used dissolution inhibitor of component (D) include bis (4- (2′-tetrahydropyranyloxy) phenyl) methane and bis (4- (2′-tetrahydrofuranyloxy) phenyl. ) Methane, bis (4-tert-butoxyphenyl) methane, bis (4-tert-butoxycarbonyloxyphenyl) methane, bis (4-tert-butoxycarbonylmethyloxyphenyl) methane, bis (4- (1′-ethoxy) Ethoxy) phenyl) methane, bis (4- (1′-ethoxypropyloxy) phenyl) methane, 2,2-bis (4 ′-(2 ″ -tetrahydropyranyloxy)) propane, 2,2-bis ( 4 ′-(2 ″ -tetrahydrofuranyloxy) phenyl) propane, 2,2-bis (4′-tert-butoxy) Enyl) propane, 2,2-bis (4′-tert-butoxycarbonyloxyphenyl) propane, 2,2-bis (4-tert-butoxycarbonylmethyloxyphenyl) propane, 2,2-bis (4 ′-( 1 ″ -ethoxyethoxy) phenyl) propane, 2,2-bis (4 ′-(1 ″ -ethoxypropyloxy) phenyl) propane, 4,4-bis (4 ′-(2 ″ -tetrahydropyranyl) Oxy) phenyl) tert-butyl valerate, 4,4-bis (4 ′-(2 ″ -tetrahydrofuranyloxy) phenyl) tert-butyl valerate, 4,4-bis (4′-tert-butoxyphenyl) valeric acid tertbutyl, 4,4-bis (4-tert-butoxycarbonyloxyphenyl) valerate tertbutyl, 4,4-bis (4 ′ tert-Butoxycarbonylmethyloxyphenyl) tert-butyl valerate, 4,4-bis (4 ′-(1 ″ -ethoxyethoxy) phenyl) tert-butyl valerate, 4,4-bis (4 ′-(1 ″) -Ethoxypropyloxy) phenyl) tert-butylvalerate, tris (4- (2'-tetrahydropyranyloxy) phenyl) methane, tris (4- (2'-tetrahydrofuranyloxy) phenyl) methane, tris (4-tert -Butoxyphenyl) methane, tris (4-tert-butoxycarbonyloxyphenyl) methane, tris (4-tert-butoxycarbonyloxymethylphenyl) methane, tris (4- (1′-ethoxyethoxy) phenyl) methane, tris ( 4- (1′-ethoxypropyloxy) phenyl) meta 1,1,2-tris (4 ′-(2 ″ -tetrahydropyranyloxy) phenyl) ethane, 1,1,2-tris (4 ′-(2 ″ -tetrahydrofuranyloxy) phenyl) ethane 1,1,2-tris (4′-tert-butoxyphenyl) ethane, 1,1,2-tris (4′-tert-butoxycarbonyloxyphenyl) ethane, 1,1,2-tris (4′- tert-butoxycarbonylmethyloxyphenyl) ethane, 1,1,2-tris (4 ′-(1′-ethoxyethoxy) phenyl) ethane, 1,1,2-tris (4 ′-(1′-ethoxypropyloxy) ) Phenyl) ethane and the like.
[0059]
As the basic compound of component (E), a compound capable of suppressing the diffusion rate when the acid generated from the photoacid generator diffuses in the resist film is suitable. , The acid diffusion rate in the resist film is suppressed, resolution is improved, sensitivity change after exposure is suppressed, substrate and environment dependency is reduced, exposure margin, pattern profile, etc. can be improved it can.
[0060]
Such basic compounds of component (E) include primary, secondary, and tertiary aliphatic amines, hybrid amines, aromatic amines, heterocyclic amines, and those having a carboxy group. Examples thereof include nitrogen compounds, nitrogen-containing compounds having a sulfonyl group, nitrogen-containing compounds having a hydroxy group, nitrogen-containing compounds having a hydroxyphenyl group, alcoholic nitrogen-containing compounds, amide derivatives, and imide derivatives.
[0061]
Specifically, primary aliphatic amines include ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, tert- Amylamine, cyclopentylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cetylamine, methylenediamine, ethylenediamine, tetraethylenepentamine, etc. are exemplified as secondary aliphatic amines. Dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, dipentylamine, disi Lopentylamine, dihexylamine, dicyclohexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, didodecylamine, dicetylamine, N, N-dimethylmethylenediamine, N, N-dimethylethylenediamine, N, N-dimethyltetraethylenepenta Examples of tertiary aliphatic amines include trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine, and tripentylamine. , Tricyclopentylamine, trihexylamine, tricyclohexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, tridodecylamine, Examples include cetylamine, N, N, N ′, N′-tetramethylmethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethyltetraethylenepentamine and the like. Is done.
[0062]
Examples of hybrid amines include dimethylethylamine, methylethylpropylamine, benzylamine, phenethylamine, and benzyldimethylamine. Specific examples of aromatic amines and heterocyclic amines include aniline derivatives (for example, aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N, N-dimethylaniline, 2-methylaniline, 3 -Melaniline, 4-methylaniline, ethylaniline, propylaniline, trimethylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2,6-dinitroaniline, 3,5 -Dinitroaniline, N, N-dimethyltoluidine, etc.), diphenyl (p-tolyl) amine, methyldiphenylamine, triphenylamine, phenylenediamine, naphthylamine, diaminonaphthalene, pyrrole derivatives (eg pyrrole, 2H-pyrrole, 1-methyl) Pyrrole, 2,4-di Tilpyrrole, 2,5-dimethylpyrrole, N-methylpyrrole, etc.), oxazole derivatives (eg, oxazole, isoxazole, etc.), thiazole derivatives (eg, thiazole, isothiazole, etc.), imidazole derivatives (eg, imidazole, 4-methyl) Imidazole, 4-methyl-2-phenylimidazole, etc.), pyrazole derivatives, furazane derivatives, pyrroline derivatives (eg pyrroline, 2-methyl-1-pyrroline etc.), pyrrolidine derivatives (eg pyrrolidine, N-methylpyrrolidine, pyrrolidinone, N-methylpyrrolidone etc.), imidazoline derivatives, imidazolidine derivatives, pyridine derivatives (eg pyridine, methylpyridine, ethylpyridine, propylpyridine, butylpyridine, 4- (1-butylpentyl) pyri , Dimethylpyridine, trimethylpyridine, triethylpyridine, phenylpyridine, 3-methyl-2-phenylpyridine, 4-tert-butylpyridine, diphenylpyridine, benzylpyridine, methoxypyridine, butoxypyridine, dimethoxypyridine, 1-methyl-2 -Pyridine, 4-pyrrolidinopyridine, 1-methyl-4-phenylpyridine, 2- (1-ethylpropyl) pyridine, aminopyridine, dimethylaminopyridine, etc.), pyridazine derivatives, pyrimidine derivatives, pyrazine derivatives, pyrazoline derivatives, pyrazolidine Derivatives, piperidine derivatives, piperazine derivatives, morpholine derivatives, indole derivatives, isoindole derivatives, 1H-indazole derivatives, indoline derivatives, quinoline derivatives (eg, quinoline, 3 -Quinolinecarbonitrile, etc.), isoquinoline derivatives, cinnoline derivatives, quinazoline derivatives, quinoxaline derivatives, phthalazine derivatives, purine derivatives, pteridine derivatives, carbazole derivatives, phenanthridine derivatives, acridine derivatives, phenazine derivatives, 1,10-phenanthroline derivatives, adenine Examples include derivatives, adenosine derivatives, guanine derivatives, guanosine derivatives, uracil derivatives, uridine derivatives and the like.
[0063]
Further, examples of the nitrogen-containing compound having a carboxyl group include aminobenzoic acid, indolecarboxylic acid, amino acid derivatives (for example, nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, glycylleucine, leucine. , Methionine, phenylalanine, threonine, lysine, 3-aminopyrazine-2-carboxylic acid, methoxyalanine and the like), and nitrogen-containing compounds having a sulfonyl group include 3-pyridinesulfonic acid, pyridinium p-toluenesulfonate, etc. Examples of the nitrogen-containing compound having a hydroxy group, the nitrogen-containing compound having a hydroxyphenyl group, and the alcoholic nitrogen-containing compound include 2-hydroxypyridine, aminocresol, 2,4-quinolinediol, 3-i Dolemethanol hydrate, monoethanolamine, diethanolamine, triethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, triisopropanolamine, 2,2'-iminodiethanol, 2-aminoethanol, 3-amino-1 -Propanol, 4-amino-1-butanol, 4- (2-hydroxyethyl) morpholine, 2- (2-hydroxyethyl) pyridine, 1- (2-hydroxyethyl) piperazine, 1- [2- (2-hydroxy) Ethoxy) ethyl] piperazine, piperidine ethanol, 1- (2-hydroxyethyl) pyrrolidine, 1- (2-hydroxyethyl) -2-pyrrolidinone, 3-piperidino-1,2-propanediol, 3-pyrrolidino-1,2 -Propanediol, 8 Hydroxyurolidine, 3-cuincridinol, 3-tropanol, 1-methyl-2-pyrrolidineethanol, 1-aziridineethanol, N- (2-hydroxyethyl) phthalimide, N- (2-hydroxyethyl) isonicotinamide Etc. are exemplified. Examples of amide derivatives include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide and the like. Examples of imide derivatives include phthalimide, succinimide, maleimide and the like.
[0064]
Furthermore, 1 type, or 2 or more types chosen from the basic compound shown by the following general formula (B) -1 can also be added.
N (X)n(Y)3-n          (B) -1
In the formula, n = 1, 2 or 3. The side chains X may be the same or different and can be represented by the following general formulas (X) -1 to (X) -3. The side chain Y represents the same or different hydrogen atom, or a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, and may contain an ether group or a hydroxyl group. Xs may be bonded to form a ring.
[0065]
Embedded image
Figure 0003865048
[0066]
Where R300, R302, R305Is a linear or branched alkylene group having 1 to 4 carbon atoms, R301, R304Is a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, and may contain one or more hydroxy groups, ether groups, ester groups or lactone rings.
[0067]
R303Is a single bond or a linear or branched alkylene group having 1 to 4 carbon atoms, and R306Is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, and may contain one or more hydroxy groups, ether groups, ester groups or lactone rings.
[0068]
Specific examples of the compound represented by formula (B) -1 are given below.
Tris (2-methoxymethoxyethyl) amine, tris {2- (2-methoxyethoxy) ethyl} amine, tris {2- (2-methoxyethoxymethoxy) ethyl} amine, tris {2- (1-methoxyethoxy) ethyl } Amine, Tris {2- (1-ethoxyethoxy) ethyl} amine, Tris {2- (1-ethoxypropoxy) ethyl} amine, Tris [2- {2- (2-hydroxyethoxy) ethoxy} ethyl] amine, 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo [8.8.8] hexacosane, 4,7,13,18-tetraoxa-1,10-diazabicyclo [8.5.5] Eicosane, 1,4,10,13-tetraoxa-7,16-diazabicyclooctadecane, 1-aza-12-crown-4 1-aza-15-crown-5, 1-aza-18-crown-6, tris (2-formyloxyethyl) amine, tris (2-formyloxyethyl) amine, tris (2-acetoxyethyl) amine, Tris (2-propionyloxyethyl) amine, tris (2-butyryloxyethyl) amine, tris (2-isobutyryloxyethyl) amine, tris (2-valeryloxyethyl) amine, tris (2-pivalloy) Ruoxyxyethyl) amine, N, N-bis (2-acetoxyethyl) 2- (acetoxyacetoxy) ethylamine, tris (2-methoxycarbonyloxyethyl) amine, tris (2-tert-butoxycarbonyloxyethyl) amine, tris [2- (2-oxopropoxy) ethyl] amine, tris [2- Methoxycarbonylmethyl) oxyethyl] amine, tris [2- (tert-butoxycarbonylmethyloxy) ethyl] amine, tris [2- (cyclohexyloxycarbonylmethyloxy) ethyl] amine, tris (2-methoxycarbonylethyl) amine, tris (2-ethoxycarbonylethyl) amine, N, N-bis (2-hydroxyethyl) 2- (methoxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (methoxycarbonyl) ethylamine, N, N -Bis (2-hydroxyethyl) 2- (ethoxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (ethoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2- (2 -Methoxyethoxycarbonyl) Tylamine, N, N-bis (2-acetoxyethyl) 2- (2-methoxyethoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2- (2-hydroxyethoxycarbonyl) ethylamine, N, N- Bis (2-acetoxyethyl) 2- (2-acetoxyethoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2-[(methoxycarbonyl) methoxycarbonyl] ethylamine, N, N-bis (2-acetoxy) Ethyl) 2-[(methoxycarbonyl) methoxycarbonyl] ethylamine, N, N-bis (2-hydroxyethyl) 2- (2-oxopropoxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- ( 2-oxopropoxycarbonyl) ethylamine, N, N-bis ( -Hydroxyethyl) 2- (tetrahydrofurfuryloxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (tetrahydrofurfuryloxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2- [(2-oxotetrahydrofuran-3-yl) oxycarbonyl] ethylamine, N, N-bis (2-acetoxyethyl) 2-[(2-oxotetrahydrofuran-3-yl) oxycarbonyl] ethylamine, N, N-bis (2-hydroxyethyl) 2- (4-hydroxybutoxycarbonyl) ethylamine, N, N-bis (2-formyloxyethyl) 2- (4-formyloxybutoxycarbonyl) ethylamine, N, N-bis (2-formyl) Oxyethyl) 2- (2-formyloxyate) Sicarbonyl) ethylamine, N, N-bis (2-methoxyethyl) 2- (methoxycarbonyl) ethylamine, N- (2-hydroxyethyl) bis [2- (methoxycarbonyl) ethyl] amine, N- (2-acetoxy) Ethyl) bis [2- (methoxycarbonyl) ethyl] amine, N- (2-hydroxyethyl) bis [2- (ethoxycarbonyl) ethyl] amine, N- (2-acetoxyethyl) bis [2- (ethoxycarbonyl) Ethyl] amine, N- (3-hydroxy-1-propyl) bis [2- (methoxycarbonyl) ethyl] amine, N- (3-acetoxy-1-propyl) bis [2- (methoxycarbonyl) ethyl] amine, N- (2-methoxyethyl) bis [2- (methoxycarbonyl) ethyl] amine, N-butylbis [2 -(Methoxycarbonyl) ethyl] amine, N-butylbis [2- (2-methoxyethoxycarbonyl) ethyl] amine, N-methylbis (2-acetoxyethyl) amine, N-ethylbis (2-acetoxyethyl) amine, N- Methylbis (2-pivaloyloxyxyethyl) amine, N-ethylbis [2- (methoxycarbonyloxy) ethyl] amine, N-ethylbis [2- (tert-butoxycarbonyloxy) ethyl] amine, tris (methoxycarbonylmethyl) Examples include, but are not limited to, amine, tris (ethoxycarbonylmethyl) amine, N-butylbis (methoxycarbonylmethyl) amine, N-hexylbis (methoxycarbonylmethyl) amine, and β- (diethylamino) -δ-valerolactone.
[0069]
In addition, a basic compound can be used individually by 1 type or in combination of 2 or more types, The compounding quantity is 0-2 weight part with respect to 100 weight part of solid content in a resist material, especially 0. What mixed 01 to 1 weight part is suitable. If the blending amount exceeds 2 parts by weight, the sensitivity may decrease too much.
[0070]
A surfactant for improving the coating property can be further added to the chemically amplified positive resist material of the present invention.
[0071]
Examples of surfactants include, but are not limited to, polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene olein ether, Polyoxyethylene alkyl allyl ethers such as polyoxyethylene octylphenol ether and polyoxyethylene nonylphenol ether, polyoxyethylene polyoxypropylene block copolymers, sorbitan fatty acid esters such as sorbitan monolaurate, sorbitan monopalmitate and sorbitan monostearate Polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan mono Nonionic surfactants of polyoxyethylene sorbitan fatty acid esters such as stearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, F-top EF301, EF303, EF352 (Tochem Products), MegaFuck F171, F172 , F173 (Dainippon Ink and Chemicals), Florard FC430, FC431 (Sumitomo 3M), Asahi Guard AG710, Surflon S-381, S-382, SC101, SC102, SC103, SC104, SC105, SC106, Surfinol E1004, KH- Fluorosurfactants such as 10, KH-20, KH-30, KH-40 (Asahi Glass), organosiloxane polymers KP341, X-70-092, X-70-09 (Shin-Etsu Chemical), acrylic acid or methacrylic acid Polyflow No. 75, no. 95 (Kyoeisha Yushi Chemical Co., Ltd.), among which FC430, Surflon S-381, Surfynol E1004, KH-20, KH-30 are preferred. These can be used alone or in combination of two or more.
[0072]
The addition amount of the surfactant in the chemically amplified positive resist material of the present invention is 2 parts by weight or less, preferably 1 part by weight or less with respect to 100 parts by weight of the solid content in the resist material composition.
[0073]
Various chemically amplified positive resist materials containing (A) an organic solvent of the present invention, (B) a polymer compound represented by the above general formula (1) and (2), and (C) an acid generator. In the case of use in the manufacture of integrated circuits, known lithography techniques can be used, although not particularly limited.
[0074]
Substrates for manufacturing integrated circuits (Si, SiO2, SiN, SiON, TiN, WSi, BPSG, SOG, organic antireflection film, etc.) The coating thickness is 0 by an appropriate coating method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor coating, etc. It is applied so as to be 1 to 2.0 μm, and prebaked on a hot plate at 60 to 150 ° C. for 1 to 10 minutes, preferably at 80 to 120 ° C. for 1 to 5 minutes. Next, a target pattern is exposed through a predetermined mask at a light source selected from ultraviolet rays, far ultraviolet rays, electron beams, X-rays, excimer lasers, γ rays, synchrotron radiation, and the like, preferably at an exposure wavelength of 300 nm or less. Exposure amount is 1 ~ 200mJ / cm2Degree, preferably 10 to 100 mJ / cm2It is preferable that the exposure is performed to a degree. Post exposure baking (PEB) is performed on a hot plate at 60 to 150 ° C. for 1 to 5 minutes, preferably 80 to 120 ° C. for 1 to 3 minutes.
[0075]
Furthermore, 0.1 to 5%, preferably 2 to 3% of an aqueous developer solution such as tetramethylammonium hydroxide (TMAH) is used for 0.1 to 3 minutes, preferably 0.5 to 2 minutes. A target pattern is formed on the substrate by developing by a conventional method such as a dip method, a paddle method, or a spray method. The resist material of the present invention is a fine patterning by far ultraviolet rays of 193 to 254 nm, vacuum ultraviolet rays of 157 nm, electron beams, soft X-rays, X-rays, excimer lasers, γ rays and synchrotron radiation among high energy rays. Ideal for. In addition, when the above range deviates from the upper limit and the lower limit, the target pattern may not be obtained.
[0076]
【Example】
EXAMPLES Hereinafter, although a synthesis example, a comparative synthesis example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
[0077]
[Synthesis Example 1]
To a 2 L flask, 13.3 g of acetoxystyrene, 58.6 g of indene, 8.0 g of methacrylic acid 1-ethylcyclopentyl ester, and 80 g of toluene as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 4.1 g of AIBN was added as a polymerization initiator, and the temperature was raised to 60 ° C. and reacted for 15 hours. The reaction solution was concentrated to 1/2 and precipitated in a mixed solution of 4.5 L of methanol and 0.5 L of water, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain 57 g of a white polymer. It was. This polymer was dissolved again in 0.5 L of methanol and 1.0 L of tetrahydrofuran, 70 g of triethylamine and 15 g of water were added to perform a deprotection reaction, and neutralized with acetic acid. The reaction solution was concentrated and then dissolved in 0.5 L of acetone, and precipitation, filtration and drying were performed in the same manner as above to obtain 45 g of a white polymer.
[0078]
The polymer obtained13C,1When H-NMR and GPC measurement was performed, the following analysis results were obtained.
Copolymer composition ratio
Hydroxystyrene: Indene: Methacrylic acid 1-ethylcyclopentyl ester = 37.9: 40.8: 21.3
Weight average molecular weight (Mw) = 5,500
Molecular weight distribution (Mw / Mn) = 1.72
Let this be (poly-A).
[0079]
[Synthesis Example 2]
To a 2 L flask, 22.7 g of acetoxystyrene, 49.5 g of indene, 7.8 g of 1-ethylcyclopentyl methacrylate, and 80 g of toluene as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 4.0 g of AIBN was added as a polymerization initiator, and the temperature was raised to 60 ° C., followed by reaction for 15 hours. The reaction solution was concentrated to 1/2, precipitated in a mixed solution of 4.5 L of methanol and 0.5 L of water, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain 59 g of a white polymer. It was. This polymer was dissolved again in 0.5 L of methanol and 1.0 L of tetrahydrofuran, 70 g of triethylamine and 15 g of water were added to perform a deprotection reaction, and neutralized with acetic acid. The reaction solution was concentrated and then dissolved in 0.5 L of acetone, and precipitation, filtration and drying were performed in the same manner as above to obtain 46 g of a white polymer.
[0080]
The polymer obtained13C,1When H-NMR and GPC measurement was performed, the following analysis results were obtained.
Copolymer composition ratio
Hydroxystyrene: Indene: Methacrylic acid 1-ethylcyclopentyl ester = 53.8: 28.8: 17.4
Weight average molecular weight (Mw) = 6,500
Molecular weight distribution (Mw / Mn) = 1.75
This is defined as (poly-B).
[0081]
[Synthesis Example 3]
To a 2 L flask, 36.8 g of acetoxystyrene, 32.9 g of indene, 10.3 g of 1-ethylcyclopentyl methacrylate, and 70 g of toluene as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 3.7 g of AIBN was added as a polymerization initiator, and the temperature was raised to 60 ° C., followed by reaction for 15 hours. The reaction solution was concentrated to 1/2, precipitated in a mixed solution of 4.5 L of methanol and 0.5 L of water, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain 65 g of a white polymer. It was. This polymer was dissolved again in 0.5 L of methanol and 1.0 L of tetrahydrofuran, 70 g of triethylamine and 15 g of water were added to perform a deprotection reaction, and neutralized with acetic acid. The reaction solution was concentrated and then dissolved in 0.5 L of acetone, and precipitation, filtration and drying were performed in the same manner as above to obtain 52 g of a white polymer.
[0082]
The polymer obtained13C,1When H-NMR and GPC measurement was performed, the following analysis results were obtained.
Copolymer composition ratio
Hydroxystyrene: Indene: Methacrylic acid 1-ethylcyclopentyl ester = 63.6: 20.0: 16.4
Weight average molecular weight (Mw) = 8,800
Molecular weight distribution (Mw / Mn) = 1.78
This is defined as (poly-C).
[0083]
[Synthesis Example 4]
Acetoxystyrene (37.8 g), indene (33.9 g), methacrylic acid t-butyl ester (8.3 g), and toluene (70 g) as a solvent were added to a 2 L flask. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 3.8 g of AIBN was added as a polymerization initiator, and the temperature was raised to 60 ° C., followed by reaction for 15 hours. The reaction solution was concentrated to 1/2, precipitated in a mixed solution of 4.5 L of methanol and 0.5 L of water, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain 68 g of a white polymer. It was. This polymer was dissolved again in 0.5 L of methanol and 1.0 L of tetrahydrofuran, 70 g of triethylamine and 15 g of water were added to perform a deprotection reaction, and neutralized with acetic acid. The reaction solution was concentrated and then dissolved in 0.5 L of acetone, and precipitation, filtration and drying were performed in the same manner as above to obtain 54 g of a white polymer.
[0084]
The polymer obtained13C,1When H-NMR and GPC measurement was performed, the following analysis results were obtained.
Copolymer composition ratio
Hydroxystyrene: Indene: Methacrylic acid t-butyl ester = 63.3: 19.8: 16.9
Weight average molecular weight (Mw) = 8,500
Molecular weight distribution (Mw / Mn) = 1.73
Let this be (poly-D).
[0085]
[Synthesis Example 5]
30.8 g of acetoxystyrene, 117.9 g of indene, and 20 g of toluene as a solvent were added to a 2 L flask. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 6.2 g of AIBN was added as a polymerization initiator, and the temperature was raised to 60 ° C., followed by reaction for 15 hours. The reaction solution was concentrated to 1/2, precipitated in a mixed solution of 4.5 L of methanol and 0.5 L of water, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain 77 g of a white polymer. It was. This polymer was dissolved again in 0.5 L of methanol and 1.0 L of tetrahydrofuran, 70 g of triethylamine and 15 g of water were added to perform a deprotection reaction, and neutralized with acetic acid. The reaction solution was concentrated and then dissolved in 0.5 L of acetone, and precipitation, filtration and drying were performed in the same manner as above to obtain 52 g of a white polymer. This polymer was dissolved in 500 mL of a tetrahydrofuran solvent, and 13.8 g of potassium carbonate and 10.2 g of t-butyl chloroacetate were further added and reacted at room temperature for 10 hours. The reaction solution was neutralized with 5.0 g of acetic acid, crystallized and precipitated in 4 L of water, washed twice with water, the obtained white solid was filtered, dried under reduced pressure at 40 ° C., and 58 g of a white polymer. Got.
[0086]
The polymer obtained13C,1When H-NMR and GPC measurement was performed, the following analysis results were obtained.
Copolymer composition ratio
Hydroxystyrene: indene: pt-butoxycarbonylmethyloxystyrene = 29.0: 62.0: 9.0
Weight average molecular weight (Mw) = 4,600
Molecular weight distribution (Mw / Mn) = 1.77
Let this be (poly-E).
[0087]
[Synthesis Example 6]
To a 2 L flask, 63 g of 5-hydroxyindene, 20.6 g of 1-ethylcyclopentyl ester of methacrylic acid, and 50 g of toluene as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 4.2 g of AIBN was added as a polymerization initiator, and the temperature was raised to 60 ° C., followed by reaction for 15 hours. The reaction solution was concentrated to 1/2, precipitated in a mixed solution of 4.5 L of methanol and 0.5 L of water, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain 61 g of a white polymer. It was.
[0088]
The polymer obtained13C,1When H-NMR and GPC measurement was performed, the following analysis results were obtained.
Copolymer composition ratio
5-hydroxyindene: methacrylic acid 1-ethylcyclopentyl ester = 71.0: 29.0
Weight average molecular weight (Mw) = 7,100
Molecular weight distribution (Mw / Mn) = 1.70
This is defined as (poly-F).
[0089]
[Comparative synthesis example]
The product names and analysis results of the two-component polymers synthesized by the same method as in the above synthesis examples are shown. Hydroxystyrene: Methacrylic acid 1-ethylcyclopentyl ester = 71: 29
Weight average molecular weight (Mw) = 16,100
Molecular weight distribution (Mw / Mn) = 1.70
Let this be (poly-G).
[0090]
Also, using a 2 L flask, 40 g of polyhydroxystyrene (Mw = 11,000, Mw / Mn = 1.08) was dissolved in 400 mL of tetrahydrofuran, and 1.4 g of methanesulfonic acid and 12.3 g of ethyl vinyl ether were added. The mixture was reacted at room temperature for 1 hour, and 2.5 g of aqueous ammonia (30%) was added to stop the reaction. The reaction solution was crystallized and precipitated using 5 L of aqueous acetic acid, and further washed twice with water. The solid was filtered and dried under reduced pressure at 40 ° C. to obtain 47 g of a white polymer.
[0091]
The polymer obtained13C,1When H-NMR and GPC measurement was performed, the following analysis results were obtained.
Copolymer composition ratio
Hydroxystyrene: p-ethoxyethoxystyrene = 63.5: 36.5
Weight average molecular weight (Mw) = 13,000
Molecular weight distribution (Mw / Mn) = 1.10
This is defined as (poly-H).
[0092]
[Examples and Comparative Examples]
Resist materials shown in Tables 1 and 2 were prepared. At that time, the polymer compounds of the resist materials listed in Tables 1 and 2 used poly-A to H shown in the above synthesis examples and comparative synthesis examples, and the other components were as follows.
PAG1: 4- (4'-methylphenylsulfonyloxy) phenylsulfonic acid triphenylsulfonium
PAG2: 4- (4'-methylphenylsulfonyloxy) phenylsulfonic acid (4-tertbutylphenyl) diphenylsulfonium
PAG3: Bis (cyclohexylsulfonyl) diazomethane
PAG4: bis (2,4-dimethylphenylsulfonyl) diazomethane
Dissolution inhibitor A: bis (4- (2'-tetrahydropyranyloxy) phenyl) methane
Basic compound A: Tris (2-methoxyethyl) amine
Surfactant A: FC-430 (manufactured by Sumitomo 3M)
Surfactant B: Surflon S-381 (Asahi Glass Co., Ltd.)
Solvent A: Propylene glycol methyl ether acetate
Solvent B: Ethyl lactate
[0093]
[Table 1]
Figure 0003865048
[0094]
[Table 2]
Figure 0003865048
[0095]
  The resulting resist material is 0.2 μm Teflon.(Registered trademark)After filtering with a filter manufactured by this method, this resist solution was spin-coated on a silicon wafer and applied to 0.6 μm.
  Next, this silicon wafer was baked on a hot plate at 100 ° C. for 90 seconds. Furthermore, it was exposed using an excimer laser stepper (Nikon Corporation, NSR2005EX NA = 0.5), baked at 110 ° C. for 90 seconds (PEB: post exposure bake), and a 2.38% aqueous solution of tetramethylammonium hydroxide. The positive pattern (Examples 1 to 6 and Comparative Examples 1 and 2) could be obtained by developing with.
[0096]
The obtained resist pattern was evaluated as follows.
Resist pattern evaluation method:
The exposure amount for resolving the top and bottom of the 0.18 μm line and space at 1: 1 is the optimum exposure amount (sensitivity: Eop), and the minimum line width of the separated line and space at this exposure amount is evaluated. Resolution. Moreover, the resist cross section was observed for the shape of the resolved resist pattern using a scanning electron microscope.
The PED stability of the resist was evaluated by the fluctuation value of the line width by performing PEB (post exposure bake) after exposure for 24 hours after exposure at the optimum exposure amount. The smaller the variation value, the better the PED stability.
The resist pattern evaluation results are shown in Table 3.
[0097]
Evaluation methods other than pattern evaluation:
The dry etching resistance after development of the resist material is actually etched using TE8500S manufactured by Tokyo Electron Co., Ltd., and the pattern shape after that is observed using a scanning electron microscope. When the film thickness reduction amount is 1.0, the other resists are shown as relative ratios of the reduction amounts. That is, the smaller the value, the better the resist. Etching was performed under the following conditions.
Figure 0003865048
[0098]
[Table 3]
Figure 0003865048
[0099]
FIG. 1 shows that the dry etching resistance has a much higher correlation with the ratio of indene in the polymer than the structure of the polymer used and the resist composition.
[0100]
【The invention's effect】
  According to the present invention, the alkali dissolution rate contrast before and after exposure is significantly high, the sensitivity is high, the resolution is high, and the etching resistance is particularly excellent. Suitable chemically amplified resist materialTheIt is possible to give.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship of dry etching resistance according to an indene ratio.

Claims (6)

(A)有機溶剤、
(B)ベース樹脂として、下記一般式(1)で示される繰り返し単位を有すると共に、酸不安定基が酸の作用により分解してアルカリに対する溶解性を増加させる繰り返し単位を含む、重量平均分子量が1,000〜500,000である高分子化合物
Figure 0003865048
(式中、R1、R2は水素原子、ヒドロキシ基、置換可ヒドロキシアルキル基、直鎖状もしくは分岐状のアルキル基、置換可アルコキシ基、又はハロゲン原子を表す。また、nは0又は1〜4の正の整数である。)
(C)酸発生剤
を含有してなることを特徴とする化学増幅ポジ型レジスト材料。
(A) an organic solvent,
(B) The base resin has a repeating unit represented by the following general formula (1), and includes a repeating unit in which the acid labile group is decomposed by the action of an acid to increase the solubility in alkali, and the weight average molecular weight is A polymer compound of 1,000 to 500,000 ,
Figure 0003865048
(Wherein R 1 and R 2 represent a hydrogen atom, a hydroxy group, a substituted hydroxyalkyl group, a linear or branched alkyl group, a substitutable alkoxy group, or a halogen atom, and n is 0 or 1) It is a positive integer of ~ 4.)
(C) Acid generator
Chemically amplified positive resist material characterized by containing a.
(A)有機溶剤、
(B)ベース樹脂として、下記一般式(2)で示される繰り返し単位を有する、重量平均分子量が1,000〜500,000である高分子化合物
Figure 0003865048
(式中、R1、R2、R4は水素原子、ヒドロキシ基、置換可ヒドロキシアルキル基、直鎖状もしくは分岐状のアルキル基、置換可アルコキシ基、又はハロゲン原子を表し、R3、R5は水素原子又はメチル基を表し、R6は水素原子、メチル基、アルコキシカルボニル基、シアノ基、又はハロゲン原子を表し、R7は炭素数1〜20のアルキル基を表す。また、nは0又は1〜4の正の整数であり、mは0又は1〜5の正の整数である。p、q、sは0又は正数であり、rは正数である。)
(C)酸発生剤
を含有してなることを特徴とする化学増幅ポジ型レジスト材料。
(A) an organic solvent,
(B) As a base resin , a polymer compound having a repeating unit represented by the following general formula (2) and having a weight average molecular weight of 1,000 to 500,000 ,
Figure 0003865048
(Wherein R 1 , R 2 and R 4 represent a hydrogen atom, a hydroxy group, a substituted hydroxyalkyl group, a linear or branched alkyl group, a substitutable alkoxy group, or a halogen atom, R 3 , R 5 represents a hydrogen atom or a methyl group, R 6 represents a hydrogen atom, a methyl group, an alkoxycarbonyl group, a cyano group, or a halogen atom, R 7 represents an alkyl group having 1 to 20 carbon atoms, and n represents 0 or a positive integer of 1 to 4, m is a positive integer of 0 or 1 to 5. p, q, and s are 0 or a positive number, and r is a positive number.)
(C) Acid generator
Chemically amplified positive resist material characterized by containing a.
式(2)において、R1、R4の一方又は双方が、下記式(3)、(4)で示される基、炭素数4〜20の直鎖状、分岐状又は環状の3級アルコキシ基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシロキシ基、炭素数4〜20のオキソアルコキシ基から選ばれるものである請求項2記載の化学増幅ポジ型レジスト材料。
Figure 0003865048
(式中、R8、R9、R11、R12は各々独立して水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基を示し、R10は炭素数1〜18の酸素原子を介在してもよい1価の炭化水素基、R8とR9、R8とR10、R9とR10とは環を形成してもよく、環を形成する場合はR8、R9、R10はそれぞれ炭素数1〜18の直鎖状又は分岐状のアルキレン基を示す。R13は炭素数4〜40の直鎖状、分岐状又は環状のアルキル基を示す。また、aは0又は1〜5の整数である。)
In the formula (2), one or both of R 1 and R 4 are groups represented by the following formulas (3) and (4), linear, branched or cyclic tertiary alkoxy groups having 4 to 20 carbon atoms. The chemically amplified positive resist composition according to claim 2, wherein each alkyl group is selected from a trialkylsiloxy group having 1 to 6 carbon atoms and an oxoalkoxy group having 4 to 20 carbon atoms.
Figure 0003865048
(In the formula, R 8 , R 9 , R 11 and R 12 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms, and R 10 has 1 to 18 carbon atoms. A monovalent hydrocarbon group which may intervene an oxygen atom, R 8 and R 9 , R 8 and R 10 , R 9 and R 10 may form a ring, and in the case of forming a ring, R 8 , R 9 and R 10 each represents a linear or branched alkylene group having 1 to 18 carbon atoms, and R 13 represents a linear, branched or cyclic alkyl group having 4 to 40 carbon atoms. , A is 0 or an integer of 1-5.)
更に、(D)溶解阻止剤を含有してなることを特徴とする請求項1、2又は3記載の化学増幅ポジ型レジスト材料。 The chemically amplified positive resist composition according to claim 1, 2 or 3, further comprising (D) a dissolution inhibitor . 更に、(E)添加剤として塩基性化合物を配合したことを特徴とする請求項1乃至4のいずれか1項記載の化学増幅ポジ型レジスト材料。Additionally, (E) The resist composition of any one of claims 1 to 4, characterized in that the basic compound was formulated as an additive. 請求項1乃至5のいずれか1項に記載のレジスト材料を基板上に塗布する工程と、加熱処理後、フォトマスクを介して高エネルギー線もしくは電子線で露光する工程と、必要に応じて加熱処理した後、現像液を用いて現像する工程とを含むことを特徴とするパターン形成方法。A step of applying the resist material according to any one of claims 1 to 5 on a substrate, a step of exposing to high energy rays or an electron beam through a photomask after the heat treatment, and heating as necessary And a step of developing using a developer after the treatment.
JP2001325907A 2000-11-01 2001-10-24 Resist material and pattern forming method Expired - Lifetime JP3865048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325907A JP3865048B2 (en) 2000-11-01 2001-10-24 Resist material and pattern forming method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000334340 2000-11-01
JP2000-334340 2000-11-01
JP2001325907A JP3865048B2 (en) 2000-11-01 2001-10-24 Resist material and pattern forming method

Publications (2)

Publication Number Publication Date
JP2002202610A JP2002202610A (en) 2002-07-19
JP3865048B2 true JP3865048B2 (en) 2007-01-10

Family

ID=26603264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325907A Expired - Lifetime JP3865048B2 (en) 2000-11-01 2001-10-24 Resist material and pattern forming method

Country Status (1)

Country Link
JP (1) JP3865048B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8057985B2 (en) 2008-08-28 2011-11-15 Shin-Etsu Chemical Co., Ltd. Polymerizable anion-containing sulfonium salt and polymer, resist composition, and patterning process
US8129086B2 (en) 2008-06-03 2012-03-06 Shin-Etsu Chemical Co., Ltd. Polymerizable compound, polymer, positive resist composition, and patterning process using the same
US8211618B2 (en) 2009-03-09 2012-07-03 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8450042B2 (en) 2009-03-09 2013-05-28 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8501384B2 (en) 2010-01-08 2013-08-06 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8574817B2 (en) 2011-10-03 2013-11-05 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8623590B2 (en) 2010-11-02 2014-01-07 Shin-Etsu Chemical Co., Ltd. Pattern forming process
US8632939B2 (en) 2010-02-26 2014-01-21 Shin-Etsu Chemical Co., Ltd. Polymer, chemically amplified positive resist composition and pattern forming process
US8735046B2 (en) 2010-11-29 2014-05-27 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
KR20140079292A (en) 2012-12-18 2014-06-26 신에쓰 가가꾸 고교 가부시끼가이샤 Negative resist composition and patterning process using the same
KR20140097016A (en) 2013-01-29 2014-08-06 신에쓰 가가꾸 고교 가부시끼가이샤 Negative resist composition and patterning process
US8808966B2 (en) 2011-07-27 2014-08-19 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8841061B2 (en) 2011-10-03 2014-09-23 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8911929B2 (en) 2012-11-21 2014-12-16 Shin-Etsu Chemical Co., Ltd. Developer and patterning process
KR20140145085A (en) 2013-06-12 2014-12-22 신에쓰 가가꾸 고교 가부시끼가이샤 Developer for photosensitive resist material and patterning process
US9017918B2 (en) 2010-06-01 2015-04-28 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, chemically amplified positive resist composition, and patterning process
US9023586B2 (en) 2012-12-18 2015-05-05 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process using same
US9040223B2 (en) 2012-12-26 2015-05-26 Shin-Etsu Chemical Co., Ltd. Resist composition, patterning process and polymer
US9057959B2 (en) 2013-06-19 2015-06-16 Shin-Etsu Chemical Co., Ltd. Developer for photosensitive resist material and patterning process
US9075308B2 (en) 2012-08-13 2015-07-07 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US9086625B2 (en) 2012-09-05 2015-07-21 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9152050B2 (en) 2012-09-05 2015-10-06 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9164392B2 (en) 2013-04-10 2015-10-20 Shin-Etsu Chemical Co., Ltd. Developer and patterning process
US9201300B2 (en) 2012-12-20 2015-12-01 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9250523B2 (en) 2012-09-05 2016-02-02 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9310683B2 (en) 2012-04-26 2016-04-12 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, positive resist composition and patterning process
US9316915B2 (en) 2013-11-28 2016-04-19 Shin-Etsu Chemical Co., Ltd. Negative resist composition and pattern forming process
US9360753B2 (en) 2011-07-25 2016-06-07 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
KR20160084294A (en) 2015-01-05 2016-07-13 신에쓰 가가꾸 고교 가부시끼가이샤 Developer and patterning process
KR20160150046A (en) 2015-06-19 2016-12-28 신에쓰 가가꾸 고교 가부시끼가이샤 Polymer, chemically amplified positive resist composition and patterning process
KR20170007129A (en) 2015-07-09 2017-01-18 신에쓰 가가꾸 고교 가부시끼가이샤 Monomer, polymer, positive resist composition, and patterning processs

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4368282B2 (en) 2004-09-24 2009-11-18 富士フイルム株式会社 Positive resist composition and pattern forming method using the same
ATE486098T1 (en) * 2004-12-17 2010-11-15 Dow Corning SILOXANE RESIN COATING
KR100620437B1 (en) 2005-01-17 2006-09-11 삼성전자주식회사 Photosensitive resin, photoresist composition having the photosensitive resin and method of forming a photoresist pattern using the photoresist composition
JP4420226B2 (en) 2005-02-18 2010-02-24 信越化学工業株式会社 Chemically amplified positive resist material and pattern forming method
JP4582331B2 (en) * 2005-11-08 2010-11-17 信越化学工業株式会社 Resist material and pattern forming method
JP2007197613A (en) * 2006-01-27 2007-08-09 Jsr Corp Radiosensitive resin composition
JP4623311B2 (en) 2006-06-14 2011-02-02 信越化学工業株式会社 Photoacid generator for chemically amplified resist material, resist material containing the photoacid generator, and pattern forming method using the same
JP5183903B2 (en) * 2006-10-13 2013-04-17 信越化学工業株式会社 Polymer compound, resist material, and pattern forming method using the same
JP5158370B2 (en) 2008-02-14 2013-03-06 信越化学工業株式会社 Double pattern formation method
JP5290129B2 (en) 2008-12-25 2013-09-18 信越化学工業株式会社 Chemically amplified positive resist composition and resist pattern forming method
JP5387181B2 (en) 2009-07-08 2014-01-15 信越化学工業株式会社 Sulfonium salt, resist material and pattern forming method
JP5445488B2 (en) 2011-02-28 2014-03-19 信越化学工業株式会社 Chemically amplified negative resist composition and pattern forming method
JP5365651B2 (en) 2011-02-28 2013-12-11 信越化学工業株式会社 Chemically amplified negative resist composition and pattern forming method
JP6248882B2 (en) * 2014-09-25 2017-12-20 信越化学工業株式会社 Sulfonium salt, resist composition, and resist pattern forming method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249509A (en) * 1990-12-29 1992-09-04 Kawasaki Steel Corp Patterning material
JPH0643646A (en) * 1992-07-24 1994-02-18 Kawasaki Steel Corp Photoresist composition
JPH1090887A (en) * 1996-09-13 1998-04-10 Nippon Steel Chem Co Ltd Photosensitive resin composition
JP3708688B2 (en) * 1996-09-13 2005-10-19 株式会社東芝 Resist pattern forming method
JP3570477B2 (en) * 1997-01-24 2004-09-29 信越化学工業株式会社 High molecular compound and chemically amplified positive resist material
JPH11119018A (en) * 1997-10-08 1999-04-30 Jsr Corp Radiation sensitive composition for color filter
JP3996704B2 (en) * 1998-05-28 2007-10-24 新日本石油株式会社 Far ultraviolet positive resist composition
JP3504156B2 (en) * 1998-09-24 2004-03-08 株式会社東芝 Semiconductor device manufacturing method, photosensitive composition and pattern forming method

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129086B2 (en) 2008-06-03 2012-03-06 Shin-Etsu Chemical Co., Ltd. Polymerizable compound, polymer, positive resist composition, and patterning process using the same
US8057985B2 (en) 2008-08-28 2011-11-15 Shin-Etsu Chemical Co., Ltd. Polymerizable anion-containing sulfonium salt and polymer, resist composition, and patterning process
US8211618B2 (en) 2009-03-09 2012-07-03 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8450042B2 (en) 2009-03-09 2013-05-28 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8501384B2 (en) 2010-01-08 2013-08-06 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8632939B2 (en) 2010-02-26 2014-01-21 Shin-Etsu Chemical Co., Ltd. Polymer, chemically amplified positive resist composition and pattern forming process
US9017918B2 (en) 2010-06-01 2015-04-28 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, chemically amplified positive resist composition, and patterning process
US8623590B2 (en) 2010-11-02 2014-01-07 Shin-Etsu Chemical Co., Ltd. Pattern forming process
US8735046B2 (en) 2010-11-29 2014-05-27 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US9360753B2 (en) 2011-07-25 2016-06-07 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US8808966B2 (en) 2011-07-27 2014-08-19 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8841061B2 (en) 2011-10-03 2014-09-23 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8574817B2 (en) 2011-10-03 2013-11-05 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US9310683B2 (en) 2012-04-26 2016-04-12 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, positive resist composition and patterning process
US9075308B2 (en) 2012-08-13 2015-07-07 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US9250523B2 (en) 2012-09-05 2016-02-02 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9152050B2 (en) 2012-09-05 2015-10-06 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9086625B2 (en) 2012-09-05 2015-07-21 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US8911929B2 (en) 2012-11-21 2014-12-16 Shin-Etsu Chemical Co., Ltd. Developer and patterning process
KR20140079292A (en) 2012-12-18 2014-06-26 신에쓰 가가꾸 고교 가부시끼가이샤 Negative resist composition and patterning process using the same
US9017923B2 (en) 2012-12-18 2015-04-28 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process using the same
US9023586B2 (en) 2012-12-18 2015-05-05 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process using same
US9201300B2 (en) 2012-12-20 2015-12-01 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9040223B2 (en) 2012-12-26 2015-05-26 Shin-Etsu Chemical Co., Ltd. Resist composition, patterning process and polymer
KR20140097016A (en) 2013-01-29 2014-08-06 신에쓰 가가꾸 고교 가부시끼가이샤 Negative resist composition and patterning process
US9023587B2 (en) 2013-01-29 2015-05-05 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process
US9164392B2 (en) 2013-04-10 2015-10-20 Shin-Etsu Chemical Co., Ltd. Developer and patterning process
KR20140145085A (en) 2013-06-12 2014-12-22 신에쓰 가가꾸 고교 가부시끼가이샤 Developer for photosensitive resist material and patterning process
US9052602B2 (en) 2013-06-12 2015-06-09 Shin-Etsu Chemical Co., Ltd. Developer for photosensitive resist material and patterning process
US9057959B2 (en) 2013-06-19 2015-06-16 Shin-Etsu Chemical Co., Ltd. Developer for photosensitive resist material and patterning process
US9316915B2 (en) 2013-11-28 2016-04-19 Shin-Etsu Chemical Co., Ltd. Negative resist composition and pattern forming process
KR20160084294A (en) 2015-01-05 2016-07-13 신에쓰 가가꾸 고교 가부시끼가이샤 Developer and patterning process
US9645498B2 (en) 2015-01-05 2017-05-09 Shin-Etsu Chemical Co., Ltd. Developer and patterning process using the same
KR20160150046A (en) 2015-06-19 2016-12-28 신에쓰 가가꾸 고교 가부시끼가이샤 Polymer, chemically amplified positive resist composition and patterning process
US9810983B2 (en) 2015-06-19 2017-11-07 Shin-Etsu Chemical Co., Ltd. Polymer, chemically amplified positive resist composition and patterning process
KR20170007129A (en) 2015-07-09 2017-01-18 신에쓰 가가꾸 고교 가부시끼가이샤 Monomer, polymer, positive resist composition, and patterning processs
US9829792B2 (en) 2015-07-09 2017-11-28 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, positive resist composition, and patterning process

Also Published As

Publication number Publication date
JP2002202610A (en) 2002-07-19

Similar Documents

Publication Publication Date Title
JP3865048B2 (en) Resist material and pattern forming method
JP4088784B2 (en) Method for producing polymer compound and resist material
JP3844069B2 (en) Resist material and pattern forming method
KR100571456B1 (en) Resist material and pattern formation method
JP4557159B2 (en) Chemically amplified positive resist material and pattern forming method using the same
JP4678383B2 (en) Chemically amplified negative resist composition and pattern forming method
JP5183903B2 (en) Polymer compound, resist material, and pattern forming method using the same
JP4582331B2 (en) Resist material and pattern forming method
JP3877605B2 (en) Negative resist material and pattern forming method using the same
JP2006225476A (en) Positive type resist material and pattern formation method
JP3821217B2 (en) Resist material and pattern forming method
JP3712047B2 (en) Resist material and pattern forming method
JP4614089B2 (en) Negative resist material and pattern forming method
JP3981830B2 (en) Resist material and pattern forming method
US6835804B2 (en) Preparation of polymer, and resist composition using the polymer
JP4198351B2 (en) Method for producing polymer compound and resist material using the polymer compound
JP3990607B2 (en) Chemically amplified resist material and pattern manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060926

R150 Certificate of patent or registration of utility model

Ref document number: 3865048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151013

Year of fee payment: 9

EXPY Cancellation because of completion of term