JP3815652B2 - Two-photon micro-stereolithography method and apparatus thereof, parts formed by two-photon micro-stereolithography and movable mechanism - Google Patents

Two-photon micro-stereolithography method and apparatus thereof, parts formed by two-photon micro-stereolithography and movable mechanism Download PDF

Info

Publication number
JP3815652B2
JP3815652B2 JP34274399A JP34274399A JP3815652B2 JP 3815652 B2 JP3815652 B2 JP 3815652B2 JP 34274399 A JP34274399 A JP 34274399A JP 34274399 A JP34274399 A JP 34274399A JP 3815652 B2 JP3815652 B2 JP 3815652B2
Authority
JP
Japan
Prior art keywords
light
stereolithography
photon
micro
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34274399A
Other languages
Japanese (ja)
Other versions
JP2001158050A (en
Inventor
幸士 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP34274399A priority Critical patent/JP3815652B2/en
Publication of JP2001158050A publication Critical patent/JP2001158050A/en
Application granted granted Critical
Publication of JP3815652B2 publication Critical patent/JP3815652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70375Multiphoton lithography or multiphoton photopolymerization; Imaging systems comprising means for converting one type of radiation into another type of radiation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、従来の積層法を用いないで液状の光硬化性樹脂の内部にレーザスポットを走査し任意の3次元構造を形成する2光子吸収マイクロ光造形法およびその装置、さらには2光子吸収マイクロ光造形法によって形成した部品および可動機構に関するものである。
【0002】
【従来の技術】
マイクロ光造形法は、光を照射することによって光硬化樹脂を硬化させ任意のマイクロ構造を形成させるものである。発明者らはこれまでマイクロ流体システムなどのマイクロマシンの開発を目的としてマイクロ光造形法の開発を行ってきたが、こうした研究の中で従来の積層法を用いずに液状の光硬化性樹脂の内部にレーザスポットを走査し任意の3次元構造を形成する方法(紫外レーザーを光源とした内部硬化型マイクロ造形法:Super IH process 略してSIH)を開発し、またこの技術を利用してマイクロ可動機構作成に成功した。
【0003】
しかしながら、前述の従来技術は光照射条件の最適化、光硬化性樹脂の硬化特性の最適化等各種の高度な最適化が必要であることや、深部での内部硬化が困難である等の問題がある。
即ち、従来のSIHでは、光源として紫外レーザーを使用しているため液状樹脂内にビームを深く集光した場合、集光点に到達するまでの光吸収によって集光点の光強度が小さくなり、内部硬化が困難になる問題点がある。このため、液状樹脂内をピンポイント的に硬化することが出来ず、マイクロ部材の加工が出来なかった。
【0004】
【発明が解決しようとする課題】
そこで、本発明は、透明性を有する近赤外パルスレーザ光に着目し、この近赤外パルスレーザ光を利用して2光子吸収を誘起することによって焦点近傍のみにおいて紫外レーザーと同じエネルギーに高め、ピンポイントで樹脂を硬化できる2光子マイクロ光造形方法およびその装置を提供することにより、上記問題点を解決することを目的とする。
【0005】
2光子吸収とは、非線型光学現象の一つであり、2つのフォトンを同時に吸収することによって、照射させた光の2倍のエネルギーに相当する吸収が生じる現象である。本発明者らは、紫外レーザーを使用した光造形法の研究を進めて行くなかで樹脂に対して透明性をもつ近赤外パルスレーザ光の2光子吸収を利用すれば、紫外線の半分のエネルギーをもつ近赤外光を用いても光硬化樹脂を硬化させることができることを見いだした。
しかしながら、2光子吸収の発生確率が非常に小さいため、光子密度を非常に高くしなければ、2光子吸収を誘起することはできない。
【0006】
このため2光子吸収を誘起するために、数キロワット程度のピーク強度を有する近赤外パルスレーザ光をレンズによって集光させることが必要である。
図4(a)に示すように近赤外パルスレーザ光をレンズで集光して、集光点近傍にフォトンの密度の高い領域を形成する場合を考える。このときビームの各断面を通過するフォトンの総数は一定なので、焦点面内でビームを2次元的に走査した場合、各断面における光強度の総和は一定である(図4(b))。しかしながら、2光子吸収の発生確率は、光強度の二乗に比例するため、光強度の大きい集光点近傍にのみ、2光子吸収の発生の高い領域が形成される(図4(c))。このように、近赤外パルスレーザ光をレンズによって集光させ2光子吸収を誘起することで、集光点近傍に光吸収を限定し、ピンポイント的に樹脂を硬化させることが可能となる。
本発明はこうした知見をもとになされたものであり、特に光源として近赤外パルスレーザ光を利用しさらにレンズで集光し、2光子吸収を誘起することで微細加工が可能な光造形法とした点に大きな特徴がある。
【0007】
【課題を解決するための手段】
このため、本発明が採用した技術解決手段は、
近赤外パルスレーザ光源からの光をミラースキャナーを通した後、レンズを用いて光硬化性樹脂中に集光させて2光子吸収を誘起し、その2光子吸収によって焦点近傍のみにおいて樹脂を硬化させることを特徴とする2光子マイクロ光造形方法である。
また、近赤外パルスレーザ光源からの光をミラースキャナーを通した後、レンズを用いて光硬化性樹脂中に集光させる手段と、Zステージとガルバノミラーを高速に走査することにより樹脂中の任意の位置に集光スポットを移動させることができる集光スポット移動手段とを備えていることを特徴とする2光子マイクロ光造形装置である。
【0008】
【実施の形態】
以下、図面を参照しながら本発明に係る2光子マイクロ光造形法の説明をすると、図1は2光子マイクロ光造形装置の概略図、図2は同装置の要部拡大図である。
図において、1は光硬化樹脂液に対して透明性を有する近赤外パルスレーザ光(Ti:Sapphire laser)の光源、3は透過光量を時間的にコントロールするシャッター、4はNDフィルター、5はミラースキャナー、6はZステージ、7は集光手段としてのレンズ、8はコンピュータ、9は光硬化性樹脂液、10は光造形物である。
【0009】
光源1からの近赤外パルスレーザ光はミラースキャナー5を通した後、レンズを用いて光硬化性樹脂液9中に集光させる。集光スポットは集光スポット移動手段としてのZステージ6とガルバノミラーにより樹脂液中を高速に走査される。この状態を図2においてさらに説明すると、レンズを通して集光された近赤外パルスレーザ光は、赤外レーザに対して透明性を持つ光硬化樹脂液内を通過し、集光点S近傍で2光子吸収を誘起し、光硬化性樹脂液は集光点近傍でのみエネルギーが倍となった近赤外レーザによりピンポイントで硬化される。集光点SはZステージ6とガルバノミラーによって光硬化樹脂液内を自由に移動させることができるため、光硬化性樹脂液内において目的とする加工物を自在に形成することができる。
【0010】
図3に本造形装置を使用して形成した可動機構としての一例であるマイクロギヤ機構の斜視図である。図3ではシャフト(直径7μm)に8個の歯を持つギヤ(内径10μm、外径24μm)が組み込まれた構造が形成されている。この構造は、本手法によりシャフトを形成した後に、可動部であるギアを樹脂の内部に直接造形する。このため従来のような犠牲層やサポート構造を必要とせず、また、ミクロンオーダーの微小な可動部を容易に造形でき、樹脂の内部で任意の3次元構造を容易に造形することができる。さらに、このような技術的方法によれば、ギヤとシャフトの組み合わせばかりでなく、各種機械部品、さらにはそれらを組付けて構成した可動機構等も容易に製造することが可能である。
【0011】
また、図3に示すマイクロギヤは一平面上に多数連続して造形することも可能である。この方法によって例えば図3に示す部品を多数造形する場合には極めて短時間で造形が可能となる。本発明者による実験では高い歩留りで各構造とも精度よく可動機構を造形できており、大量生産にも適用可能であることがわかった。
【0012】
以上の2光子マイクロ光造形法の特徴を述べると以下のようになる。
1)回折限界をこえる加工分解能(0.5μm)
2光子吸収の光強度にたいする非線型によって、光の回折限界を超えた加工分解能を実現できる。
2)超高速造形
2光子吸収を利用した場合、焦点以外の領域では、光硬化性樹脂が原理的にも硬化しない。このため照射させる光強度を大きくし、ビームのスキャン速度を速くすることができる。このため、造形速度を約10倍向上することができる。
3)内部硬化の造形範囲が拡大
光硬化性樹脂は、2光子吸収を誘起する近赤外光に対して透明である。したがって焦点光を樹脂の内部へ深く集光した場合でも、内部硬化が可能である。従来のSIHでは、ビームを深く集光した場合、光吸収によって集光点の光強度が小さくなり、内部硬化が困難になる問題点が、本発明ではこうした問題点を確実に解決することができる。
4)可動機構の造形が可能
樹脂の内部で造形を行うため、犠牲層やサポート構造をもちいることなくマイクロ可動機構を作成することができる。
5)高い歩留り
従来法では樹脂の粘性や表面張力によって造形物が破損、変形するという問題があったが、本手法では、樹脂の内部で造形を行うのでこうした問題は解消される。
6)大量生産への適用
超高速造形を利用することによって、短時間に、連続的に多数個の部品あるいは可動機構の製造が可能である。
【0013】
本発明の実施の形態について説明してきたが、本発明はその精神または主要な特徴から逸脱することなく、他のいかなる形でも実施できる。そのため、前述の実施形態はあらゆる点で単なる例示にすぎず限定的に解釈してはならない。
【0014】
【発明の効果】
本発明によれば、光源として近赤外パルスレーザ光を使用し、2光子吸収を誘起させることで、犠牲層やサポート構造を必要とせず、ミクロンオーダーの微小な可動部を容易に造形可能とした。2光子吸収を利用することで、光照射条件の最適化、光硬化性樹脂の硬化特性の最適化など、様々な最適化を必要とすることなく容易に樹脂の一点のみを硬化させることができる。高分解能、高精度、さらにはより高速な造形が可能である、等々の優れた効果を奏することができる。
【図面の簡単な説明】
【図1】 本発明に係る2光子マイクロ光造形装置の概略図である。
【図2】 同装置の要部拡大図である。
【図3】 本造形装置を使用して形成したマイクロギヤの斜視図である。
【図4】 近赤外パルスレーザ光が2光子吸収を誘起する状態の説明図である。
【符号の説明】
1 光硬化樹脂液に対して透明性を有する近赤外パルスレーザ光(Ti:Sapphire laser)の光源
3 透過光量を時間的にコントロールするシャッター
4 NDフィルター
5 ミラースキャナー
6 Zステージ
7 レンズ
8 コンピュータ
9 光硬化性樹脂液
10 光造形物
S 集光点
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a two-photon absorption micro-stereolithography method and apparatus for scanning a laser spot inside a liquid photocurable resin without using a conventional laminating method to form an arbitrary three-dimensional structure, and a two-photon absorption method. The present invention relates to a component formed by a micro stereolithography method and a movable mechanism.
[0002]
[Prior art]
In the micro stereolithography method, light curing resin is cured by irradiating light to form an arbitrary microstructure. The inventors have so far developed micro-stereolithography for the purpose of developing micromachines such as microfluidic systems. However, in such research, the interior of liquid photo-curing resin can be used without using conventional lamination methods. Developed a method to form an arbitrary three-dimensional structure by scanning a laser spot (internal curing micro molding method using an ultraviolet laser as a light source: Super IH process, SIH for short), and using this technology, a micro movable mechanism Created successfully.
[0003]
However, the above-mentioned conventional techniques require various advanced optimizations such as optimization of light irradiation conditions, optimization of the curing characteristics of the photocurable resin, and problems such as difficulty in internal curing in the deep part. There is.
That is, in the conventional SIH, since an ultraviolet laser is used as a light source, when the beam is condensed deeply in the liquid resin, the light intensity at the condensing point is reduced by light absorption until reaching the condensing point, There is a problem that internal curing becomes difficult. For this reason, the inside of the liquid resin cannot be pinpointly cured and the micro member cannot be processed.
[0004]
[Problems to be solved by the invention]
Therefore, the present invention focuses on the near-infrared pulsed laser beam having transparency, and uses this near-infrared pulsed laser beam to induce two-photon absorption to increase the same energy as that of the ultraviolet laser only in the vicinity of the focal point. An object of the present invention is to solve the above problems by providing a two-photon micro-stereolithography method and apparatus capable of curing a resin at a pinpoint.
[0005]
Two-photon absorption is one of nonlinear optical phenomena, and is a phenomenon in which absorption corresponding to twice the energy of irradiated light occurs by simultaneously absorbing two photons. The inventors of the present invention have made progress in research on an optical modeling method using an ultraviolet laser, and if two-photon absorption of near-infrared pulsed laser light having transparency to a resin is used, half of the energy of ultraviolet light is used. It has been found that a photo-curing resin can be cured even by using near infrared light having a.
However, since the probability of occurrence of two-photon absorption is very small, two-photon absorption cannot be induced unless the photon density is made very high.
[0006]
For this reason, in order to induce two-photon absorption, it is necessary to focus near-infrared pulsed laser light having a peak intensity of about several kilowatts with a lens.
Consider a case where near infrared pulsed laser light is condensed by a lens as shown in FIG. 4A to form a region with high photon density near the focal point. At this time, since the total number of photons passing through each cross section of the beam is constant, when the beam is scanned two-dimensionally within the focal plane, the total light intensity in each cross section is constant (FIG. 4B). However, since the probability of occurrence of two-photon absorption is proportional to the square of the light intensity, a region where the generation of two-photon absorption is high is formed only near the condensing point where the light intensity is large (FIG. 4C). Thus, by condensing near-infrared pulsed laser light with a lens and inducing two-photon absorption, it becomes possible to limit light absorption near the condensing point and harden the resin in a pinpoint manner.
The present invention has been made on the basis of such knowledge. In particular, an optical modeling method capable of performing microfabrication by using near-infrared pulsed laser light as a light source, further condensing with a lens, and inducing two-photon absorption. This is a major feature.
[0007]
[Means for Solving the Problems]
For this reason, the technical solution means adopted by the present invention is:
Light from the near-infrared pulsed laser light source passes through a mirror scanner, and is condensed into a photocurable resin using a lens to induce two-photon absorption, and the resin is cured only near the focal point by the two-photon absorption. A two-photon micro-stereolithography method.
Also, after passing the light from the near-infrared pulse laser light source through the mirror scanner, the lens is used to collect the light into the photocurable resin, and the Z stage and the galvanometer mirror are scanned at high speed. A two-photon micro-stereolithography apparatus comprising a condensing spot moving means capable of moving a condensing spot to an arbitrary position.
[0008]
Embodiment
Hereinafter, the two-photon micro-stereolithography method according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a two-photon micro-stereolithography apparatus, and FIG.
In the figure, 1 is a light source of a near-infrared pulsed laser beam (Ti: Sapphire laser) having transparency with respect to a photocurable resin liquid, 3 is a shutter for temporally controlling the amount of transmitted light, 4 is an ND filter, A mirror scanner, 6 is a Z stage, 7 is a lens as a light collecting means, 8 is a computer, 9 is a photocurable resin liquid, and 10 is an optically shaped object.
[0009]
The near-infrared pulsed laser light from the light source 1 passes through the mirror scanner 5 and is condensed in the photocurable resin liquid 9 using a lens. The focused spot is scanned in the resin liquid at high speed by the Z stage 6 and the galvanometer mirror as the focused spot moving means. This state will be further described with reference to FIG. 2. The near-infrared pulsed laser beam condensed through the lens passes through the photocurable resin liquid having transparency with respect to the infrared laser, and 2 near the condensing point S. Photon absorption is induced, and the photocurable resin liquid is cured at a pinpoint by a near infrared laser whose energy is doubled only in the vicinity of the focal point. Since the condensing point S can be freely moved in the photocurable resin liquid by the Z stage 6 and the galvanometer mirror, a desired workpiece can be freely formed in the photocurable resin liquid.
[0010]
FIG. 3 is a perspective view of a micro gear mechanism which is an example of a movable mechanism formed using the present modeling apparatus. In FIG. 3, a structure in which a gear (inner diameter: 10 μm, outer diameter: 24 μm) having eight teeth is incorporated in a shaft (diameter: 7 μm) is formed. In this structure, after the shaft is formed by this method, the gear which is a movable part is directly shaped inside the resin. For this reason, the conventional sacrificial layer and support structure are not required, micro movable parts of micron order can be easily modeled, and any three-dimensional structure can be easily modeled inside the resin. Furthermore, according to such a technical method, not only a combination of a gear and a shaft, but also various mechanical parts, and a movable mechanism configured by assembling them can be easily manufactured.
[0011]
Further, a large number of micro gears shown in FIG. 3 can be continuously formed on one plane. For example, when a large number of parts shown in FIG. 3 are modeled by this method, modeling can be performed in a very short time. Experiments by the present inventors have shown that a movable mechanism can be accurately modeled with a high yield and can be applied to mass production.
[0012]
The characteristics of the above two-photon micro stereolithography will be described as follows.
1) Processing resolution exceeding the diffraction limit (0.5μm)
A processing resolution exceeding the diffraction limit of light can be realized by a non-linear type with respect to the light intensity of two-photon absorption.
2) When ultra-high speed modeling two-photon absorption is used, the photo-curing resin is not cured in principle in a region other than the focal point. For this reason, the light intensity to be irradiated can be increased, and the beam scanning speed can be increased. For this reason, modeling speed can be improved about 10 times.
3) The photocuring resin having an enlarged internal curing range is transparent to near-infrared light that induces two-photon absorption. Therefore, even when the focused light is condensed deeply into the resin, internal curing is possible. In the conventional SIH, when the beam is condensed deeply, the light intensity at the condensing point is reduced by light absorption, and the internal curing becomes difficult. In the present invention, these problems can be solved reliably. .
4) Modeling of movable mechanism is possible Since modeling is performed inside the resin, a micro movable mechanism can be created without using a sacrificial layer or a support structure.
5) High yield In the conventional method, there is a problem that the molded object is damaged or deformed due to the viscosity or surface tension of the resin. However, in this method, the problem is solved because the modeling is performed inside the resin.
6) Application to mass production By using ultra-high-speed modeling, a large number of parts or movable mechanisms can be manufactured continuously in a short time.
[0013]
Although the embodiments of the present invention have been described, the present invention can be implemented in any other form without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner.
[0014]
【The invention's effect】
According to the present invention, by using near-infrared pulsed laser light as a light source and inducing two-photon absorption, it is possible to easily form a microscopic movable part without a sacrificial layer or a support structure. did. By utilizing two-photon absorption, it is possible to easily cure only one point of the resin without requiring various optimizations such as optimization of light irradiation conditions and optimization of the curing characteristics of the photocurable resin. . It is possible to achieve excellent effects such as high resolution, high accuracy, and higher speed modeling.
[Brief description of the drawings]
FIG. 1 is a schematic view of a two-photon micro stereolithography apparatus according to the present invention.
FIG. 2 is an enlarged view of a main part of the apparatus.
FIG. 3 is a perspective view of a micro gear formed using the modeling apparatus.
FIG. 4 is an explanatory diagram of a state in which near-infrared pulsed laser light induces two-photon absorption.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light source of near-infrared pulsed laser beam (Ti: Sapphire laser) which has transparency with respect to photocuring resin liquid 3 Shutter 4 which controls temporally transmitted light quantity ND filter 5 Mirror scanner 6 Z stage 7 Lens 8 Computer 9 Photocurable resin liquid 10 Stereolithography object S Condensing point

Claims (2)

近赤外パルスレーザ光源からの光をミラースキャナーを通した後、レンズを用いて光硬化性樹脂中に集光させて2光子吸収を誘起し、その2光子吸収によって焦点近傍のみにおいて樹脂を硬化させることを特徴とする2光子マイクロ光造形方法。Light from the near-infrared pulsed laser light source passes through a mirror scanner, and is condensed into a photocurable resin using a lens to induce two-photon absorption, and the resin is cured only near the focal point by the two-photon absorption. A two-photon micro-stereolithography method, characterized by: 近赤外パルスレーザ光源からの光をミラースキャナーを通した後、レンズを用いて光硬化性樹脂中に集光させる手段と、Zステージとガルバノミラーを高速に走査することにより樹脂中の任意の位置に集光スポットを移動させることができる集光スポット移動手段とを備えていることを特徴とする2光子マイクロ光造形装置。After the light from the near-infrared pulse laser light source passes through the mirror scanner, the lens is used to collect the light into the photo-curing resin, and the Z stage and the galvanometer mirror are scanned at high speed. A two-photon micro stereolithography apparatus comprising: a condensing spot moving means capable of moving the condensing spot to a position.
JP34274399A 1999-12-02 1999-12-02 Two-photon micro-stereolithography method and apparatus thereof, parts formed by two-photon micro-stereolithography and movable mechanism Expired - Fee Related JP3815652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34274399A JP3815652B2 (en) 1999-12-02 1999-12-02 Two-photon micro-stereolithography method and apparatus thereof, parts formed by two-photon micro-stereolithography and movable mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34274399A JP3815652B2 (en) 1999-12-02 1999-12-02 Two-photon micro-stereolithography method and apparatus thereof, parts formed by two-photon micro-stereolithography and movable mechanism

Publications (2)

Publication Number Publication Date
JP2001158050A JP2001158050A (en) 2001-06-12
JP3815652B2 true JP3815652B2 (en) 2006-08-30

Family

ID=18356157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34274399A Expired - Fee Related JP3815652B2 (en) 1999-12-02 1999-12-02 Two-photon micro-stereolithography method and apparatus thereof, parts formed by two-photon micro-stereolithography and movable mechanism

Country Status (1)

Country Link
JP (1) JP3815652B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025454A (en) * 2001-07-13 2003-01-29 Fuji Photo Film Co Ltd Method and apparatus for photo-fabrication
WO2003008620A1 (en) * 2001-07-19 2003-01-30 Japan Science And Technology Corporation Chemical eraction circuit for cell-free protein synthesis
WO2004022665A1 (en) * 2002-09-09 2004-03-18 National Institute Of Advanced Industrial Science And Technology Two-photon absorption materials
JP4599553B2 (en) * 2004-10-01 2010-12-15 国立大学法人北海道大学 Laser processing method and apparatus
JP4954216B2 (en) * 2005-10-25 2012-06-13 マサチューセッツ インスティテュート オブ テクノロジー Synthesis method of polymer microstructures by flow lithography and polymerization
JP2008196481A (en) * 2007-01-17 2008-08-28 Yokohama National Univ Micro-pump
US8455846B2 (en) * 2007-12-12 2013-06-04 3M Innovative Properties Company Method for making structures with improved edge definition
JP2012025378A (en) 2010-06-25 2012-02-09 Nissan Motor Co Ltd Control device and control method for parking support
JP2012096286A (en) * 2010-10-07 2012-05-24 Sumitomo Heavy Ind Ltd Laser irradiation apparatus, laser irradiation method, and insulating film forming apparatus
JP7331297B2 (en) * 2018-10-26 2023-08-23 株式会社Tkr 3D printer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247515A (en) * 1984-05-23 1985-12-07 Oosakafu Optical shaping method
JP2769393B2 (en) * 1991-04-26 1998-06-25 直弘 丹野 3D optical recording device
JP3252859B2 (en) * 1991-09-19 2002-02-04 ソニー株式会社 Three-dimensional shape forming apparatus and three-dimensional shape forming method
JP3233957B2 (en) * 1991-11-21 2001-12-04 科学技術振興事業団 Method of forming ultra-small laser light source and laser oscillation method
JPH05193009A (en) * 1992-01-17 1993-08-03 Nippon Steel Corp Three-dimensional solid shaping device
JPH07316262A (en) * 1994-05-30 1995-12-05 Nippon Kayaku Co Ltd Stereolithographic resin composition and cured product thereof
JPH10249943A (en) * 1997-03-10 1998-09-22 Hitachi Ltd Apparatus for stereo lithography
US6316153B1 (en) * 1998-04-21 2001-11-13 The University Of Connecticut Free-form fabricaton using multi-photon excitation

Also Published As

Publication number Publication date
JP2001158050A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
Malinauskas et al. Ultrafast laser nanostructuring of photopolymers: A decade of advances
Eaton et al. Femtosecond laser microstructuring for polymeric lab‐on‐chips
WO2016015389A1 (en) Femtosecond laser two-photon polymerization micro/nanoscale machining system and method
Malinauskas et al. 3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing
JP3815652B2 (en) Two-photon micro-stereolithography method and apparatus thereof, parts formed by two-photon micro-stereolithography and movable mechanism
JP2010510089A (en) Polymer object optical manufacturing process
Poleshchuk et al. Laser technologies in micro-optics. Part 2. Fabrication of elements with a three-dimensional profile
Jonušauskas et al. Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions
Malinauskas et al. Two-photon polymerization for fabrication of three-dimensional micro-and nanostructures over a large area
WO2006109355A1 (en) Multiple-beam microstructure laser lithographic method and device employing laser beams of different wavelength
Maruo et al. Two-photon-absorbed photopolymerization for three-dimensional microfabrication
Butkus et al. Femtosecond-laser direct writing 3D micro/nano-lithography using VIS-light oscillator
CN109132998A (en) The method of pulse nanosecond laser induction transparent dielectric material surface periodic structure
Vehse et al. A new micro-stereolithography-system based on diode laser curing (DLC)
Gandhi et al. 3D microfabrication using bulk lithography
Steenhusen et al. Two-photon polymerization of hybrid polymers for applications in micro-optics
Bhole et al. Fabrication of continuously varying thickness micro-cantilever using bulk lithography process
Xiong et al. Laser additive manufacturing using nanofabrication by integrated two-photon polymerization and multiphoton ablation
Li et al. Thermal effects in single-point curing process for pulsed infrared laser-assisted 3D printing of optics
Maruo et al. New microstereolithography (Super-IH process) to create 3D freely movable micromechanism without sacrificial layer technique
JP2003025295A (en) Optically driving device for micro structure, and its method
JP2004314406A (en) Layer thickness variable optical micro-shaping method and layer thickness variable optical micro-shaping apparatus
JPH03189601A (en) Pinhole substrate and production thereof
Kühne et al. Insights into challenges and potentials of two-photon lithography
Li et al. Femtosecond laser direct writing of optical component on optical fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees