JP3782924B2 - Distributed energy community system and its control method - Google Patents

Distributed energy community system and its control method Download PDF

Info

Publication number
JP3782924B2
JP3782924B2 JP2000227044A JP2000227044A JP3782924B2 JP 3782924 B2 JP3782924 B2 JP 3782924B2 JP 2000227044 A JP2000227044 A JP 2000227044A JP 2000227044 A JP2000227044 A JP 2000227044A JP 3782924 B2 JP3782924 B2 JP 3782924B2
Authority
JP
Japan
Prior art keywords
power
distributed
energy storage
distributed power
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000227044A
Other languages
Japanese (ja)
Other versions
JP2002044870A (en
Inventor
章 竹内
利明 谷内
武  哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000227044A priority Critical patent/JP3782924B2/en
Publication of JP2002044870A publication Critical patent/JP2002044870A/en
Application granted granted Critical
Publication of JP3782924B2 publication Critical patent/JP3782924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system which can use energy in communities effectively and maintain a stabler system voltage. SOLUTION: A center 11 receives data of quantities of power generated by fuel cells 5, energy stored by batteries 6 and power consumption by loads 7 from houses 1 and controllers in other dispersed power systems through a communication line 10 and stores to a database. The center instructs each dispersed power system in values of generated, supplying and supplied power based on the database. The center complements and controls supply and demand of power between a plurality of dispersed power systems with different characteristics of daily load for demand of power. A fuel cell 14 and a battery 15 in the center 11 can store and supply power.

Description

【0001】
【発明の属する技術分野】
本発明は、複数の分散電源システムを有するエネルギーコミュニティーシステムに関し、特に、発電装置とエネルギー蓄積装置を有する複数の分散電源システムが接続された電力系統である分散型エネルギーコミュニティーシステムおよびその制御方法に関する。
【0002】
【従来の技術】
分散電源システムにおいて発電装置の稼動率を上げるためには、またエネルギー蓄積装置の容量を小さくするためには、電力系統への逆潮流を行う必要がある。したがって、分散電源システム間の電力授受をコミュニティー内において行うエネルギーシステムは、発電装置の稼動率を上げるために効果的である。この場合、エネルギー蓄積装置としてバッテリーを用いる場合、余剰電力はバッテリーに充電されるが過充電になる前に系統に送電させることになる。また、不足電力はバッテリーからの放電により補うが、過放電になる前に系統から受電することになる。すなわち、コミュニティー系統内で余剰電力が生じた場合には放電量を抑制し、不足電力が生じた場合は商用系統から買電することになる。
【0003】
ところが、このように各分散電源システムが無計画に電力系統に対する受送電を行うとコミュニティー全体でも一時的に余剰電力あるいは不足電力が生じてしまう場合があり、電力系統の電圧が大きく変動する。
【0004】
【発明が解決しようとする課題】
上述した従来のエネルギーシステムは、同じような電力需要の負荷特性を有する分散電源システム間での電力授受では、コミュニティー内で電力を融通し合う割合が少なくなるためメリットがあまり出ない。したがって、電力需要の日負荷特性が異なる分散電源システムをコミュニティー内に包括する必要があるが、この場合ある程度大規模なコミュニティーとなるため、送電等による損失や系統電圧の電圧降下等を考慮した運用計画が必要となるという問題がある。
【0005】
本発明の目的は、コミュニティー内における電力損失を最小にすることによって、エネルギーを有効に利用でき、さらに安定した系統電圧を維持できるシステムを提供することにある。
【0006】
【課題を解決するための手段】
本発明の分散型エネルギーコミュニティーシステムは、各々が発電装置とエネルギー蓄積装置を有し、電力需要の日負荷特性が異なる複数の分散電源システムが相互に接続された分散型エネルギーコミュニティーシステムにおいて、各分散電源システムについて、当該分散電源システムへの送電損失が当該分散電源システムのエネルギー蓄積装置の充放電損失よりも小さくなるエリアを予め求め、各分散電源システムから、発電装置の発電量を示すデータと、エネルギー蓄積装置のエネルギー貯蔵量を示すデータと、負荷の電力消費量を示すデータを受信し、これらをもとに、各分散電源システムが前記エリア内の送電損失が小さい分散電源システムから優先的に電力の供給を受けるようにしながら、前記複数の分散電源システムの間で電力を融通し合うために必要な発電量および受送電量の予定値を分散電源システムごとに計算し、該予定値を当該分散電源システムに送信するセンタを有することを特徴とする。
【0007】
また、本発明の分散型エネルギーコミュニティーシステムは、各々が発電装置とエネルギー蓄積装置を有し、電力需要の日負荷特性が異なる複数の分散電源システムが相互に接続された分散型エネルギーコミュニティーシステムにおいて、各分散電源システムの発電量と、エネルギー貯蔵量と、負荷の電力消費量を含むデータから得られた、前記複数の分散電源システムの間で電力を融通し合うために必要な発電量および受送電量の予定値に基づいて、複数の分散電源システム間電力融通する制御と、該制御にもかかわらず、発電量が不足しエネルギー貯蔵量にも余裕がない分散電源システムが存在、発電量が不足しておらずエネルギー貯蔵量にも余裕がある分散電源システムから、前記発電量が不足しエネルギー貯蔵量にも余裕がない分散電源システムへ送電する場合に、送電損失が小さい分散電源システムから優先的に発電量および送電量を増加させ、送電する制御とを行なうセンタを有することを特徴とする。
【0008】
前記センタは、発電装置とエネルギー蓄積装置を備え、前記センタからも前記複数の分散電源システムに電力を融通するようにしてもよい
【0014】
【発明の実施の形態】
図1に本発明の分散型エネルギーコミュニティーシステムの一実施形態の概略構成を示す。図1に示すように、コミュニティー内には一戸建住宅1、集合住宅2、オフィス3、学校4等様々な特性の電力負荷を有する複数の分散電源システムが存在する。本実施形態の分散電源システムは、一戸建住宅1に例示したように、発電装置として燃料電池5を、エネルギー蓄積装置としてバッテリー6を用いていて、負荷7に給電する。また、各分散電源システムは制御装置8を有しており、送電するための電力線9およびデータ通信するための通信線10によりセンタ11と接続される。センタ11における制御監視装置12はデータベース(不図示)を備え、各分散電源システムのデータを収集してデータベースに蓄積し、このデータベースを基に各分散電源システムの運用管理を、通信線10を利用して行う。また、センタ11において商用電源13と連系されており、コミュニティー内での分散電源システムだけでは必要な電力を供給できない場合においては、必要に応じて商用電源13より買電する。また、センタ11に燃料電池14とバッテリー15を備えて、ここから各分散電源システムへ電力を供給することとしてもよい。
【0015】
図2に、図1の分散型エネルギーコミュニティーシステムにおける電力需要の日負荷特性と電力補完の例を示す。図2において、曲線20はオフィス3および学校4等の負荷の値を示し、曲線21は住宅1および2の負荷13の値を示している。このように電力需要の特性が異なる負荷を持つ分散電源システムがコミュニティー内に存在すると、電力を融通し合うことにより、発電電力を有効に利用でき、大きな容量のバッテリー等を設置しなくても発電装置の稼動率を上げることができる。図2で矢印で示すように、朝夕においては、オフィス3および学校4等の人があまりいないビルから、住宅へ電力を供給する。昼間には、住宅で余った電力をオフィスおよび学校等へ供給する。ここでは、最も単純な例を示しているが、コミュニティー内には上記のような分散電源システムが多数散在しており、充放電損失や送電損失等を考慮した計画が必要となってくる。
【0016】
発電電力および受送電電力の予定値の算出法について説明する。まず、各分散電源システムの消費電力の予測値を過去のデータ、気象情報、および曜日や行事予定等から算出する。すなわち、状況の類似した過去のデータを検索し、必要に応じて補正をかける。また各分散電源システムについて、バッテリーの充放電損失よりも送電損失が小さくなるエリアを予め計算しておく。簡単にするためには、電力線の枝分かれ等によるグループをそのエリアとしても良い。
【0017】
図3に、本実施形態における発電電力および受送電電力の予定値算出フローを示す。この算出方法は、ある時間帯において第一の分散電源システムの発電量が不足しているとすると(ステップS1)、前述の予め計算したエリア内において発電量と消費電力予測値の関係から余裕のある分散電源システムを送電損失の小さい順に検索する(ステップS2)。このエリア内での補完で足りない場合には(ステップS3)、バッテリーの放電容量および消費電力予測値が発電量を下回る時間帯までを考慮して放電量を算出する(ステップS4)。これでも不足が解消されない場合には(ステップS5)、そのエリア外に送電損失が小さい順に発電に余裕のある分散電源システムを検索していく(ステップS6)。なおも電力が不足している場合には(ステップS7)、その電力を商用から買電する電力として積算していく(ステップS8)。この手順を各分散電源システムについて同様に行っていき(ステップS9)、買電する必要がある場合にはその時間帯の買電予定値を算出する(ステップS10)。以上のように各時間帯において同様に行っていき、算出された発電電力および受送電電力を各分散電源システムに指令値として送信する。
【0018】
実際の運用時においては、予定値の通りに電力需要があるものではなく、ある程度の変動は予想され、また気象状態の変化や発電装置の故障等の原因で予定値から大きくずれる場合もある。
【0019】
図4に、コミュニティー内の発電量を調整する制御フローを示す。
【0020】
この発電量の調整方法は、まず、電力が不足する分散電源システムを検索する(ステップS11)。ここで、不足するというのは、フル発電しているにもかかわらず、バッテリーの蓄電量に余裕がなくなってきた場合を示す。対象とする分散電源システムが見つかると(ステップS12)、その分散電源システムに近い順に発電量に余裕がある分散電源システムを検索していく(ステップS13)。余裕のある分散電源システムが見つかると、発電量を必要な分だけ増加するように指令を出す(ステップS15)。フル発電してもまだ電力が不足している場合には、さらに検索を継続して行う。コミュニティー内で電力不足が補えない場合には、商用電源からの買電量を増加させる必要がある(ステップS17)。電力が不足する分散電源システムが存在しない場合には、電力が余るすなわちバッテリーが満充電になりそうな分散電源システムを検索する(ステップS18)。対象とする電源が見つかると(ステップS19)、商用電源から買電中ならば(ステップS20)買電量を抑制し(ステップS21)、買電中でなければ分散電源システムの発電量を抑制する(ステップS22)。なお、故障等のために緊急で大きな電力不足が生じた場合には、バッテリーの放電等も併用してコミュニティー内における部分系統の電力不足を迅速に補う必要はある。
【0021】
以上のように、予め予測値が算出されていれば、コミュニティー内のエネルギー管理を電力損失の最小化という点から常に最適に近い状態で運用制御することができる。また、系統に対する受送電電力を予測し管理しているため、例えば、図1に示された各分散電源システム内の変圧器16のタップ切り替えを遠隔で制御することにより、コミュニティー系統内の電圧を安定に維持することも可能となる。
【0022】
【発明の効果】
以上説明したように本発明によれば、分散型エネルギーコミュニティーにおいて、電力需要の日負荷特性が異なる分散電源システム間においての電力補完が制御されるため、エネルギー蓄積装置の容量を大きくすることなく発電装置の稼動率の高いシステムとすることができる。
【0023】
また、充放電損失および送電損失を最小にできる状態で運用制御することにより、コミュニティー内のエネルギーを有効に利用することができる。
【0024】
さらに、発電電力および受送電電力の予定値を算出しておくことにより、エネルギー有効利用の効果を十分に発揮することができる。
【0025】
また、受送電電力の予定値に応じて系統電圧を制御することにより、コミュニティー内の系統電圧の変動を比較的簡単に抑制できるという効果もある。
【図面の簡単な説明】
【図1】本発明の分散型エネルギーコミュニティーシステムの一実施形態の概略構成図である。
【図2】図1の分散型エネルギーコミュニティーシステムにおける電力需要の日負荷特性と電力補完の例を示す図である。
【図3】図1の実施形態における発電電力および受送電電力の予定値算出のフローチャートである。
【図4】図1の実施形態におけるコミュニティー内の発電量を調整する制御のフローチャートである。
【符号の説明】
1 一戸建住宅
2 集合住宅
3 オフィス
4 学校
5、14 燃料電池
6、15 バッテリー
7 負荷
8 制御装置
9 電力線
10 通信線
11 センタ
12 制御監視装置
13 商用電源
16 変圧器
20 オフィス3および学校4等の負荷曲線
21 住宅1および2の負荷曲線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an energy community system having a plurality of distributed power supply systems, and more particularly to a distributed energy community system that is a power system to which a plurality of distributed power supply systems having a power generation device and an energy storage device are connected, and a control method thereof.
[0002]
[Prior art]
In order to increase the operating rate of the power generation device in the distributed power supply system and to reduce the capacity of the energy storage device, it is necessary to perform reverse power flow to the power system. Therefore, an energy system that transfers power between distributed power supply systems within a community is effective for increasing the operating rate of the power generation apparatus. In this case, when a battery is used as the energy storage device, surplus power is charged in the battery, but is transmitted to the system before being overcharged. Insufficient power is compensated by discharge from the battery, but power is received from the system before overdischarge occurs. That is, when surplus power is generated in the community system, the amount of discharge is suppressed, and when insufficient power is generated, power is purchased from the commercial system.
[0003]
However, if each distributed power supply system performs power transmission / reception to / from the power system unplanned in this way, surplus power or insufficient power may temporarily occur even in the entire community, and the voltage of the power system fluctuates greatly.
[0004]
[Problems to be solved by the invention]
In the conventional energy system described above, there is not much merit in power exchange between distributed power supply systems having similar power demand load characteristics because the ratio of power interchange within the community is reduced. Therefore, it is necessary to include distributed power supply systems with different daily load characteristics of power demand in the community. In this case, however, the community will be large to some extent, so operation that takes into account losses due to power transmission, voltage drops in the system voltage, etc. There is a problem that planning is necessary.
[0005]
An object of the present invention is to provide a system capable of effectively using energy and maintaining a stable system voltage by minimizing power loss in a community.
[0006]
[Means for Solving the Problems]
Distributed energy community system of the present invention, each have a power generator and an energy storage device, in a distributed energy community system daily load characteristics of the power demand different distributed power system is interconnected, each distributed About the power supply system, an area in which the transmission loss to the distributed power supply system is smaller than the charge / discharge loss of the energy storage device of the distributed power supply system is obtained in advance, and from each distributed power supply system, data indicating the power generation amount of the power generator, and data indicating the energy storage amount of the energy storage device receives data indicating the power consumption of the load, based on these, preferentially each distributed power system from the distributed power system transmission loss is small in the area Power is supplied between the plurality of distributed power systems while receiving power supply. The predetermined value of the power generation amount and receiving and supplying electricity amount necessary for mutual flexibility calculated for each distributed power supply system, and having a center to send該予value to the distributed power supply system.
[0007]
Further, the distributed energy community system of the present invention is a distributed energy community system in which a plurality of distributed power supply systems each having a power generation device and an energy storage device and having different daily load characteristics of power demand are connected to each other. The amount of power generated and received / transmitted to exchange power among the plurality of distributed power systems obtained from data including the amount of power generated by each distributed power system, the amount of energy stored, and the power consumption of the load. based on the expected values of the amount, the control for interchange power between the plurality of distributed power system, despite the control, the power generation amount is insufficient is present distributed power systems can not afford to energy storage, power from the amount you can afford to energy storage not missing distributed power supply system, it can afford to energy storage the power generation amount is insufficient When power to the distributed power system, transmission losses increase preferentially generation amount and the amount of transmitted power from a small distributed power system, characterized by having a center that performs the control of power transmission.
[0008]
The center may include a power generation device and an energy storage device, and power may be exchanged from the center to the plurality of distributed power supply systems.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic configuration of an embodiment of a distributed energy community system of the present invention. As shown in FIG. 1, there are a plurality of distributed power supply systems having power loads with various characteristics such as a detached house 1, an apartment house 2, an office 3, and a school 4 in a community. As illustrated in the detached house 1, the distributed power supply system of the present embodiment uses the fuel cell 5 as the power generation device and the battery 6 as the energy storage device, and supplies power to the load 7. Each distributed power supply system has a control device 8 and is connected to the center 11 by a power line 9 for power transmission and a communication line 10 for data communication. The control monitoring device 12 in the center 11 includes a database (not shown), collects data of each distributed power supply system and accumulates it in the database, and uses the communication line 10 for operation management of each distributed power supply system based on this database. And do it. Further, when the center 11 is connected to the commercial power supply 13 and necessary power cannot be supplied only by the distributed power supply system in the community, the commercial power supply 13 is purchased as necessary. Alternatively, the center 11 may be provided with a fuel cell 14 and a battery 15 to supply power to each distributed power system.
[0015]
FIG. 2 shows an example of daily load characteristics of power demand and power complementation in the distributed energy community system of FIG. In FIG. 2, a curve 20 indicates load values of the office 3 and the school 4, and a curve 21 indicates load 13 values of the houses 1 and 2. If a distributed power supply system with loads with different power demand characteristics exists in the community, the generated power can be used effectively by sharing power, and power can be generated without installing a large capacity battery. The operating rate of the apparatus can be increased. As indicated by arrows in FIG. 2, in the morning and evening, power is supplied to the house from a building with few people such as the office 3 and the school 4. In the daytime, surplus electricity in the house is supplied to offices and schools. Here, the simplest example is shown, but there are many distributed power supply systems as described above in the community, and a plan that considers charge / discharge loss, power transmission loss, and the like is necessary.
[0016]
A method for calculating the planned values of generated power and received / transmitted power will be described. First, a predicted value of power consumption of each distributed power supply system is calculated from past data, weather information, day of the week, schedule of events, and the like. In other words, past data with similar situations is searched, and correction is performed as necessary. For each distributed power supply system, an area in which the power transmission loss is smaller than the charge / discharge loss of the battery is calculated in advance. For simplicity, a group based on branching of power lines or the like may be used as the area.
[0017]
FIG. 3 shows a planned value calculation flow of generated power and received / transmitted power in this embodiment. In this calculation method, assuming that the power generation amount of the first distributed power supply system is insufficient in a certain time zone (step S1), there is a margin based on the relationship between the power generation amount and the predicted power consumption value in the previously calculated area. A certain distributed power supply system is searched in ascending order of transmission loss (step S2). When the supplement in this area is insufficient (step S3), the discharge amount is calculated in consideration of the time period in which the battery discharge capacity and the predicted power consumption are below the power generation amount (step S4). If this does not solve the shortage (step S5), a distributed power supply system having a margin for power generation is searched outside the area in ascending order of power transmission loss (step S6). If the electric power is insufficient (step S7), the electric power is integrated as electric power to be purchased from commercial power (step S8). This procedure is similarly performed for each distributed power supply system (step S9), and when it is necessary to purchase power, a planned power purchase value for that time zone is calculated (step S10). As described above, the same processing is performed in each time zone, and the calculated generated power and received / transmitted power are transmitted as command values to each distributed power supply system.
[0018]
During actual operation, there is no demand for electricity as planned, and some fluctuations are expected, and there may be a significant deviation from the planned value due to changes in weather conditions or failure of the power generator.
[0019]
FIG. 4 shows a control flow for adjusting the power generation amount in the community.
[0020]
In this method of adjusting the power generation amount, first, a distributed power supply system that lacks power is searched (step S11). Here, the shortage indicates a case where there is no room in the amount of electricity stored in the battery despite full power generation. When the target distributed power supply system is found (step S12), the distributed power supply system having a margin in the power generation amount is searched in the order closest to the distributed power supply system (step S13). When a distributed power supply system with a margin is found, a command is issued to increase the power generation amount by a necessary amount (step S15). If the power is still insufficient after full power generation, the search is continued. If the power shortage cannot be compensated for in the community, it is necessary to increase the amount of power purchased from the commercial power source (step S17). If there is no distributed power supply system with insufficient power, a search is made for a distributed power supply system in which power is surplus, that is, the battery is likely to be fully charged (step S18). When a target power supply is found (step S19), if power is being purchased from a commercial power supply (step S20), the power purchase amount is suppressed (step S21), and if not being purchased, the power generation amount of the distributed power supply system is suppressed (step S21). Step S22). In the case of an urgent and large power shortage due to a failure or the like, it is necessary to quickly compensate for the power shortage of the partial system in the community by using battery discharge or the like together.
[0021]
As described above, if the predicted value is calculated in advance, it is possible to control the operation of the energy management in the community in a state that is always close to optimum in terms of minimizing power loss. In addition, because the received and transmitted power to the system is predicted and managed, for example, by remotely controlling the tap switching of the transformer 16 in each distributed power system shown in FIG. It is also possible to maintain it stably.
[0022]
【The invention's effect】
As described above, according to the present invention, in a distributed energy community, power supplementation is controlled between distributed power supply systems having different daily load characteristics of power demand, so that it is possible to generate power without increasing the capacity of an energy storage device. It can be set as the system with the high operation rate of an apparatus.
[0023]
Further, by controlling the operation in a state where charging / discharging loss and power transmission loss can be minimized, the energy in the community can be used effectively.
[0024]
Furthermore, by calculating the planned values of generated power and received / transmitted power, the effect of effective energy use can be sufficiently exhibited.
[0025]
Further, by controlling the system voltage according to the scheduled value of the received / transmitted power, there is an effect that the fluctuation of the system voltage in the community can be suppressed relatively easily.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an embodiment of a distributed energy community system of the present invention.
FIG. 2 is a diagram illustrating an example of daily load characteristics of power demand and power supplementation in the distributed energy community system of FIG. 1;
FIG. 3 is a flowchart of calculation of scheduled values of generated power and received / transmitted power in the embodiment of FIG. 1;
4 is a flowchart of control for adjusting the power generation amount in the community in the embodiment of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Detached house 2 Apartment house 3 Office 4 School 5, 14 Fuel cell 6, 15 Battery 7 Load 8 Control device 9 Power line 10 Communication line 11 Center 12 Control monitoring device 13 Commercial power supply 16 Transformer 20 Office 3 and school 4 etc. Load curve 21 Load curve of houses 1 and 2

Claims (6)

各々が発電装置とエネルギー蓄積装置を有し、電力需要の日負荷特性が異なる複数の分散電源システムが相互に接続された分散型エネルギーコミュニティーシステムにおいて、 各分散電源システムについて、当該分散電源システムへの送電損失が当該分散電源システムのエネルギー蓄積装置の充放電損失よりも小さくなるエリアを予め求め、各分散電源システムから、発電装置の発電量を示すデータと、エネルギー蓄積装置のエネルギー貯蔵量を示すデータと、負荷の電力消費量を示すデータを受信し、これらをもとに、各分散電源システムが前記エリア内の送電損失が小さい分散電源システムから優先的に電力の供給を受けるようにしながら、前記複数の分散電源システムの間で電力を融通し合うために必要な発電量および受送電量の予定値を分散電源システムごとに計算し、該予定値を当該分散電源システムに送信するセンタを有することを特徴とする分散型エネルギーコミュニティーシステム。  In a distributed energy community system in which a plurality of distributed power systems each having a power generation device and an energy storage device and having different daily load characteristics of power demand are connected to each other, each distributed power system is connected to the distributed power system. An area in which the transmission loss is smaller than the charge / discharge loss of the energy storage device of the distributed power system is obtained in advance, and data indicating the power generation amount of the power generation device and data indicating the energy storage amount of the energy storage device are obtained from each distributed power system. And receiving data indicating the power consumption of the load, and based on these, while each distributed power system is preferentially supplied with power from a distributed power system with a small power transmission loss in the area, Predicting the amount of power generated and received / received to exchange power among multiple distributed power systems Distributed Energy Community system calculates the values for each distributed power supply system, and having a center to send 該予 value to the distributed power supply system. 各々が発電装置とエネルギー蓄積装置を有し、電力需要の日負荷特性が異なる複数の分散電源システムが相互に接続された分散型エネルギーコミュニティーシステムにおいて、 前記各分散電源システムの発電量と、エネルギー貯蔵量と、負荷の電力消費量を含むデータから得られた、前記複数の分散電源システムの間で電力を融通し合うために必要な発電量および受送電量の予定値に基づいて、前記複数の分散電源システム間電力融通する制御と、該制御にもかかわらず、発電量が不足しエネルギー貯蔵量にも余裕がない分散電源システムが存在、発電量が不足しておらずエネルギー貯蔵量にも余裕がある分散電源システムから、前記発電量が不足しエネルギー貯蔵量にも余裕がない分散電源システムへ送電する場合に、送電損失が小さい分散電源システムから優先的に発電量および送電量を増加させ、送電する制御とを行なうセンタを有することを特徴とする分散型エネルギーコミュニティーシステム。In a distributed energy community system in which a plurality of distributed power systems each having a power generation device and an energy storage device and having different daily load characteristics of power demand are connected to each other, the power generation amount of each of the distributed power systems and energy storage and amount, obtained from the data including the power consumption of the load, said plurality of based on expected values of the power generation amount and receiving and supplying electricity amount necessary for mutual interchange power between the distributed power supply system, the plurality of a control for interchange power between distributed power systems, despite the control, the power generation amount is insufficient is present distributed power systems can not afford to energy storage, energy storage not insufficient power generation amount When transmitting power from a distributed power supply system with sufficient capacity to a distributed power supply system with insufficient power generation and energy storage capacity, transmission loss is small. A distributed energy community system characterized by having a center that preferentially increases the amount of power generation and power transmission from a distributed power supply system and performs control for power transmission . 前記センタは、発電装置とエネルギー蓄積装置を備え、前記センタからも前記複数の分散電源システムに電力を融通する、請求項1または2に記載の分散型エネルギーコミュニティーシステム。  The distributed energy community system according to claim 1, wherein the center includes a power generation device and an energy storage device, and power is also exchanged from the center to the plurality of distributed power supply systems. 各々が発電装置とエネルギー蓄積装置を有し、電力需要の日負荷特性が異なる複数の分散電源システムが相互に接続された分散型エネルギーコミュニティーシステムの制御方法において、
前記分散型エネルギーコミュニティーシステムを制御するセンタが、
各分散電源システムについて、当該分散電源システムへの送電損失が当該分散電源システムのエネルギー蓄積装置の充放電損失よりも小さくなるエリアを予め求める段階と、
各分散電源システムから、発電装置の発電量を示すデータと、エネルギー蓄積装置のエネルギー貯蔵量を示すデータと、負荷の電力消費量を示すデータを受信する段階と、
これらをもとに、各分散電源システムが前記エリア内の送電損失が小さい分散電源システムから優先的に電力の供給を受けるようにしながら、前記複数の分散電源システムの間で電力を融通し合うために必要な発電量および受送電量の予定値を分散電源システムごとに計算する段階と、
該予定値を当該分散電源システムに送信する段階
を有することを特徴とする分散型エネルギーコミュニティーシステムの制御方法。
In a control method of a distributed energy community system in which a plurality of distributed power systems each having a power generation device and an energy storage device and having different daily load characteristics of power demand are interconnected,
A center for controlling the distributed energy community system;
For each distributed power supply system, obtaining in advance an area where the transmission loss to the distributed power supply system is smaller than the charge / discharge loss of the energy storage device of the distributed power supply system;
Receiving from each distributed power supply system data indicating the power generation amount of the power generation device, data indicating the energy storage amount of the energy storage device, and data indicating the power consumption of the load;
Based on these, each distributed power supply system is preferentially supplied with power from a distributed power supply system with a small power transmission loss in the area, and power is exchanged among the plurality of distributed power supply systems. Calculating the required power generation amount and the amount of power received and received for each distributed power system;
Transmitting the scheduled value to the distributed power supply system ;
A control method for a distributed energy community system, comprising:
各々が発電装置とエネルギー蓄積装置を有し、電力需要の日負荷特性が異なる複数の分散電源システムが相互に接続された分散型エネルギーコミュニティーシステムの制御方法において、
前記各分散電源システムの運用管理を行なうセンタが前記各分散電源システムの発電量と、エネルギー貯蔵量と、負荷の電力消費量を含むデータから得られた、前記複数の分 散電源システムの間で電力を融通し合うために必要な発電量および受送電量の予定値に基づいて、前記複数の分散電源システム間で電力を融通する制御を行い、該制御にもかかわらず、発電量が不足しエネルギー貯蔵量にも余裕がない分散電源システムが存在、発電量が不足しておらずエネルギー貯蔵量にも余裕がある分散電源システムから、前記発電量が不足しエネルギー貯蔵量にも余裕がない分散電源システムへ送電する場合に、送電損失が小さい分散電源システムから優先的に発電量および送電量を増加させ、送電する制御を行なうことを特徴とする分散型エネルギーコミュニティーシステムの制御方法。
In a control method of a distributed energy community system in which a plurality of distributed power systems each having a power generation device and an energy storage device and having different daily load characteristics of power demand are interconnected,
Center performs management of each distributed power system, a power generation amount of said each distributed power supply system, the energy storage, obtained from data including the power consumption of the load, between the plurality of distributed power supply system Based on the planned amount of power generation and received / transmitted power required to exchange power in the system, control is performed to exchange power between the plurality of distributed power supply systems. and there is the distributed power system can not afford to energy storage, from the distributed power supply system can afford to energy storage without the amount of power generation not insufficient, the power generation amount can afford to be energy storage shortage when power to not distributed power systems, transmission loss preferentially increase the power generation amount and the amount of transmitted power from a small distributed power systems, decentralized and performing control for transmitting Control method of Nerugi over community system.
前記センタは、発電装置とエネルギー蓄積装置を備え、前記センタからも前記複数の分散電源システムに電力を融通する、請求項4または5に記載の分散型エネルギーコミュニティーシステムの制御方法。  6. The method of controlling a distributed energy community system according to claim 4, wherein the center includes a power generation device and an energy storage device, and power is also exchanged from the center to the plurality of distributed power supply systems.
JP2000227044A 2000-07-27 2000-07-27 Distributed energy community system and its control method Expired - Lifetime JP3782924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000227044A JP3782924B2 (en) 2000-07-27 2000-07-27 Distributed energy community system and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000227044A JP3782924B2 (en) 2000-07-27 2000-07-27 Distributed energy community system and its control method

Publications (2)

Publication Number Publication Date
JP2002044870A JP2002044870A (en) 2002-02-08
JP3782924B2 true JP3782924B2 (en) 2006-06-07

Family

ID=18720555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000227044A Expired - Lifetime JP3782924B2 (en) 2000-07-27 2000-07-27 Distributed energy community system and its control method

Country Status (1)

Country Link
JP (1) JP3782924B2 (en)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3935386B2 (en) * 2002-03-28 2007-06-20 大阪瓦斯株式会社 Energy supply and demand method and energy supply and demand system
JP4034194B2 (en) * 2003-01-17 2008-01-16 株式会社日本総合研究所 Power supply system and housing complex
WO2004073136A1 (en) * 2003-02-13 2004-08-26 Vpec, Inc. Power system
GB2402001B (en) * 2003-05-13 2006-09-20 Ec Power As Power distribution system
US7518262B2 (en) 2003-07-23 2009-04-14 The Japan Research Insitute, Limited Power supply system, multiple dwelling, and computer program
JP2005143238A (en) * 2003-11-07 2005-06-02 Nippon Oil Corp Power supply system
SE0303574D0 (en) * 2003-12-23 2003-12-23 Abb Research Ltd Elictric power network
JP4613497B2 (en) * 2004-02-18 2011-01-19 パナソニック株式会社 Control device for fuel cell system
JP4808939B2 (en) * 2004-06-28 2011-11-02 出光興産株式会社 FUEL CELL SYSTEM, FUEL CELL SYSTEM CONTROL METHOD, AND MULTIPLE HOUSING FOR IMPROVING ENERGY EFFICIENCY OF THE SYSTEM
JP2006288162A (en) * 2005-04-05 2006-10-19 Inst Of Research & Innovation Control method for electric energy interchange in power system
US7844370B2 (en) 2006-08-10 2010-11-30 Gridpoint, Inc. Scheduling and control in a power aggregation system for distributed electric resources
US20090043519A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. Electric Resource Power Meter in a Power Aggregation System for Distributed Electric Resources
US8898278B2 (en) 2006-08-10 2014-11-25 Gridpoint, Inc. Connection locator in a power aggregation system for distributed electric resources
US7949435B2 (en) 2006-08-10 2011-05-24 V2Green, Inc. User interface and user control in a power aggregation system for distributed electric resources
US20090040029A1 (en) 2006-08-10 2009-02-12 V2Green, Inc. Transceiver and charging component for a power aggregation system
US7747739B2 (en) 2006-08-10 2010-06-29 Gridpoint, Inc. Connection locator in a power aggregation system for distributed electric resources
JP4843418B2 (en) * 2006-08-31 2011-12-21 株式会社東芝 Microgrid power supply and demand adjustment system
JP2008104269A (en) * 2006-10-18 2008-05-01 Toho Gas Co Ltd System for managing demand and supply in micro grid
BRPI0720002A2 (en) * 2006-12-11 2013-12-17 V2Green Inc POWER AGGREGATION SYSTEM FOR DISTRIBUTED ELECTRIC RESOURCES
JP4749375B2 (en) * 2007-04-11 2011-08-17 中国電力株式会社 Control device for adjusting power supply and demand in microgrids
JP4752810B2 (en) * 2007-06-01 2011-08-17 株式会社明電舎 Distributed power supply control system and control method
KR101415769B1 (en) * 2007-12-10 2014-07-08 엘지전자 주식회사 Apparatus for group merging generation of electric power and method thereof
JP5075608B2 (en) * 2007-12-14 2012-11-21 株式会社東芝 Distribution line automatic control system, distribution line automatic control method and program
US8097967B2 (en) 2008-06-30 2012-01-17 Demand Energy Networks, Inc. Energy systems, energy devices, energy utilization methods, and energy transfer methods
US8319358B2 (en) * 2008-06-30 2012-11-27 Demand Energy Networks, Inc. Electric vehicle charging methods, battery charging methods, electric vehicle charging systems, energy device control apparatuses, and electric vehicles
AU2009341875B2 (en) 2009-03-12 2013-06-20 Vpec, Inc. Autonomous distributed AC power system
JP5481080B2 (en) * 2009-03-18 2014-04-23 トヨタホーム株式会社 Power interchange system
JP2011036118A (en) * 2009-08-04 2011-02-17 Toshiro Morita Transmission network
EP2463981A4 (en) 2009-08-04 2017-09-20 Nec Corporation Energy system
JP2011083086A (en) * 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd Electric power distribution system
JP5576085B2 (en) * 2009-10-13 2014-08-20 株式会社日立製作所 Distributed computer system and operation method thereof
JP5413134B2 (en) * 2009-11-06 2014-02-12 マツダ株式会社 Electric power supply and demand control system in microgrid
JP5575457B2 (en) * 2009-11-06 2014-08-20 パナソニック株式会社 Power distribution system
CN102668301B (en) * 2009-11-06 2015-07-08 松下电器产业株式会社 Power distribution system
JP5407875B2 (en) * 2010-01-06 2014-02-05 マツダ株式会社 Electricity supply and demand prediction method and prediction system in microgrid
WO2011086806A1 (en) * 2010-01-18 2011-07-21 ローム株式会社 Power system
JP5573258B2 (en) * 2010-03-15 2014-08-20 日本電気株式会社 Power control apparatus, power control system, storage battery control method, and program
JP5619148B2 (en) 2010-04-12 2014-11-05 株式会社日立製作所 Power management system, power management method, and section controller
JP5178783B2 (en) * 2010-07-07 2013-04-10 中国電力株式会社 Electric power supply and demand adjustment system and electric power supply and demand adjustment method
JP5562423B2 (en) * 2010-08-05 2014-07-30 三菱自動車工業株式会社 Electricity supply and demand leveling system
JP5530314B2 (en) * 2010-09-08 2014-06-25 積水化学工業株式会社 Regional power interchange system
JP5773627B2 (en) * 2010-11-30 2015-09-02 京セラ株式会社 Output control system for a plurality of distributed power supplies and output control method for a plurality of distributed power supplies
JP2012175855A (en) * 2011-02-23 2012-09-10 Toshiba Corp Area energy management system, and area energy integrated management apparatus and area energy integrated management method used therefor
US8938320B2 (en) 2011-02-23 2015-01-20 Kabushiki Kaisha Toshiba Regional energy management system, regional energy integrated management device and regional energy integrated management method used in regional energy management system
JP5411183B2 (en) * 2011-03-07 2014-02-12 三菱電機株式会社 Community energy management system and method
EP2501011A3 (en) * 2011-03-18 2013-03-27 Thomson Licensing Centralised management of the power supply of a plurality of local power grids
JP5790081B2 (en) * 2011-03-30 2015-10-07 富士通株式会社 Power control apparatus, power control program, and power control method
EP2693588B1 (en) * 2011-03-30 2016-03-30 Hitachi, Ltd. System control apparatus for facilities
US9525285B2 (en) 2011-06-13 2016-12-20 Demand Energy Networks, Inc. Energy systems and energy supply methods
EP2722960B1 (en) 2011-06-17 2016-08-17 Hitachi, Ltd. Microgrid control system
CN103765718B (en) * 2011-09-16 2016-03-16 株式会社日立制作所 Electric power distribution system
KR101500304B1 (en) * 2011-12-26 2015-03-11 주식회사 케이티 A control method of charging and discharging of energy storage and system for it
ITTO20120181A1 (en) * 2012-03-01 2013-09-02 Sisvel Technology Srl METHOD AND APPARATUS FOR THE MANAGEMENT OF ELECTRICITY PRODUCED LOCALLY FOR SELF-CONSUMPTION AND DISTRIBUTED TO MULTIPLE UTILITIES BELONGING TO ONE OR MORE COMMUNITIES OF UTILITIES
JP5503677B2 (en) * 2012-03-06 2014-05-28 ヤフー株式会社 System, information processing method, and computer program
JP2013246751A (en) * 2012-05-29 2013-12-09 Misawa Homes Co Ltd Energy management system
WO2014057601A1 (en) * 2012-10-09 2014-04-17 日本電気株式会社 Electrical power interchange system, electricity-transmitting/-receiving device, electrical power interchange method, and program
JP2014222992A (en) * 2013-05-14 2014-11-27 三菱電機株式会社 System stabilization device and system stabilization method
JP6251610B2 (en) * 2014-03-13 2017-12-20 株式会社Nttファシリティーズ Power interchange system and power interchange method
JP6190741B2 (en) * 2014-03-13 2017-08-30 株式会社Nttファシリティーズ Power interchange system and power interchange method
JP6163445B2 (en) * 2014-03-13 2017-07-12 株式会社Nttファシリティーズ Power interchange system and power interchange method
JP6251608B2 (en) * 2014-03-13 2017-12-20 株式会社Nttファシリティーズ Power interchange system and power interchange method
JP6251609B2 (en) * 2014-03-13 2017-12-20 株式会社Nttファシリティーズ Power interchange system and power interchange method
JP6163444B2 (en) * 2014-03-13 2017-07-12 株式会社Nttファシリティーズ Power interchange system and power interchange method
JP6285265B2 (en) * 2014-04-18 2018-02-28 株式会社日立製作所 Power management system, power management method, and power management program
JP2015211516A (en) * 2014-04-25 2015-11-24 富士電機株式会社 Charge/discharge control system for power storage device
WO2017146243A1 (en) * 2016-02-25 2017-08-31 京セラ株式会社 Power management server, power management system, and power management method
CN107437823B (en) * 2016-05-27 2022-03-08 松下知识产权经营株式会社 Power transmission system

Also Published As

Publication number Publication date
JP2002044870A (en) 2002-02-08

Similar Documents

Publication Publication Date Title
JP3782924B2 (en) Distributed energy community system and its control method
US10923919B2 (en) Method and apparatus for controlling power flow in a hybrid power system
JP3740099B2 (en) Power network management system and power network management method
JP6885400B2 (en) Control device, control method and storage control device
US7385373B2 (en) Intelligent distributed energy storage system for demand side power management
US9849803B2 (en) Energy system
US7904115B2 (en) Adaptive power management for a node of a mobile telecommunications network
US20190020197A1 (en) Method and system for managing charging/discharging of electric energy based on prediction for photovoltaic power and load
JP2003189477A (en) Power controller
US11411400B2 (en) DC power supply system
CN113765130A (en) Operation control method of micro-grid
JPH1141831A (en) Power storage device and operating method for the power storage device
US20140306527A1 (en) Method for providing control power with an energy generator and an energy consumer
JPH1155856A (en) Electric power system operation system and terminal equipment for consumer used in the system
JP2013247792A (en) Power management device, power management system, and power management method
US20230307918A1 (en) System and method for bi-directional direct current charging in electric vehicle supply equipment
JPH1146458A (en) Solar power generating system
Minhas et al. Two-Stage Multi-time Scale Energy Management & Control framework for Home Area Power Network
KR20180003054A (en) Energy storage system
JP2021005985A (en) Dc power network
JPWO2020044743A1 (en) Power controller and power system
JP2020184851A (en) Dc power network and control system of dc power network
US20230223778A1 (en) Autonomous battery charging and discharging system using a load shaping signal
JP2002529040A (en) Arrangements and methods to match power grid power to actual peak loads.
CN116072998B (en) Communication method, device, system, equipment, medium and product of energy storage system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040921

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050815

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050815

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent or registration of utility model

Ref document number: 3782924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term