JP4958605B2 - Moving object position estimation detection method, apparatus, and moving object position estimation detection program - Google Patents

Moving object position estimation detection method, apparatus, and moving object position estimation detection program Download PDF

Info

Publication number
JP4958605B2
JP4958605B2 JP2007096436A JP2007096436A JP4958605B2 JP 4958605 B2 JP4958605 B2 JP 4958605B2 JP 2007096436 A JP2007096436 A JP 2007096436A JP 2007096436 A JP2007096436 A JP 2007096436A JP 4958605 B2 JP4958605 B2 JP 4958605B2
Authority
JP
Japan
Prior art keywords
magnetic field
moving body
moving
lateral
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007096436A
Other languages
Japanese (ja)
Other versions
JP2008256400A (en
Inventor
一郎 小倉
Original Assignee
ユニバーサル特機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニバーサル特機株式会社 filed Critical ユニバーサル特機株式会社
Priority to JP2007096436A priority Critical patent/JP4958605B2/en
Publication of JP2008256400A publication Critical patent/JP2008256400A/en
Application granted granted Critical
Publication of JP4958605B2 publication Critical patent/JP4958605B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for estimating and detecting the position of a moving body etc. and a program of the method for estimating and detecting the position of a moving body etc. capable of estimating the closest approach position by using a magnetic field without repeated computation and, moreover, capable of estimating the closest approach position even if a magnetic field by a moving body is reduced. <P>SOLUTION: The method comprises: a magnetic field detecting step for detecting by a magnetic field detector 11 the magnetic field at each component in three axial directions that is generated by a cruising body 2 cruising on the sea surface or under the sea; a magnetic field correction processing step for determining a ratio (By'/Bt') of the lateral distance direction component to the size of the detected magnetic fields B by determining the lateral distance direction component that is orthogonal to the movement direction of the cruising body 2 and also parallel to the sea surface out of the detected magnetic fields B at least based on information on the movement direction of the cruising body 2; and a lateral position computing step for estimating the closest approach position between the cruising body and the magnetic field detector 11 based on the ratio (By'/Bt') of the lateral distance direction component. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、海面又は海中を航行する移動体の位置等推定検出方法、装置及び移動体位置等推定検出方法のプログラムに関し、特に磁界を用いた移動体の位置等推定検出方法、装置及び移動体位置等推定検出方法のプログラムに関する。   TECHNICAL FIELD The present invention relates to a method and apparatus for estimating and detecting the position of a moving body navigating the sea surface or in the sea, and a program for estimating and detecting a position and the like of a moving body. The present invention relates to a program for an estimation detection method such as a position.

従来、UEP(Underwater Electric Potential)センサなどの電界センサや、音響センサを利用せず、移動体からの磁界(磁束密度)を信号として検知して移動体の位置を検出する方法として、例えば、3軸磁気センサを用いて船舶が発生する磁気信号の直交3軸成分を検知し、3軸磁気センサと等速直線運動をする移動船舶との相対位置を、最小自乗法を用いて算出するものがある(例えば、特許文献1参照)。   Conventionally, as a method for detecting the position of a moving body by detecting a magnetic field (magnetic flux density) from a moving body without using an electric field sensor such as a UEP (Underwater Electric Potential) sensor or an acoustic sensor, for example, 3 An apparatus that detects orthogonal three-axis components of a magnetic signal generated by a ship using an axial magnetic sensor and calculates a relative position between the three-axis magnetic sensor and a moving ship that moves at a constant linear velocity using a least square method. Yes (see, for example, Patent Document 1).

また、例えば、船舶が発する電界による信号の直交3軸成分に基づいて、移動目標の位置(偏奇量)を検出する方法もある(例えば、特許文献2参照)。   Further, for example, there is a method of detecting the position (deviation amount) of the moving target based on the orthogonal three-axis component of the signal generated by the electric field generated by the ship (see, for example, Patent Document 2).

特許第3395136号公報Japanese Patent No. 3395136 特開2000−304533号公報JP 2000-304533 A

しかしながら従来の移動体の位置を推定するものは、位置を推定する際、測定・集録された時系列データと理論式による値との残差式を用いて、最小自乗法により、実測により得られた値がこの式とできるだけ整合するようにパラメータを調整し、位置推定等を行っている。このため、パラメータの算出には、最小自乗法などによる繰り返し演算が必要となり、速やかに位置推定を行うことができないという問題点があった。   However, a conventional method for estimating the position of a moving object is obtained by actual measurement by the least square method using a residual equation between measured and acquired time-series data and a theoretical value when estimating the position. The position is estimated by adjusting the parameters so that the measured value matches the equation as much as possible. For this reason, the calculation of the parameters requires an iterative calculation such as the least square method, and there is a problem that the position cannot be estimated promptly.

また、磁界を利用した位置推定は、移動体が消磁装置などを装備している場合には、移動体による磁界は低減されてしまうため、位置推定の精度が低下するという問題点があった。   Further, the position estimation using a magnetic field has a problem in that the accuracy of position estimation is reduced because the magnetic field generated by the moving body is reduced when the moving body is equipped with a demagnetizing device or the like.

本発明は、上述のような課題を解決するためになされたもので、繰り返し演算を行うことなく、磁界を利用して移動体の最接近位置を推定することができ、また、移動体による磁界が低減されている場合であっても、最接近位置を推定することができる移動体位置等推定検出方法、装置及び移動体位置等推定検出方法のプログラムを得ることを目的とする。   The present invention has been made to solve the above-described problems, and can estimate the closest approach position of a moving body using a magnetic field without performing repetitive calculations. It is an object of the present invention to obtain a moving object position estimation detection method, apparatus, and moving object position estimation detection method program capable of estimating the closest approach position even when the object position is reduced.

発明に係る移動体位置等推定検出方法は、磁界検知手段により、地磁気による磁界を3軸方向の各成分で検知するステップと、海面に対して鉛直な方向に対する前記磁界検知手段の傾きを計測するステップと、前記磁界検知手段により、海面又は海中を航行する移動体により生じる磁界を3軸方向の各成分で検知する磁界検知ステップと、少なくとも前記移動体の移動方位の情報に基づき、前記検知磁界のうち、前記移動体の移動方位と直交し、且つ、海面と水平な横距離方向成分を求め、前記検知磁界の大きさに対する前記横距離方向成分の割合を求める磁界補正処理ステップと、前記横距離方向成分の割合に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定する横位置算出演算ステップとを有し、前記磁界補正処理ステップは、前記磁界検知手段の傾きと、前記地磁気による磁界と、予め記録された地磁気による磁界の情報と、前記移動体の移動方位の情報とに基づき、前記検知磁界のうち、前記移動体の移動方位と直交し、且つ、海面と水平な横距離方向成分を求めるものである。 Mobile location such as estimated detection method according to the present invention, the magnetic field detection means, comprising the steps of detecting the magnetic field by the geomagnetism in each of the components in three axial directions, the inclination of the magnetic field sensing means with respect to the vertical direction to the sea surface A magnetic field detecting step of detecting a magnetic field generated by a moving body navigating the sea surface or the sea by each component in three axial directions by the magnetic field detecting means; Of the detected magnetic field, a magnetic field correction processing step for obtaining a lateral distance direction component orthogonal to the moving direction of the moving body and horizontal to the sea surface, and obtaining a ratio of the lateral distance direction component to the magnitude of the detected magnetic field; based on the ratio of the transverse distance direction component, and a lateral position calculating operation step of estimating the closest position between the moving body and said magnetic field detection means, wherein the magnetic field correcting process stearate The magnetic field detecting means is based on the inclination of the magnetic field detection means, the magnetic field due to the geomagnetism, the information on the magnetic field due to the geomagnetism recorded in advance, and the information on the moving direction of the moving body, and the moving body of the moving body. A lateral distance direction component that is orthogonal to the moving direction and is horizontal to the sea surface is obtained.

また、本発明に係る移動体位置等推定検出方法においては、前記横位置算出演算ステップは、前記移動体と前記磁界検知手段との相対深度と、前記横距離方向成分の割合の極値と、予め記録された、前記移動体と前記磁界検知手段との相対深度に応じた、前記横距離方向成分の割合の極値に対応する距離に関する情報とに基づいて、前記移動体と前記磁界検知手段との最接近位置を推定するものである。   Moreover, in the estimation detection method for a moving body position and the like according to the present invention, the lateral position calculation calculation step includes a relative depth between the moving body and the magnetic field detection unit, and an extreme value of a ratio of the lateral distance direction component, Based on prerecorded information on the distance corresponding to the extreme value of the ratio of the lateral distance direction component according to the relative depth between the moving body and the magnetic field detecting means, the moving body and the magnetic field detecting means. The closest approach position is estimated.

また、本発明に係る移動体位置等推定検出方法においては、前記横位置算出演算ステップは、前記距離に関する情報として、前記移動体の移動方位と直交し、且つ、海面と水平な横距離の情報を用いるものである。   Further, in the method for estimating and detecting the moving body position and the like according to the present invention, in the lateral position calculation calculation step, information on the lateral distance that is orthogonal to the moving direction of the moving body and is horizontal to the sea surface as the information on the distance. Is used.

また、本発明に係る移動体位置等推定検出方法においては、前記横位置算出演算ステップは、前記移動体と前記磁界検知手段との相対深度として、予め記録された相対深度の情報を用いるものである。   Further, in the method for estimating and detecting a moving object position and the like according to the present invention, the lateral position calculation calculation step uses information on a relative depth recorded in advance as a relative depth between the moving object and the magnetic field detection means. is there.

また、本発明に係る移動体位置等推定検出方法は、前記横位置算出演算ステップの前に、前記磁界検知手段の海面からの深度を計測する深度計測ステップを更に有し、前記横位置算出演算ステップは、前記磁界検知手段の海面からの深度を、海面を航行する前記移動体と前記磁界検知手段との相対深度とするものである。   The method for estimating and detecting a moving object position and the like according to the present invention further includes a depth measurement step for measuring a depth from the sea surface of the magnetic field detection means before the lateral position calculation calculation step, and the lateral position calculation calculation In the step, the depth of the magnetic field detection means from the sea surface is set as a relative depth between the moving body that navigates the sea surface and the magnetic field detection means.

また、本発明に係る移動体位置等推定検出方法は、前記横位置算出演算ステップの前に、潮流計測手段により、海水の速度を3軸方向の各成分で計測するステップを更に備え、前記横位置算出演算ステップは、前記海水の速度に応じて補正した横距離方向成分の割合に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定するものである。   The method for estimating and detecting a moving body position and the like according to the present invention further includes a step of measuring the velocity of seawater with each component in three axial directions by the tidal current measuring means before the step of calculating the lateral position. In the position calculation calculation step, the closest approach position between the moving body and the magnetic field detection means is estimated based on the ratio of the lateral distance direction component corrected according to the speed of the seawater.

また、本発明に係るプログラムは、上記移動体位置等推定検出方法をコンピュータに実行させるものである。   A program according to the present invention causes a computer to execute the above-described estimation method for moving object position and the like.

また、本発明に係る移動体位置等推定検出装置は、海面又は海中を航行する移動体により生じる磁界及び地磁気による磁界を3軸方向の各成分で検知する磁界検知手段と、海面に対して鉛直な方向に対する前記磁界検知手段の傾きを計測する傾斜計測手段と、少なくとも前記移動体の移動方位の情報が記録されるデータ記録手段と、少なくとも前記移動体の移動方位の情報に基づき、前記磁界検知手段が検知した検知磁界のうち、前記移動体の移動方位と直交し、且つ、海面と水平な横距離方向成分を求め、前記検知磁界の大きさに対する前記横距離方向成分の割合を求める磁界補正処理手段と、前記横距離方向成分の割合に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定する横位置算出演算手段とを備え、前記データ記録手段は、地磁気による磁界の情報が記録され、前記磁界補正処理手段は、前記傾斜計測手段が計測した傾きと、前記磁界検知手段が検知した地磁気による磁界と、前記データ記録手段に記録された地磁気による磁界の情報及び前記移動体の移動方位の情報とに基づき、前記磁界検知手段が検知した検知磁界のうち、前記移動体の移動方位と直交し、且つ、海面と水平な横距離方向成分を求めるものである。 The apparatus for estimating and detecting the position of a moving body according to the present invention includes a magnetic field detecting means for detecting a magnetic field generated by a moving body navigating the sea surface or in the sea and a magnetic field due to geomagnetism by each component in three axial directions, and a perpendicular to the sea surface. An inclination measuring means for measuring an inclination of the magnetic field detecting means with respect to a specific direction, a data recording means for recording at least information on the moving direction of the moving body, and at least detecting the magnetic field based on information on the moving direction of the moving body. Magnetic field correction for obtaining a transverse distance direction component perpendicular to the moving direction of the moving body and horizontal to the sea surface, and obtaining a ratio of the transverse distance direction component to the magnitude of the detected magnetic field out of the detected magnetic field detected by the means processing means, on the basis of the ratio of the transverse distance direction component, Bei example a horizontal position calculating operation means for estimating the closest position between the moving body and said magnetic field detection means, said data recording The stage records information on the magnetic field due to geomagnetism, and the magnetic field correction processing means includes the inclination measured by the inclination measurement means, the magnetic field due to geomagnetism detected by the magnetic field detection means, and the geomagnetism recorded in the data recording means. Out of the detected magnetic field detected by the magnetic field detection means based on the magnetic field information and the moving azimuth information of the moving body, the transverse direction component that is orthogonal to the moving azimuth of the moving body and is horizontal to the sea surface. It is what you want.

また、本発明に係る移動体位置等推定検出装置においては、前記データ記録手段は、前記移動体と前記磁界検知手段との相対深度に応じた、前記横距離方向成分の割合の極値に対応する距離に関する情報が記録され、前記横位置算出演算手段は、前記移動体と前記磁界検知手段との相対深度と、前記磁界補正処理手段が求めた前記横距離方向成分の割合の極値と、前記データ記録手段に記録された距離に関する情報とに基づいて、前記移動体と前記磁界検知手段との最接近位置を推定するものである。   Further, in the estimated detection apparatus for moving object position etc. according to the present invention, the data recording means corresponds to the extreme value of the ratio of the lateral distance direction component according to the relative depth between the moving object and the magnetic field detecting means. Information on the distance to be recorded, the lateral position calculation calculation means, the relative depth between the moving body and the magnetic field detection means, the extreme value of the ratio of the lateral distance direction component obtained by the magnetic field correction processing means, Based on the information on the distance recorded in the data recording means, the closest approach position between the moving body and the magnetic field detecting means is estimated.

また、本発明に係る移動体位置等推定検出装置においては、前記データ記録手段は、前記距離に関する情報として、前記移動体の移動方位と直交し、且つ、海面と水平な横距離の情報が記録されるものである。   In the mobile object position estimation / detection device according to the present invention, the data recording means records, as the distance information, information on a lateral distance perpendicular to the moving direction of the mobile object and horizontal to the sea surface. It is what is done.

また、本発明に係る移動体位置等推定検出装置においては、前記データ記録手段は、前記移動体と前記磁界検知手段との相対深度の情報が予め記録されるものである。   In the apparatus for estimating and detecting the moving object position and the like according to the present invention, the data recording means records in advance information on the relative depth between the moving object and the magnetic field detecting means.

また、本発明に係る移動体位置等推定検出装置は、海面からの深度を計測する深度計測手段を更に備え、前記横位置算出演算手段は、前記深度計測手段が計測した深度を、海面を航行する前記移動体と前記磁界検知手段との相対深度とするものである。   The mobile body position estimation / detection apparatus according to the present invention further includes a depth measurement unit that measures a depth from the sea surface, and the lateral position calculation calculation unit navigates the depth measured by the depth measurement unit on the sea surface. The relative depth between the moving body and the magnetic field detection means is set.

また、本発明に係る移動体位置等推定検出装置は、海水の速度を3軸方向の各成分で計測する潮流計測手段を更に備え、前記横位置算出演算手段は、前記海水の速度に応じて補正した横距離方向成分の割合に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定するものである。   The mobile body position estimation and detection apparatus according to the present invention further includes tidal current measurement means for measuring the speed of the seawater with each component in three axial directions, and the lateral position calculation calculation means is in accordance with the speed of the seawater. Based on the corrected ratio of the lateral distance direction component, the closest approach position between the moving body and the magnetic field detecting means is estimated.

本発明は、海面又は海中を航行する移動体により生じる磁界を3軸方向の各成分で検知し、移動体の移動方位の情報に基づき、検知磁界のうち、移動体の移動方位と直交し、且つ、海面と水平な横距離方向成分を求め、検知磁界の大きさに対する横距離方向成分の割合を求め、横距離方向成分の割合に基づいて、移動体と磁界検知手段との最接近位置を推定することにより、繰り返し演算を行うことなく、移動体による磁界が低減されている場合であっても、磁界を利用して最接近位置を推定することができる。   The present invention detects a magnetic field generated by a moving body navigating the sea surface or the sea with each component in three axial directions, and based on information on the moving direction of the moving body, out of the detected magnetic field, is orthogonal to the moving direction of the moving body, In addition, the lateral distance direction component horizontal to the sea surface is obtained, the ratio of the lateral distance direction component to the magnitude of the detected magnetic field is obtained, and the closest position between the moving body and the magnetic field detecting means is determined based on the ratio of the lateral distance direction component. By estimating, the closest approach position can be estimated using the magnetic field even when the magnetic field due to the moving body is reduced without performing repeated calculations.

実施の形態1.
図1は本発明の実施の形態1に係る移動体位置等検出装置の構成ブロック図である。ここで、本実施の形態では、海面を移動する磁性体構造物である航走体2(例えば船舶など)を移動体と想定して説明する。そのため、移動体位置等検出装置1は海中(海底も含む)に設けられている。したがって、後述する磁界検知器11は海中の磁界強度を信号として検知する。また、航走体2は既知の方位に直線運動を行っているものとする。さらに本実施の形態では、航走体2と移動体位置等検出装置1(特に磁界検知器11)との深度の差(相対深度)は既知であるものとする。航走体2の航走速度は未知でも良い。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing the configuration of a moving body position detection device according to Embodiment 1 of the present invention. Here, in this Embodiment, the navigation body 2 (for example, ship etc.) which is a magnetic body structure which moves the sea surface is assumed and demonstrated. Therefore, the moving body position detection device 1 is provided in the sea (including the seabed). Therefore, the magnetic field detector 11 described later detects the magnetic field strength in the sea as a signal. Further, it is assumed that the traveling body 2 performs a linear motion in a known direction. Further, in the present embodiment, it is assumed that the depth difference (relative depth) between the traveling body 2 and the moving body position detection device 1 (particularly, the magnetic field detector 11) is known. The traveling speed of the traveling body 2 may be unknown.

尚、移動体位置等検出装置1(特に磁界検知器11)が設けられている場所については、特に限定するものではない。また、移動体位置等検出装置1は、海底に敷設しても良いし、例えば海底に沈んだアンカーとワイヤーにより接続して水面下の任意の深度に係留しても良い。この場合、移動体位置等検出装置1(特に磁界検知器11)が潮流等により回転しないよう敷設する必要がある。   The place where the moving body position detection device 1 (particularly the magnetic field detector 11) is provided is not particularly limited. Moreover, the moving body position detection device 1 may be laid on the seabed, or may be anchored at an arbitrary depth below the water surface by being connected to an anchor sinking on the seabed and a wire, for example. In this case, it is necessary to lay the moving body position detection device 1 (particularly, the magnetic field detector 11) so as not to rotate due to a tidal current or the like.

図1において、移動体位置等検出装置1は、磁界検知手段である磁界検知器11と、傾斜計測手段である傾斜計12と、A/D変換器13と、磁界補正処理手段である磁界補正処理部14と、データ記録手段であるデータ収集器15と、横位置算出演算手段である横位置算出演算部16とにより構成されている。   In FIG. 1, a moving body position detection device 1 includes a magnetic field detector 11 as a magnetic field detection means, an inclinometer 12 as an inclination measurement means, an A / D converter 13, and a magnetic field correction as a magnetic field correction processing means. The processing unit 14 includes a data collector 15 that is a data recording unit, and a lateral position calculation calculation unit 16 that is a horizontal position calculation calculation unit.

磁界検知器(磁気センサ)11は、磁界(磁束密度)を信号として検知(受信)し、電気信号(以下、磁界信号という)に変換する(場合によっては、検知した他の磁気的物理量に基づく信号に基づいて磁束密度を算出した電気信号を磁界信号とすることもある)。ここで、磁界検知器11は、各々直交する3つの検知手段を有する検知器又は3軸センサを表す検知器であり、直交(相対)座標系の3軸方向(x、y、z)での検知ができるものとする。尚、以下の説明において、磁界検知器11が検知した座標系(以下、装置座標系という)における検知磁界Bの各成分をBx,By,Bzとする。   The magnetic field detector (magnetic sensor) 11 detects (receives) a magnetic field (magnetic flux density) as a signal and converts it into an electric signal (hereinafter referred to as a magnetic field signal) (in some cases, based on other detected magnetic physical quantities). An electric signal obtained by calculating a magnetic flux density based on the signal may be used as a magnetic field signal). Here, the magnetic field detector 11 is a detector having three detection means orthogonal to each other or a detector representing a three-axis sensor, and is in a three-axis direction (x, y, z) of an orthogonal (relative) coordinate system. It can be detected. In the following description, each component of the detected magnetic field B in the coordinate system (hereinafter referred to as the apparatus coordinate system) detected by the magnetic field detector 11 is assumed to be Bx, By, Bz.

傾斜計12は、例えば海面に対して鉛直な方向をz’軸としたときに、移動体位置等検出装置1(特に磁界検知器11)の傾斜の程度を計測し、計測に基づく電気信号(以下、傾斜信号という)に変換する。   The inclinometer 12 measures the degree of inclination of the moving body position and the like detection device 1 (particularly, the magnetic field detector 11), for example, when the direction perpendicular to the sea surface is the z ′ axis, and an electric signal ( Hereinafter referred to as an inclination signal).

A/D変換器13A及び13Bは、例えばサンプリング等の処理を施して、それぞれ磁界信号及び傾斜信号をデジタルデータの信号に変換する(以下、各信号に基づくデータを磁界信号データ、傾斜データという)。ここで、磁界検知器11と傾斜計12との距離は、当該装置と航走体2との間の距離に比べ、無視できるほど小さいので、それぞれの座標系の原点が同じである(同位置にある)ものとする。   The A / D converters 13A and 13B perform processing such as sampling to convert the magnetic field signal and the gradient signal into digital data signals (hereinafter, data based on each signal is referred to as magnetic field signal data and gradient data). . Here, since the distance between the magnetic field detector 11 and the inclinometer 12 is negligibly small compared to the distance between the apparatus and the traveling body 2, the origin of each coordinate system is the same (the same position). ).

磁界補正処理部14は、後述する動作により、傾斜データ、地磁気データ(後述)及び航行方位データ(後述)に基づいて、磁界信号データの座標系を、航走体2の航行方位と直交し、且つ、海面と水平な座標系(Bx’,By’,Bz’)に変換する。また、磁界補正処理部14は、検知磁界Bの大きさに対する横距離方向成分(By’)の割合(以下、横距離成分割合データともいう)を求めてデータ収集器15に記録させる。   The magnetic field correction processing unit 14 makes the coordinate system of the magnetic field signal data orthogonal to the navigation direction of the traveling body 2 based on inclination data, geomagnetic data (described later), and navigation direction data (described later) by an operation described later. And it converts into a coordinate system (Bx ', By', Bz ') horizontal to the sea surface. Further, the magnetic field correction processing unit 14 obtains the ratio of the lateral distance direction component (By ′) to the magnitude of the detected magnetic field B (hereinafter also referred to as lateral distance component ratio data) and causes the data collector 15 to record it.

データ収集器15は、データ処理部15Aとデータ記録部15Bで構成される。データ処理部15Aは、いわゆるデータベース管理システム(DBMS)である。磁界補正処理部14から入力された、横距離成分割合データと時刻データとを関連づける処理を行う。また、データ記録部15Bは、例えばHDD(Hard Disk Drive)等の記録装置で構成されており、横距離成分割合データ及び時刻データを少なくとも一定時間分又は一定個数分記録する。このデータ収集器15はいわゆるデータベースの役割を果たす。   The data collector 15 includes a data processing unit 15A and a data recording unit 15B. The data processing unit 15A is a so-called database management system (DBMS). A process of associating the lateral distance component ratio data and the time data input from the magnetic field correction processing unit 14 is performed. Further, the data recording unit 15B is configured by a recording device such as an HDD (Hard Disk Drive), for example, and records the lateral distance component ratio data and the time data for at least a certain time or a certain number. The data collector 15 serves as a so-called database.

そして、データ記録部15Bには、予め、当該移動体位置等検出装置1が敷設される位置での地磁気(地球による磁界)による磁界(磁束密度)のデータ(以下、地磁気データという)と、航走体2の航行方位を示すデータ(以下、航行方位データという)と、装置と航走体2との相対深度Dに応じた、横距離成分割合データの極値(後述)に対応する距離に関するデータとが記録されている。   In the data recording unit 15B, magnetic field (magnetic flux density) data (hereinafter referred to as geomagnetic data) by geomagnetism (magnetic field by the earth) at the position where the moving body position detecting device 1 is laid in advance, navigation Data relating to the navigation direction of the traveling body 2 (hereinafter referred to as navigation direction data) and the distance corresponding to the extreme value (described later) of the lateral distance component ratio data according to the relative depth D between the device and the traveling body 2 Data is recorded.

ここで、地磁気データは、大きさと方向を持つベクトル量であり、例えば、当該位置の全磁力、偏角(水平面内で真北となす角度)、伏角(水平面となす角度)の情報の組み合わせや、水平分力(水平面内での地磁気の大きさ)、鉛直分力(鉛直面内での地磁気の大きさ)、偏角の情報の組み合わせ、又は、北成分(南北方向軸上での地磁気の大きさ)、東成分(東西方向軸上での地磁気の大きさ)、鉛直分力の情報の組み合わせなどにより表されるデータである。また、航行方位データは、航走体2が航行する方向が磁北となす角度及び水平面となす角度により表されるデータである。尚、航走体2が海面を航走する場合は磁北となす角度のデータのみでもよい。   Here, the geomagnetic data is a vector quantity having a magnitude and a direction, for example, a combination of information on the total magnetic force, declination (angle made with true north in the horizontal plane), and dip angle (angle made with the horizontal plane) , Horizontal component (the magnitude of geomagnetism in the horizontal plane), vertical component (the magnitude of geomagnetism in the vertical plane), a combination of declination information, or the north component (the geomagnetism on the north-south axis) (Magnitude), east component (magnitude of geomagnetism on the east-west direction axis), data of vertical component force, and the like. Further, the navigation direction data is data represented by an angle formed by the north of the direction in which the traveling body 2 navigates and an angle formed by a horizontal plane. In addition, when the traveling body 2 navigates the sea surface, only the data of the angle formed with the magnetic north may be used.

横位置算出演算部16は、後述する動作により、データ記録部15Bに記録された横距離成分割合データに基づいて、航走体2と移動体位置等検出装置1(磁界検知器11)との最接近位置(距離)を推定し、推定した位置(距離)の情報を他の装置に出力する。   The lateral position calculation calculation unit 16 performs an operation between the traveling body 2 and the moving body position detection device 1 (magnetic field detector 11) based on the lateral distance component ratio data recorded in the data recording unit 15B by an operation described later. The closest approach position (distance) is estimated, and information on the estimated position (distance) is output to another device.

ここで、磁界補正処理部14、横位置算出演算部16は、例えば、回路デバイスのようなハードウェアで構成することもできるし、CPU(Central processing Unit)やマイコンのような演算装置により実行されるソフトウェアとして構成することもできる。ソフトウェアとして実現する場合は、ROM(Read Only Memory)やHDD(Hard Disk Drive)等にこれら各部の機能を実現するプログラムを格納しておき、CPUやマイコンなどの演算装置がそのプログラムを読み込んで、プログラムの指示に従って各部の機能に相当する処理を実行することにより、構成することができる。また、ここではそれぞれ別の構成部(手段)として構成しているが、例えば、各部が行うプログラムに基づく処理を1つの制御演算処理装置により行うようにしてもよい。   Here, the magnetic field correction processing unit 14 and the lateral position calculation calculation unit 16 can be configured by hardware such as a circuit device, or are executed by a calculation device such as a CPU (Central Processing Unit) or a microcomputer. It can also be configured as software. When implemented as software, ROM (Read Only Memory), HDD (Hard Disk Drive), etc. store the program that realizes the functions of these units, and an arithmetic device such as a CPU or microcomputer reads the program, It can be configured by executing processing corresponding to the function of each unit in accordance with the instructions of the program. In addition, although each component is configured as a separate component (means) here, for example, a process based on a program performed by each unit may be performed by one control arithmetic processing device.

このような構成により、本実施の形態における移動体位置等検出装置1は、検知した磁界の座標系を航走体2の航行方位に対応する座標系に変換し、航走体2による磁界を検出して横距離成分割合データを算出し、横距離成分割合データの極値に基づき航走体2との最接近距離を推定する。このような動作の詳細を図2〜図5を用いて、(1)検知磁界の座標軸補正、(2)航走体による磁界の検出、(3)最接近距離の算出、とに分けて以下に説明する。   With such a configuration, the moving body position detection device 1 in the present embodiment converts the detected coordinate system of the magnetic field into a coordinate system corresponding to the navigation direction of the traveling body 2, and the magnetic field generated by the traveling body 2 is changed. Detection is performed to calculate the lateral distance component ratio data, and the closest distance to the traveling body 2 is estimated based on the extreme value of the lateral distance component ratio data. Details of such an operation are divided into (1) coordinate axis correction of the detected magnetic field, (2) detection of the magnetic field by the traveling body, and (3) calculation of the closest approach distance using FIGS. Explained.

(1)検知磁界の座標軸補正
図2は本発明の実施の形態1に係る水平面での座標軸補正と航走体との横距離を説明する図、図3は本発明の実施の形態1に係る垂直面での座標軸補正と航走体との最接近距離を説明する図である。磁界補正処理部14は、磁界検知器11が航走体2による磁界を検知していない状態において、装置座標系を航走体2の航行方位に対応する座標系に変換する。尚、航走体2による磁界を検知していない状態は、例えば検知磁界Bの一定時間内での変動が一定範囲以下である場合などにより判断することができる。
(1) Coordinate Axis Correction of Detected Magnetic Field FIG. 2 is a diagram for explaining the coordinate axis correction on the horizontal plane and the lateral distance between the traveling body according to the first embodiment of the present invention, and FIG. 3 relates to the first embodiment of the present invention. It is a figure explaining the coordinate axis correction | amendment in a perpendicular surface, and the closest approach distance with a navigation body. The magnetic field correction processing unit 14 converts the apparatus coordinate system into a coordinate system corresponding to the navigation direction of the traveling body 2 in a state where the magnetic field detector 11 does not detect the magnetic field generated by the traveling body 2. In addition, the state which is not detecting the magnetic field by the navigation body 2 can be judged by the case where the fluctuation | variation within the fixed time of the detected magnetic field B is below a fixed range etc., for example.

まず、磁界補正処理部14は、図3に示すように、傾斜データに基づき、装置座標系の垂直軸(z軸)を海面と垂直な方向(z’軸)に変換する。次に、航走体2による磁界を検知していない状態での磁界信号データ、即ち、地磁気による磁界信号データを取得して、データ記録部15Bに記録された地磁気データと地磁気による磁界信号データとを比較し、装置座標系における水平軸(x軸又はy軸)を磁北方向に変換する。   First, as shown in FIG. 3, the magnetic field correction processing unit 14 converts the vertical axis (z-axis) of the apparatus coordinate system into a direction (z′-axis) perpendicular to the sea surface based on the tilt data. Next, magnetic field signal data in a state in which the magnetic field by the traveling body 2 is not detected, that is, magnetic field signal data by geomagnetism is acquired, and the geomagnetic data recorded in the data recording unit 15B and the magnetic field signal data by geomagnetism And the horizontal axis (x-axis or y-axis) in the apparatus coordinate system is converted to the magnetic north direction.

次に、磁界補正処理部14は、データ記録部15Bに記録された航行方位データの磁北となす角度に基づき、図2に示すように、磁北方向に変換した水平軸(x軸又はy軸)を、航行方位(x’軸)と航行方位と直交する方位(y’軸)に変換する。このような動作により、磁界検知器11により検知された検知磁界Bの座標系が、航走体2の航行方位と直交し、且つ、海面と水平な座標系の補正磁界B’(Bx’,By’,Bz’)に変換される。   Next, as shown in FIG. 2, the magnetic field correction processing unit 14 converts the horizontal axis (x axis or y axis) into the magnetic north direction based on the angle formed with the magnetic north of the navigation direction data recorded in the data recording unit 15B. Is converted into an azimuth (y ′ axis) orthogonal to the navigation azimuth (x ′ axis) and the navigation azimuth. By such an operation, the coordinate system of the detected magnetic field B detected by the magnetic field detector 11 is orthogonal to the navigation direction of the traveling body 2 and is a corrected magnetic field B ′ (Bx ′, By ′, Bz ′).

(2)航走体による磁界の検出
図4は本発明の実施の形態1に係る横距離成分割合データの時系列データ例を示す図である。地磁気下で、磁性体構造物である航走体2が移動すると、磁界検知器11は、航走体2による磁界と地磁気による磁界とが重畳した検知磁界B(Bx,By,Bz)を検知する。尚、航走体2による磁界は、例えば、航走体内部に当該航走体から発する磁界を打ち消す為にコイルを有し、磁気の低減を図っている場合であっても、少なくとも1方向の磁界を検知できればよい。即ち、航走体2が発する磁界が1方向であっても、航走体2の移動により横距離方向成分の割合(後述)が変化するので、後述する最接近距離の算出が可能である。
(2) Detection of magnetic field by navigation body FIG. 4 is a diagram showing an example of time-series data of lateral distance component ratio data according to Embodiment 1 of the present invention. When the traveling body 2 that is a magnetic structure moves under the geomagnetism, the magnetic field detector 11 detects a detection magnetic field B (Bx, By, Bz) in which the magnetic field by the traveling body 2 and the magnetic field by the geomagnetism are superimposed. To do. Note that the magnetic field generated by the traveling body 2 includes, for example, a coil in the traveling body to cancel the magnetic field generated from the traveling body, and at least in one direction even when the magnetic field is reduced. What is necessary is just to be able to detect a magnetic field. That is, even if the magnetic field generated by the traveling body 2 is in one direction, the ratio of the lateral distance direction component (described later) changes due to the movement of the traveling body 2, so that the closest approach distance described later can be calculated.

磁界補正処理部14は、磁界検知器11により検知された検知磁界Bを、上述した補正磁界B’(Bx’,By’,Bz’)に変換する。次に、変換した補正磁界B’に基づき検知磁界の大きさ(Bt’)に対する横距離方向成分(By’)の割合を以下により算出する。   The magnetic field correction processing unit 14 converts the detected magnetic field B detected by the magnetic field detector 11 into the above-described corrected magnetic field B ′ (Bx ′, By ′, Bz ′). Next, based on the converted correction magnetic field B ′, the ratio of the lateral distance direction component (By ′) to the magnitude (Bt ′) of the detection magnetic field is calculated as follows.

横距離方向成分の割合=By’/Bt’
Bt’=(Bx’2+By’2+Bz’21/2
Ratio of lateral distance direction component = By ′ / Bt ′
Bt ′ = (Bx ′ 2 + By ′ 2 + Bz ′ 2 ) 1/2

磁界補正処理部14は、算出した横距離方向成分の割合(By’/Bt’)を横距離成分割合データとしてデータ収集器15に記録させる。このような動作により、図4に示すような時系列データが得られる。尚、図4に示す横距離成分割合データは、航走体2の航行方位(x’軸)、航行方向と直交する方向(y’軸)及び海面と垂直な方向(z’軸)の全ての磁界を低減し、特に航行方向と直交する方向(y’軸)を顕著に低減した場合のデータ例である。   The magnetic field correction processing unit 14 causes the data collector 15 to record the calculated lateral distance direction component ratio (By ′ / Bt ′) as lateral distance component ratio data. By such an operation, time series data as shown in FIG. 4 is obtained. Note that the lateral distance component ratio data shown in FIG. 4 includes all of the navigation direction (x ′ axis), the direction orthogonal to the navigation direction (y ′ axis), and the direction perpendicular to the sea surface (z ′ axis). This is an example of data when the magnetic field is reduced, and in particular, the direction (y ′ axis) perpendicular to the navigation direction is significantly reduced.

このような、時系列の横距離成分割合データを、Bt’が最大値となる時刻、又は最大値を数秒過ぎた時刻まで記録する。   Such time-series lateral distance component ratio data is recorded until the time when Bt ′ is the maximum value or until the time when the maximum value is several seconds past.

(3)最接近距離の算出
図5は本発明の実施の形態1に係る横距離方向成分の割合の極値に対応する横距離のデータ例である。図5に示すように、データ記録部15Bには、航走体2と磁界検知器11との相対深度Dに応じた、横距離方向成分の割合(By’/Bt’)の極値に対応する横距離の情報(以下、横距離テーブルという)が記録されている。
(3) Calculation of closest approach distance FIG. 5 is a data example of the lateral distance corresponding to the extreme value of the ratio of the lateral distance direction component according to the first embodiment of the present invention. As shown in FIG. 5, the data recording unit 15B corresponds to the extreme value of the ratio (By ′ / Bt ′) of the lateral distance direction component according to the relative depth D between the traveling body 2 and the magnetic field detector 11. The horizontal distance information (hereinafter referred to as a horizontal distance table) is recorded.

横位置算出演算部16は、上述した動作により、データ収集器15に記録された横距離成分割合データから、横距離方向成分の割合(By’/Bt’)の極値(極大値又は極小値)を取得する。次に横位置算出演算部16は、データ記録部15Bに記録されている横距離テーブル(図5)を参照し、取得した横距離方向成分の割合(By’/Bt’)の極値に応じた横距離Yの値を得る。そして、この横距離Yの値と相対深度Dの値とにより、図3に示した当該移動体位置等検出装置1と航走体2との最接近距離Lを次式により算出し、算出した値を当該装置と接続される他の装置に出力する。   The lateral position calculation calculation unit 16 performs the extreme value (maximum value or minimal value) of the ratio (By ′ / Bt ′) of the lateral distance direction component from the lateral distance component ratio data recorded in the data collector 15 by the above-described operation. ) To get. Next, the lateral position calculation calculation unit 16 refers to the lateral distance table (FIG. 5) recorded in the data recording unit 15B, and responds to the extreme value of the acquired lateral distance direction component ratio (By ′ / Bt ′). Obtain the value of the lateral distance Y. Then, based on the value of the lateral distance Y and the value of the relative depth D, the closest approach distance L between the moving body position detection device 1 and the traveling body 2 shown in FIG. The value is output to another device connected to the device.

最接近距離L=(Y2+D21/2 Closest approach distance L = (Y 2 + D 2 ) 1/2

尚、出力する情報は最接近距離Lに限らず、横距離Yの情報でも良い。また、最接近位置の情報を出力しても良く、横距離Y、相対深度Dの値及び航行方位の情報、又は航走体2の相対位置の情報、つまり補正後の座標軸における位置座標(x’,y’,z’)=(0,Y,D)の情報でも良い。   The information to be output is not limited to the closest distance L but may be information on the lateral distance Y. Alternatively, information on the closest approach position may be output. Information on the lateral distance Y, the value of the relative depth D and the navigation direction, or the information on the relative position of the traveling body 2, that is, the position coordinates (x Information of ', y', z ') = (0, Y, D) may be used.

尚、本実施の形態1においては、航走体2は海面を航行する船舶などの場合を説明したが、本発明はこれに限らず、海面又は海中を航走する磁性体構造物に対しても有効である。   In the first embodiment, the case where the traveling body 2 is a ship or the like navigating the sea surface has been described. However, the present invention is not limited to this, and the magnetic body structure that navigates the sea surface or the sea. Is also effective.

尚、本実施の形態1においては、横距離テーブル(図5)を参照して横距離Yの値を取得したが、本発明はこれに限らず、例えば所定の関数演算により横距離Yの値を求めても良い。   In the first embodiment, the value of the lateral distance Y is acquired with reference to the lateral distance table (FIG. 5). However, the present invention is not limited to this, and the value of the lateral distance Y is calculated by a predetermined function calculation, for example. You may ask for.

以上のように本実施の形態1においては、海面又は海中を航行する航走体2により生じる磁界を3軸方向の各成分で検知し、検知磁界Bのうち、航走体2の移動方位と直交し、且つ、海面と水平な横距離方向成分(By’)を求め、検知磁界の大きさ(Bt’)に対する横距離方向成分(By’)の割合(By’/Bt’)求め、この横距離方向成分の割合(By’/Bt’)に基づいて、航走体2と移動体位置等検出装置1(磁界検知器11)との最接近位置(距離)を推定することにより、最小自乗法などの繰り返し演算を行うことなく速やかに最接近位置(距離)を推定することができる。   As described above, in the first embodiment, the magnetic field generated by the traveling body 2 navigating the sea surface or in the sea is detected by each component in the three axial directions, and the moving direction of the traveling body 2 is detected from the detected magnetic field B. The transverse direction component (By ′) that is orthogonal and horizontal to the sea surface is obtained, and the ratio (By ′ / Bt ′) of the transverse direction component (By ′) to the magnitude (Bt ′) of the detected magnetic field is obtained. By estimating the closest position (distance) between the traveling body 2 and the moving body position detecting device 1 (magnetic field detector 11) based on the ratio (By ′ / Bt ′) of the lateral distance direction component, the minimum The closest approach position (distance) can be quickly estimated without performing repetitive calculations such as the square method.

また、横距離方向成分の割合(By’/Bt’)に基づいて横距離Yの値を求めているので、消磁コイルなどにより1又は複数方向の磁界が消磁されている場合であっても、少なくとも1方向の磁界を検出することができれば、航走体2の最接近距離を推定することができる。   Further, since the value of the lateral distance Y is obtained based on the ratio of the lateral distance direction component (By ′ / Bt ′), even if the magnetic field in one or more directions is demagnetized by a degaussing coil or the like, If a magnetic field in at least one direction can be detected, the closest approach distance of the traveling body 2 can be estimated.

実施の形態2.
上記実施の形態1では、航走体2と移動体位置等検出装置1(磁界検知器11)との相対深度Dは既知であるものとして、最接近位置(距離)の推定を行ったが、本実施の形態2においては、当該移動体位置等検出装置1が敷設された深度を検出し、検出した深度を相対深度Dとして、海面を航行する航走体2の最接近位置(距離)を推定する。
Embodiment 2. FIG.
In the first embodiment, the closest depth (distance) is estimated on the assumption that the relative depth D between the traveling body 2 and the moving body position detection device 1 (magnetic field detector 11) is known. In the second embodiment, the depth at which the moving body position detection device 1 is laid is detected, and the closest depth (distance) of the traveling body 2 navigating the sea surface is set as the relative depth D. presume.

図6は本発明の実施の形態2に係る移動体位置等検出装置の構成ブロック図である。図6に示すように、本実施の形態2においては、上記実施の形態1の構成に加え、移動体位置等検出装置1は、深度計17とA/D変換器13Cとを備えている。   FIG. 6 is a block diagram showing the configuration of the moving body position detection device according to Embodiment 2 of the present invention. As shown in FIG. 6, in the second embodiment, in addition to the configuration of the first embodiment, the moving body position detecting device 1 includes a depth meter 17 and an A / D converter 13C.

深度計17は、移動体位置等検出装置1(特に磁界検知器11)の、海面に対して鉛直な方向(z’軸)の距離である深度を計測し、計測に基づく電気信号(以下、深度信号という)に変換する。   The depth meter 17 measures the depth, which is the distance in the direction perpendicular to the sea surface (z ′ axis), of the moving body position detection device 1 (particularly, the magnetic field detector 11), and an electrical signal based on the measurement (hereinafter, Converted to a depth signal).

A/D変換器13Cは、例えばサンプリング等の処理を施して深度信号をデジタルデータの信号(深度信号データ)に変換する。ここで、磁界検知器11と深度計17との距離は、当該装置と航走体2との間の距離に比べ、無視できるほど小さいので、それぞれの座標系の原点が同じである(同位置にある)ものとする。   The A / D converter 13C performs processing such as sampling to convert the depth signal into a digital data signal (depth signal data). Here, since the distance between the magnetic field detector 11 and the depth meter 17 is negligibly small compared to the distance between the device and the traveling body 2, the origin of each coordinate system is the same (same position). ).

さらに、本実施の形態2におけるデータ記録部15Bには、横距離方向成分の割合(By’/Bt’)の極値に対応する横距離の情報(以下、横距離テーブルという)が、複数の深度ごと、例えば所定深度範囲の所定間隔ごとに記録されている(例えば水深20m〜50mで1m間隔ごとの横距離テーブル情報)。   Further, in the data recording unit 15B in the second embodiment, the lateral distance information (hereinafter referred to as the lateral distance table) corresponding to the extreme value of the ratio (By ′ / Bt ′) of the lateral distance direction component includes a plurality of pieces. It is recorded for every depth, for example, for every predetermined interval in a predetermined depth range (for example, lateral distance table information for every 1 m at a water depth of 20 to 50 m).

このような構成により、本実施の形態2における移動体位置等検出装置1は、上述した実施の形態1と同様の動作により、(1)検知磁界の座標軸補正、(2)航走体による磁界の検出を行い、(3)最接近距離の算出において、横位置算出演算部16は、深度計17により検出された深度信号データに基づき、当該装置が敷設された深度に最も近い深度に対応した横距離テーブルを参照し、横距離方向成分の割合(By’/Bt’)の極値に応じた横距離Yの値を得る。そして、この横距離Yの値と深度データの値とにより、当該移動体位置等検出装置1と航走体2との最接近距離Lを算出し、算出した値を当該装置と接続される他の装置に出力する。   With such a configuration, the moving body position detection device 1 according to the second embodiment performs (1) coordinate axis correction of the detected magnetic field and (2) magnetic field by the traveling body by the same operation as in the first embodiment described above. (3) In calculating the closest approach distance, the lateral position calculation calculation unit 16 corresponds to the depth closest to the depth at which the device is laid based on the depth signal data detected by the depth meter 17. With reference to the lateral distance table, the value of the lateral distance Y corresponding to the extreme value of the ratio (By ′ / Bt ′) of the lateral distance direction component is obtained. Then, based on the value of the lateral distance Y and the value of the depth data, the closest approach distance L between the moving body position detection device 1 and the traveling body 2 is calculated, and the calculated value is connected to the device. Output to the device.

以上のように本実施の形態2においては、上記実施の形態1の効果に加え、深度計17により海面からの深度を計測し、この海面からの深度を、海面を航行する航走体2と移動体位置等検出装置1(磁界検知器11)との相対深度Dとしているので、移動体位置等検出装置1が、実際に海底又は海中に敷設された状態での深度における横距離テーブルを用いて、航走体2と移動体位置等検出装置1(磁界検知器11)との最接近位置(距離)を推定することができ、より推定精度を向上させることができる。   As described above, in the second embodiment, in addition to the effects of the first embodiment, the depth from the sea surface is measured by the depth meter 17, and the depth from the sea surface is the traveling body 2 that navigates the sea surface. Since the relative depth D with respect to the moving body position detection device 1 (magnetic field detector 11) is set, a lateral distance table at a depth when the moving body position detection device 1 is actually laid on the seabed or in the sea is used. Thus, the closest approach position (distance) between the traveling body 2 and the moving body position detection device 1 (magnetic field detector 11) can be estimated, and the estimation accuracy can be further improved.

実施の形態3.
潮流の電磁誘導に起因するノイズの影響について説明する。地磁気を横切るように導電性媒質である海水が移動する(潮が流れる)と電磁誘導により誘導起電力が生じる。そして、磁界検知器11が地磁気下の海水中にあると、その周辺に発生した誘導起電力を要因とする浮遊ノイズが、磁界検知器11が検出する信号に重畳する。
Embodiment 3 FIG.
The influence of noise caused by tidal current electromagnetic induction will be described. When seawater, which is a conductive medium, moves across the geomagnetism (tide flows), an induced electromotive force is generated by electromagnetic induction. When the magnetic field detector 11 is in seawater under geomagnetism, stray noise caused by the induced electromotive force generated around the magnetic field detector 11 is superimposed on a signal detected by the magnetic field detector 11.

上述した実施の形態1及び2においては、横距離テーブルには、当該装置が敷設される位置(海域)における潮流の電磁誘導に起因するノイズも含んでいるので、潮流が一定又は潮流速が変動が少ない場合には、潮流の電磁誘導に起因するノイズの影響によって最接近位置(距離)の推定値の精度を低下させることはない。   In the first and second embodiments described above, the lateral distance table includes noise caused by electromagnetic induction of the tidal current at the position (sea area) where the device is laid. Therefore, the tidal current is constant or the tidal flow velocity varies. When there is little, the accuracy of the estimated value of the closest position (distance) is not lowered due to the influence of noise caused by electromagnetic induction of power flow.

しかし、潮流の電磁誘導に起因するノイズは、潮流が速くなるほど多くなり、潮流速の変動は推定値の精度の低下を招くこととなる。   However, noise due to electromagnetic induction of tidal current increases as the tidal current increases, and fluctuations in tidal flow velocity cause a decrease in accuracy of the estimated value.

そこで、本実施の形態3においては、当該移動体位置等検出装置1が敷設された位置における海水の速度を検出し、検出した海水の速度に応じて、横距離方向成分の割合(By’/Bt’)を補正して、航走体2の最接近位置(距離)を推定する。   Therefore, in the third embodiment, the speed of seawater at the position where the moving body position detection device 1 is laid is detected, and the ratio of the lateral direction component (By ′ / Bt ′) is corrected, and the closest approach position (distance) of the traveling body 2 is estimated.

図7は本発明の実施の形態3に係る移動体位置等検出装置の構成ブロック図である。図7に示すように、本実施の形態3においては、上記実施の形態1の構成に加え、移動体位置等検出装置1は、潮流計18とA/D変換器13Dとを備えている。   FIG. 7 is a configuration block diagram of a moving body position detection device according to Embodiment 3 of the present invention. As shown in FIG. 7, in the third embodiment, in addition to the configuration of the first embodiment, the moving body position etc. detecting device 1 includes a tide meter 18 and an A / D converter 13D.

潮流計18は、海水の移動速度(潮流の速度)を計測し、電気信号(以下、潮流信号という)に変換する。潮流計18についても、3軸方向における速度のそれぞれの成分を潮流信号として送信できるものとする。A/D変換器13Dは、例えばサンプリング等の処理を施して、潮流信号をデジタルデータの信号(潮流データ)に変換する。   The tide meter 18 measures the moving speed of seawater (the speed of the tide) and converts it into an electrical signal (hereinafter referred to as a tide signal). Also for the tide meter 18, it is assumed that each component of the velocity in the three-axis directions can be transmitted as a tide signal. The A / D converter 13D performs processing such as sampling to convert the tidal current signal into a digital data signal (tidal current data).

さらに、本実施の形態3におけるデータ記録部15Bには、潮流速度に対応する、横距離方向成分の割合(By’/Bt’)の極値の補正値の情報(以下、補正テーブルという)が、予め記録されている。尚、本実施の形態3においては、補正テーブルを予め記憶する場合を説明するが、これに限らず、例えば潮流速を用いた所定の関数演算により補正値を算出しても良い。   Further, in the data recording unit 15B in the third embodiment, information on the correction value of the extreme value (hereinafter referred to as a correction table) of the ratio (By ′ / Bt ′) of the lateral distance direction component corresponding to the tidal velocity is obtained. , Recorded in advance. In the third embodiment, the case where the correction table is stored in advance will be described. However, the present invention is not limited to this, and for example, the correction value may be calculated by a predetermined function calculation using the tidal flow velocity.

このような構成により、本実施の形態3における移動体位置等検出装置1は、上述した実施の形態1と同様の動作により、(1)検知磁界の座標軸補正、(2)航走体による磁界の検出を行い、(3)最接近距離の算出において、横位置算出演算部16は、潮流計18により検出された潮流信号データに基づき、検出された3軸方向の各成分をベクトル合成して潮流速度の大きさを求め、補正テーブルを参照して、この潮流速度の大きさに対応した横距離方向成分の割合(By’/Bt’)の極値の補正値を得る。そして、この補正値を用いて横距離方向成分の割合(By’/Bt’)の極値を補正する。   With such a configuration, the moving body position detecting device 1 according to the third embodiment has the same operations as those of the first embodiment described above, (1) correction of the coordinate axis of the detected magnetic field, and (2) the magnetic field generated by the traveling body. (3) In calculating the closest approach distance, the lateral position calculation calculation unit 16 performs vector synthesis of the detected components in the three axial directions based on the tidal current signal data detected by the tidal current meter 18. The magnitude of the tidal current velocity is obtained, and the correction value of the extreme value of the ratio (By ′ / Bt ′) of the lateral distance direction component corresponding to the magnitude of the tidal current velocity is obtained with reference to the correction table. Then, the extreme value of the ratio (By ′ / Bt ′) of the lateral distance direction component is corrected using this correction value.

次に、上述した実施の形態1と同様に、データ記録部15Bに記録されている横距離テーブル(図5)を参照し、補正した横距離方向成分の割合(By’/Bt’)の極値に応じた横距離Yの値を得る。そして、この横距離Yの値と相対深度Dの値とにより、当該移動体位置等検出装置1と航走体2との最接近距離Lを算出し、算出した値を当該装置と接続される他の装置に出力する。   Next, as in the first embodiment described above, the lateral distance table (FIG. 5) recorded in the data recording unit 15B is referred to, and the corrected lateral distance direction component ratio (By ′ / Bt ′) is the extreme. The value of the lateral distance Y according to the value is obtained. Then, based on the value of the lateral distance Y and the value of the relative depth D, the closest approach distance L between the moving body position detection device 1 and the traveling body 2 is calculated, and the calculated value is connected to the device. Output to another device.

以上のように本実施の形態3においては、上記実施の形態1の効果に加え、潮流計18により海水の速度(潮流速度)を計測し、この海水の速度に応じて補正した横距離方向成分の割合(By’/Bt’)に基づいて、航走体2と移動体位置等検出装置1(磁界検知器11)との最接近位置(距離)を推定することにより、潮流速が変動して潮流の電磁誘導に起因するノイズが変動する場合であっても、推定値の精度の低下を抑制することができる。   As described above, in the third embodiment, in addition to the effects of the first embodiment, seawater speed (tidal current speed) is measured by the tide meter 18, and the lateral direction component corrected according to the seawater speed is used. By estimating the closest position (distance) between the traveling body 2 and the moving body position detection device 1 (magnetic field detector 11) based on the ratio (By ′ / Bt ′) of Even if the noise caused by electromagnetic induction of the tidal current fluctuates, it is possible to suppress a decrease in the accuracy of the estimated value.

本発明の実施の形態1に係る移動体位置等検出装置の構成ブロック図である。1 is a configuration block diagram of a moving body position detection device according to Embodiment 1 of the present invention. FIG. 本発明の実施の形態1に係る水平面での座標軸補正と航走体との横距離を説明する図である。It is a figure explaining the coordinate distance correction | amendment in the horizontal surface which concerns on Embodiment 1 of this invention, and the lateral distance with a navigation body. 本発明の実施の形態1に係る垂直面での座標軸補正と航走体との最接近距離を説明する図である。It is a figure explaining the coordinate axis correction | amendment in the perpendicular surface which concerns on Embodiment 1 of this invention, and the closest approach distance with a navigation body. 本発明の実施の形態1に係る横距離成分割合データの時系列データ例を示す図である。It is a figure which shows the time series data example of the lateral distance component ratio data which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る横距離方向成分の割合の極値に対応する横距離のデータ例である。It is a data example of the lateral distance corresponding to the extreme value of the ratio of the lateral distance direction component which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る移動体位置等検出装置の構成ブロック図である。It is a block diagram of the configuration of the moving body position detection device according to Embodiment 2 of the present invention. 本発明の実施の形態3に係る移動体位置等検出装置の構成ブロック図である。It is a block diagram of the configuration of a moving body position detection device according to Embodiment 3 of the present invention.

符号の説明Explanation of symbols

1 移動体位置等検出装置、2 航走体、11 磁界検知器、12 傾斜計、13A A/D変換器、13B A/D変換器、13C A/D変換器、13D A/D変換器、14 磁界補正処理部、15 データ収集器、15A データ処理部、15B データ記録部、16 横位置算出演算部、17 深度計、18 潮流計。   DESCRIPTION OF SYMBOLS 1 Moving body position detection apparatus, 2 navigation body, 11 Magnetic field detector, 12 Inclinometer, 13A A / D converter, 13B A / D converter, 13C A / D converter, 13D A / D converter, 14 magnetic field correction processing unit, 15 data collector, 15A data processing unit, 15B data recording unit, 16 lateral position calculation calculation unit, 17 depth meter, 18 tide meter.

Claims (17)

界検知手段により、地磁気による磁界を3軸方向の各成分で検知するステップと、
海面に対して鉛直な方向に対する前記磁界検知手段の傾きを計測するステップと
前記磁界検知手段により、海面又は海中を航行する移動体により生じる磁界を3軸方向の各成分で検知する磁界検知ステップと、
少なくとも前記移動体の移動方位の情報に基づき、前記検知磁界のうち、前記移動体の移動方位と直交し、且つ、海面と水平な横距離方向成分を求め、前記検知磁界の大きさに対する前記横距離方向成分の割合を求める磁界補正処理ステップと、
前記横距離方向成分の割合に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定する横位置算出演算ステップと
を有し、
前記磁界補正処理ステップは、
前記磁界検知手段の傾きと、
前記地磁気による磁界と、
予め記録された地磁気による磁界の情報と、
前記移動体の移動方位の情報と
に基づき、前記検知磁界のうち、前記移動体の移動方位と直交し、且つ、海面と水平な横距離方向成分を求めることを特徴とする移動体位置等推定検出方法。
The magnetic field detection means, comprising the steps of detecting the magnetic field by the geomagnetism in each of the components in three axial directions,
Measuring the inclination of the magnetic field detection means with respect to a direction perpendicular to the sea surface ;
A magnetic field detecting step for detecting a magnetic field generated by a moving body navigating the sea surface or the sea with each component in three axial directions by the magnetic field detecting means;
Based on at least information on the moving direction of the moving body, a lateral distance direction component that is orthogonal to the moving direction of the moving body and that is horizontal to the sea surface is obtained from the detected magnetic field, and the horizontal direction relative to the magnitude of the detected magnetic field is obtained. A magnetic field correction processing step for obtaining a ratio of the distance direction component;
A lateral position calculation calculation step for estimating a closest approach position between the moving body and the magnetic field detection means based on a ratio of the lateral distance direction component ;
The magnetic field correction processing step includes
The inclination of the magnetic field detection means;
A magnetic field by the geomagnetism;
Information of magnetic field by geomagnetism recorded in advance,
Based on the information of the mobile orientation of the movable body, wherein one of the detection magnetic field, perpendicular to the moving direction of the movable body, and, sea and you and obtains the horizontal transverse distance direction component moving body position, etc. Estimated detection method.
前記横位置算出演算ステップは、
前記移動体と前記磁界検知手段との相対深度と、
前記横距離方向成分の割合の極値と、
予め記録された、前記移動体と前記磁界検知手段との相対深度に応じた、前記横距離方向成分の割合の極値に対応する距離に関する情報と
に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定することを特徴とする請求項1記載の移動体位置等推定検出方法。
The lateral position calculation calculation step includes:
A relative depth between the moving body and the magnetic field detection means;
An extreme value of the ratio of the lateral distance direction component;
Based on prerecorded information on the distance corresponding to the extreme value of the ratio of the lateral distance direction component according to the relative depth between the moving body and the magnetic field detecting means, the moving body and the magnetic field detecting means. mobile location such as estimated detection method according to claim 1 Symbol placement and estimates the closest position between.
前記横位置算出演算ステップは、
前記距離に関する情報として、前記移動体の移動方位と直交し、且つ、海面と水平な横距離の情報を用いることを特徴とする請求項記載の移動体位置等推定検出方法。
The lateral position calculation calculation step includes:
The method for estimating and detecting a moving object position and the like according to claim 2 , wherein information on a lateral distance orthogonal to the moving direction of the moving object and horizontal to the sea surface is used as the information related to the distance.
前記横位置算出演算ステップは、
前記移動体と前記磁界検知手段との相対深度として、予め記録された相対深度の情報を用いることを特徴とする請求項又は記載の移動体位置等推定検出方法。
The lateral position calculation calculation step includes:
The method according to claim 2 or 3 , wherein information on a relative depth recorded in advance is used as a relative depth between the moving body and the magnetic field detection means.
前記横位置算出演算ステップの前に、
前記磁界検知手段の海面からの深度を計測する深度計測ステップを更に有し、
前記横位置算出演算ステップは、
前記磁界検知手段の海面からの深度を、海面を航行する前記移動体と前記磁界検知手段との相対深度とすることを特徴とする請求項の何れかに記載の移動体位置等推定検出方法。
Before the lateral position calculation calculation step,
A depth measurement step of measuring the depth from the sea surface of the magnetic field detection means;
The lateral position calculation calculation step includes:
The depth from the sea surface of said magnetic field sensing means, mobile location such estimation according to any one of claims 2 to 4, characterized in that the relative depth of the movable body and the magnetic field detecting means for navigating the sea surface Detection method.
前記横位置算出演算ステップの前に、
潮流計測手段により、海水の速度を3軸方向の各成分で計測するステップを更に備え、
前記横位置算出演算ステップは、
前記海水の速度に応じて補正した横距離方向成分の割合に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定することを特徴とする請求項1〜の何れかに記載の移動体位置等推定検出方法。
Before the lateral position calculation calculation step,
Further comprising a step of measuring the velocity of seawater with each component in three axial directions by means of tidal current measuring means,
The lateral position calculation calculation step includes:
Based on the ratio of the transverse distance direction component that is corrected according to the speed of the seawater, according to any one of claims 1 to 5, characterized in that estimating the closest position between the moving body and said magnetic field sensing means Method for estimating and detecting the position of a moving object.
磁界検知手段により、海面又は海中を航行する移動体により生じる磁界を3軸方向の各成分で検知する磁界検知ステップと、  A magnetic field detection step of detecting a magnetic field generated by a moving body navigating the sea surface or the sea with each component in three axial directions by the magnetic field detection means;
少なくとも前記移動体の移動方位の情報に基づき、前記検知磁界のうち、前記移動体の移動方位と直交し、且つ、海面と水平な横距離方向成分を求め、前記検知磁界の大きさに対する前記横距離方向成分の割合を求める磁界補正処理ステップと、  Based on at least information on the moving direction of the moving body, a lateral distance direction component that is orthogonal to the moving direction of the moving body and that is horizontal to the sea surface is obtained from the detected magnetic field, and the horizontal direction relative to the magnitude of the detected magnetic field is obtained. A magnetic field correction processing step for obtaining a ratio of the distance direction component;
前記横距離方向成分の割合に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定する横位置算出演算ステップと  A lateral position calculating step for estimating a closest approach position between the moving body and the magnetic field detecting means based on a ratio of the lateral distance direction component;
を有し、Have
前記横位置算出演算ステップは、  The lateral position calculation calculation step includes:
前記移動体と前記磁界検知手段との相対深度と、  A relative depth between the moving body and the magnetic field detection means;
前記横距離方向成分の割合の極値と、  An extreme value of the ratio of the lateral distance direction component;
予め記録された、前記移動体と前記磁界検知手段との相対深度に応じた、前記横距離方向成分の割合の極値に対応する距離に関する情報と  Information relating to the distance corresponding to the extreme value of the ratio of the lateral distance direction component according to the relative depth between the moving body and the magnetic field detection means recorded in advance
に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定することを特徴とする移動体位置等推定検出方法。A method for estimating and detecting the position of a moving body, etc., wherein the closest approach position between the moving body and the magnetic field detection means is estimated based on the above.
磁界検知手段により、海面又は海中を航行する移動体により生じる磁界を3軸方向の各成分で検知する磁界検知ステップと、  A magnetic field detection step of detecting a magnetic field generated by a moving body navigating the sea surface or the sea with each component in three axial directions by the magnetic field detection means;
少なくとも前記移動体の移動方位の情報に基づき、前記検知磁界のうち、前記移動体の移動方位と直交し、且つ、海面と水平な横距離方向成分を求め、前記検知磁界の大きさに対する前記横距離方向成分の割合を求める磁界補正処理ステップと、  Based on at least information on the moving direction of the moving body, a lateral distance direction component that is orthogonal to the moving direction of the moving body and that is horizontal to the sea surface is obtained from the detected magnetic field, and the horizontal direction relative to the magnitude of the detected magnetic field is obtained. A magnetic field correction processing step for obtaining a ratio of the distance direction component;
潮流計測手段により、海水の速度を3軸方向の各成分で計測するステップと、  A step of measuring the velocity of seawater with each component in three axial directions by means of tidal current measuring means;
前記横距離方向成分の割合に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定する横位置算出演算ステップと  A lateral position calculating step for estimating a closest approach position between the moving body and the magnetic field detecting means based on a ratio of the lateral distance direction component;
を有し、Have
前記横位置算出演算ステップは、  The lateral position calculation calculation step includes:
前記海水の速度に応じて補正した横距離方向成分の割合に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定することを特徴とする移動体位置等推定検出方法。  A method of estimating and detecting a moving object position or the like, wherein the closest approach position between the moving object and the magnetic field detection means is estimated based on a ratio of a lateral distance direction component corrected according to the speed of the seawater.
請求項1〜の何れかに記載の移動体位置等推定検出方法をコンピュータに実行させることを特徴とするプログラム。 A program for causing a computer to execute the method for estimating and detecting a moving object position and the like according to any one of claims 1 to 8 . 海面又は海中を航行する移動体により生じる磁界及び地磁気による磁界を3軸方向の各成分で検知する磁界検知手段と、
海面に対して鉛直な方向に対する前記磁界検知手段の傾きを計測する傾斜計測手段と、
少なくとも前記移動体の移動方位の情報が記録されるデータ記録手段と、
少なくとも前記移動体の移動方位の情報に基づき、前記磁界検知手段が検知した検知磁界のうち、前記移動体の移動方位と直交し、且つ、海面と水平な横距離方向成分を求め、前記検知磁界の大きさに対する前記横距離方向成分の割合を求める磁界補正処理手段と、
前記横距離方向成分の割合に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定する横位置算出演算手段と
を備え、
前記データ記録手段は、地磁気による磁界の情報が記録され、
前記磁界補正処理手段は、
前記傾斜計測手段が計測した傾きと、
前記磁界検知手段が検知した地磁気による磁界と、
前記データ記録手段に記録された地磁気による磁界の情報及び前記移動体の移動方位の情報と
に基づき、前記磁界検知手段が検知した検知磁界のうち、前記移動体の移動方位と直交し、且つ、海面と水平な横距離方向成分を求めることを特徴とする移動体位置等推定検出装置。
A magnetic field detecting means for detecting a magnetic field generated by a moving body navigating the sea surface or the sea and a magnetic field due to geomagnetism by each component in three axial directions;
An inclination measuring means for measuring an inclination of the magnetic field detecting means with respect to a direction perpendicular to the sea surface ;
Data recording means for recording at least information of the moving direction of the moving body;
Based on at least information on the moving direction of the moving body, out of the detected magnetic fields detected by the magnetic field detecting means, a transverse direction component perpendicular to the moving direction of the moving body and parallel to the sea surface is obtained, and the detected magnetic field Magnetic field correction processing means for obtaining a ratio of the lateral distance direction component to the magnitude of
Lateral position calculation calculation means for estimating the closest position between the moving body and the magnetic field detection means based on the ratio of the lateral distance direction component;
Bei to give a,
The data recording means records magnetic field information by geomagnetism,
The magnetic field correction processing means includes
The inclination measured by the inclination measuring means;
A magnetic field by the geomagnetism detected by the magnetic field detection means;
Based on the information on the magnetic field by the geomagnetism recorded on the data recording means and the information on the moving direction of the moving body, out of the detected magnetic fields detected by the magnetic field detecting means, it is orthogonal to the moving direction of the moving body, and etc. estimated detection device moving body position you and obtains the sea and horizontal transverse distance direction component.
前記データ記録手段は、前記移動体と前記磁界検知手段との相対深度に応じた、前記横距離方向成分の割合の極値に対応する距離に関する情報が記録され、
前記横位置算出演算手段は、
前記移動体と前記磁界検知手段との相対深度と、
前記磁界補正処理手段が求めた前記横距離方向成分の割合の極値と、
前記データ記録手段に記録された距離に関する情報と
に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定することを特徴とする請求項10記載の移動体位置等推定検出装置。
The data recording means records information related to the distance corresponding to the extreme value of the ratio of the lateral distance direction component according to the relative depth between the moving body and the magnetic field detection means,
The lateral position calculating means is
A relative depth between the moving body and the magnetic field detection means;
An extreme value of the ratio of the lateral distance direction component obtained by the magnetic field correction processing means;
12. The moving object position estimation detecting device according to claim 10 , wherein a closest approach position between the moving object and the magnetic field detecting means is estimated based on information on the distance recorded in the data recording means. .
前記データ記録手段は、前記距離に関する情報として、前記移動体の移動方位と直交し、且つ、海面と水平な横距離の情報が記録されることを特徴とする請求項11記載の移動体位置等推定検出装置。   12. The position of the moving body according to claim 11, wherein the data recording means records information on a lateral distance that is orthogonal to the moving direction of the moving body and is horizontal to the sea surface as the information on the distance. Estimated detection device. 前記データ記録手段は、前記移動体と前記磁界検知手段との相対深度の情報が予め記録されることを特徴とする請求項11又は12記載の移動体位置等推定検出装置。   13. The apparatus according to claim 11 or 12, wherein the data recording means records in advance information on a relative depth between the moving body and the magnetic field detecting means. 海面からの深度を計測する深度計測手段を更に備え、
前記横位置算出演算手段は、
前記深度計測手段が計測した深度を、海面を航行する前記移動体と前記磁界検知手段との相対深度とすることを特徴とする請求項11〜13の何れかに記載の移動体位置等推定検出装置。
It further comprises a depth measuring means for measuring the depth from the sea surface,
The lateral position calculating means is
14. The detection of estimated position of a moving object according to claim 11, wherein the depth measured by the depth measuring unit is set as a relative depth between the moving object navigating the sea surface and the magnetic field detecting unit. apparatus.
海水の速度を3軸方向の各成分で計測する潮流計測手段を更に備え、
前記横位置算出演算手段は、
前記海水の速度に応じて補正した横距離方向成分の割合に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定することを特徴とする請求項10〜14の何れかに記載の移動体位置等推定検出装置。
It further comprises tidal current measuring means for measuring the velocity of seawater with each component in the three axial directions,
The lateral position calculating means is
Based on the ratio of the transverse distance direction component that is corrected according to the speed of the seawater, according to any one of claims 10 to 14, characterized in that estimating the closest position between the moving body and said magnetic field sensing means The moving body position estimation and detection device.
海面又は海中を航行する移動体により生じる磁界及び地磁気による磁界を3軸方向の各成分で検知する磁界検知手段と、  A magnetic field detecting means for detecting a magnetic field generated by a moving body navigating the sea surface or the sea and a magnetic field due to geomagnetism by each component in three axial directions;
少なくとも前記移動体の移動方位の情報が記録されるデータ記録手段と、  Data recording means for recording at least information of the moving direction of the moving body;
少なくとも前記移動体の移動方位の情報に基づき、前記磁界検知手段が検知した検知磁界のうち、前記移動体の移動方位と直交し、且つ、海面と水平な横距離方向成分を求め、前記検知磁界の大きさに対する前記横距離方向成分の割合を求める磁界補正処理手段と、  Based on at least information on the moving direction of the moving body, out of the detected magnetic fields detected by the magnetic field detecting means, a transverse direction component perpendicular to the moving direction of the moving body and parallel to the sea surface is obtained, and the detected magnetic field Magnetic field correction processing means for obtaining a ratio of the lateral distance direction component to the magnitude of
前記横距離方向成分の割合に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定する横位置算出演算手段と  Lateral position calculation calculation means for estimating the closest position between the moving body and the magnetic field detection means based on the ratio of the lateral distance direction component;
を備え、With
前記データ記録手段は、前記移動体と前記磁界検知手段との相対深度に応じた、前記横距離方向成分の割合の極値に対応する距離に関する情報が記録され、  The data recording means records information related to the distance corresponding to the extreme value of the ratio of the lateral distance direction component according to the relative depth between the moving body and the magnetic field detection means,
前記横位置算出演算手段は、  The lateral position calculating means is
前記移動体と前記磁界検知手段との相対深度と、  A relative depth between the moving body and the magnetic field detection means;
前記磁界補正処理手段が求めた前記横距離方向成分の割合の極値と、  An extreme value of the ratio of the lateral distance direction component obtained by the magnetic field correction processing means;
前記データ記録手段に記録された距離に関する情報と  Information about the distance recorded in the data recording means;
に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定することを特徴とする移動体位置等推定検出装置。Based on the above, the moving body position estimation and detection device for estimating the closest position between the moving body and the magnetic field detection means.
海面又は海中を航行する移動体により生じる磁界及び地磁気による磁界を3軸方向の各成分で検知する磁界検知手段と、  A magnetic field detecting means for detecting a magnetic field generated by a moving body navigating the sea surface or the sea and a magnetic field due to geomagnetism by each component in three axial directions;
少なくとも前記移動体の移動方位の情報が記録されるデータ記録手段と、  Data recording means for recording at least information of the moving direction of the moving body;
少なくとも前記移動体の移動方位の情報に基づき、前記磁界検知手段が検知した検知磁界のうち、前記移動体の移動方位と直交し、且つ、海面と水平な横距離方向成分を求め、前記検知磁界の大きさに対する前記横距離方向成分の割合を求める磁界補正処理手段と、  Based on at least information on the moving direction of the moving body, out of the detected magnetic fields detected by the magnetic field detecting means, a transverse direction component perpendicular to the moving direction of the moving body and parallel to the sea surface is obtained, and the detected magnetic field Magnetic field correction processing means for obtaining a ratio of the lateral distance direction component to the magnitude of
前記横距離方向成分の割合に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定する横位置算出演算手段と、  A lateral position calculation calculating means for estimating a closest approach position between the moving body and the magnetic field detecting means based on a ratio of the lateral distance direction component;
海水の速度を3軸方向の各成分で計測する潮流計測手段と  Tidal current measuring means to measure the velocity of seawater with each component in three axis directions;
を備え、With
前記横位置算出演算手段は、  The lateral position calculating means is
前記海水の速度に応じて補正した横距離方向成分の割合に基づいて、前記移動体と前記磁界検知手段との最接近位置を推定することを特徴とする移動体位置等推定検出装置。  An apparatus for estimating and detecting a moving body position and the like, which estimates a closest approach position between the moving body and the magnetic field detection means based on a ratio of a lateral distance direction component corrected according to the speed of the seawater.
JP2007096436A 2007-04-02 2007-04-02 Moving object position estimation detection method, apparatus, and moving object position estimation detection program Expired - Fee Related JP4958605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007096436A JP4958605B2 (en) 2007-04-02 2007-04-02 Moving object position estimation detection method, apparatus, and moving object position estimation detection program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007096436A JP4958605B2 (en) 2007-04-02 2007-04-02 Moving object position estimation detection method, apparatus, and moving object position estimation detection program

Publications (2)

Publication Number Publication Date
JP2008256400A JP2008256400A (en) 2008-10-23
JP4958605B2 true JP4958605B2 (en) 2012-06-20

Family

ID=39980119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007096436A Expired - Fee Related JP4958605B2 (en) 2007-04-02 2007-04-02 Moving object position estimation detection method, apparatus, and moving object position estimation detection program

Country Status (1)

Country Link
JP (1) JP4958605B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102022596B1 (en) * 2018-04-26 2019-09-19 전자부품연구원 Hybrid positioning system and method adaptive offshore plant
JP7321025B2 (en) * 2019-08-01 2023-08-04 三菱電機株式会社 Signal source estimation device, signal source estimation system and signal source estimation method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2586302B1 (en) * 1985-08-13 1988-02-12 Commissariat Energie Atomique METHOD FOR LOCATING AN OBJECT AND DETERMINING ITS ORIENTATION IN SPACE AND DEVICE FOR IMPLEMENTING IT
JPH01288787A (en) * 1988-05-17 1989-11-21 Oki Electric Ind Co Ltd Measuring method of position of steaming body
JP2751544B2 (en) * 1990-03-27 1998-05-18 株式会社島津製作所 Magnetic detector
JPH04340402A (en) * 1991-05-17 1992-11-26 Matsushita Electric Ind Co Ltd Stroke sensor
JP2500347B2 (en) * 1992-08-21 1996-05-29 防衛庁技術研究本部長 Positioning device for moving objects using three 1-axis magnetometers
JP3274308B2 (en) * 1995-02-24 2002-04-15 ケイディーディーアイ株式会社 Magnetic exploration device and its magnetic sensor device
JPH08272528A (en) * 1995-03-31 1996-10-18 Oki Electric Ind Co Ltd Three-dimensional position detector
JPH09281249A (en) * 1996-04-15 1997-10-31 Mitsubishi Electric Corp Magnetism generation source estimating device
JP3506605B2 (en) * 1998-03-26 2004-03-15 ユニバーサル造船株式会社 Apparatus and method for detecting speed of navigation object
JP3506604B2 (en) * 1998-03-26 2004-03-15 ユニバーサル造船株式会社 Distance detecting device and distance detecting method for navigating object
JP3998363B2 (en) * 1999-02-25 2007-10-24 ユニバーサル造船株式会社 Distance detection device and distance detection method for navigation object
JP3148986B2 (en) * 1999-04-26 2001-03-26 防衛庁技術研究本部長 Hull position deviation detector
US6553326B1 (en) * 2000-04-07 2003-04-22 Northern Digital Inc. Errors in systems using magnetic fields to locate objects
JP3395136B2 (en) * 2002-07-03 2003-04-07 防衛庁技術研究本部長 Moving target relative position detection method
JP4213017B2 (en) * 2003-11-10 2009-01-21 株式会社石川製作所 Method for detecting relative position of moving target of magnetic material
JP4425624B2 (en) * 2003-12-22 2010-03-03 ユニバーサル造船株式会社 MOBILE BODY POSITION ESTIMATION DETECTING METHOD, DEVICE, AND MOBILE BODY POSITION ESTIMATION DETECTING PROGRAM
JP4515230B2 (en) * 2004-09-06 2010-07-28 ユニバーサル特機株式会社 Moving object position estimation detection method, apparatus, and moving object position estimation detection program
JP4600060B2 (en) * 2005-02-01 2010-12-15 コニカミノルタオプト株式会社 Drive device
JP4494268B2 (en) * 2005-03-29 2010-06-30 ユニバーサル特機株式会社 Detecting buoy
JP4470805B2 (en) * 2005-04-28 2010-06-02 株式会社島津製作所 Magnetic sensor position measurement method

Also Published As

Publication number Publication date
JP2008256400A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
CN1871496B (en) Magnetic sensor control method, magnetic sensor controller and portable terminal device
Wahdan et al. Magnetometer calibration for portable navigation devices in vehicles using a fast and autonomous technique
CN103299247B (en) For the dynamic tracing in magnetic near field and the equipment of compensation and method
JPH06323865A (en) Fixing device of submarine using magnetism marker
JP2009075005A (en) Navigation apparatus
JP4958424B2 (en) Electric field detection method, apparatus, electric field detection method program, moving object position estimation detection method, apparatus, and moving object position estimation detection method program
KR20140093111A (en) Geomagnetic sensor calibration apparatus and method thereof
KR101165673B1 (en) Apparatus for determining position of underwater vehicle using geomagnetic map information and method thereof
JP4941199B2 (en) Navigation device
JP2007155388A (en) Estimation detection method and device of moving body position or the like, and program of estimation detection method of moving body position or the like
CN105737850B (en) Mutative scale one direction gravity sample vector matching locating method based on particle filter
JP4958605B2 (en) Moving object position estimation detection method, apparatus, and moving object position estimation detection program
CN110618462A (en) Method and device for detecting submarine cable
CN110082611A (en) A kind of localization method of field measurement device
JP2000304533A (en) Ship position displacement detector
JP6052090B2 (en) Magnetic measurement system
JP4425624B2 (en) MOBILE BODY POSITION ESTIMATION DETECTING METHOD, DEVICE, AND MOBILE BODY POSITION ESTIMATION DETECTING PROGRAM
JP5190134B2 (en) Angular velocity detection method and apparatus
JP4144851B2 (en) Ship position detection method, position detection apparatus and system
CN103411603A (en) Attitude position measuring method of electric field sensors in ship electric field protection
JP4213017B2 (en) Method for detecting relative position of moving target of magnetic material
JP3968442B2 (en) Hull orientation estimation device
JP4470805B2 (en) Magnetic sensor position measurement method
JP2013117442A (en) Bearing error compensation device, bearing error compensation method, bearing error compensation program, error angle compensation apparatus, triaxial magnetic sensor and sensor module
CN109716064A (en) Electronic compass

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4958605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees