JP6245954B2 - Negative electrode active material for lithium ion secondary battery - Google Patents

Negative electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
JP6245954B2
JP6245954B2 JP2013235195A JP2013235195A JP6245954B2 JP 6245954 B2 JP6245954 B2 JP 6245954B2 JP 2013235195 A JP2013235195 A JP 2013235195A JP 2013235195 A JP2013235195 A JP 2013235195A JP 6245954 B2 JP6245954 B2 JP 6245954B2
Authority
JP
Japan
Prior art keywords
phase
negative electrode
active material
electrode active
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013235195A
Other languages
Japanese (ja)
Other versions
JP2014116297A (en
Inventor
忠俊 室田
忠俊 室田
伸也 松尾
伸也 松尾
将年 草津
将年 草津
拓生 米田
拓生 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP2013235195A priority Critical patent/JP6245954B2/en
Publication of JP2014116297A publication Critical patent/JP2014116297A/en
Application granted granted Critical
Publication of JP6245954B2 publication Critical patent/JP6245954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。   The present invention relates to a negative electrode active material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.

広く普及している携帯用の小型電気・電子機器には、ニッケル・カドミウム蓄電池、ニッケル・水素蓄電池等のアルカリ蓄電池に比べて起電力が大きく、エネルギー密度が高いリチウムイオン二次電池が用いられている。近年、こうした機器の高性能・多機能化が進むにつれ、更なる電池の高容量化が求められており、二次電池の開発が盛んに行われている。
これまでにリチウムイオン二次電池用負極活物質に関して多くの研究がなされてきた。そのうち、金属リチウムは、豊富な電池容量により負極活物質の材料として注目されてきた。しかしながら、充電時にリチウム表面に多くの樹枝状リチウムが析出して充放電効率の低下を引き起こし、正極との短絡が生じるといった電池上の問題や、リチウム自体の不安定性並びに高い反応性などの取扱い上の問題があるため実用化には至っていない。
金属リチウムに代わる負極活物質の材料として、実用化されたのが炭素系材料である。該炭素系材料は充放電による膨張・収縮割合が金属リチウムやリチウム合金に比べて少ない。しかし、金属リチウムと比べて電池容量が小さい(理論容量約372mAh/g)。
そこで、高容量材料として期待されているのがケイ素やスズである。これらの材料は炭素系材料と比べて、電池容量が大きいという特長があり、近年盛んに研究が行われている。しかしながら、該材料は充放電による膨張・収縮割合が大きく、該材料を負極活物質に用いた場合、集電体から脱落して寿命の低下や、不可逆容量が大きいといった問題がある。また2サイクル目以降の可逆率は良好であるものの、1サイクル目の充放電効率を表す初期可逆率は悪く、容量が下がる問題もある。このような問題を解決するために、ケイ素やスズを、他元素と合金化し、または炭素と複合化することで膨張・収縮を抑制し、寿命の低下や不可逆容量を低減する試みがなされている。
Lithium ion secondary batteries that have higher electromotive force and higher energy density than alkaline storage batteries such as nickel / cadmium storage batteries and nickel / hydrogen storage batteries are used in portable small electric / electronic devices that are widely used. Yes. In recent years, as the performance and functionality of these devices have increased, there has been a demand for higher battery capacity, and secondary batteries have been actively developed.
Many studies have been made so far regarding negative electrode active materials for lithium ion secondary batteries. Among them, metallic lithium has attracted attention as a material for the negative electrode active material due to its abundant battery capacity. However, many dendritic lithium deposits on the surface of lithium during charging, causing a decrease in charge / discharge efficiency, resulting in a short circuit with the positive electrode, handling of lithium instability and high reactivity. Because of this problem, it has not been put into practical use.
A carbon-based material has been put to practical use as a negative electrode active material that can replace metallic lithium. The carbon-based material has a smaller expansion / contraction ratio due to charge / discharge than metal lithium or lithium alloy. However, the battery capacity is smaller than that of metallic lithium (theoretical capacity is about 372 mAh / g).
Therefore, silicon and tin are expected as high capacity materials. These materials are characterized by a large battery capacity compared to carbon-based materials, and have been actively studied in recent years. However, the material has a large expansion / contraction ratio due to charge / discharge, and when this material is used as a negative electrode active material, there is a problem that it falls off from the current collector and the life is shortened or the irreversible capacity is large. In addition, although the reversibility after the second cycle is good, the initial reversibility representing the charge / discharge efficiency of the first cycle is poor, and there is a problem that the capacity decreases. In order to solve such problems, attempts have been made to suppress expansion and contraction by alloying silicon or tin with other elements or composite with carbon, thereby reducing the life and irreversible capacity. .

例えば、特許文献1には、Si、Al及びその他元素を含み、Si核の周囲を取り囲むマトリクスを有する負極活物質が提案されている。該負極活物質は、容量維持率が高い。しかしながら、放電容量(mAh/g)がどのくらいなのか不明であり、電圧範囲が0.1〜1.0Vであることより、放電容量は大きいとは予想し難い。
特許文献2には、Si相等のLi吸蔵相αと、この元素と他の元素との金属間化合物または固溶体からなる相βとからなる組織を持つ負極材料が提案されている。該負極材料は、サイクル特性は90%以上を維持しているものの放電容量は高くても1600mAh/g程度で、ケイ素単体の理論容量4200mAh/gの半分以下と低い。また初期可逆率については不明である。
For example, Patent Document 1 proposes a negative electrode active material that includes Si, Al, and other elements and has a matrix that surrounds the periphery of a Si nucleus. The negative electrode active material has a high capacity retention rate. However, it is unclear how much the discharge capacity (mAh / g) is, and since the voltage range is 0.1 to 1.0 V, it is difficult to predict that the discharge capacity is large.
Patent Document 2 proposes a negative electrode material having a structure composed of a Li occlusion phase α such as a Si phase and a phase β made of an intermetallic compound or a solid solution of this element and another element. Although the negative electrode material maintains a cycle characteristic of 90% or more, the discharge capacity is as high as about 1600 mAh / g, which is as low as half or less of the theoretical capacity of 4200 mAh / g of silicon alone. The initial reversibility is unknown.

特開2009−032644号公報JP 2009-032644 A 特開2001−297757号公報JP 2001-297757 A

本発明の課題は、リチウムイオン二次電池に用いることにより、放電容量及び初期可逆率が高く、かつ優れたサイクル特性を発揮させることが可能なリチウムイオン二次電池用負極活物質及び負極を提供することにある。
本発明の別の課題は、放電容量及び初期可逆率が高く、かつサイクル特性に優れたリチウムイオン二次電池を提供することにある。
An object of the present invention is to provide a negative electrode active material and a negative electrode for a lithium ion secondary battery that can be used in a lithium ion secondary battery and have a high discharge capacity and initial reversibility and can exhibit excellent cycle characteristics. There is to do.
Another object of the present invention is to provide a lithium ion secondary battery having a high discharge capacity and an initial reversibility and excellent cycle characteristics.

本発明者は、前記課題を解決するべく種々の金属元素の組合せによるリチウムイオン二次電池用負極活物質を用いた電極を、電極組成、電極容量、1サイクル目の充放電効率を表す初期可逆率、サイクル特性の観点から詳細に検討した結果、Siと、R元素と、A元素とを特定量含み、かつ特定な結晶相を有する合金粒子が、前記課題を解決できることを知見し、本発明を完成するに至った。
本発明によれば、SiとR元素(RはSc、Yを含む希土類元素からなる群から選ばれる少なくとも1種を示す。好ましくは、RはPr、Nd及びGdからなる群から選ばれる少なくとも1種を示す。)とA元素(Aはアルカリ金属、アルカリ土類金属、B、P、Mn、Ag、Sb、Bi、Hf、Co、Cr、C、Mo、Nb、V、Al、Cu、Fe、Ni、W、Ti、Zr、Zn、Sn、Ga、In及びTaからなる群から選ばれる少なくとも1種を示す。好ましくは、AはAl及びCuから選ばれる少なくとも1種を示す。)とを含み、Siの含有量が30.0重量%以上80.0重量%以下、R元素の含有量が10.0重量%以上50.0重量%以下、及びA元素の含有量が0.01重量%以上30.0重量%以下であり、粉末X線回折(XRD)により確認されるSi相と、Si、R元素及びA元素を含む相とを有する合金粒子を含むリチウムイオン二次電池用負極活物質(以下、本発明の負極活物質と略すことがある)が提供される。
また本発明によれば、集電体と、本発明の負極活物質を含む活物質層とを備えたリチウムイオン二次電池用負極(以下、本発明の負極と略すことがある)が提供される。
更にまた本発明によれば、本発明の負極と、正極と、セパレータと、電解質とを備えたリチウムイオン二次電池(以下、本発明の二次電池と略すことがある)が提供される。
In order to solve the above problems, the present inventor uses an electrode using a negative electrode active material for a lithium ion secondary battery by a combination of various metal elements as an electrode composition, an electrode capacity, and an initial reversibility representing charge / discharge efficiency in the first cycle. As a result of detailed examination from the viewpoint of rate and cycle characteristics, it has been found that alloy particles containing a specific amount of Si, R element, and A element and having a specific crystal phase can solve the above problems. It came to complete.
According to the present invention, Si and R element (R is at least one selected from the group consisting of rare earth elements including Sc and Y. Preferably, R is at least one selected from the group consisting of Pr, Nd and Gd. shows the seed.) and a element (a is an alkali metal, alkaline earth metal, B, P, Mn, Ag , Sb, Bi, Hf, Co, Cr, C, Mo, Nb, V, Al, Cu, Fe , Ni, W, Ti, Zr, Zn, Sn, Ga, In, and Ta. Preferably, A represents at least one selected from Al and Cu. And the Si content is 30.0 wt% or more and 80.0 wt% or less, the R element content is 10.0 wt% or more and 50.0 wt% or less, and the A element content is 0.01 wt%. % To 30.0% by weight, powder X-ray Negative electrode active material for a lithium ion secondary battery (hereinafter abbreviated as the negative electrode active material of the present invention) containing alloy particles having a Si phase confirmed by folding (XRD) and a phase containing Si, R element and A element Is provided).
According to the present invention, there is also provided a negative electrode for a lithium ion secondary battery (hereinafter sometimes abbreviated as the negative electrode of the present invention) comprising a current collector and an active material layer containing the negative electrode active material of the present invention. The
Furthermore, according to the present invention, there is provided a lithium ion secondary battery (hereinafter sometimes abbreviated as the secondary battery of the present invention) comprising the negative electrode of the present invention, a positive electrode, a separator, and an electrolyte.

本発明の負極活物質は、上記特定の組成及び結晶相を有するので、これを用いた負極をリチウムイオン二次電池に使用することにより、該二次電池に放電容量及び初期可逆率が高く、かつ優れたサイクル特性を発揮させることができる。   Since the negative electrode active material of the present invention has the above specific composition and crystal phase, by using a negative electrode using this for a lithium ion secondary battery, the secondary battery has a high discharge capacity and initial reversibility, In addition, excellent cycle characteristics can be exhibited.

実施例1に係る負極活物質粒子のX線回折パターンを示す図である。3 is a diagram showing an X-ray diffraction pattern of negative electrode active material particles according to Example 1. FIG. 実施例1で得られた負極の充放電曲線を示すグラフである。2 is a graph showing a charge / discharge curve of a negative electrode obtained in Example 1. FIG. 実施例2で得られた負極の充放電曲線を示すグラフである。3 is a graph showing a charge / discharge curve of a negative electrode obtained in Example 2. 実施例6で得られた負極の充放電曲線を示すグラフである。6 is a graph showing a charge / discharge curve of a negative electrode obtained in Example 6. 比較例1で得られた負極の充放電曲線を示すグラフである。6 is a graph showing a charge / discharge curve of a negative electrode obtained in Comparative Example 1. 比較例2で得られた負極の充放電曲線を示すグラフである。5 is a graph showing a charge / discharge curve of a negative electrode obtained in Comparative Example 2. 比較例3で得られた負極の充放電曲線を示すグラフである。10 is a graph showing a charge / discharge curve of a negative electrode obtained in Comparative Example 3.

以下、本発明を更に詳細に説明する。
本発明の負極活物質は、Si、特定のR元素及びA元素を特定割合で含み、粉末X線回折(XRD)により確認されるSi相と、Si、R元素及びA元素を含む相とを有する合金粒子を含む。
Hereinafter, the present invention will be described in more detail.
The negative electrode active material of the present invention contains Si, a specific R element, and an A element in specific ratios, and includes a Si phase that is confirmed by powder X-ray diffraction (XRD), and a phase that includes Si, R element, and A element. Having alloy particles.

前記合金粒子においてSiは、Liを吸蔵・放出する能力がある元素である。一般にSi含有量が多いほど、リチウムイオン二次電池の放電容量は多くなるが、サイクル寿命は低下する傾向にある。そこで、優れたサイクル特性と放電容量とを両立させるために、Siの含有量を30.0重量%以上80.0重量%以下の範囲に、好ましくは35.0重量%以上76.0%以下の範囲に制御する。Siの含有量が30.0重量%未満の場合、充放電容量が低くなり、所望の容量が得られないおそれがある。またSi含有量が80.0重量%を超える場合は、Liの吸蔵・放出の際に活物質の膨張・収縮が大きく、サイクル特性の低下が顕著になる。   In the alloy particles, Si is an element capable of occluding and releasing Li. In general, as the Si content increases, the discharge capacity of the lithium ion secondary battery increases, but the cycle life tends to decrease. Therefore, in order to achieve both excellent cycle characteristics and discharge capacity, the Si content is in the range of 30.0% by weight to 80.0% by weight, preferably 35.0% by weight to 76.0%. Control to the range. When the content of Si is less than 30.0% by weight, the charge / discharge capacity is lowered, and a desired capacity may not be obtained. On the other hand, when the Si content exceeds 80.0% by weight, the active material is greatly expanded and contracted during the insertion and extraction of Li, and the cycle characteristics are significantly deteriorated.

前記合金粒子においてR元素は、Sc、Yを含む希土類元素からなる群から選ばれる少なくとも1種を示す。R元素は、電子供与性が大きく、比較的密度の高い元素である。R元素としては、La、Ce、Pr、Nd、Sm、Gd、Dy及びYからなる群より選択される少なくとも1種を含むことが好ましく、特に、Sm、Gd及びDyからなる群より選択される少なくとも1種を含むことが好ましい。R元素の含有量は10.0重量%以上50.0重量%以下の範囲、好ましくは15.0重量%以上50.0%以下の範囲に制御する。R元素の含有量が10.0重量%未満の場合、XRDにより確認されるSi、R元素及びA元素を含む相が少なくなる傾向となり、Liの吸蔵・放出の際に活物質の膨張・収縮の抑制効果が低下してリチウムイオン二次電池のサイクル特性が悪くなるおそれがある。R元素の含有量が50.0重量%を超える場合は、リチウムイオン二次電池の充放電容量が低くなり、所望の効果が得られなくなるおそれがある。   In the alloy particles, the R element represents at least one selected from the group consisting of rare earth elements including Sc and Y. The R element is an element having a large electron donating property and a relatively high density. The R element preferably includes at least one selected from the group consisting of La, Ce, Pr, Nd, Sm, Gd, Dy and Y, and particularly selected from the group consisting of Sm, Gd and Dy. It is preferable to include at least one kind. The content of R element is controlled in the range of 10.0% by weight to 50.0% by weight, preferably in the range of 15.0% by weight to 50.0%. When the content of R element is less than 10.0% by weight, the phase containing Si, R element and A element confirmed by XRD tends to decrease, and the active material expands / contracts during the insertion / desorption of Li. As a result, the cycle effect of the lithium ion secondary battery may be deteriorated. When the content of the R element exceeds 50.0% by weight, the charge / discharge capacity of the lithium ion secondary battery is lowered, and the desired effect may not be obtained.

前記合金粒子においてA元素は、アルカリ金属、アルカリ土類金属、B、P、Mn、Ag、Sb、Bi、Hf、Co、Cr、C、Mo、Nb、V、Al、Cu、Fe、Ni、W、Ti、Zr、Zn、Sn、Ga、In及びTaからなる群から選ばれる少なくとも1種を示す。A元素は得られるリチウムイオン二次電池のサイクル特性に寄与する元素である。A元素の含有量は0.01重量%以上30.0重量%以下の範囲、好ましくは0.01重量%以上25.0重量%以下、特に好ましくは1.0重量%以上25.0重量%以下の範囲に制御する。A元素が上記範囲内において、XRDにより確認されるA相が析出する場合がある。このA相については後で説明するが、いくらか含んでいてもよい。ただし、過剰に含むとリチウムイオン二次電池の初期可逆率が悪くなるおそれがある。
A元素の含有量が0.01重量%未満の場合、XRDにより確認されるSi、R元素及びA元素を含む相が少なくなる傾向となり、Liの吸蔵・放出の際に活物質の膨張・収縮の抑制が低下し、リチウムイオン二次電池のサイクル特性が悪くなるおそれがある。またSi、R元素及びA元素を含む相が得られず、リチウムイオン二次電池の初期可逆率が低くなるおそれがある。A元素の含有量が30.0重量%を超える場合は、A相が過剰に析出し、リチウムイオン二次電池の初期可逆率が低くなるおそれがある。
なお、Si、R元素及びA元素を含む合金粒子の組成は、ICP(Inductively Coupled Plasma)発光分光分析による定量分析で確認することができる。
前記合金粒子は、Si、R元素及びA元素以外の元素を不可避的不純物として微量であれば含有しても良い。
In the alloy particles, the element A is alkali metal, alkaline earth metal, B, P, Mn, Ag, Sb, Bi, Hf, Co, Cr, C, Mo, Nb, V, Al, Cu, Fe, Ni, At least one selected from the group consisting of W, Ti, Zr, Zn, Sn, Ga, In and Ta is shown. The element A is an element that contributes to the cycle characteristics of the obtained lithium ion secondary battery. The content of element A is in the range of 0.01 wt% to 30.0 wt%, preferably 0.01 wt% to 25.0 wt%, particularly preferably 1.0 wt% to 25.0 wt%. Control within the following range. When the A element is within the above range, the A phase confirmed by XRD may precipitate. This A phase will be described later, but some may be included. However, if it is excessively contained, the initial reversibility of the lithium ion secondary battery may be deteriorated.
When the content of A element is less than 0.01% by weight, the phase containing Si, R element and A element, which is confirmed by XRD, tends to decrease, and the active material expands / contracts during the insertion / desorption of Li. May be reduced, and the cycle characteristics of the lithium ion secondary battery may be deteriorated. Moreover, the phase containing Si, R element, and A element cannot be obtained, and the initial reversibility of the lithium ion secondary battery may be lowered. When the content of the A element exceeds 30.0% by weight, the A phase is excessively precipitated, and the initial reversibility of the lithium ion secondary battery may be lowered.
The composition of the alloy particles containing Si, R element and A element can be confirmed by quantitative analysis by ICP (Inductively Coupled Plasma) emission spectroscopic analysis.
The alloy particles may contain elements other than Si, R element, and A element as inevitable impurities as long as they are in minute amounts.

前記合金粒子において、Si相と、Si、R元素及びA元素を含む相とは、ともにXRDにより確認される。Si相はリチウムイオン二次電池における充放電容量に寄与する相であり、上記粒子中におけるSi相の含有量を多くすることで充放電容量の増加が期待できる。一方、Si相の含有量を多くしすぎると、上記合金粒子の微粉化が促進され、リチウムイオン二次電池のサイクル寿命が低下するおそれがある。Si、R元素及びA元素を含む相は、Si相のマトリクスとして働き、充放電に伴う体積変化で生じる応力を一層緩和させることができる。それに伴い、リチウムイオン二次電池のサイクル特性を向上させつつ、高容量であるものの充放電時の体積変化が大きいSi相の活物質中における比率を高めることができるという利点がある。   In the alloy particles, both the Si phase and the phase containing Si, R element and A element are confirmed by XRD. The Si phase is a phase that contributes to the charge / discharge capacity in the lithium ion secondary battery, and an increase in the charge / discharge capacity can be expected by increasing the content of the Si phase in the particles. On the other hand, when the content of the Si phase is excessively increased, the alloy particles are finely pulverized and the cycle life of the lithium ion secondary battery may be reduced. The phase containing Si, R element, and A element acts as a matrix of Si phase, and can further relieve the stress generated by the volume change accompanying charge / discharge. Accordingly, there is an advantage that the ratio of the Si phase in the active material can be increased while improving the cycle characteristics of the lithium ion secondary battery but having a large capacity but a large volume change during charge and discharge.

Si、R元素及びA元素を含む相としては、RA2Si2相やRASi相など各種存在するが、その中でRA2Si2相を含むことが好ましい。
Si相とRA2Si2相との存在比率は、例えば、リチウムイオン二次電池の充放電容量とサイクル特性の向上又は負極活物質の膨張・収縮の抑制とのバランスの観点からは、XRDにより2θ=28.4±0.2°付近で確認されるSi相の最強ピーク((111)面のピーク)の積分強度と、2θ=27.9±0.2°付近で確認されるRA2Si2相の最強ピーク((011)面のピーク)の積分強度との比((RA2Si2相)/(Si相))が0.05以上0.40以下の範囲とすることが好ましい。
ここでいう積分強度はXRDより得られた各最強ピーク曲線の面積を表しており、該積分強度はX線回折装置(例えば、株式会社リガク製、UltimaIV)のCuKα線を使用したX線回折スペクトルより求められる。
As the phase containing Si, R element and A element, there are various kinds such as RA 2 Si 2 phase and RASi phase, and it is preferable that RA 2 Si 2 phase is contained therein.
The abundance ratio between the Si phase and the RA 2 Si 2 phase is determined by, for example, XRD from the viewpoint of the balance between charge / discharge capacity of the lithium ion secondary battery and improvement of cycle characteristics or suppression of expansion / contraction of the negative electrode active material. The integrated intensity of the strongest peak of Si phase (peak of (111) plane) confirmed near 2θ = 28.4 ± 0.2 ° and RA 2 confirmed near 2θ = 27.9 ± 0.2 °. The ratio ((RA 2 Si 2 phase) / (Si phase)) of the strongest peak of the Si 2 phase (peak of the (011) plane) to the integrated intensity ((RA 2 Si 2 phase) / (Si phase)) is preferably in the range of 0.05 to 0.40. .
The integrated intensity here represents the area of each strongest peak curve obtained from XRD, and the integrated intensity is an X-ray diffraction spectrum using CuKα rays of an X-ray diffractometer (for example, Ultimate IV manufactured by Rigaku Corporation). More demanded.

本発明の負極活物質に用いる合金粒子は、A元素の含有量によりA相を含む場合がある。A元素の含有量が少なければA相は析出せず、A元素の含有量が多ければA相は析出する。A相はある一定量含むと優れた電池特性を得ることができるが、A相が過剰に析出すると初期可逆率が悪くなるおそれがある。
A相の含有量は、2θ=28.4±0.2°付近で確認されるSi相の最高ピーク((111)面のピーク)の積分強度と、2θ=38.4±0.2°付近で確認されるA相の最高ピーク((111)面のピーク)の積分強度との比((A相)/(Si相))が0以上0.20以下の範囲であることが好ましい。
The alloy particles used for the negative electrode active material of the present invention may contain an A phase depending on the content of the A element. If there is little content of A element, A phase will not precipitate, but if there is much content of A element, A phase will precipitate. When the A phase is contained in a certain amount, excellent battery characteristics can be obtained, but if the A phase is excessively precipitated, the initial reversibility may be deteriorated.
The content of the A phase is the integrated intensity of the highest peak of the Si phase ((111) plane peak) confirmed around 2θ = 28.4 ± 0.2 ° and 2θ = 38.4 ± 0.2 °. It is preferable that the ratio ((A phase) / (Si phase)) of the highest peak of the A phase (peak of the (111) plane) confirmed in the vicinity ((A phase) / (Si phase)) is in the range of 0 or more and 0.20 or less.

本発明の負極活物質に用いる合金粒子は、例えば、単ロール法、双ロール法又はディスク法等のストリップキャスト法、金型鋳造法、各種アトマイズ法、メカニカルアロイング法(メカニカルミリング法)、アーク溶解法により製造することができるが、所望の相を有する合金粒子が得られれば特に限定されない。
得られる合金粒子は、必要に応じて熱処理を行うことができる。熱処理は、不活性雰囲気下、通常300〜1200℃、0.5〜30時間の条件で行うことができる。
また、得られる合金粒子は、必要に応じて粉砕することができる。粉砕方法は、ジェットミル、フェザーミル、ハンマーミル、ボールミル、スタンプミル、アトライターミル等の公知の粉砕機を用い、粉砕条件を適宜変更することで行うことができる。また、乳鉢等を用いた粉砕も可能であるが、特にこれらの手段に限定されない。必要に応じて粉砕後に篩い分けることで、所望の粒度の合金粉末を得ることができる。
The alloy particles used in the negative electrode active material of the present invention include, for example, a strip casting method such as a single roll method, a twin roll method or a disk method, a die casting method, various atomizing methods, a mechanical alloying method (mechanical milling method), an arc Although it can manufacture by a melt | dissolution method, if the alloy particle which has a desired phase is obtained, it will not specifically limit.
The obtained alloy particles can be heat-treated as necessary. The heat treatment can be carried out under an inert atmosphere, usually at 300 to 1200 ° C. for 0.5 to 30 hours.
Further, the obtained alloy particles can be pulverized as necessary. The pulverization method can be performed by using a known pulverizer such as a jet mill, a feather mill, a hammer mill, a ball mill, a stamp mill, an attritor mill, and the like and appropriately changing the pulverization conditions. Moreover, although pulverization using a mortar or the like is possible, it is not particularly limited to these means. By sieving after pulverization as necessary, an alloy powder having a desired particle size can be obtained.

本発明の負極活物質に用いる合金粒子は、平均粒子径D50が、通常1〜50μm、好ましくは5〜30μmである。該合金粒子の形状は特に制限はない。平均粒子径D50は、レーザー回折散乱式粒度分布測定装置(例えば、製品名「MICROTRAC HRA」、型番9320-X100、日機装株式会社製)によって測定することができる。
本発明の負極活物質は、上述の合金粒子をそのまま負極活物質として用いることができる他、他の負極活物質と混合することも可能である。
The alloy particles used for the negative electrode active material of the present invention have an average particle diameter D50 of usually 1 to 50 μm, preferably 5 to 30 μm. The shape of the alloy particles is not particularly limited. The average particle diameter D50 can be measured by a laser diffraction / scattering particle size distribution analyzer (for example, product name “MICROTRAC HRA”, model number 9320-X100, manufactured by Nikkiso Co., Ltd.).
The negative electrode active material of the present invention can be used as the negative electrode active material as it is, or can be mixed with other negative electrode active materials.

本発明の負極は、集電体と、本発明の負極活物質を含む活物質層とを備える。該活物質層は、通常、集電体の少なくとも一方の面に形成され、該活物質層には本発明の負極活物質が全体にわたりほぼ均一に分散した状態で存在しているのが好ましい。
活物質層の厚みは、通常0.5〜40μm、好ましくは0.5〜30μm、さらに好ましくは0.5〜25μmである。活物質層の厚みをこの範囲に設定することで、リチウムイオン二次電池のエネルギー密度を十分に向上させつつ、負極の強度を十分なものとすることができ、また活物質層での合金粒子の脱落を効果的に防止できる。
The negative electrode of the present invention includes a current collector and an active material layer containing the negative electrode active material of the present invention. The active material layer is usually formed on at least one surface of the current collector, and it is preferable that the negative electrode active material of the present invention is present in a substantially uniformly dispersed state throughout the active material layer.
The thickness of the active material layer is usually 0.5 to 40 μm, preferably 0.5 to 30 μm, and more preferably 0.5 to 25 μm. By setting the thickness of the active material layer within this range, the energy density of the lithium ion secondary battery can be sufficiently improved, and the strength of the negative electrode can be increased, and alloy particles in the active material layer can be obtained. Can be effectively prevented from falling off.

集電体は、リチウムイオン二次電池用負極の集電体として従来用いられているものと同様のものを用いることができる。集電体は、リチウム化合物の形成能の低い金属材料から構成されることが好ましい。ここで、「リチウム化合物の形成能の低い」とは、リチウムと金属間化合物もしくは固溶体を形成しないか、又は形成したとしてもリチウムが微量であるかもしくは非常に不安定であることを意味する。そのような金属材料としては、例えば、銅、ニッケル、ステンレスが好ましく挙げられる。またコルソン合金箔に代表されるような銅合金箔の使用も可能である。集電体の厚みは、負極の強度維持と、エネルギー密度向上とのバランスを考慮すると、9〜35μmが好ましい。なお、集電体として銅箔を使用する場合には、クロメート処理や、トリアゾール系化合物及びイミダゾール系化合物等の有機化合物を用いた防錆処理を施しておくことが好ましい。   As the current collector, the same one as conventionally used as a current collector of a negative electrode for a lithium ion secondary battery can be used. The current collector is preferably composed of a metal material having a low ability to form a lithium compound. Here, “low ability to form a lithium compound” means that lithium does not form an intermetallic compound or solid solution, or even if formed, the amount of lithium is very small or very unstable. Preferred examples of such a metal material include copper, nickel, and stainless steel. Also, it is possible to use a copper alloy foil represented by a Corson alloy foil. The thickness of the current collector is preferably 9 to 35 μm in consideration of the balance between maintaining the strength of the negative electrode and improving the energy density. In addition, when using copper foil as an electrical power collector, it is preferable to give the rust prevention process using organic compounds, such as a chromate process and a triazole type compound, and an imidazole type compound.

本発明の負極は、例えば、本発明の負極活物質、結着剤及び導電剤を溶剤に分散させて負極合剤を調製し、該合剤を集電体の少なくとも一方の表面に塗工し、乾燥させて活物質層を形成する方法により製造することができる。
上記結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素系樹脂、ポリ酢酸ビニル、ポリメチルメタクリレート、エチレン−プロピレン−ジエン共重合体、スチレン−ブタジエン共重合体、アクリロニトリルブタジエン共重合体、カルボキシメチルセルロースが挙げられる。
上記導電剤としては、例えば、鱗片状黒鉛のような天然黒鉛、人造黒鉛、ケッチェンブラック、アセチレンブラック等の炭素質材が挙げられる。
The negative electrode of the present invention is prepared, for example, by dispersing the negative electrode active material of the present invention, a binder and a conductive agent in a solvent to prepare a negative electrode mixture, and coating the mixture on at least one surface of the current collector. It can be manufactured by a method of forming an active material layer by drying.
Examples of the binder include fluorine resins such as polytetrafluoroethylene and polyvinylidene fluoride, polyvinyl acetate, polymethyl methacrylate, ethylene-propylene-diene copolymer, styrene-butadiene copolymer, and acrylonitrile butadiene copolymer. Examples of the polymer include carboxymethyl cellulose.
Examples of the conductive agent include carbonaceous materials such as natural graphite such as flake graphite, artificial graphite, ketjen black, and acetylene black.

本発明の二次電池は、本発明の負極と、正極と、セパレータと、電解質とを備える。
正極としては、リチウムイオン二次電池の正極に利用可能なものであれば特に限定されず、例えば、公知の正極から適宜選択することができる。
The secondary battery of the present invention includes the negative electrode of the present invention, a positive electrode, a separator, and an electrolyte.
The positive electrode is not particularly limited as long as it can be used for a positive electrode of a lithium ion secondary battery, and can be appropriately selected from, for example, known positive electrodes.

セパレータとしては、大きなイオン透過度、所定の機械的強度、および電子絶縁性を有する微多孔性薄膜の使用が好ましい。電解質に対する耐性と疎水性に優れていることから、例えば、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド、ポリエチレンテレフタレート、ポリアミド、ポリイミド等の材料からなる微多孔性薄膜の使用が好ましく、これらの材料は、単独で用いても、複数を組み合わせて用いても良い。製造コストの観点からは、安価なポリプロピレン等を用いることが有利である。   As the separator, it is preferable to use a microporous thin film having high ion permeability, predetermined mechanical strength, and electronic insulation. For example, it is preferable to use a microporous thin film made of a material such as polyethylene, polypropylene, polyphenylene sulfide, polyethylene terephthalate, polyamide, polyimide, etc. Alternatively, a plurality of them may be used in combination. From the viewpoint of manufacturing cost, it is advantageous to use inexpensive polypropylene or the like.

電解質としては、有機溶媒及び該有機溶媒に溶解させる溶質からなる非水電解液や、固体電解質が挙げられ、公知のものを特に制限無く用いることができる。
非水電解液に用いる有機溶媒としては、例えば、N−メチルピロリドン、テトラヒドロフラン、エチレンオキシド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、ジメチルホルムアミド、ジメチルアセトアミド、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、ギ酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトン等の非プロトン性有機溶媒が挙げられ、使用に際しては単独もしくは2種以上の混合溶媒として用いることができる。
Examples of the electrolyte include a nonaqueous electrolytic solution composed of an organic solvent and a solute dissolved in the organic solvent, and a solid electrolyte. Known electrolytes can be used without particular limitation.
Examples of the organic solvent used for the non-aqueous electrolyte include N-methylpyrrolidone, tetrahydrofuran, ethylene oxide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, dimethylformamide, dimethylacetamide, ethylene carbonate, propylene carbonate, and butylene carbonate. , Dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, formic acid Methyl, methyl acetate, phosphate triester, trimethoxymethane, dioxo Derivatives, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, diethyl ether, 1,3-propane sultone, and other aprotic organic solvents. It can be used as a mixed solvent.

上記有機溶媒に溶解させる溶質としては、例えば、LiClO4、LiPF6、LiBF4、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、テトラクロロホウ素酸リチウム、テトラフェニルホウ素酸リチウム、イミド類が挙げられる。これらは単独で用いても、複数を組み合わせて用いても良い。 Examples of the solute dissolved in the organic solvent include LiClO 4 , LiPF 6 , LiBF 4 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAsF 6. , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, lithium tetrachloroborate, lithium tetraphenylborate, and imides. These may be used alone or in combination.

電解質としては、例えば、ポリエチレンオキサイド系等の高分子電解質、Li2S−SiS2、Li2S−P25、Li2S−B23等の硫化物系電解質が挙げられる。また、高分子に非水電解質溶液を保持させた、いわゆるゲルタイプのものを用いることもできる。 Examples of the electrolyte include polymer electrolytes such as polyethylene oxide, and sulfide electrolytes such as Li 2 S—SiS 2 , Li 2 S—P 2 S 5 , and Li 2 S—B 2 S 3 . Moreover, what is called a gel type which hold | maintained the nonaqueous electrolyte solution in the polymer | macromolecule can also be used.

本発明の二次電池の形状は、円筒型、積層型、コイン型等、種々の形状が挙げられる。本発明の二次電池は、いずれの形状であっても、上述の構成要素を電池ケースに収納し、正極及び負極から正極端子及び負極端子までの間を、集電用リード等を用いて接続し、電池ケースを密閉することにより製造することができる。   Examples of the shape of the secondary battery of the present invention include various shapes such as a cylindrical shape, a stacked shape, and a coin shape. The secondary battery of the present invention is housed in the battery case in any shape and connected between the positive electrode and the negative electrode to the positive electrode terminal and the negative electrode terminal using a current collecting lead or the like. And it can manufacture by sealing a battery case.

以下、実施例及び比較例により本発明を詳細に説明するが、本発明はこれらに限定されない。
実施例1
(負極活物質の製造)
Siと、R元素であるGdと、A元素であるAlとを質量比でSi:Gd:Al=73.7:20.92:5.38となるように、Si、Gd及びAlを秤量し、高周波溶解炉にてArガス雰囲気中で溶解して合金溶融物とした。その後、この溶融物を銅製水冷ロールを備えた単ロール鋳造装置を用いたストリップキャスト法にて急冷・凝固して合金鋳片を得た。得られた合金鋳片をジェットミルにて粉砕を行い、該粉砕粉をレーザー回折散乱式粒度分布測定装置(製品名「MICROTRAC HRA」、型番9320-X100、日機装株式会社製)によって測定した。その結果、平均粒子径(D50)が7.233μmの粒度のリチウムイオン二次電池用負極活物質の合金粒子(Si−Gd−Al合金粉末)を得た。得られた合金粒子の組成をICPで分析したところSi=73.7重量%、Gd=20.92重量%、Al=5.38重量%であった。さらに負極活物質である合金粒子をX線回折装置(株式会社リガク製、UltimaIV)を用いて粉末X線回折した。結果を図1に示す。図1より、少なくともSi相とRA2Si2相であるGdAl2Si2相とが確認されたが、A相であるAl相は確認されなかった。2θ=28.4±0.2°付近で確認されるSi相の最強ピーク((111)面のピーク)の積分強度と2θ=27.9±0.2°付近で確認されるGdAl2Si2相の最強ピーク((011)面のピーク)の積分強度との比((GdAl2Si2相)/(Si相))は0.28であった。これらの結果をICPによる定量分析、粒度測定の結果と併せて表1に示す。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these.
Example 1
(Manufacture of negative electrode active material)
Si, Gd, and Al are weighed so that Si, Gd, which is an R element, and Al, which is an A element, have a mass ratio of Si: Gd: Al = 73.7: 20.92: 5.38. Then, it was melted in an Ar gas atmosphere in a high frequency melting furnace to obtain an alloy melt. Thereafter, the melt was rapidly cooled and solidified by a strip casting method using a single roll casting apparatus equipped with a copper water-cooled roll to obtain an alloy slab. The obtained alloy slab was pulverized by a jet mill, and the pulverized powder was measured by a laser diffraction scattering type particle size distribution measuring device (product name “MICROTRAC HRA”, model number 9320-X100, manufactured by Nikkiso Co., Ltd.). As a result, alloy particles (Si—Gd—Al alloy powder) of a negative electrode active material for a lithium ion secondary battery having an average particle size (D50) of 7.233 μm were obtained. The composition of the obtained alloy particles was analyzed by ICP and found to be Si = 73.7% by weight, Gd = 20.92% by weight, and Al = 5.38% by weight. Further, the alloy particles as the negative electrode active material were subjected to powder X-ray diffraction using an X-ray diffractometer (manufactured by Rigaku Corporation, Ultimate IV). The results are shown in FIG. Than 1, and gdal 2 Si 2 phase is at least Si phase and RA 2 Si 2 phase was confirmed, but, Al phase is the A phase was not confirmed. The integrated intensity of the strongest peak of Si phase (peak of (111) plane) confirmed near 2θ = 28.4 ± 0.2 ° and GdAl 2 Si confirmed near 2θ = 27.9 ± 0.2 ° The ratio ((GdAl 2 Si 2 phase) / (Si phase)) of the strongest peak of the two phases (peak of the (011) plane) to the integrated intensity was 0.28. These results are shown in Table 1 together with the results of quantitative analysis and particle size measurement by ICP.

(負極の製造)
上述で得られた負極活物質(Si−Gd−Al合金粉末)0.5g、導電剤(アセチレンブラック)0.375g、結着剤(ポリフッ化ビニリデン)0.375gを秤量し、適量のN−メチルピロリドンを加えて、乳鉢でよく混練し、電極ペーストを得た。得られた電極ペーストをドクターブレード法により銅箔に塗布し、乾燥後、プレス機で加圧成形した。その後、所定の寸法に裁断し、リチウムイオン二次電池用負極とした。
(Manufacture of negative electrode)
The negative electrode active material (Si-Gd-Al alloy powder) 0.5 g obtained above, 0.375 g of the conductive agent (acetylene black), and 0.375 g of the binder (polyvinylidene fluoride) were weighed, and an appropriate amount of N- Methylpyrrolidone was added and well kneaded in a mortar to obtain an electrode paste. The obtained electrode paste was applied to a copper foil by a doctor blade method, dried, and then pressure-formed with a press. Then, it cut | judged to the predetermined dimension and was set as the negative electrode for lithium ion secondary batteries.

(電極評価)
上記で得られた負極を用いて充放電試験用コインセルを構成した。該コインセルには対極に金属リチウム箔、試験極として上記で得られた負極を、セパレータを介して配置した。その中に、エチレンカーボネート(EC)とジメチルカーボネート(DMC)の1:2混合溶媒中に、支持電解質のLiPF6を1M濃度で溶解させた電解液を注入し、コインセル型電池を作製した。作製したコインセル型電池を用い、測定温度を25℃とし、充電条件として、0.20mA/cm2で0.005V(vs参照極)に達するまでCC(一定電流)充電を行い、その後0.03mAに達するまでCV(一定電圧)充電を行った。
一方、放電条件として、0.20mA/cm2で2.0V(vs参照極)まで放電を行った。また(充電−放電)を1サイクルとし、50サイクルまで測定を行った。1サイクル目の放電容量と、1サイクル目の充放電効率を表す初期可逆率(%)=(1サイクル目の放電容量)/(1サイクル目の充電容量)×100と、サイクル特性を評価するために用いた容量維持率(%)=50サイクル目の放電容量/1サイクル目の放電容量×100とを求めた。結果を表1に示す。また得られた1サイクル目の充放電曲線を図2に示す。
(Electrode evaluation)
A charge / discharge test coin cell was constructed using the negative electrode obtained above. In the coin cell, a metal lithium foil as a counter electrode and the negative electrode obtained above as a test electrode were arranged via a separator. Into this, an electrolyte solution in which LiPF 6 as a supporting electrolyte was dissolved at a concentration of 1M was injected into a 1: 2 mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) to produce a coin cell type battery. Using the manufactured coin cell type battery, the measurement temperature was set to 25 ° C., and the charge condition was CC (constant current) charge until reaching 0.005 V (vs reference electrode) at 0.20 mA / cm 2 , and then 0.03 mA. CV (constant voltage) charge was performed until
On the other hand, as a discharge condition, discharge was performed at 0.20 mA / cm 2 to 2.0 V (vs reference electrode). Further, (charge-discharge) was set to 1 cycle, and measurement was performed up to 50 cycles. First cycle discharge capacity and initial reversibility (%) representing charge / discharge efficiency of first cycle = (discharge capacity of first cycle) / (charge capacity of first cycle) × 100, and cycle characteristics are evaluated. The capacity retention rate (%) used for this purpose was calculated as: discharge capacity at 50th cycle / discharge capacity at the first cycle × 100. The results are shown in Table 1. The obtained charge / discharge curve of the first cycle is shown in FIG.

実施例2〜10、比較例1〜4
原料の配合を表1に示す組成の負極活物質となるように変更した以外は、実施例1と同様に負極活物質の合金粒子を得た。得られた負極活物質について、実施例1と同様な測定及び試験を行った。また実施例1と同様に負極を作製し、電極評価を行った。結果を表1に示す。1サイクル目の放電容量、初期可逆率(%)および容量維持率(%)の結果を表1に示す。また実施例2及び6の1サイクル目の充放電極性を図3及び4に、更に比較例1〜3の1サイクル目の充放電曲線を図5〜7に示す。
Examples 2-10, Comparative Examples 1-4
An alloy particle of a negative electrode active material was obtained in the same manner as in Example 1 except that the blending of the raw materials was changed to be a negative electrode active material having the composition shown in Table 1. About the obtained negative electrode active material, the same measurement and test as Example 1 were performed. Moreover, the negative electrode was produced similarly to Example 1 and electrode evaluation was performed. The results are shown in Table 1. Table 1 shows the results of discharge capacity, initial reversibility rate (%), and capacity retention rate (%) in the first cycle. The charge / discharge polarities of the first cycle of Examples 2 and 6 are shown in FIGS. 3 and 4, and the charge / discharge curves of the first cycle of Comparative Examples 1 to 3 are shown in FIGS.

Figure 0006245954
Figure 0006245954

Claims (7)

SiとR元素(RはPr、Nd及びGdからなる群から選ばれる少なくとも1種を示す。)とA元素(AはAl及びCuから選ばれる少なくとも1種を示す。)とを含み、Siの含有量が30.0重量%以上80.0重量%以下、R元素の含有量が10.0重量%以上50.0重量%以下、及びA元素の含有量が0.01重量%以上30.0重量%以下であり、粉末X線回折(XRD)により確認されるSi相と、Si、R元素及びA元素を含む相とを有する合金粒子を含むリチウムイオン二次電池用負極活物質。 Si and R element (R represents at least one selected from the group consisting of Pr, Nd and Gd ) and A element (A represents at least one selected from Al and Cu ), The content is 30.0 wt% or more and 80.0 wt% or less, the R element content is 10.0 wt% or more and 50.0 wt% or less, and the A element content is 0.01 wt% or more and 30.30 wt% or less. A negative electrode active material for a lithium ion secondary battery, comprising 0 wt% or less and alloy particles having a Si phase confirmed by powder X-ray diffraction (XRD) and a phase containing Si, R element and A element. Si、R元素及びA元素を含む相が、RA2Si2相である請求項1記載の負極活物質。 The negative electrode active material according to claim 1, wherein the phase containing Si, R element and A element is an RA 2 Si 2 phase. 2θ=28.4±0.2°付近で確認されるSi相の最強ピーク((111)面のピーク)の積分強度と、2θ=27.9±0.2°付近で確認されるRA2Si2相の最強ピーク((011)面のピーク)の積分強度との比((RA2Si2相)/(Si相))=0.05以上0.40以下である請求項2記載の負極活物質。 The integrated intensity of the strongest peak of Si phase (peak of (111) plane) confirmed near 2θ = 28.4 ± 0.2 ° and RA 2 confirmed near 2θ = 27.9 ± 0.2 °. The ratio ((RA 2 Si 2 phase) / (Si phase)) of the strongest peak of the Si 2 phase (peak of the (011) plane) to the integrated intensity ((RA 2 Si 2 phase) / (Si phase)) is 0.05 or more and 0.40 or less. Negative electrode active material. 2θ=28.4±0.2°付近で確認されるSi相の最強ピーク((111)面のピーク)の積分強度と、2θ=38.4±0.2°付近で確認されるA相の最強ピーク((111)面のピーク)の積分強度との比((A相)/(Si相))=0以上0.20以下である請求項1〜3のいずれかに記載の負極活物質。   Integrated intensity of the strongest peak of Si phase (peak of (111) plane) confirmed near 2θ = 28.4 ± 0.2 ° and A phase confirmed near 2θ = 28.4 ± 0.2 ° The ratio of the strongest peak (peak of (111) plane) to the integrated intensity ((A phase) / (Si phase)) = 0 or more and 0.20 or less. material. A元素がAlである請求項1〜4のいずれかに記載の負極活物質。   The negative electrode active material according to claim 1, wherein the A element is Al. 集電体と、請求項1〜のいずれかに記載の負極活物質を含む活物質層とを備えたリチウムイオン二次電池用負極。 The negative electrode for lithium ion secondary batteries provided with the electrical power collector and the active material layer containing the negative electrode active material in any one of Claims 1-5 . 請求項記載の負極と、正極と、セパレータと、電解質とを備えたリチウムイオン二次電池。
A lithium ion secondary battery comprising the negative electrode according to claim 6 , a positive electrode, a separator, and an electrolyte.
JP2013235195A 2012-11-14 2013-11-13 Negative electrode active material for lithium ion secondary battery Active JP6245954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013235195A JP6245954B2 (en) 2012-11-14 2013-11-13 Negative electrode active material for lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012264690 2012-11-14
JP2012264690 2012-11-14
JP2013235195A JP6245954B2 (en) 2012-11-14 2013-11-13 Negative electrode active material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2014116297A JP2014116297A (en) 2014-06-26
JP6245954B2 true JP6245954B2 (en) 2017-12-13

Family

ID=51172056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013235195A Active JP6245954B2 (en) 2012-11-14 2013-11-13 Negative electrode active material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6245954B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945691A (en) * 2017-08-10 2020-03-31 三井金属矿业株式会社 Si-based negative electrode active material
WO2019041341A1 (en) * 2017-09-04 2019-03-07 超能高新材料股份有限公司 Negative electrode material for lithium-ion battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297757A (en) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary cell and its manufacturing method
JP4128972B2 (en) * 2004-03-26 2008-07-30 株式会社東芝 Nonaqueous electrolyte secondary battery
EP1955393B1 (en) * 2005-12-01 2014-08-27 3M Innovative Properties Company Electrode compositions based on an amorphous alloy having a high silicon content
JP2007335361A (en) * 2006-06-19 2007-12-27 Toshiba Corp Anode electrode material for nonaqueous electrolyte battery, anode and nonaqueous electrolyte battery using the same
US9373839B2 (en) * 2011-12-13 2016-06-21 Samsung Sdi Co., Ltd. Negative electrode active material and secondary battery including the same
JP2013253012A (en) * 2012-05-07 2013-12-19 Furukawa Electric Co Ltd:The Silicide combined silicon material and nonaqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JP2014116297A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP5210503B2 (en) Nonaqueous electrolyte secondary battery
JP5147170B2 (en) Lithium secondary battery
JP5072323B2 (en) Nonaqueous electrolyte secondary battery and method for producing negative electrode material for nonaqueous electrolyte secondary battery
JP5068459B2 (en) Lithium secondary battery
JP5790282B2 (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery
JP5278994B2 (en) Lithium secondary battery
JP6003996B2 (en) Electrode active material, method for producing electrode active material, electrode, battery, and method of using clathrate compound
KR20030081160A (en) Battery
JP2006120612A (en) Lithium secondary battery
JP2010257592A (en) Lithium ion secondary battery
JP3262019B2 (en) Method for producing negative electrode material for lithium ion secondary battery
US20140291574A1 (en) Anode active material for secondary battery and method for manufacturing same
JP5516860B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
JP2002373648A (en) Negative electrode, nonaqueous electrolyte secondary battery, and method for producing the negative electrode
WO2016043061A1 (en) Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR ELECTRICITY STORAGE DEVICES AND ELECTRODE USING SAME
KR101375326B1 (en) Composite anode active material, method of preparing the same, anode and lithium battery containing the material
JP3771846B2 (en) Non-aqueous secondary battery and charging method thereof
JP2015141897A (en) Negative electrode active material, negative electrode including the negative electrode active material, lithium battery, and method of manufacturing the negative electrode active material
JP5706065B2 (en) Composite negative electrode active material, manufacturing method thereof, and negative electrode and lithium battery employing the same
KR101621384B1 (en) Anode, lithium battery comprising the anode, and method for preparing the anode
JP4133116B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6116068B2 (en) Negative electrode for lithium ion secondary battery
JP6245954B2 (en) Negative electrode active material for lithium ion secondary battery
JP2005317447A (en) Battery
JP2009289417A (en) Anode for lithium ion secondary battery and lithium ion secondary battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171114

R150 Certificate of patent or registration of utility model

Ref document number: 6245954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250