JP3846661B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP3846661B2
JP3846661B2 JP04629998A JP4629998A JP3846661B2 JP 3846661 B2 JP3846661 B2 JP 3846661B2 JP 04629998 A JP04629998 A JP 04629998A JP 4629998 A JP4629998 A JP 4629998A JP 3846661 B2 JP3846661 B2 JP 3846661B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
electrode material
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04629998A
Other languages
Japanese (ja)
Other versions
JPH10294112A (en
Inventor
源衛 中嶋
宗幸 田中
章 川上
直樹 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP04629998A priority Critical patent/JP3846661B2/en
Publication of JPH10294112A publication Critical patent/JPH10294112A/en
Application granted granted Critical
Publication of JP3846661B2 publication Critical patent/JP3846661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリチウム二次電池に関するものであり、特に高容量化に最適な負極材に係わる。
【0002】
【従来の技術】
半導体の技術の急速な進歩に伴い、近年の電子機器、特にパーソナルコンピュータ、携帯電話、AV機器などの小形、軽量、多機能化が進み、同時に利便性が大幅に向上されてきた。これらに使用される二次電池にも高エネルギー密度、長寿命、軽量化などの要求が強まってきている。従来、民生用小型二次電池はニッケルーカドミウム電池が主に使用されてきたが、90年代になってニッケルー水素電池が本格的に商品化され、さらにリチウム二次電池が二次電池市場に参入するなど目覚ましい技術の革新がなされている。
【0003】
さて、リチウム電池の特徴をまとめると、 エネルギー密度が従来の電池に比べて大きい。 自己放電が少ない。 動作可能な温度範囲が-20 〜+45 ℃と広い。 メモリー効果がない。等である。このような長所を有するため、二次電池市場において現状はニッケルーカドミウム電池やニッケル- 水素電池が主流であるが、近い将来リチウム二次電池が取って代わることが予想されている。
【0004】
現在市販されているリチウム二次電池の正極材には、高い放電電圧が得られるコバルト酸リチウム(LiCoO2)が、またその負極材にはカーボンが用いられている。電極材は粉末状にされ、導電性バインダーと混ぜた状態で集電体に塗布され電極を形成する。正極の集電体にはアルミニウム箔、負極の集電体には銅箔が用いられている。正極と負極とを電池内部で絶縁するセパレーターにはポリエチレン等の多孔質膜が用いられる。実際の電池では、正極、セパレーター、負極の順で重ね合せてロール状に巻いた状態で円筒管内に収納される。さらに、円筒管内には支持電解質(LiClO4,LiPF6,LiBF4等)を溶かした非水系の有機電解液が満たされる。
【0005】
このように構成されたリチウム二次電池は、正極材LiCoO2中のリチウムの一部が有機電解液中にイオンとして放出され、これに伴って有機電解液中に溶解した支持電解質(LiClO4,LiPF6,LiBF4等)のリチウムイオンが、負極材のカーボンの層間に吸蔵されることによって、充電動作が行われる。一方、放電時には負極に吸蔵されたリチウムイオンが放出されることになり、その際発生した電子が外部回路に流れ電気エネルギーを出すことになる。以上述べた反応を下式に示す。式中の矢印の向きは充電時には右方向に、放電時には逆に左方向に化学反応が進行することを示す。
LiCoO2⇔ Li1-nCoO2+nLi++ne- (正極) (1)
C +nLi++ne- ⇔ Li n C (負極) (2)
従って、正極と負極を合わせた電池全体の充放電時の反応式は
LiCoO2+C ⇔ Li1-nCoO2+ LinC (3)
となる。
【0006】
式(1)から(3)の化学反応過程をリチウムイオンの動きで説明すると、次のようである。即ち、充電時には正極のLiCoO2中のリチウムはイオンとなって電解質中に移動し、電解質中のリチウムイオンは負極のカーボンに吸蔵され、リチウムイオンの状態で蓄積される。放電時は逆の反応を起こさせるものであり、負極材のカーボン中のリチウムイオンが電解質中に移動し、電解質中のリチウムイオンは正極材中に吸蔵されてLiCoO2となる。このように、正極および負極の活物質がリチウムイオンを放出あるいは吸蔵放出して充放電を行うため、正極および負極に用いられる材料はこの化学反応が効率よく行われる材質を具備している必要がある。
【0007】
【発明が解決しようとする課題】
現在、リチウム二次電池の負極にはカーボン電極が最も多く使用されている。負極にカーボンが用いられると急速に充放電した場合、電解質中のリチウムイオンがカーボンの表面までも金属リチウムとして樹枝状に析出し、内部短絡を生じて容量の低下につながる虞がある。また、リチウム電池はエネルギー密度が他の二次電池に較べ高いため、特に発火等の安全性に問題のある材料は使用することを控える必要がある。このため、可燃性のカーボンに代わる材料が求められている。さらに、体積当たりの放電容量は密度が高いほど有利であるが、カーボンは密度2. 2g/mlと金属材料に比して数倍程度低いため、高放電容量を得ることが困難であった。
【0008】
一方、負極材としてのカーボンは充電時にリチウムイオンを結晶の層間に格納するため、充電能力はリチウム収容量に左右されることになるが、カーボンではその収容量に限界がある。カーボン系負極にリチウムを最大収容した場合、負極はLiC6になる。この時の重量当たりの容量は、370mAh/gと比較的大きいものであるが、これらカーボン材料の密度は2. 2g/ml程度と小さく、体積当たりの容量では700mAh/ml 程度が限界であった。このため、規格化された2次電池の容量を向上させるには、700mA-h/ml以上の能力を持つ負極材の開発が必要である。
【0009】
そこで、特開平7-240201号公報に開示されているように、合金材を負極材に適用しようとする提案がある。そこには、遷移元素からなる非鉄金属の珪化物、例えばCoSi2-3, Mn2Si, Mo3Si, NiSi, WSi2 等の適用が開示されている。また、1995年の電池討論会において、「ZnS 型・CaF2型構造金属間化合物のリチウム二次電池電極特性」の中でNiSi2 の金属間化合物による放電特性の改良に関する発表があった。
【0010】
この論文には、 NiSi2の金属間化合物を負極材に使ったことが書かれているが、工業上冶金的なプロセスでNiSi2 の溶湯から金属間化合物を容易に作製できない。Ni- Coの二元状態図から明らかなように、Niに66.7 at% Si を含有する位置には、αNiSi2 の金属間化合物があるが、 NiSi2の溶湯を冷却していくと1100℃よりも少し高い温度でSiが析出してそれが成長する。溶湯が966℃の共晶点まで冷却されるNiSiとNiSi2 とが生成する。しかしながら、 NiSi2金属間化合物はほんのわずかである。このようにNiSi2 は溶湯から金属間化合物を容易に作製できないため、工業上の利用価値が低いものであった。
【0011】
本発明は、負極材として放電容量の大きな金属珪化物を有するリチウム二次電池を提供することを目的としている。
【0012】
【課題を解決するための手段】
本発明は、負極材として金属との珪化物を用いることにより従来の技術課題を解決する過程において想到したものである。即ち、M100−xSi(ただし、x>50at%であり、Mは、Ni、Fe、CoおよびMnから選ばれる少なくとも1種の元素からなる)で表される組成を有する金属珪化物において、樹枝状のシリコン微結晶と前記微結晶を保持するマトリックス相とを形成させることにより、著しい充放電容量の改善が得られることを見出したことによる。前記金属珪化物におけるシリコンの量が50at%を超えると、シリコンの結晶を析出しやすくなるので好ましい。また、90at%以上になると、工業的に製造することが難しくなるため、90at%未満の範囲が好ましい。
【0013】
上記金属珪化物において、シリコンの結晶を微細な結晶にすることによって、リチウムとシリコンとが接触する面積を広げることが出来るため、化学反応を効率よく進行させることが可能となる。これは充放電の改善に寄与すると共に、高容量化にもつながるものである。微細なシリコン結晶を得るには、例えば溶湯急冷の方法等がある。金属珪化物を作製する場合、一般的な溶解法で作ると冷却過程で結晶が成長する時間が十分あるため、シリコンの結晶は大きくなってしまう。しかし、溶湯急冷法では製造条件によっては微結晶と非晶質の混在したものが得られる。全てが微結晶である必要はなく、本発明の効果を奏することができる程度に微結晶を有すればよい。
【0014】
さらに、シリコン結晶を樹枝状にすることにより、リチウムとの接触面積を拡大する効果が得られ、充放電容量を高めることができる。従来材であるカーボン材料を負極にした場合に比べ、同じ大きさの電池でも充放電容量のより大きなリチウム二次電池を提供することができる。また、微細な樹枝状シリコン結晶を保持するマトリックス相は、シリコン原子と電子の授受を行うための電極として作用する。
【0015】
シリコンと合金化する金属元素としては、Ni、Fe、CoおよびMnから選ばれる少なくとも1種の元素が用いられる。これらの元素は、シリコンと非晶質合金を形成することにより、前記マトリックス相を形成する。また、Sn、V、Cu、AgおよびAlから選ばれる少なくとも1種の元素Bを10at%以下の範囲で含むことにより、放電容量を高めることができる。これらの元素は、シリコンとリチウムイオンとの充電時の合金化作用と放電時の分解作用を促進する働きをする。特に、SnおよびVは、樹枝状のシリコン微結晶の間に析出するため、他の添加元素よりも放電容量を高める効果を持つが、その好ましい範囲は3〜8at%である。以下、本発明の具体的な実施例について詳細に説明することにする。
【0016】
【発明の実施の形態】
まず試料の作製方法を以下説明する。組成金属を所定のモル比に秤量し、大気中で高周波溶解しする。この溶湯を単ロール法(周速30m/s の銅製ロール上に注湯し、104 K /sec 以上の早さで急冷する方法)によって試料用薄片を作製した。急冷方法には各種あり、水槽に投入する方法での冷却速度は102K/sec 程度、窒素ガスや水と溶解した金属材料を噴霧するアトマイズ法等では104-5K/sec 程度とされているが、本発明の微細なSi結晶を得るには水槽に投入する急冷方法ではシリコンの結晶が成長してしまい、冷却速度が不十分である。従って、アトマイズ法、単ロール法等での冷却が適しているが、微細な結晶が得られる方法ならば、本発明の効果は充分得られるものである。
【0017】
単ロール法で得られた薄片はディスクミルで荒粉砕し、目開き100μmの篩いを通過させ、ジェットミルによる微粉砕の工程を通し、粉砕粒径を一定にした後負極材料とした。粒径があまり大きすぎると、リチウムイオンとの接触表面積を所定値以上取ることができないこと、また負極形成工程で導電性バインダの充填率を考慮して、粉砕粉の平均粒径は30μm以下が望ましい。しかし、あまり粒径を小さくすると、多量のバインダが必要になり電極部の抵抗が高くなるため、10μm程度が適当である。この粉砕粉に導電剤として黒鉛(KS- 15)を21wt%、またバインダーとしてポリフッ化ビニリデン(PDVF)7wt%を混ぜて導電性バインダとした。ポリフッ化ビニリデン7wt%は圧着する際の作業性を考慮したものである。試料粉と導電性バインダを混練して圧着(プレス圧:1t/cm2)し試験極を作製した。
【0018】
充放電試験装置は図1に示すように、定電流電源により充電・放電が可能な装置、電解液槽、試験極、参照極(リチウムフォイル)、正極(リチウムフォイル)等から構成される。この充放電試験装置は負極の特性試験用のため、正極3はリチウムを用い、試験極1を取り替えながら充放電特性を測定することにした。電解液12にはエチレンカーボネート(EC)とメチルエチルカーボネート(MEC )を1:2で混合した有機溶媒の中にLiPF6 を1モル/リッター溶解したものを使用した。スイッチ7を充電側に倒し、試験極1の電流密度0.5mA/cm2 になるように電源23を制御し、対向する参照極2の電位が10mVに低下するまで充電を行った。放電容量の測定にはスイッチ7を切り換えて、試験極1の電位が参照極2に対し0.8Vに上昇するまで放電させ、電流と時間から電気量をまず求めたものである。その電気量を試料重量で割った値を放電容量として算出したものである。
【0019】
上に述べた作成方法にしたがって、負極材とするM100-x Six (x : at %)を作製し、それを用いて放電容量を測定した。その結果を図2に、金属間珪化合物のシリコン量と放電容量との関係として示す。図示するようにシリコンが50at%以上になれば、急激に放電容量を増加でき85at%付近から飽和する傾向をもつ。シリコンを50at%以上含むことにより500mA-h/ccを超える特性が得られ、70at%以上になると従来のカーボンに比べて大幅に放電容量を改善できることが図2からわかる。
【0020】
次に、M100-x Six およびM100-x-y y Six で、x, yを種々に変えたものについて負極材を作製し、それを用いて放電容量を求めた。ここでM=Niとし、で、x=56 at%, 67, 71, 73, 85とした組成の負極材を各々実施例1、2、3、4、5とし、x=45 at%の組成のものを比較例1とした。Mとして、NiとMnを含有するものを、実施例6とした。添加元素Bを含むものについては、x=71 at%,y=5 at%のNi24B5Si71でBをCu, Sn, V, Ag, Al としたものを各々実施例7〜11とした。また、現行材との比較のため、試験極1をカーボンで作製して同じ方法で評価しそれを比較例2とした。実施例2と同じ組成のものであるが、溶湯を1400℃から常温まで徐冷して得た合金を比較例3とした。これらの評価結果をまとめて表1に示す。
【0021】
【表1】

Figure 0003846661
【0022】
表1からわかるように、実施例として示したNi(Mn)100-x Six およびNi100-x-y y Six はいずれも従来材(比較例)と比較して極めて大きな放電容量を持つ。Ni100-x Six で、xが50以上になり、それから増えるに従い、放電容量が増している。添加元素Bとして、Sn,Vを添加したものは、添加していないものに比較して大きな放電容量を持つ。
【0023】
比較例3に示すものは、実施例2と同じ組成であるが、溶湯を1400℃から常温まで徐冷して合金を得たものである。この合金を負極材として放電容量を測定したものは125mAh/mlと本発明のものに比して極めて小さな放電容量しか示さなかった。この実施例2の合金のX線回折パターンを図3に、その合金を50倍で見た顕微鏡組織写真を図4に、また比較例3のX線回折パターンを図5に、その合金を50倍で見た顕微鏡組織写真を図6に示す。実施例2のものではシリコンのピークのみが明確に出ているが、比較例3のものではシリコンのピークとNiSiのピークとが明確に出ており、それ以外にNiSi2 のピークらしきものが出ている。比較例3でシリコンのピークが強く出ているのは、その顕微鏡組織写真(図6参照)にあるように大きなシリコン結晶が析出していることに対応する。実施例2のように微細なシリコン結晶の析出しているものは、放電容量が大である。
【0024】
次に、Snの添加効果を見るために、表1の実施例3にあるNi29Si71の組成を基にしてSnを10at%まで添加した場合の放電容量を求めた。その結果を図7に示す。これから明らかなように、Snが3 〜8at %の範囲で、Snを添加しない場合に比べて大幅に改善される。特に、5at %付近で最大値を示す。以上、Snの場合について言及したが、V もまた同様の効果を示すものである。
【0025】
図8は実施例8の顕微鏡組織写真である。この顕微鏡組織写真において、樹枝状のシリコン結晶の隙間に白色の小さい点がSnの析出であり、金属珪化物にほぼ一様に分布していることを示している。微細な樹枝状シリコン結晶が存在するとともに、このようにSnが析出している合金を負極材として用いると極めて容量の大きなリチウム電池が得られる。微細な樹枝状シリコン結晶はリチウムイオンと合金を作り、可逆的にリチウムイオンを吸蔵放出するものと推定される。顕微鏡観察によると、容量の大きな実施例程、急冷プロセスで生じた微細な樹枝状シリコン結晶の占める割合が高いことがわかった。
【0026】
上記の実施例では、いずれもMとしてNiを用いているものであるが、実施例6に示すようにその一部分をMnで置換してもよい。また、Niに代えてFe,Co,Mnの一種あるいはそれ以上を組み合せて使用することができる。
【0027】
【発明の効果】
本発明によって従来から負極に使用されているカーボンに比べて、大幅に充放電容量を改善できる上に、可燃性でない金属との間で形成した珪化物を使用するため、安全性と信頼性を向上できる。
【図面の簡単な説明】
【図1】充放電試験装置の概略構成図である。
【図2】本発明に用いている負極材でSi量を変えた場合の放電容量特性を示すグラフである。
【図3】本発明に用いた実施例2の負極材(急冷したNi33Si67合金)のX線回折図である。
【図4】本発明に用いた実施例2の負極材(急冷したNi33Si67合金)の顕微鏡組織写真である。
【図5】比較例3の負極材(徐冷したNi33Si67合金)のX線回折図である。
【図6】比較例3の負極材(徐冷したNi33Si67合金)の顕微鏡組織写真である。
【図7】本発明に用いている負極材にSnの添加量を増加させた場合の放電容量特性を示すグラフである。
【図8】本発明に用いた実施例8(急冷したNi24Sn5Si71 合金)の負極材の顕微鏡組織写真である。
【符号の説明】
1 試験極、2 参照極(Li)、3 正極、11 槽、12 電解液、21
電源、22 放電用電流計、23 電源、24 充電用電流計[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery, and particularly to a negative electrode material that is optimal for increasing the capacity.
[0002]
[Prior art]
Along with the rapid advancement of semiconductor technology, electronic devices, particularly personal computers, mobile phones, AV devices, etc. have become smaller, lighter and more multifunctional in recent years, and at the same time convenience has been greatly improved. Secondary batteries used for these are also increasingly demanded for high energy density, long life and light weight. Conventionally, nickel-cadmium batteries have been mainly used for consumer-use compact secondary batteries, but in the 1990s, nickel-hydrogen batteries were commercialized and lithium secondary batteries entered the secondary battery market. Remarkable technological innovations have been made.
[0003]
Now, to summarize the characteristics of lithium batteries, the energy density is higher than that of conventional batteries. There is little self-discharge. The operating temperature range is as wide as -20 to + 45 ° C. There is no memory effect. Etc. Because of these advantages, nickel-cadmium batteries and nickel-hydrogen batteries are currently the mainstream in the secondary battery market, but lithium secondary batteries are expected to replace in the near future.
[0004]
As a positive electrode material of a lithium secondary battery currently on the market, lithium cobalt oxide (LiCoO 2 ) that can obtain a high discharge voltage is used, and carbon is used as the negative electrode material. The electrode material is powdered and applied to the current collector in a mixed state with a conductive binder to form an electrode. Aluminum foil is used for the current collector of the positive electrode, and copper foil is used for the current collector of the negative electrode. A porous film such as polyethylene is used for a separator that insulates the positive electrode and the negative electrode inside the battery. In an actual battery, the positive electrode, the separator, and the negative electrode are stacked in this order and wound in a roll shape, and then stored in a cylindrical tube. Further, the cylindrical tube is filled with a non-aqueous organic electrolytic solution in which a supporting electrolyte (LiClO 4 , LiPF 6 , LiBF 4, etc.) is dissolved.
[0005]
In the lithium secondary battery configured as described above, a part of lithium in the positive electrode material LiCoO 2 is released as ions into the organic electrolyte, and the supporting electrolyte (LiClO 4 , The charging operation is performed by inserting lithium ions of LiPF 6 , LiBF 4, etc.) between the carbon layers of the negative electrode material. On the other hand, at the time of discharging, lithium ions occluded in the negative electrode are released, and electrons generated at that time flow to an external circuit to give electric energy. The reaction described above is shown in the following equation. The direction of the arrow in the formula indicates that the chemical reaction proceeds in the right direction during charging and conversely in the left direction during discharging.
LiCoO 2 ⇔ Li 1-n CoO 2 + nLi ++ ne- (Positive electrode) (1)
C + nLi ++ ne- ⇔ Li n C (negative electrode) (2)
Therefore, the reaction formula at the time of charging and discharging the whole battery including the positive electrode and the negative electrode is
LiCoO 2 + C ⇔ Li 1-n CoO 2 + LinC (3)
It becomes.
[0006]
It is as follows when the chemical reaction process of Formula (1) to (3) is demonstrated with the motion of lithium ion. That is, at the time of charging, lithium in the LiCoO 2 of the positive electrode becomes ions and moves into the electrolyte, and the lithium ions in the electrolyte are occluded by the carbon of the negative electrode and accumulated in the state of lithium ions. The reverse reaction occurs at the time of discharge, and lithium ions in the carbon of the negative electrode material move into the electrolyte, and the lithium ions in the electrolyte are occluded in the positive electrode material to become LiCoO 2 . Thus, since the positive and negative electrode active materials release or occlude and release lithium ions to perform charging and discharging, the material used for the positive and negative electrodes must be provided with a material that can efficiently perform this chemical reaction. is there.
[0007]
[Problems to be solved by the invention]
At present, carbon electrodes are most frequently used for the negative electrode of lithium secondary batteries. When carbon is used for the negative electrode, when the battery is rapidly charged and discharged, lithium ions in the electrolyte may be deposited in a dendritic form as metallic lithium even on the surface of the carbon, which may cause an internal short circuit and lead to a decrease in capacity. In addition, since the lithium battery has a higher energy density than other secondary batteries, it is necessary to refrain from using a material having a safety problem such as ignition. Therefore, there is a need for a material that can replace combustible carbon. Further, the higher the density of discharge capacity per volume, the more advantageous, but since carbon has a density of 2.2 g / ml, which is several times lower than that of metal materials, it is difficult to obtain a high discharge capacity.
[0008]
On the other hand, since carbon as a negative electrode material stores lithium ions between crystal layers during charging, the charging capacity depends on the lithium capacity, but the capacity of carbon is limited. When the maximum amount of lithium is accommodated in the carbon-based negative electrode, the negative electrode becomes LiC 6 . The capacity per weight at this time is relatively large at 370 mAh / g, but the density of these carbon materials is as small as 2.2 g / ml, and the capacity per volume is limited to about 700 mAh / ml. . For this reason, in order to improve the capacity of a standardized secondary battery, it is necessary to develop a negative electrode material having a capacity of 700 mA-h / ml or more.
[0009]
Therefore, as disclosed in Japanese Patent Laid-Open No. 7-240201, there is a proposal to apply an alloy material to a negative electrode material. There are disclosed applications of non-ferrous metal silicides composed of transition elements, such as CoSi 2-3 , Mn 2 Si, Mo 3 Si, NiSi, WSi 2, and the like. Also, at the 1995 battery debate, there was a presentation on the improvement of discharge characteristics by NiSi 2 intermetallic compound in “Lithium secondary battery electrode characteristics of ZnS / CaF 2 type intermetallic compound”.
[0010]
This paper states that an intermetallic compound of NiSi 2 was used for the negative electrode material, but an intermetallic compound cannot be easily produced from molten NiSi 2 by an industrial metallurgical process. As is clear from the binary phase diagram of Ni-Co, there is an intermetallic compound of αNiSi 2 in the position where Ni contains 66.7 at% Si. However, when the molten NiSi 2 is cooled, the temperature starts from 1100 ° C. At a slightly higher temperature, Si precipitates and grows. NiSi and NiSi 2 are produced in which the molten metal is cooled to the eutectic point of 966 ° C. However, there are only a few NiSi 2 intermetallic compounds. Thus, since NiSi 2 cannot easily produce an intermetallic compound from a molten metal, its industrial utility value is low.
[0011]
An object of this invention is to provide the lithium secondary battery which has a metal silicide with a large discharge capacity as a negative electrode material.
[0012]
[Means for Solving the Problems]
The present invention has been conceived in the process of solving the conventional technical problems by using a silicide with a metal as a negative electrode material. That is, in a metal silicide having a composition represented by M 100-x Si x (where x> 50 at% and M is composed of at least one element selected from Ni, Fe, Co, and Mn). This is because it has been found that a significant improvement in charge / discharge capacity can be obtained by forming dendritic silicon microcrystals and a matrix phase holding the microcrystals. It is preferable that the amount of silicon in the metal silicide exceeds 50 at% because silicon crystals are likely to precipitate. Moreover, since it will become difficult to manufacture industrially when it becomes 90 at% or more, the range below 90 at% is preferable.
[0013]
In the metal silicide, since the area where lithium and silicon are in contact with each other can be increased by making the silicon crystal fine, the chemical reaction can proceed efficiently. This contributes to the improvement of charge / discharge and leads to an increase in capacity. In order to obtain a fine silicon crystal, for example, there is a method of quenching molten metal. When a metal silicide is produced, if it is produced by a general melting method, the crystal of the silicon becomes large because there is sufficient time for the crystal to grow during the cooling process. However, in the molten metal quenching method, a mixture of microcrystals and amorphous is obtained depending on the production conditions. It is not necessary for all to be microcrystals, and it is sufficient to have microcrystals to the extent that the effects of the present invention can be achieved.
[0014]
Furthermore, by making the silicon crystal dendritic, the effect of expanding the contact area with lithium can be obtained, and the charge / discharge capacity can be increased. Compared to the case where the conventional carbon material is used as the negative electrode, a lithium secondary battery having a larger charge / discharge capacity can be provided even with a battery of the same size. The matrix phase holding fine dendritic silicon crystals acts as an electrode for transferring electrons with silicon atoms.
[0015]
As the metal element to be alloyed with silicon, at least one element selected from Ni, Fe, Co, and Mn is used. These elements form the matrix phase by forming an amorphous alloy with silicon. Further, the discharge capacity can be increased by containing at least one element B selected from Sn, V, Cu, Ag and Al in a range of 10 at% or less. These elements serve to promote the alloying action during charging of silicon and lithium ions and the decomposition action during discharging. In particular, Sn and V are precipitated between dendritic silicon microcrystals, and thus have an effect of increasing the discharge capacity as compared with other additive elements, but the preferred range is 3 to 8 at%. Hereinafter, specific examples of the present invention will be described in detail.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
First, a method for manufacturing a sample will be described below. The compositional metal is weighed to a predetermined molar ratio and melted at high frequency in the atmosphere. Sample flakes were prepared by a single roll method (a method in which molten metal was poured onto a copper roll having a peripheral speed of 30 m / s and rapidly cooled at a speed of 10 4 K / sec or more). There are various rapid cooling methods, and the cooling rate in the method of putting into the water tank is about 10 2 K / sec, and in the atomizing method that sprays metal material dissolved with nitrogen gas or water, it is about 10 4-5 K / sec. However, in order to obtain the fine Si crystal of the present invention, the rapid cooling method put in the water tank grows the silicon crystal, and the cooling rate is insufficient. Therefore, although cooling by an atomizing method, a single roll method or the like is suitable, the effect of the present invention can be sufficiently obtained if the method can obtain fine crystals.
[0017]
The flakes obtained by the single roll method were roughly pulverized by a disk mill, passed through a sieve having an opening of 100 μm, passed through a fine pulverization step by a jet mill, and the pulverized particle size was made constant to obtain a negative electrode material. If the particle size is too large, the contact surface area with lithium ions cannot be taken above a predetermined value, and the average particle size of the pulverized powder is 30 μm or less in consideration of the filling rate of the conductive binder in the negative electrode forming step. desirable. However, if the particle size is made too small, a large amount of binder is required and the resistance of the electrode portion becomes high, so about 10 μm is appropriate. The ground powder was mixed with 21 wt% of graphite (KS-15) as a conductive agent and 7 wt% of polyvinylidene fluoride (PDVF) as a binder to form a conductive binder. 7% by weight of polyvinylidene fluoride is considered in consideration of workability during pressure bonding. The sample powder and the conductive binder were kneaded and pressed (press pressure: 1 t / cm 2 ) to prepare a test electrode.
[0018]
As shown in FIG. 1, the charge / discharge test apparatus includes an apparatus that can be charged / discharged by a constant current power source, an electrolyte bath, a test electrode, a reference electrode (lithium foil), a positive electrode (lithium foil), and the like. Since this charge / discharge test apparatus was used for the negative electrode characteristic test, lithium was used for the positive electrode 3 and the charge / discharge characteristics were measured while replacing the test electrode 1. As the electrolytic solution 12, a solution obtained by dissolving 1 mol / liter of LiPF 6 in an organic solvent obtained by mixing ethylene carbonate (EC) and methyl ethyl carbonate (MEC) 1: 2 was used. The switch 7 was tilted to the charging side, the power source 23 was controlled so that the current density of the test electrode 1 was 0.5 mA / cm 2 , and charging was performed until the potential of the opposing reference electrode 2 dropped to 10 mV. For the measurement of the discharge capacity, the switch 7 is changed over to discharge the test electrode 1 until the potential of the test electrode 1 rises to 0.8 V with respect to the reference electrode 2, and the amount of electricity is first obtained from the current and time. A value obtained by dividing the amount of electricity by the sample weight is calculated as a discharge capacity.
[0019]
In accordance with the preparation method described above, M 100-x Si x (x: at%) as a negative electrode material was produced, and the discharge capacity was measured using it. The results are shown in FIG. 2 as the relationship between the silicon amount of the intermetallic silicon compound and the discharge capacity. As shown in the figure, when the silicon content is 50 at% or more, the discharge capacity can be increased rapidly, and there is a tendency to saturate from around 85 at%. It can be seen from FIG. 2 that by including 50 at% or more of silicon, characteristics exceeding 500 mA-h / cc can be obtained, and when it is 70 at% or more, the discharge capacity can be greatly improved as compared with conventional carbon.
[0020]
Next, at M 100-x Si x and M 100-xy B y Si x , to prepare a negative electrode material for those with different x, a y variously to obtain the discharge capacity by using the same. Here, negative electrode materials having a composition of M = Ni and x = 56 at%, 67, 71, 73, and 85 are referred to as Examples 1, 2, 3, 4, and 5, respectively, and a composition of x = 45 at%. This was designated as Comparative Example 1. A sample containing Ni and Mn as M was designated as Example 6. For the element containing additive element B, Ni 24 B 5 Si 71 with x = 71 at% and y = 5 at%, where B is Cu, Sn, V, Ag, Al and Examples 7 to 11, respectively did. In addition, for comparison with the current material, the test electrode 1 was made of carbon and evaluated by the same method, and this was designated as Comparative Example 2. An alloy having the same composition as in Example 2 but obtained by gradually cooling the molten metal from 1400 ° C. to room temperature was used as Comparative Example 3. These evaluation results are summarized in Table 1.
[0021]
[Table 1]
Figure 0003846661
[0022]
As can be seen from Table 1, in comparison indicated Ni (Mn) Any 100-x Si x and Ni 100-xy B y Si x conventional material (Comparative Example) As Example has a very large discharge capacity. With Ni 100-x Si x , the discharge capacity increases as x increases to 50 or more and increases thereafter. The additive element B to which Sn and V are added has a larger discharge capacity than that to which the additive element B is not added.
[0023]
What is shown in Comparative Example 3 has the same composition as Example 2, but the alloy is obtained by gradually cooling the molten metal from 1400 ° C. to room temperature. When the discharge capacity was measured using this alloy as a negative electrode material, the discharge capacity was 125 mAh / ml, which was much smaller than that of the present invention. FIG. 3 shows an X-ray diffraction pattern of the alloy of Example 2, FIG. 4 shows a micrograph of the alloy viewed at 50 times, FIG. 5 shows an X-ray diffraction pattern of Comparative Example 3, and FIG. FIG. 6 shows a micrograph of the microscopic structure viewed at a magnification. In Example 2, only the silicon peak clearly appears, but in Comparative Example 3, the silicon peak and NiSi peak clearly appear, and in addition to this, the peak of NiSi 2 appears. ing. The strong silicon peak in Comparative Example 3 corresponds to the precipitation of large silicon crystals as shown in the micrograph (see FIG. 6). In the case where fine silicon crystals are deposited as in Example 2, the discharge capacity is large.
[0024]
Next, in order to see the effect of adding Sn, the discharge capacity when Sn was added up to 10 at% based on the composition of Ni 29 Si 71 in Example 3 of Table 1 was determined. The result is shown in FIG. As is clear from this, Sn is in the range of 3 to 8 at%, which is a significant improvement compared to the case where Sn is not added. In particular, the maximum value is shown around 5at%. As mentioned above, the case of Sn is mentioned, but V also shows the same effect.
[0025]
FIG. 8 is a micrograph of Example 8. In this micrograph, the small white dots in the gaps between the dendritic silicon crystals are Sn precipitates, indicating that they are almost uniformly distributed in the metal silicide. When an alloy in which fine dendritic silicon crystals are present and Sn is precipitated as described above is used as a negative electrode material, a lithium battery having an extremely large capacity can be obtained. It is estimated that fine dendritic silicon crystals form an alloy with lithium ions and reversibly occlude and release lithium ions. According to microscopic observation, it was found that the proportion of fine dendritic silicon crystals generated by the rapid cooling process was higher in the examples with larger capacities.
[0026]
In each of the above examples, Ni is used as M, but a part thereof may be substituted with Mn as shown in Example 6. Further, instead of Ni, one or more of Fe, Co, and Mn can be used in combination.
[0027]
【The invention's effect】
Compared to the carbon conventionally used for the negative electrode according to the present invention, the charge / discharge capacity can be greatly improved, and the silicide formed with the non-combustible metal is used, so safety and reliability are improved. It can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a charge / discharge test apparatus.
FIG. 2 is a graph showing discharge capacity characteristics when the amount of Si is changed in the negative electrode material used in the present invention.
FIG. 3 is an X-ray diffraction pattern of a negative electrode material (quenched Ni 33 Si 67 alloy) of Example 2 used in the present invention.
FIG. 4 is a micrograph of the microstructure of the negative electrode material (quenched Ni 33 Si 67 alloy) of Example 2 used in the present invention.
5 is an X-ray diffraction pattern of a negative electrode material (slowly cooled Ni 33 Si 67 alloy) of Comparative Example 3. FIG.
6 is a micrograph of the negative electrode material (slowly cooled Ni 33 Si 67 alloy) of Comparative Example 3. FIG.
FIG. 7 is a graph showing discharge capacity characteristics when the amount of Sn added to the negative electrode material used in the present invention is increased.
8 is a micrograph of the microstructure of a negative electrode material of Example 8 (quenched Ni 24 Sn 5 Si 71 alloy) used in the present invention. FIG.
[Explanation of symbols]
1 test electrode, 2 reference electrode (Li), 3 positive electrode, 11 cell, 12 electrolyte, 21
Power supply, 22 Discharge ammeter, 23 Power supply, 24 Charge ammeter

Claims (7)

正極と負極との間に多孔質のセパレータを備え、前記正極にはリチウム酸化物を配し、非水電解質を充填してなるリチウム二次電池において、
前記負極に配する負極材が、M100−xSi(ただし、x50at%あり、Mは、Ni、Fe、CoおよびMnから選ばれる少なくとも1種の元素からなる)で表される組成を有し、かつ、樹枝状のシリコン微結晶と前記微結晶を保持するマトリックス相とを有する金属珪化物であることを特徴とするリチウム二次電池。
In a lithium secondary battery comprising a porous separator between a positive electrode and a negative electrode, a lithium oxide disposed on the positive electrode, and filled with a nonaqueous electrolyte,
The negative electrode material disposed on the negative electrode is represented by M 100-x Si x (where x > 50 at% , and M is composed of at least one element selected from Ni, Fe, Co, and Mn ). It has a composition, and a lithium secondary battery, characterized metal silicide der Rukoto and a matrix phase that holds the microcrystal and dendritic silicon nanocrystals.
前記マトリックス相が非晶質合金であることを特徴とする請求項1に記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the matrix phase is an amorphous alloy . 前記負極材は、Sn、V、Cu、AgおよびAlから選ばれる少なくとも1種の元素Bを10at%以下の範囲で含むことを特徴とする請求項1または2に記載のリチウム二次電池。 The lithium secondary battery according to claim 1 , wherein the negative electrode material contains at least one element B selected from Sn, V, Cu, Ag, and Al in a range of 10 at% or less . 元素Snまたはであり、その負極材中の含有量が3〜8at%であることを特徴とする請求項3に記載のリチウム二次電池。 Element B is Sn or V, the lithium secondary battery according to claim 3 in which content of the negative electrode material is characterized in that it is a 3~8at%. 前記負極材中に、前記元素Bの一部が析出していることを特徴とする請求項3または4に記載のリチウム二次電池。 5. The lithium secondary battery according to claim 3 , wherein a part of the element B is precipitated in the negative electrode material . 前記負極材が、非晶質のシリコンを含むことを特徴とする請求項1〜5のいずれかに記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the negative electrode material contains amorphous silicon. 前記負極材のX線回折パターンは、実質的にシリコンのピークのみである請求項1〜6のいずれかに記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein an X-ray diffraction pattern of the negative electrode material is substantially only a silicon peak.
JP04629998A 1997-02-24 1998-02-12 Lithium secondary battery Expired - Fee Related JP3846661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04629998A JP3846661B2 (en) 1997-02-24 1998-02-12 Lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5558997 1997-02-24
JP9-55589 1997-02-24
JP04629998A JP3846661B2 (en) 1997-02-24 1998-02-12 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH10294112A JPH10294112A (en) 1998-11-04
JP3846661B2 true JP3846661B2 (en) 2006-11-15

Family

ID=26386409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04629998A Expired - Fee Related JP3846661B2 (en) 1997-02-24 1998-02-12 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3846661B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2104175A2 (en) 2008-03-17 2009-09-23 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
KR20110128246A (en) 2010-05-21 2011-11-29 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon oxide for nonaqueous electrolytic secondary battery negative electrode material, process for producing the same, negative electrode, lithium ion secondary battery, and electrochemical capacitor
EP2509139A1 (en) 2011-04-08 2012-10-10 Shin-Etsu Chemical Co., Ltd. Method for manufacturing negative electrode active material for use in non-aqueous electrolyte secondary battery, negative electrode material for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2013054476A1 (en) 2011-10-14 2013-04-18 信越化学工業株式会社 Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor
EP2724982A2 (en) 2012-10-23 2014-04-30 Shin-Etsu Chemical Co., Ltd. Silicon oxide, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor.
US8734991B2 (en) 2007-11-12 2014-05-27 Sanyo Electric Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery
KR20140074837A (en) 2012-12-10 2014-06-18 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon oxide and method for producing the same, negative electrode, and lithium ion secondary battery and electrochemical capacitor
WO2015097990A1 (en) 2013-12-25 2015-07-02 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
US9142858B2 (en) 2008-08-26 2015-09-22 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode, negative electrode material, and preparation of Si—O—Al composite
US9281129B2 (en) 2012-05-16 2016-03-08 Shin-Etsu Chemical Co., Ltd. Silicon oxide particles, making method, lithium ion secondary battery, and electrochemical capacitor
EP2581969A4 (en) * 2010-06-10 2017-01-18 LG Chem, Ltd. Cathode active material for lithium secondary battery and lithium secondary battery provided with same
EP3249722A1 (en) * 2005-12-23 2017-11-29 3M Innovative Properties Co. Silicon-containing alloys useful as electrodes for lithium-ion batteries

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203944B1 (en) * 1998-03-26 2001-03-20 3M Innovative Properties Company Electrode for a lithium battery
JP3620703B2 (en) * 1998-09-18 2005-02-16 キヤノン株式会社 Negative electrode material for secondary battery, electrode structure, secondary battery, and production method thereof
DE10005445C2 (en) 1999-02-08 2002-08-14 Takata Corp Diagnostic method for a seat load measuring device
JP4449094B2 (en) 1999-02-22 2010-04-14 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2001006677A (en) * 1999-04-20 2001-01-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US6544687B1 (en) * 1999-07-01 2003-04-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
JP4465756B2 (en) * 1999-11-19 2010-05-19 パナソニック株式会社 Non-aqueous electrolyte secondary battery, alloy for the battery, and manufacturing method thereof
US6699336B2 (en) * 2000-01-13 2004-03-02 3M Innovative Properties Company Amorphous electrode compositions
US6664004B2 (en) 2000-01-13 2003-12-16 3M Innovative Properties Company Electrode compositions having improved cycling behavior
KR100389908B1 (en) * 2000-11-18 2003-07-04 삼성에스디아이 주식회사 Anode thin film for Lithium secondary battery
CN1299387C (en) 2001-01-18 2007-02-07 三洋电机株式会社 Lithium secondary battery
JP4702510B2 (en) 2001-09-05 2011-06-15 信越化学工業株式会社 Lithium-containing silicon oxide powder and method for producing the same
TWI278429B (en) 2002-05-17 2007-04-11 Shinetsu Chemical Co Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP4025995B2 (en) 2002-11-26 2007-12-26 信越化学工業株式会社 Nonaqueous electrolyte secondary battery negative electrode material, method for producing the same, and lithium ion secondary battery
JP3746499B2 (en) * 2003-08-22 2006-02-15 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
US20050042128A1 (en) * 2003-08-22 2005-02-24 Keiko Matsubara Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery
US7223498B2 (en) 2003-10-09 2007-05-29 Samsung Sdi Co., Ltd. Electrode for a lithium secondary battery and a lithium secondary battery comprising the same
US7790316B2 (en) 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP4450192B2 (en) 2004-07-01 2010-04-14 信越化学工業株式会社 Silicon composite, method for producing the same, and negative electrode material for non-aqueous electrolyte secondary battery
US7658863B2 (en) 2004-07-30 2010-02-09 Shin-Etsu Chemical Co., Ltd. Si-C-O composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
CN100454613C (en) * 2004-10-21 2009-01-21 松下电器产业株式会社 Negative electrode for battery and battery using same
US7635540B2 (en) 2004-11-15 2009-12-22 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
US7955735B2 (en) 2004-11-15 2011-06-07 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP4994590B2 (en) * 2004-12-27 2012-08-08 三星エスディアイ株式会社 Lithium secondary battery
EP1955393B1 (en) 2005-12-01 2014-08-27 3M Innovative Properties Company Electrode compositions based on an amorphous alloy having a high silicon content
JP5082266B2 (en) * 2006-03-20 2012-11-28 ソニー株式会社 Negative electrode and secondary battery
US7776473B2 (en) 2006-03-27 2010-08-17 Shin-Etsu Chemical Co., Ltd. Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
JP5196149B2 (en) 2008-02-07 2013-05-15 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
JP5271967B2 (en) * 2010-05-28 2013-08-21 株式会社日立製作所 Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP6116068B2 (en) 2012-05-11 2017-04-19 国立大学法人鳥取大学 Negative electrode for lithium ion secondary battery
WO2014034494A1 (en) * 2012-08-31 2014-03-06 中央電気工業株式会社 Alloy particles, electrode, nonaqueous electrolyte secondary battery, and method for producing alloy particles
KR101490559B1 (en) * 2012-12-12 2015-02-06 일진전기 주식회사 Alloy method of complex metal for negative active material
JP6030995B2 (en) 2013-05-15 2016-11-24 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
CN105229828B (en) 2013-05-23 2018-10-26 信越化学工业株式会社 Negative electrode material for nonaqueous electrode secondary battery and secondary cell
JP6100610B2 (en) 2013-05-27 2017-03-22 信越化学工業株式会社 Negative electrode active material, non-aqueous electrolyte secondary battery, and production method thereof
JP6466635B2 (en) 2013-06-14 2019-02-06 信越化学工業株式会社 Method for producing negative electrode for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
KR20160024921A (en) 2013-06-28 2016-03-07 스미토모 세이카 가부시키가이샤 Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
JP2015072809A (en) 2013-10-03 2015-04-16 信越化学工業株式会社 Silicon-containing material, and negative electrode for nonaqueous electrolytic secondary batteries and nonaqueous electrolyte secondary battery, and manufacturing method thereof
WO2015064633A1 (en) * 2013-10-30 2015-05-07 古河電気工業株式会社 Negative electrode active material and manufacturing method therefor, and negative electrode using negative electrode active material, and non-aqueous electrolyte secondary battery
JP6301142B2 (en) 2014-01-31 2018-03-28 信越化学工業株式会社 Anode material for nonaqueous electrolyte secondary battery, method for producing anode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6281306B2 (en) 2014-02-06 2018-02-21 信越化学工業株式会社 Negative electrode material for lithium ion secondary battery, manufacturing method thereof, negative electrode and lithium ion secondary battery
JP6193798B2 (en) 2014-04-14 2017-09-06 信越化学工業株式会社 Method for producing negative electrode material for lithium ion secondary battery
JP6312212B2 (en) 2014-11-18 2018-04-18 信越化学工業株式会社 Rotating cylindrical furnace and method for producing negative electrode active material for non-aqueous electrolyte secondary battery
WO2017022455A1 (en) 2015-07-31 2017-02-09 信越化学工業株式会社 Lithium ion secondary battery negative electrode material, production method therefor, and lithium ion secondary battery
WO2017168947A1 (en) 2016-03-30 2017-10-05 住友精化株式会社 Binder for nonaqueous electrolyte secondary battery electrodes, electrode mixture for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electrical device
CN108365186A (en) * 2018-01-11 2018-08-03 湖南立方新能源科技有限责任公司 A kind of silicon substrate composite negative pole material and preparation method thereof
CN110828794B (en) * 2019-10-28 2021-01-15 珠海格力绿色再生资源有限公司 Preparation method of multiple modified silicon-manganese alloy composite negative electrode material
JP6829754B1 (en) 2019-11-19 2021-02-10 住友精化株式会社 Batteries for secondary batteries
CN114730877A (en) 2019-11-19 2022-07-08 住友精化株式会社 Binder for secondary battery
JP6888139B1 (en) 2020-02-26 2021-06-16 住友精化株式会社 Batteries for secondary batteries
JP6765022B1 (en) 2020-02-26 2020-10-07 住友精化株式会社 Method for manufacturing polymer compound used for binder for secondary batteries
JP6923689B1 (en) 2020-02-26 2021-08-25 住友精化株式会社 Batteries for secondary batteries

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3249722A1 (en) * 2005-12-23 2017-11-29 3M Innovative Properties Co. Silicon-containing alloys useful as electrodes for lithium-ion batteries
US8734991B2 (en) 2007-11-12 2014-05-27 Sanyo Electric Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery
US8105718B2 (en) 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
EP2104175A2 (en) 2008-03-17 2009-09-23 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US9142858B2 (en) 2008-08-26 2015-09-22 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode, negative electrode material, and preparation of Si—O—Al composite
KR20110128246A (en) 2010-05-21 2011-11-29 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon oxide for nonaqueous electrolytic secondary battery negative electrode material, process for producing the same, negative electrode, lithium ion secondary battery, and electrochemical capacitor
EP2581969A4 (en) * 2010-06-10 2017-01-18 LG Chem, Ltd. Cathode active material for lithium secondary battery and lithium secondary battery provided with same
EP2509139A1 (en) 2011-04-08 2012-10-10 Shin-Etsu Chemical Co., Ltd. Method for manufacturing negative electrode active material for use in non-aqueous electrolyte secondary battery, negative electrode material for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR20120115116A (en) 2011-04-08 2012-10-17 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing cathode active material for nonaqueous electrolyte secondary battery, cathode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2013054476A1 (en) 2011-10-14 2013-04-18 信越化学工業株式会社 Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor
US9553309B2 (en) 2012-05-16 2017-01-24 Shin-Etsu Chemical Co., Ltd. Silicon oxide particles, making method, lithium ion secondary battery, and electrochemical capacitor
US9281129B2 (en) 2012-05-16 2016-03-08 Shin-Etsu Chemical Co., Ltd. Silicon oxide particles, making method, lithium ion secondary battery, and electrochemical capacitor
KR20140051783A (en) 2012-10-23 2014-05-02 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon oxide, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor
EP2724982A2 (en) 2012-10-23 2014-04-30 Shin-Etsu Chemical Co., Ltd. Silicon oxide, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor.
US9293763B2 (en) 2012-10-23 2016-03-22 Shin-Etsu Chemical Co., Ltd. Silicon oxide, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor
US9484159B2 (en) 2012-12-10 2016-11-01 Shin-Etsu Chemical Co., Ltd. Silicon oxide material, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor
KR20140074837A (en) 2012-12-10 2014-06-18 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon oxide and method for producing the same, negative electrode, and lithium ion secondary battery and electrochemical capacitor
KR20160101932A (en) 2013-12-25 2016-08-26 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
WO2015097990A1 (en) 2013-12-25 2015-07-02 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
US10050272B2 (en) 2013-12-25 2018-08-14 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electolyte secondary battery and method of producing the same
EP3480875A1 (en) 2013-12-25 2019-05-08 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same

Also Published As

Publication number Publication date
JPH10294112A (en) 1998-11-04

Similar Documents

Publication Publication Date Title
JP3846661B2 (en) Lithium secondary battery
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
JP3726958B2 (en) battery
EP1406325B1 (en) Non-aqueous electrolyte secondary cell
JP3262019B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP3277845B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP2001338646A (en) Lithium secondary battery negative electrode
JP2002373648A (en) Negative electrode, nonaqueous electrolyte secondary battery, and method for producing the negative electrode
WO2003090296A1 (en) Cell
JP2002075351A (en) Alloy powder for negative electrode of nonaqueous electrolyte secondary battery and method for manufacturing the alloy powder
KR101840885B1 (en) Thin film alloy electrodes
JP4608743B2 (en) Nonaqueous electrolyte secondary battery
JP4997706B2 (en) Anode material for non-aqueous secondary battery and method for producing the same
JP4534263B2 (en) Nonaqueous electrolyte secondary battery
JP4439660B2 (en) Nonaqueous electrolyte secondary battery
JP2005317447A (en) Battery
JP4836439B2 (en) Non-aqueous electrolyte battery electrode material, non-aqueous electrolyte battery electrode, and non-aqueous electrolyte battery
JP6245954B2 (en) Negative electrode active material for lithium ion secondary battery
WO2000033403A1 (en) Non-aqueous electrolyte secondary cell and its charging method
JP4534264B2 (en) Nonaqueous electrolyte secondary battery
JP4196894B2 (en) Anode material for non-aqueous secondary battery
JPH04332472A (en) Negative pole for nonaqueous electrolyte secondary battery
JP2003022802A (en) Negative electrode material for nonaqueous electrolyte battery, negative electrode, and nonaqueous electrolyte battery
JP2002008648A (en) Negative electrode for lithium secondary cell
KR20130045681A (en) Anode active material for secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060511

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees