JP3753830B2 - Marine geomagnetic measurement method - Google Patents

Marine geomagnetic measurement method Download PDF

Info

Publication number
JP3753830B2
JP3753830B2 JP03862697A JP3862697A JP3753830B2 JP 3753830 B2 JP3753830 B2 JP 3753830B2 JP 03862697 A JP03862697 A JP 03862697A JP 3862697 A JP3862697 A JP 3862697A JP 3753830 B2 JP3753830 B2 JP 3753830B2
Authority
JP
Japan
Prior art keywords
ship
measurement
sensor
geomagnetic
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03862697A
Other languages
Japanese (ja)
Other versions
JPH10221466A (en
Inventor
昭憲 内山
康弘 半場
隆二 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWASAKI GEOLOGICAL ENGINEERING CO., LTD.
Original Assignee
KAWASAKI GEOLOGICAL ENGINEERING CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWASAKI GEOLOGICAL ENGINEERING CO., LTD. filed Critical KAWASAKI GEOLOGICAL ENGINEERING CO., LTD.
Priority to JP03862697A priority Critical patent/JP3753830B2/en
Publication of JPH10221466A publication Critical patent/JPH10221466A/en
Application granted granted Critical
Publication of JP3753830B2 publication Critical patent/JP3753830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、海洋地質調査のための海上地磁気測定方法に関するものであり、特に沿岸域,浅海域における海上地磁気測定方法に関するものである。
【0002】
【従来の技術】
一般的に行われている海上地磁気測定では、船体磁気の影響を避けるために、プロトン磁力計センサを船体の長さの約3倍以上の距離を離して曳航しながら計測している。例えば、船体長が30mであれば、船尾より約100m程度後方にセンサを曳くことになる。この場合、十分な曳航力を保つためには最低5ノット以上の速力を保たなければならない。
【0003】
【発明が解決しようとする課題】
このような従来の方法により、航行船舶の多い湾口部又は沿岸及び浅海域、または潮流の速い地域では地磁気測定をしようした場合、センサを安定して曳航することも困難であり、測定のリアルタイムでそのセンサの位置を検知しながら測定を実行することは事実上不可能である。
【0004】
本発明の目的は、湾口部又は沿岸及び浅海域等において地磁気測定を安定して精度よく行うことができる海上地磁気測定方法を提供することにある。
【0005】
【課題を解決するための手段】
この目的を達成するために、本発明による海上地磁気測定方法は、非磁性材料により形成された船舶の船体から所定長だけ突出した位置に非磁性材料の保持具を介して磁力計の第1のセンサが固定され、
前記船舶の前方中央部に配置されたジンバル上に該船舶の動揺による地磁気の変動分を測定するために前記第1のセンサと同様の第2のセンサが設置され、
前記船舶には、前記第1のセンサによる地磁気測定データと前記第2のセンサによる前記地磁気の変動分と該船舶の船位,船首方向および当該船位における水深の各測定値を複数の入力部を持つ収録システムを用いて同時にリアルタイムで収録可能なるように測定装置が配置され、
前記船舶の航行に従って該航行の軌跡上の各測定位置における前記地磁気測定データを前記各測定値とともに前記測定装置に必要な時間間隔で収録し、
前記第1のセンサによる前記地磁気測定データに含まれる磁気的ノイズを、前記第2のセンサによる前記地磁気の変動分値と前記各測定値との該収録データを用いて除去するための補正を行うように構成されている。
【0006】
【発明の実施の形態】
本発明の実施のために、陸上用ポータブル「オーバーハウザー・プロトン磁力計」の如き磁力計のセンサを、鉄等の磁性材料よりなるエンジンからの誘導磁場の影響をできるだけ減少するように、非磁性材質の小型船舶(FRP船)の例えば舳先から突出して取り付けて船舶と一体化させ、同時に船体の前方中央部にもジンバル上に固定した同様の磁力計を設置して、航行しながら、例えば、一秒間隔で地磁気測定と船舶の動揺による地磁気の変動差分測定を行う。
地磁気測定結果を解析する際に必要となる船位,船首方向,水深の各測定値、および舳先及び船体前方部の2つの地磁気測定値はそれぞれの測定器からディジタル値として別々に独立して出力されるが、これらのデータを同時刻データの並びとして、リアルタイムでパソコンを内蔵した1台の収録機で収録する。
これにより、船舶の航行の軌跡上の各測定位置における地磁気測定データと解析に必要な各測定値は、必要な時間間隔すなわち必要な測定ポイント密度で取り出すことができる。
【0007】
【実施例】
図1は本発明方法を実施するために調査対象の海上に調査船が位置している状態を示す模式図であり、図2は測定システムの構成例を示す接続系統図である。
ポータブル用のオーバーハウザー・プロトン磁力計のセンサ1を、船体2の磁気を極力避けるために非磁性体ポール3の先端に取付け、例えば船首前方に張り出している。このセンサ1は、船尾又は船側に張り出して取り付けてもよい。
船体動揺による地磁気乱れ成分を測定するために、ジンバル上に固定した同様の磁力計センサ5を船体前方中央部に設置する。
船位データを得るために、GPS測定装置の如き船位測定装置6が測位アンテナ7とともに配置されている。船首方位データを得るために、船首方位測定用磁気コンパス8が設けられている。また、水深データを得るために、音響測深機9が音響測深機送受波器10とともに配置されている。11,12はそれぞれセンサ1,5からのデータを処理するオーバーハウザー・プロトン磁力計測定演算装置の如き演算装置である。各測定装置11,12,6,8及び9からの測定データはパソコンの如きデータ収録装置13に収録される。
【0008】
以下本発明方法の実施に関連する事項について説明する。
(1)調査のために要求される精度
陸上用ポータブルプロトン磁力計の計測器としての精度は0.1nT(ナノテスラ)以内である。参考までに日本付近の地球磁場はおよそ40000〜50000nTである。
また、調査に要求される精度は、数nT程度である。
【0009】
(2)磁気的ノイズの要因
非曳航式で地磁気測定を行う場合、最も障害となるのが船体が持つ磁性体、すなわちエンジン等の鉄材で作られた物による誘導磁場である。
一般の磁場の力は、物体からの距離の3乗に反比例することが、理論的にも実験的にも知られている。従って、船体が非磁性の材質で形成されていれば、磁気的ノイズ源はほぼエンジンに限られるので、磁力計センサをエンジンから十分に離せば、その影響をおさえることができるが、実際には離す距離に限界があるので完全にノイズを取り除くことはできない。これまでの経験では図1のような配置でも数十nT程度のノイズが認められる。以上の考察から、センサ1は舳先に限らず、船尾又は場合により船側から突出するように配置してもよいが、船の運行操舵の面からは舳先から非磁性材ポールにより張前方に張出して配置するのが好都合であると判断される。
【0010】
(3)磁気的ノイズの形
誘導磁場によるノイズの大きさは、ノイズ源から見る方位によって大きさが異なる。すなわちノイズ源(ここではエンジン)の北側には負の異常、南側には正の異常が発生する。もし船の動揺が小さく、ノイズ源と磁力計センサの相対的位置が変わらなければ、磁力計センサに影響する磁気的ノイズは一定(磁気的直流成分のみ)で、方位のみに依存する。
しかし実際には、船は動揺するので両者の相対的位置は動揺の周期で変化することになり、これに応じて磁気的ノイズも変化する。従って、このノイズは周期的で、動揺の周期にほぼ一致する。
【0011】
(4)磁気的ノイズの取り除き方
a)その1
磁気的ノイズが方位に依存するノイズであることから、調査海域内の適当な場所で船を8の字に旋回させ、船首方位による磁場の変化を測定する。
次に、8の字データの平均値を求めて、それぞれの方位に対する値から平均値を差し引いた値を方位に依存する補正分とし、実際の測定値に適用する。
この場合の実際の測定の結果を図3に示す。4段に分けて表示しているが、上から(1)観測値、(2)船首方位による磁場変化の補正後の値、(3)水深値、(4)船首方位値の順で示している。観測船の南北方向に2回往復しているが、図の左側で南行から北行への方向変換を行い、図の右側で同じ事をもう一度繰り返している。船首方位の変化による磁場の変化は観測時では100nT以上であるのに対し、上から2段目に示す補正後(2)では10nT以下になっている。
この補正は、図4(a)に示すように、船上の観測値と同時刻の陸上固定点との差を算出し、その値を図4(b)のように関数化し、観測船の方位に対する補正量とした。
b)その2
通常の調査では、測定しようとする地磁気の波長は100m以上である。これに比べると、船の動揺による磁気的ノイズの波長(周期)は高々数mから10m程度であるので、ハイカットフィルタを用いて取り除く。
c)その3
比較的短波長の測定が必要となる場合には、上で述べたハイカットフィルタを用いることはできない。この場合には船体前方部のジンバル上に固定した磁力計センサの測定値を利用して動揺分を補正する。
すなわち、船首前方部の磁力計センサの測定結果について、ローカットフィルタを施して、短波長成分だけ取り出す。
次に横軸にジンバル上の磁力値を、縦軸に上記の結果を表現して相関図を作る。相関図から直線回帰式を求める。
ジンバル上の磁力値は、エンジンに近いためその変動量は殆どが船体動揺の影響を表している。従って相関図から求められた直線の傾きは、両者のエンジンからの距離の違いによる船体動揺の磁気乱れの倍率を示すことになる。
倍率が求まったら、元のデータ(フィルタのないデータ)に戻り、船首前方部の磁力計センサの測定値から、ジンバル上の磁力値に倍率をかけた値を差し引くことによって、動揺補正を行う。
【0012】
(5)測定の効率化の工夫
2つの磁気測定値と、さらに船位データ、船首方位データ、水深データのそれぞれは、各計器からディジタル値として、RS232Cとよばれるコネクタから出力される。通常の場合、これらの出力は直接パソコンのRS232Cの入力部に接続するが、この入力部は1台のパソコンに1つしか付いていない。従って5種類のデータを収録するためには5台のパソコンが必要となり、それぞれ独立に収録することになる。
以上のような方法では、コスト高になること、また個々に収録されたデータを同時刻データの並びとして編集し直さなければならず、時間がかかるなどの不都合が多い。
これを解決するために複数のRS232Cの入力部を持つ収録システムを作成し、独立したデータを同時刻データの並びとして、収録できるようにしている。収録器は個々の入力部でデータを受け取る制御をする子のCPU制御部と、全体の子CPUの結果を制御する親CPUからなり、この親CPUにはパソコンを利用している。
【0013】
【発明の効果】
以上詳細に説明したように、本発明によれば、湾口部又は沿岸及び浅海域等において安定した姿勢で海面と一定間隔を保って磁気センサを被測定領域で周回させることができ、また、船体からの誘導ノイズの影響を抑制することができるので、安定した海上磁気測定を行うことができる。さらに、船位データ、船首方位データ、水深データも地磁気測定データとともに同時に並列に測定結果を収録するので、事後の測定データの解析,整理は容易である。しかも、船の動揺に伴う磁気的ノイズも効率よく除去することが可能であり、信頼度の高い測定結果を得ることができるので実用的価値は極めて高い。
【図面の簡単な説明】
【図1】本発明による海上磁気測定方法の実施状態を示す側面模式図である。
【図2】本発明による海上磁気測定方法に用いられる測定機器の配置例を示す接続図である。
【図3】本発明方法による観測値の具体例を示す波形例図である。
【図4】本発明方法による観測例における方位と相対磁力との関係を示す測定特性図(a)と関数化した同特性図(b)である。
【符号の説明】
1 オーバーハウザープロトン磁気計のセンサ
2 船体
3 非磁性体ポール
4 ジンバル装置
5 磁力計センサ
6 GPS測定装置
7 測位アンテナ
8 船首方向測定用磁気コンパス
9 音響測深器
10 音響測深器送受波器
11,12 オーバーハウザー・プロトン磁力計測定演算装置
13 データ収録装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a marine geomagnetic measurement method for marine geological survey, and more particularly to a marine geomagnetic measurement method in a coastal area and a shallow sea area.
[0002]
[Prior art]
In general marine geomagnetic measurements, the proton magnetometer sensor is measured while towing at a distance of about three times the length of the hull to avoid the influence of hull magnetism. For example, if the hull length is 30 m, the sensor will be hung about 100 m behind the stern. In this case, in order to maintain a sufficient towing force, a speed of at least 5 knots must be maintained.
[0003]
[Problems to be solved by the invention]
With such a conventional method, it is difficult to tow the sensor stably in the bay mouth or coastal and shallow water areas where there are many navigating ships, or when the geomagnetic measurement is performed at high tidal currents. It is virtually impossible to perform a measurement while detecting the position of the sensor.
[0004]
An object of the present invention is to provide a marine geomagnetic measurement method capable of performing geomagnetic measurement stably and accurately in a bay mouth, a coast, a shallow sea area, or the like.
[0005]
[Means for Solving the Problems]
In order to achieve this object, the marine geomagnetism measurement method according to the present invention provides a first magnetometer through a holder made of a nonmagnetic material at a position protruding from a ship hull formed of a nonmagnetic material by a predetermined length. The sensor is fixed,
A second sensor similar to the first sensor is installed on the gimbal disposed in the front center of the ship in order to measure the amount of change in geomagnetism due to the shaking of the ship,
The ship has a plurality of input units for the geomagnetic measurement data by the first sensor, the geomagnetic fluctuation by the second sensor, and the measurement values of the ship's ship position, bow direction, and water depth at the ship position. The measurement device is arranged so that it can be recorded simultaneously in real time using the recording system ,
According to the navigation of the ship, the geomagnetic measurement data at each measurement position on the trajectory of the navigation is recorded at the time interval necessary for the measurement device together with the respective measurement values ,
Correction for removing magnetic noise included in the geomagnetic measurement data by the first sensor using the recorded data of the geomagnetic fluctuation value and the respective measurement values by the second sensor is performed. It is configured as follows.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
For the implementation of the present invention, the sensor of a magnetometer, such as a portable terrestrial “overhauser proton magnetometer”, is made nonmagnetic so as to reduce as much as possible the influence of an induced magnetic field from an engine made of a magnetic material such as iron. For example, a small ship (FRP ship) made of material protrudes from the tip of the ship and is integrated with the ship. At the same time, a similar magnetometer fixed on the gimbal is installed in the front center of the hull, At one second intervals, geomagnetic measurement and difference measurement of geomagnetism due to ship motion are measured.
The ship position, bow direction and water depth measurements required for analyzing the geomagnetic measurement results, and the two geomagnetic measurements at the tip and front of the hull are output separately and independently as digital values from each measuring instrument. However, these data are recorded as a sequence of the same time data in real time with a single recorder with a built-in personal computer.
Thereby, the geomagnetic measurement data at each measurement position on the trajectory of the ship's navigation and each measurement value necessary for the analysis can be extracted at a necessary time interval, that is, a necessary measurement point density.
[0007]
【Example】
FIG. 1 is a schematic diagram showing a state where a survey ship is located on the sea to be surveyed in order to carry out the method of the present invention, and FIG. 2 is a connection system diagram showing a configuration example of a measurement system.
A portable overhauser proton magnetometer sensor 1 is attached to the tip of a non-magnetic pole 3 in order to avoid the magnetism of the hull 2 as much as possible, for example, projecting forward in the bow. The sensor 1 may be mounted overhanging on the stern or the ship side.
A similar magnetometer sensor 5 fixed on the gimbal is installed at the front center of the hull in order to measure the geomagnetic turbulence component due to the hull shaking.
In order to obtain ship position data, a ship position measuring device 6 such as a GPS measuring device is disposed together with a positioning antenna 7. In order to obtain the heading data, a heading measurement magnetic compass 8 is provided. In order to obtain water depth data, an acoustic sounding instrument 9 is arranged together with an acoustic sounding instrument transducer 10. Reference numerals 11 and 12 denote arithmetic devices such as an overhauser proton magnetometer measurement arithmetic device for processing data from the sensors 1 and 5, respectively. Measurement data from each of the measuring devices 11, 12, 6, 8, and 9 is recorded in a data recording device 13 such as a personal computer.
[0008]
The matters related to the implementation of the method of the present invention will be described below.
(1) Accuracy required for investigation The accuracy of a portable proton magnetometer for land use is within 0.1 nT (nano tesla). For reference, the geomagnetic field near Japan is approximately 40,000 to 50,000 nT.
Further, the accuracy required for the survey is about several nT.
[0009]
(2) Causes of magnetic noise When non-towed geomagnetic measurement is performed, the most disturbing factor is the magnetic field of the ship's hull, that is, an induced magnetic field generated by an object made of iron such as an engine.
It is known both theoretically and experimentally that the force of a general magnetic field is inversely proportional to the cube of the distance from an object. Therefore, if the hull is made of a non-magnetic material, the magnetic noise source is almost limited to the engine, so if the magnetometer sensor is sufficiently away from the engine, the effect can be suppressed. Since there is a limit to the distance, the noise cannot be completely removed. In the experience so far, noise of about several tens of nT is recognized even in the arrangement as shown in FIG. From the above considerations, the sensor 1 is not limited to the tip, but may be arranged so as to protrude from the stern or in some cases from the ship side. It is judged that it is convenient to arrange.
[0010]
(3) Shape of magnetic noise The magnitude of the noise caused by the induced magnetic field varies depending on the orientation viewed from the noise source. That is, a negative abnormality occurs on the north side of the noise source (here, the engine), and a positive abnormality occurs on the south side. If the ship shake is small and the relative position of the noise source and the magnetometer sensor does not change, the magnetic noise affecting the magnetometer sensor is constant (only the magnetic DC component) and depends only on the orientation.
However, in reality, since the ship is shaken, the relative position of the two changes with the period of the shake, and the magnetic noise changes accordingly. Therefore, this noise is periodic and almost coincides with the oscillation period.
[0011]
(4) How to remove magnetic noise a) Part 1
Since the magnetic noise depends on the direction, the ship is turned into a figure 8 at an appropriate location in the survey area, and the change in the magnetic field due to the heading is measured.
Next, an average value of the figure 8 data is obtained, and a value obtained by subtracting the average value from a value for each azimuth is set as a correction depending on the azimuth and applied to an actual measurement value.
The actual measurement results in this case are shown in FIG. It is divided into four stages, but from the top (1) observed value, (2) corrected value of magnetic field change due to heading, (3) depth value, (4) heading value Yes. The observation ship makes two round trips in the north-south direction, but the direction is changed from south to north on the left side of the figure, and the same is repeated once again on the right side of the figure. The change in the magnetic field due to the change in the heading is 100 nT or more at the time of observation, but is 10 nT or less after the correction (2) shown in the second stage from the top.
As shown in FIG. 4 (a), this correction calculates the difference between the observed value on the ship and the land fixed point at the same time, and functionalizes the value as shown in FIG. 4 (b). The amount of correction for
b) Part 2
In a normal survey, the geomagnetic wavelength to be measured is 100 m or more. Compared to this, the wavelength (period) of the magnetic noise caused by the shaking of the ship is several m to 10 m at most, and is removed using a high cut filter.
c) Part 3
When a relatively short wavelength measurement is required, the above-described high cut filter cannot be used. In this case, the fluctuation is corrected using the measurement value of the magnetometer sensor fixed on the gimbal in the front part of the hull.
That is, a low-cut filter is applied to the measurement result of the magnetometer sensor at the front part of the bow to extract only the short wavelength component.
Next, the horizontal axis represents the magnetic force value on the gimbal, and the vertical axis represents the above result to create a correlation diagram. A linear regression equation is obtained from the correlation diagram.
Since the magnetic force value on the gimbal is close to that of the engine, the fluctuation amount almost represents the influence of hull shaking. Accordingly, the slope of the straight line obtained from the correlation diagram indicates the magnification of the magnetic turbulence of the hull fluctuation due to the difference in the distance from both engines.
When the magnification is obtained, the original data (data without the filter) is returned, and the shake correction is performed by subtracting the value obtained by multiplying the magnetic value on the gimbal from the measured value of the magnetometer sensor at the front of the bow.
[0012]
(5) Device for improving measurement efficiency Two magnetic measurement values, and further, ship position data, heading data, and water depth data are output as digital values from each instrument from a connector called RS232C. In normal cases, these outputs are directly connected to the input part of the RS232C of the personal computer, but only one input part is attached to one personal computer. Therefore, in order to record five types of data, five personal computers are required and are recorded independently.
The above-described method has many inconveniences such as high cost, and the individually recorded data must be re-edited as a sequence of the same time data, which takes time.
In order to solve this problem, a recording system having a plurality of RS232C input units is created so that independent data can be recorded as an array of simultaneous data. The recorder is composed of a child CPU control unit that controls to receive data at each input unit and a parent CPU that controls the results of the entire child CPU, and a personal computer is used as the parent CPU.
[0013]
【The invention's effect】
As described above in detail, according to the present invention, the magnetic sensor can be circulated in the measurement area while maintaining a certain distance from the sea surface in a stable posture at the bay mouth or the coastal and shallow sea area, etc. As a result, it is possible to suppress the influence of inductive noise from the sea, so that stable marine magnetic measurement can be performed. Furthermore, since the ship position data, heading data, and water depth data are recorded in parallel with the geomagnetic measurement data at the same time, it is easy to analyze and organize the subsequent measurement data. Moreover, it is possible to efficiently remove the magnetic noise associated with the swaying of the ship, and a highly reliable measurement result can be obtained, so that the practical value is extremely high.
[Brief description of the drawings]
FIG. 1 is a schematic side view showing an implementation state of a marine magnetic measurement method according to the present invention.
FIG. 2 is a connection diagram showing an arrangement example of measuring instruments used in the marine magnetic measurement method according to the present invention.
FIG. 3 is a waveform example showing a specific example of an observed value according to the method of the present invention.
FIG. 4 is a measurement characteristic diagram (a) showing a relationship between an azimuth and a relative magnetic force in an observation example according to the method of the present invention, and the same characteristic diagram (b) as a function.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sensor of overhauser proton magnetometer 2 Hull 3 Nonmagnetic pole 4 Gimbal device 5 Magnetometer sensor 6 GPS measuring device 7 Positioning antenna 8 Magnetic compass for bow direction measurement 9 Sound depth measuring device 10 Sound depth measuring device 11 and 12 Oberhauser proton magnetometer measurement calculation device 13 Data recording device

Claims (1)

非磁性材料により形成された船舶の船体から所定長だけ突出した位置に非磁性材料の保持具を介して磁力計の第1のセンサが固定され、
前記船舶上の前方中央部に配置されたジンバル上に該船舶の動揺による地磁気の変動分を測定するために前記第1のセンサと同様の第2のセンサが設置され、
前記船舶には、前記第1のセンサによる地磁気測定データと前記第2のセンサによる前記地磁気の変動分と該船舶の船位,船首方向および当該船位における水深の各測定値を複数の入力部を持つ収録システムを用いて同時にリアルタイムで収録可能なるように測定装置が配置され、
前記船舶の航行に従って該航行の軌跡上の各測定位置における前記地磁気測定データを前記各測定値とともに前記測定装置に必要な時間間隔で収録し、
前記第1のセンサによる前記地磁気測定データに含まれる磁気的ノイズを、前記第2のセンサによる前記地磁気の変動分値と前記各測定値との該収録データを用いて除去するための補正を行う
海上地磁気測定方法。
The first sensor of the magnetometer is fixed via a nonmagnetic material holder at a position protruding a predetermined length from the ship hull formed of the nonmagnetic material,
A second sensor similar to the first sensor is installed on the gimbal arranged in the front center on the ship to measure the change in geomagnetism due to the shaking of the ship,
The ship has a plurality of input units for the geomagnetic measurement data by the first sensor, the geomagnetic fluctuation by the second sensor, and the measurement values of the ship's ship position, bow direction, and water depth at the ship position. The measurement device is arranged so that it can be recorded simultaneously in real time using the recording system ,
According to the navigation of the ship, the geomagnetic measurement data at each measurement position on the trajectory of the navigation is recorded at the time interval necessary for the measurement device together with the respective measurement values ,
Correction for removing magnetic noise included in the geomagnetic measurement data by the first sensor using the recorded data of the geomagnetic fluctuation value and the respective measurement values by the second sensor is performed. Marine geomagnetic measurement method.
JP03862697A 1997-02-07 1997-02-07 Marine geomagnetic measurement method Expired - Fee Related JP3753830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03862697A JP3753830B2 (en) 1997-02-07 1997-02-07 Marine geomagnetic measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03862697A JP3753830B2 (en) 1997-02-07 1997-02-07 Marine geomagnetic measurement method

Publications (2)

Publication Number Publication Date
JPH10221466A JPH10221466A (en) 1998-08-21
JP3753830B2 true JP3753830B2 (en) 2006-03-08

Family

ID=12530460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03862697A Expired - Fee Related JP3753830B2 (en) 1997-02-07 1997-02-07 Marine geomagnetic measurement method

Country Status (1)

Country Link
JP (1) JP3753830B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018978A2 (en) * 2000-08-30 2002-03-07 Gas Research Institute Multi-axis locator for detection of buried targets
JP4498875B2 (en) * 2004-10-08 2010-07-07 財団法人電力中央研究所 Exploration system
JP5142632B2 (en) * 2007-08-24 2013-02-13 ユニバーサル特機株式会社 Magnetic signal detection method, magnetic signal detection program, and magnetic signal detection apparatus
JP5164077B2 (en) * 2009-08-28 2013-03-13 防衛省技術研究本部長 Vibration noise reduction method and AC signal extraction method using cross-correlation
CN104360293B (en) * 2014-11-07 2017-02-08 中国人民解放军海军工程大学 Ship-induced magnetic field real-time acquisition method
CN106226830B (en) * 2016-09-27 2018-04-24 国家深海基地管理中心 A kind of marine magnetism detection method and device
CN113050182B (en) * 2021-03-12 2024-03-01 安徽省勘查技术院(安徽省地质矿产勘查局能源勘查中心) Method and system for observing geomagnetic field in water area

Also Published As

Publication number Publication date
JPH10221466A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
EP0215695B1 (en) Process for localizing an object and determining its orientation in space, and apparatus therefor
JP6806305B2 (en) Submarine resource exploration system, signal processing method, electrical exploration method and electromagnetic exploration method
CN104820248A (en) Ship-borne magnetic force detection method and device
EP0166510A3 (en) A method for determining the far field signature of a marine seismic source from near-field measurements
JP3753830B2 (en) Marine geomagnetic measurement method
BR102015013658B1 (en) METHOD AND SYSTEM OF SEISMIC IMAGE CREATION USING HIGHER ORDER REFLECTIONS AND NON- TRANSIENT COMPUTER READIBLE MEDIUM
Ge et al. Towed Overhauser marine magnetometer for weak magnetic anomaly detection in severe ocean conditions
EP1177455A1 (en) Measurement of magnetic fields using a string fixed at both ends
Wu et al. An experimental evaluation of autonomous underwater vehicle localization on geomagnetic map
CN204719242U (en) A kind of boat-carrying magnetic survey device
US10302429B2 (en) Seismic streamer shape correction using derived compensated magnetic fields
JP3148986B2 (en) Hull position deviation detector
Allen et al. Mitigation of platform generated magnetic noise impressed on a magnetic sensor mounted in an autonomous underwater vehicle
Mather Technology and the Search for Shipwrecks
RU2587111C1 (en) Method of surveying geomagnetic field in water area with towed magnetometer and device therefor
Baronti et al. A new and accurate system for measuring cruising yacht freeboards with magnetostrictive sensors
EP0138701B1 (en) Goniostelemeter system
JP4173027B2 (en) Towed video observation and recording system
JP4470805B2 (en) Magnetic sensor position measurement method
CA1296388C (en) Apparatus for measuring magnetic fields
Williams et al. Earth coordinate 3-D currents from a modular acoustic velocity sensor
JP4958605B2 (en) Moving object position estimation detection method, apparatus, and moving object position estimation detection program
Kocak et al. Remote sensing using laser projection photogrammetry for underwater surveys
Leccese Editorial to selected papers from the 1st IMEKO TC19 Workshop on Metrology for the Sea
SU883814A1 (en) Magnetometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees