JP3751605B2 - Reference target - Google Patents

Reference target Download PDF

Info

Publication number
JP3751605B2
JP3751605B2 JP2003160747A JP2003160747A JP3751605B2 JP 3751605 B2 JP3751605 B2 JP 3751605B2 JP 2003160747 A JP2003160747 A JP 2003160747A JP 2003160747 A JP2003160747 A JP 2003160747A JP 3751605 B2 JP3751605 B2 JP 3751605B2
Authority
JP
Japan
Prior art keywords
signal
displacement
reflection light
light
regular reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003160747A
Other languages
Japanese (ja)
Other versions
JP2004361272A (en
Inventor
敦郎 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2003160747A priority Critical patent/JP3751605B2/en
Publication of JP2004361272A publication Critical patent/JP2004361272A/en
Application granted granted Critical
Publication of JP3751605B2 publication Critical patent/JP3751605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被測定物体の変位量を非接触で測定できる変位測定装置の校正に使用される基準ターゲットに係り、特に反射率が領域によって大きく異なるような被測定物上の変位量を正確に測定でき、また被測定物の凸部分の陰にあたる測定不能領域を減らせるために、被測定物の面積や体積がより正確に測定できる変位測定装置の校正に用いて有用な基準ターゲットに関するものである。
【0002】
【従来の技術】
下記の特許文献1には、図8に示すような構造の変位測定装置が開示されている。
この変位測定装置は、光を用いて測定対象面の高さ変位(凹凸)を測定する装置である。図8に示すように、投光部において、光源121から出力されたレーザビームを回転ミラー型または振動ミラー型等の偏向装置122によって偏向し、この偏向した光をレンズ123によって同一平面上の所定範囲内を光軸が平行に移動するビームとする。このビームは、基準面200上の測定対象物100の表面100aに出射され、測定対象物100の表面100a上に定められたビームの照射点Sは、直線的(実際には被測定対象表面の凹凸により蛇行する)に片道あるいは往復走査される。
【0003】
この照射点Sからの反射光を受ける受光部は、レンズアレイ125、結像レンズ126および受光素子127によって構成されている。
【0004】
レンズアレイ125は、等しい焦点距離を有する複数(図8では5個)の集光レンズ部125a〜125eが一列に並ぶように合成樹脂あるいはガラスで一体成形されている。
【0005】
結像レンズ126は、投光部から出射されるビームの走査幅寸法より大きい径を有し、光軸と直交する一方の面が球面状に形成されており、レンズアレイ125からのビームを集束して、受光素子127の受光面127aに照射点Sの像を結像させる。
【0006】
受光素子127は矩形状の受光面127aを有し、受光面127aに照射された光の位置のうち、受光面127aの縦方向に沿った位置に対応する信号を出力するように構成されている。
【0007】
なお、この従来例では、投光部からのビームの光軸と受光部のレンズアレイ125の光軸とは、受光量を確保するために、基準面2の法線をはさんで等しい角度、即ち正反射の向きとなるように予め設定されている。
【0008】
この変位測定装置によれば、測定対象物100に向かって出射されるビームの照射点Sは、測定対象物100の表面100a上を一定方向に走査される。この照射点からの光は、レンズアレイ125の球面集束型の各集光レンズ部125a〜125eによってほぼ平行なビームに集束されて球面集束型の結像レンズ126に入射し、結像レンズ126によって偏向集束されて受光素子127の受光面127aに照射点Sの像を点状に結像させる。この発明によれば、被測定面が粗く照射点からの光が広がっている場合でも、精度の高い測定が高速に行なえる。
【0009】
上述したような正反射光を用いた従来の変位測定装置において、測定対象物の変位と受光素子の出力は、光学系に起因する誤差のために正比例の関係とはならず、直線性が得られない。この受光素子の出力における非直線性の程度は製品ごとに異なるため、これを一定に校正しなければならない。この校正のために、共通の測定対象物としてばらつきの少ない一定の基準で製作された基準ターゲットが使用される。
【0010】
図9(a)は、図8に示した正反射光を用いた変位測定装置に用いる基準ターゲット200とその校正時における光路を示す図である。この正反射用の基準ターゲット200は表面がアルミニウム蒸着による鏡面とされている。
【0011】
なお、図8に示した変位測定装置は正反射タイプであり、前述したように測定光が斜めに測定対象物に入射するので、測定対象物が変位すると入射点が変化するため、測定範囲を広く取ることができないが、鏡面に対しては強い反射光が得られ測定の分解能は高い。
【0012】
これに対し、変位測定装置には乱反射を用いるタイプもある。乱反射タイプでは、図9(b)に示すような乱反射用の基準ターゲット201を用いる。この乱反射用の基準ターゲット201は、基板の表面にマグネシウムを燃焼させて発生させた煙を付着させて酸化マグネシウムの白い膜を形成して乱反射面としたものである。図9(b)中に光路を示すように、乱反射タイプの変位測定装置では、測定対象物に測定光 (投光)が垂直に入射し、測定対象物の表面に対して斜めの方向から散乱光を受光して測定が行なわれる。
【0013】
乱反射タイプの変位測定装置では、前述したように測定光が垂直に測定対象物に入射するので、測定対象物が変位しても入射点は変化しないため、測定範囲は正反射タイプに比べて相対的に広く取ることができるが、測定の分解能は正反射タイプに比べて相対的に低くなる。
【0014】
【特許文献1】
特開平11−83426号公報
【0015】
【発明が解決しようとする課題】
図10(a)は、前記変位測定装置の被測定物であるプリント基板1を示す。このプリント基板1の上にはパッド2が設けられており、該パッド2の上にはんだ3が設けられている。このはんだ3の周囲にはパッド2の一部を覆ってレジスト4が設けられている。
【0016】
はんだ3はプリント基板1及びパッド2の表面からある程度の高さを有する凸形状に形成されており、光学的には反射率が相対的に低い低反射率領域となっている。はんだ3の周囲を取り巻くパッド2及びレジスト4は、反射率がはんだ3に比べて相対的に高く、ほぼ鏡面に近い反射率を有する高反射率領域となっている。
【0017】
従って、正反射光のみを用いる前記変位測定装置でこのプリント基板1を測定すると、図10(b)に示すように、はんだ3の部分では十分な反射光量が得られず、受光素子の受光量は低くなるが、その周囲のパッド2及びレジスト4の領域は高い反射率で測定光を正反射するので、受光素子の受光量は非常に高くなる。
【0018】
図8に示した従来の変位測定装置によれば、図11に示すように、光源からの測定光が被測定物のはんだ3で正反射して受光素子127に入射した場合、はんだ3の反射率は前述したように小さいので受光素子127での受光量は小さい。ところが、光源から来るレーザービームは図示のように中央が高く裾野にかけて広がり (フレア)を有する強度分布を有しているので、測定光がはんだ3を走査している時、そのフレアの部分ははんだ3の周囲の反射率の高いレジスト4等で正反射し、はんだ3からの正反射光とともに受光素子127に到達する。従って、はんだ3で正反射した光によって受光素子127で得られる信号は、その周囲からの正反射光による信号に比べて十分な強度を有するとはいえない。つまり、はんだ3からの正反射光とその周囲のレジスト4等によるフレア光の正反射光との相対的な強度差が小さいので、はんだ3からの正反射光を用いてはんだ3の変位を正確に測定することは困難であるという問題があった。
【0019】
また、図12に示すように、プリント基板1上のはんだ3は基板及びパッドの表面からある程度の高さを有する凸形状に形成されているため、法線に対して等しい入射角と反射角で測定光が入反射する場合、凸形状であるはんだ3の周囲にはんだ3の陰となる領域Wができて被測定物(はんだ3)の正確な測定ができないという問題があった。
【0020】
すなわち、図12において、はんだ3の右側の領域Wで正反射した測定光ははんだ3の陰となって受光素子には到達しない。また、はんだ3の左側の領域Wには測定光が到達しないので受光素子に反射光が到達することはない。
【0021】
そこで、本願発明者等は、前記プリント基板における測定光の反射率を再度検討したところ、図10(c)に示すように乱反射については正反射の場合と異なる結果が得られることに気づき、被測定物の反射率に応じて正反射と乱反射を使い分けるという発想を得るに至った。
【0022】
すなわち、図10(c)に示すように、乱反射の場合には、はんだ3の周囲のパッド2及びレジスト4での乱反射による受光素子の受光量は相対的に大きいが、はんだ3の部分でも、乱反射によって受光素子ではある程度の受光量を得ることができる。つまり、受光素子に入射する光量は、前述したように正反射の場合には、はんだ3とパッド2とで差が大きいが、乱反射の場合にはその差が小さくなる。
【0023】
そこで本発明者は、上記の課題を解決すべく、被測定物体が、反射率が相対的に低い低反射率領域と、前記低反射率領域の周囲にある反射率が相対的に高い高反射率領域とを有している場合にも、正反射と乱反射を最適に使い分けて正確な変位測定 (高さ測定)ができる変位測定装置の研究開発を行なった。その結果、発明の実施の形態の項で詳細に説明するように、従来にはない新規かつ進歩性のある正反射光・乱反射光併用タイプの変位測定装置を完成するに至った。
【0024】
しかし、正反射光・乱反射光併用タイプの変位測定装置においても、従来の技術の項で説明したように、測定対象物の変位と受光素子の出力は正比例の関係とはならず、直線性が得られないので、校正が必要になる。特に、図13に示すように、正反射光の場合と乱反射光の場合とでは、測定対象物の移動量 (変位)と受光素子の出力(変位出力)との関係が異なるので、図14に示すような補正装置を用いて正比例の関係となるようにそれぞれ校正を行なう必要がある。
【0025】
すなわち、図14に示すように、変位測定装置300に対して相対移動自在のステージ301に基準ターゲット200を設置して測定を行なう。変位測定装置300に対するステージ301の移動量 (すなわち基準ターゲット200の変位)と変位測定装置300からの変位出力が補正手段302に入力される。補正手段302では、基準ターゲット200の移動量と受光素子の変位出力の関係が正比例するように演算を行い、その結果得られた補正値を変位測定装置300に設けられたROM303に格納する。
【0026】
ところが、従来の基準ターゲットは、図9(a)(b)に示したように、正反射用と乱反射用とで別々になっているので、上述した校正作業は正反射用と乱反射用の各基準ターゲット200,201を用いてそれぞれ別々に行なう必要があった。しかし、このように基準ターゲットを交換して校正作業を行なうと、交換時の位置ずれによる校正精度の悪化を防止することができない。すなわち、ステージ301に対する各基準ターゲット200,201の取り付け状態が必ずしも同一にならないため、基準ターゲット200,201に対する測定光の入射点と、ここから反射した光の受光素子への入射点とに対応する測定上の原点が、2種類の基準ターゲット200,201でずれてしまうという問題があった。
【0027】
そこで、本発明は、正反射と乱反射を最適に使い分けて正確な変位測定 (高さ測定)ができる従来にはない正反射光・乱反射光併用タイプの変位測定装置において、正反射光・乱反射光のいずれに関する校正にも共通して用いることができる基準ターゲットを提供することにより、正反射光・乱反射光併用タイプの変位測定装置の校正精度を向上させて同変位測定装置の利便性を最大限に発揮させることを目的としている。
【0028】
【課題を解決するための手段】
請求項1に記載された基準ターゲットは、被測定物体5に測定光を照射する投光部と、前記被測定物体5からの反射光を受光する受光部と、前記受光部からの信号を用いて前記被測定物体5の変位信号を出力する信号処理部を有する変位測定装置の校正に使用されるものであり、基板の表面に鏡面仕上げされた乱反射膜を有することを特徴としている。
【0029】
投光部からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射用の変位測定装置の校正にも、乱反射用の変位測定装置の校正にも用いることができる。
【0030】
請求項2に記載された基準ターゲットは、被測定物体5に測定光を照射する投光部12と、前記被測定物体5からの正反射光を受光する正反射受光部13と、前記被測定物体5からの乱反射光を受光する乱反射受光部14と、前記正反射受光部13からの信号と前記乱反射受光部14からの信号とを用いて前記被測定物体5の変位信号Hを出力する信号処理部15を有する変位測定装置10の校正に使用されるものであり、基板の表面に鏡面仕上げされた乱反射膜を有することを特徴としている。
【0031】
投光部12からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射受光部13の校正にも、乱反射受光部14の校正にも共通して用いることができ、基準ターゲットの交換により校正精度が低下することはない。
【0032】
請求項3に記載された基準ターゲットは、被測定物体5に測定光を照射する投光部12と、前記被測定物体からの正反射光を受光して正反射変位信号Aと正反射光量信号Bを出力する正反射受光部13と、前記被測定物体からの乱反射光を受光して乱反射変位信号Cと乱反射光量信号Dを出力する乱反射受光部14と、前記正反射受光部13からの正反射変位信号A及び正反射光量信号Bと前記乱反射受光部14からの乱反射変位信号C及び乱反射光量信号Dとを用いて前記被測定物体5の変位信号Hを出力する信号処理部15を有する変位測定装置10の校正に使用されるものであり、基板の表面に鏡面仕上げされた乱反射膜を有することを特徴としている。
【0033】
前記信号処理部15が、前記正反射受光部13からの正反射変位信号A及び正反射光量信号Bと、前記乱反射受光部14からの乱反射変位信号C及び乱反射光量信号Dを用いることにより、前記被測定物体5の反射率に対応して正反射と乱反射を使い分けて信号を選択することにより、当該被測定物5の正確な変位測定 (高さ測定)を非接触で行なうことができる変位測定装置10の校正作業において、投光部12からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射受光部13の校正にも、乱反射受光部14の校正にも共通して用いることができ、基準ターゲットを交換しなくてよいので校正精度が低下することがなく、正反射と乱反射を用いた上記所期の性能が十分に発揮されるような校正を行なうことができる。
【0034】
請求項4に記載された基準ターゲットは、請求項3に記載の基準ターゲットにおいて、前記変位測定装置10の前記信号処理部15が、
前記正反射光量信号Bのしきい値Eと、前記乱反射光量信号Dの第1のしきい値Fと、前記正反射光量信号Bと、前記乱反射光量信号Dとを入力され、前記正反射変位信号Aと前記乱反射変位信号Cのいずれか一方を選択するための選択信号Sを生成するデータ判定部25と、
前記正反射変位信号Aと前記乱反射変位信号Cと前記データ判定部25からの前記選択信号Sが入力され、前記正反射変位信号Aと前記乱反射変位信号Cのいずれか一方を選択して出力する変位選択部26と、
を有することを特徴としている。
【0035】
前記正反射光量信号Bをそのしきい値Eと比較し、前記乱反射光量信号Dをその第1のしきい値Fと比較し、その結果に基づいて前記正反射変位信号Aと前記乱反射変位信号Cのいずれか一方を選択して出力することができ、前記被測定物体5の反射率に対応して正反射と乱反射を使い分けて信号を選択することにより、当該被測定物5の正確な変位測定 (高さ測定)を非接触で行なうことができる変位測定装置10の校正作業において、投光部12からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射受光部13の校正にも、乱反射受光部14の校正にも共通して用いることができ、基準ターゲットを交換しなくてよいので校正精度が低下することがなく、正反射と乱反射によって得られる上記各信号を用いた上記所期の性能が十分に発揮されるような校正を行なうことができる。
【0036】
請求項5に記載された基準ターゲットは、請求項4に記載の基準ターゲットにおいて、前記データ判定部25が、
前記正反射光量信号Bが前記正反射光量信号のしきい値Eより大きいと判定した場合には、前記正反射光量信号Bがその上限値より大きい場合に前記乱反射変位信号Cを選択する選択信号Sを出力するとともに、前記正反射光量信号Bがその上限値よりも小さい場合に前記正反射変位信号Aを選択する選択信号Sを出力し、
前記正反射光量信号Bが前記正反射光量信号のしきい値Eより小さいと判定した場合には、前記乱反射光量信号Dが前記乱反射光量信号の第1のしきい値Fより大きい場合に前記乱反射変位信号Cを選択する選択信号Sを出力するとともに、前記乱反射光量信号Dが前記乱反射光量信号の第1のしきい値Fより小さい場合には測定不能信号を出力することを特徴としている。
【0037】
この変位測定装置10によれば、前記正反射光量信号Bが前記正反射光量信号Bのしきい値Eより大きいと判定した場合において、前記正反射光量信号Bがその上限値より大きい場合には前記乱反射変位信号Cを選択するとともに、前記正反射光量信号Bがその上限値よりも小さい場合には前記正反射変位信号Aを選択し、選択信号Sを出力し、前記正反射光量信号Bが前記正反射光量信号Bのしきい値Eより小さいと判定した場合において、前記乱反射光量信号Dがその第1の第1のしきい値Fより大きい場合には前記乱反射変位信号Cを選択するとともに、前記乱反射光量信号Dがその第1のしきい値Fより小さい場合には測定不能とするので、前記被測定物体5の反射率に対応して正反射と乱反射を使い分けて信号を選択することにより、当該被測定物5の正確な変位測定 (高さ測定)を非接触で行なうことができる。そして、この変位測定装置10の校正作業において、投光部12からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射受光部13の校正にも、乱反射受光部14の校正にも共通して用いることができ、基準ターゲットを交換しなくてよいので校正精度が低下することがなく、正反射と乱反射によって得られる上記各信号としきい値を用いた上記所期の性能が十分に発揮されるような校正を行なうことができる。
【0038】
請求項6に記載された基準ターゲットは、請求項1〜5に記載の基準ターゲットにおいて、前記基板が光非浸透性材料からなり、前記乱反射膜が前記基板の表面に形成された所定厚さの塗膜を研磨してなることを特徴としている。
【0039】
投光部12からの光は、基準ターゲットの研磨された乱反射膜で正反射されるとともに乱反射されるので、正反射受光部13の校正にも、乱反射受光部14の校正にも共通して用いることができ、基準ターゲットの交換により校正精度が低下することはない。このため、正反射光と乱反射光を用いた上記変位測定装置の所期の性能を十分に発揮させることができる。
【0040】
請求項7に記載された基準ターゲットは、請求項1〜5に記載の基準ターゲットにおいて、前記基板が金属板であり、前記乱反射膜が前記金属板の表面に形成された厚さ10〜20μmの白色の粉体塗膜を研磨してなることを特徴としている。
【0041】
投光部12からの光は、基準ターゲットの研磨された白色の粉体塗膜からなる乱反射膜で正反射されるとともに乱反射されるので、正反射受光部13の校正にも、乱反射受光部14の校正にも共通して用いることができ、基準ターゲットの交換により校正精度が低下することはない。このため、正反射光と乱反射光を用いた上記変位測定装置の所期の性能を十分に発揮させることができる。
【0042】
【発明の実施の形態】
本発明の実施の形態を図1〜図7を参照して説明する。
図1は、本実施の形態に係る変位測定装置の概略構成図であり、図2は同変位測定装置の信号処理における信号の入出力状態を示すブロック図であり、図3は同変位測定装置の信号処理部のブロック図であり、図4は同信号処理部における処理手順を示す流れ図であり、図5は同変位測定装置における2系統の受光部の各結像レンズが連結された状態を示す図であり、図6は同変位測定装置における2系統の受光部の各結像レンズの位置調整を示す模式図であり、図7は同変位測定装置において2系統の受光部の校正に共通して使用される本発明に係る基準ターゲットとその入反射光路を示す断面図である。
【0043】
図1に示すように、本例の変位測定装置10は、簡略化して図示した筐体11を本体としている。この筐体11の内部には、被測定物体5に測定光を照射する投光部12と、被測定物体5からの正反射光を受光して正反射変位信号と正反射光量信号を出力する正反射受光部13と、被測定物体5からの乱反射光を受光して乱反射変位信号と乱反射光量信号を出力する乱反射受光部14と、これら2つの受光部13,14からの信号が入力されて後述する所定の処理を行なう信号処理部15を有している。
【0044】
本変位測定装置10は、上記の構成において被測定物体5に測定用のレーザー光を照射して該被測定物体5上の測定箇所の変位量を三角測量の原理を利用して非接触で測定するものである。本変位測定装置10は、図10(a)を参照して説明したように、反射率が相対的に低い低反射率領域(例えば前記はんだ3)と、その周囲にある反射率が相対的に高い高反射率領域(例えば前記パッド2及びレジスト4)とを有する被測定物体5(例えば前記プリント基板1等)の測定に適している。
【0045】
投光部12は、レーザービームを出射するレーザー光源16と、駆動されて回転することによりレーザー光源16からのビームを所定方向に走査する走査手段としてのポリゴンミラー17と、ポリゴンミラー17からの走査ビームを被測定物体5の基準面上の所定範囲内で光軸が平行に移動するように偏向させるレンズ18とを有している。
【0046】
正反射受光部13は、被測定物体5の基準面に対し、前記投光部12のレンズ18から入射するビームの入射角と同一の反射角で反射する正反射光を受光する第1の受光系である。この正反射受光部13は、被測定物体5に近い側から光軸に沿って、集光レンズ19(アレイ)と、減衰フィルターとしてのND(neutral density) フィルター20と、結像レンズ21と、位置検出素子22とが順に配置されて固定された構造とされている。
【0047】
乱反射受光部14は、被測定物体5の基準面に対して垂直な光路を有しており、投光部12からのビームが被測定物体5で乱反射した乱反射光を受光する第2の受光系であり、本例の光路配置によれば垂直受光部とも指称しうる。この乱反射受光部14は、前記正反射受光部13と同様、被測定物体5に近い側から光軸に沿って、集光レンズ19(アレイ)と、結像レンズ21と、位置検出素子22とを有しているが、NDフィルター20は設けられていない。
【0048】
NDフィルター20が正反射受光部13のみに設けられ、乱反射受光部14に設けられていないのは、反射光の強度は散乱光よりも正反射光の方が大きいので、異なる反射光を利用する2系統の受光部を備えた本変位測定装置10において各受光部13,14が受ける反射光の強度のバランスを取るためである。
【0049】
従って、本変位測定装置10によれば、被測定物体5における散乱光と正反射光の強度比に応じて、最適の減衰率を有する減衰フィルターを採用することができ、被測定物体5の光学的性質に対応した本変位測定装置10による最適な変位測定を実現することができる。
【0050】
2つの受光系13,14の各結像レンズ21,21は、投光部12におけるビームの走査幅寸法より大きい径を有し、光軸と直交する一方の面が球面状に形成されており、集光レンズ(アレイ)19,19からのビームを集束して、各受光素子22,22の受光面に被測定物体5における照射点の像を結像させる。
【0051】
2つの受光系13,14の各受光素子22,22は矩形状の受光面を有し、受光面に照射された光の位置のうち、受光面の縦方向に沿った位置に対応する信号 (変位信号)と、受光面に照射された光の強度に対応する信号(光量信号)を出力するように構成されている。ここで、正反射受光部13が出力する変位信号を正反射変位信号、正反射受光部13が出力する光量信号を正反射光量信号、乱反射受光部14が出力する変位信号を乱反射変位信号、乱反射受光部14が出力する光量信号を乱反射光量信号と呼ぶ。
【0052】
図1に示すように、2つの受光系13,14の各受光素子22,22は共通の信号処理部15に接続されている。信号処理部15は、前記正反射受光部13からの正反射変位信号及び正反射光量信号と前記乱反射受光部14からの乱反射変位信号及び乱反射光量信号とを用いて前記被測定物体5の変位信号を出力する。この信号処理部15は図示しない画像処理部に接続され、前記変位信号等を処理することによって被測定物体5の画像を合成することができる。
【0053】
さらに具体的には、信号等の入出力状態を表す図2のブロック図に示すように、本例の信号処理部15においては、前述したように、前記正反射受光部13からの正反射変位信号A及び正反射光量信号Bと前記乱反射受光部14からの乱反射変位信号C及び乱反射光量信号Dが入力される他、前記正反射光量信号のしきい値Eと、前記乱反射光量信号の第1のしきい値Fと、前記乱反射光量信号の第2の第2のしきい値Gも入力され、後述する所定のアルゴリズムに従った信号処理によって、これらの信号としきい値から変位信号Hと光量信号Iとパッド認識信号Jを得ている。
【0054】
ここで、前記正反射光量信号のしきい値Eは、反射率の低いはんだ3を認識するために設定される正反射はんだ輝度を表すものであり、可変パラメータである。また、前記乱反射光量信号の第1のしきい値Fは、反射率の低いはんだ3を認識するために設定される乱反射はんだ輝度を表すものであり、また乱反射光での測定不能レベルであるダークレベルを認識するための値であり、可変パラメータである。また、前記乱反射光量信号の第2のしきい値Gは、乱反射光でパッド2を認識するための値であり、可変パラメータである。
【0055】
上記各しきい値E,F,Gは上述したようにいずれも可変パラメータであり、被測定物体5の測定面の反射率に応じて最適に設定することができるので、本変位測定装置10は測定対象の光学的性質に対応した最適の設定で正反射と乱反射を使い分けて正確な変位測定を行なうことができる。
【0056】
図2に示した信号等の入出力状態を示すブロック図において、各信号と各しきい値を用いて行う信号処理のアルゴリズムは、図3に示すブロック構成の信号処理部15によって実行される。
【0057】
図3に示すように、信号処理部15はデータ判定部25を有している。データ判定部25は、前記正反射光量信号のしきい値Eと、前記乱反射光量信号の第1の第1のしきい値Fと、前記乱反射光量信号の第2のしきい値Gと、前記正反射光量信号Bと、前記乱反射光量信号Dとを入力され、前記正反射変位信号Aと前記乱反射変位信号Cのいずれか一方を選択するための選択信号Sを生成する。
【0058】
また、データ判定部25は、前記乱反射光量信号Dが第2のしきい値G以上であれば、パッド認識信号Jを1とし、第2のしきい値G以下ならばJを0とする。
【0059】
また、図3に示すように、信号処理部15は変位選択部26を有している。変位選択部26は、前記正反射変位信号Aと前記乱反射変位信号Cと前記データ判定部25からの前記選択信号Sが入力され、前記正反射変位信号Aと前記乱反射変位信号Cのいずれか一方を選択して変位信号Hとして出力する。
【0060】
また、図3に示すように、信号処理部15は光量選択部27を有している。この光量選択部27は、予め行なう設定により前記正反射光量信号Bを光量信号Iとして出力する。なお、設定を変更することにより、乱反射光量信号Dを光量信号Iとして出力できる。さらに、正反射光量信号Bと乱反射光量信号Dとデータ判定部25からの選択信号Sとが入力されることで、正反射光量信号Bと乱反射光量信号Dのいずれか一方を選択して、光量信号Iとして出力することができるように設定することができる。
【0061】
図3に示す構成の信号処理部15における処理手順を図4の流れ図を参照して説明する。まず、前記データ判定部25は、正反射光量信号Bが正反射光量信号のしきい値Eより大きいか否かを判定する(ST1)。大きいと判定した場合(ST1でYES)には、前記正反射光量信号Bがその上限値より大きいか否か(「ブライト」か否か)を判定する(ST2)。ブライトである場合(ST2でYES、すなわち正反射が限度を越えて明るい場合)は、乱反射による変位信号Cを採用する(K1)。ブライトでない場合(ST2でNO、すなわち正反射が明るさの限度を越えていない場合)は、正反射による変位信号Aを採用する(K2)。
【0062】
正反射光量信号Bが正反射光量信号のしきい値Eより大きいと判定しなかった場合(ST1でNO)には、乱反射光量信号Dが乱反射光量の第1のしきい値Fより大きいか否かを判定する(ST3)。大きいと判定した場合(ST3でYES)は、乱反射による変位信号Cを採用する(K1)。大きいと判定しなかった場合(ST3でNO、正反射も乱反射もしきい値より光量が小さい場合、すなわち「ダーク」の場合)は、正反射、乱反射のいずれの変位信号も採用できず、測定不能となる(K3)。
【0063】
また、本例の信号処理部15では、上記の信号処理手順において、乱反射光量信号Dが第2のしきい値G以上であれば、高反射率領域であるパッド2を認識したことを示す信号として、パッド認識信号Jを1として出力する。第2のしきい値G以下ならば、高反射率領域であるパッド2を認識していないことを示す信号として、Jを0として出力する。
【0064】
このように、本変位測定装置10によれば、特に検出したい高反射率領域について適当なしきい値を設定しておけば、乱反射光量信号Dが当該しきい値以上であるか否かによって、当該高反射率領域を正確に検出して直ちに信号として出力し、種々の用途で有効に利用することができる。例えば、前記パッド認識信号Jは、基準面としてレジスト面でなくパッド面を使用する場合に有効に使用することができる。
【0065】
次に、本変位測定装置10では、正反射受光部13の結像レンズ21と乱反射受光部14の結像レンズ21は、図1中に模式的に示す固定手段30によって互いに連結されている。
図5に構造の詳細を示すように、いずれの受光部の結像レンズ21も、それぞれ略L字形の取り付け具31を介してそれぞれ独立に、ねじ32等の締結手段で位置調整自在に筐体11に取り付けられている。すなわち、取り付け具31のフランジ31aには長孔31bが設けられ、この長孔31bを相通したねじ32が筐体11にねじ込まれ、取り付け具31を筐体11に固定している。
【0066】
従って、ねじ32を緩めれば筐体11に対して取り付け具31を動かすことができ、図6及び図5(b)中に矢印で示すように、各受光部13,14ともに光軸方向についての結像レンズ21の位置を調整することができ、位置検出素子22の受光面に垂直な方向についての結像位置を適宜調整することができる。
【0067】
なお、位置検出素子22の受光面に平行な方向についての結像位置の調整は、位置検出素子22が出力する反射光の受光信号を検出しながら、当該位置検出素子22を同方向に移動させて行なうことができる。
【0068】
このようにして2つの結像レンズ21,21の位置を調整し、ねじ32を締め付けて筐体11に対して固定したあとで、図5に示すように2つの取り付け具31,31同士をを共通の固定手段30で連結する。本例の固定手段30は剛性を有する連結板であり、各取り付け具31,31にねじ32等の締結手段で固定する。
【0069】
本変位測定装置10は、正反射受光部13と乱反射受光部14の2つの受光部を有しており、被測定物体5からの反射光の光量に応じてこれら2つの受光系13,14から最適な受光系を選択し、正反射又は乱反射の受光信号を選択して利用するという原理を採用しているので、これら2つの受光系13,14において各結像レンズ21,21の位置がずれると各受光素子22,22での受光位置がずれて検出される変位に受光系間で誤差が生じることとなる。このような結像レンズ21の位置ずれの原因としては、例えば温度の変化による部品の膨張や収縮によって部品に加わる応力が挙げられ、その結果、位置がすれてしまうことがある。しかしながら、本変位測定装置10によれば、調整後の2受光系の各結像レンズ21,21は固定手段30で強固に結合されて相互の位置関係が所期の状態に安定して保持されるので、位置検出素子22上の反射光の受光位置が調整後の所期の位置からずれるおそれがない。
【0070】
従って、2つの受光系13,14を選択的に用いることにより正反射光と乱反射光を使い分けて変位測定 (高さ測定)を行なう本変位測定装置10の特長を損なうことがなく、低反射率領域と高反射率領域を有する被測定物体5についての変位測定の正確性が十分に担保されるという効果がある。
【0071】
しかしながら、上述し図5(a)及び図6中に矢印で示したように結像レンズ21,21の光軸方向の位置を調整し、ねじ32を締め付けて両結像レンズ21,21の相対的位置を固定手段30で固定しても、実際には必ずしも正しい変位測定を行なえるとは限らず、一般には位置検出素子22が出力する変位信号の校正を行なわなければならない。すなわち、図13に示したように、被測定物体5の移動量 (変位)と位置検出素子22の変位出力(変位信号)との関係は正比例ではなく、被測定物体5の遠い側と近い側とで感度が異なる。また、正反射光の場合と乱反射光の場合とでは、被測定物体5の移動量 (変位)と位置検出素子22の変位出力(変位信号)との関係が異なっている。従って、各位置検出素子22,22の感度が同じになるように、被測定物体5の移動量 (変位)と各位置検出素子22,22からの変位出力が正比例の関係となるようにソフトウエア的に補正する作業 (校正)を行なわなければならない。
【0072】
上記校正は、基準ターゲットの取り替えによって誤差が生じることを避けるため、正反射にも乱反射にも使用できる同一の基準ターゲットを用いて製品ごとに行なう。図7に示すように、本変位測定装置の校正に使用する基準ターゲット40は、基板41の表面に乱反射膜42を形成したものであるが、この乱反射膜42はラッピングにより鏡面状態に研磨されて正反射の機能も付与されている。
【0073】
より具体的には、本例の基板41は非多孔性材料又は光非浸透性材料であり、粉体塗装が載りやすい材質としての鉄、アルミニウム、真鍮などの金属からなる板である。従って、光が染み込み易いセラミック等の多孔性材料は基板としては好ましくない。特に、鉄であれば磁石で固定できるので、校正時にステージに対する取り付けが簡易になるという効果が得られる。
【0074】
この基板41の表面に、白色の樹脂からなる粉体を静電気で付着させ、これを焼成することにより、樹脂の粉末を溶解させて均一な乱反射膜42としている。この粉体塗装による塗膜は通常の液体塗料の塗布で得られる塗膜に比べて丈夫であり、厚さも所望の値に精密に設定できるので、ラッピングのような強い機械加工によっても破損することがなく鏡面に仕上げることができる。
【0075】
この粉体塗膜の厚さは、ラッピングに耐えうる強度を得るために最小限必要な厚さと、あまり厚くした場合に入射光が内部に浸透しすぎて散乱光の強度が不要に弱くなってしまう不都合等とを勘案して決定すればよく、本例では一例として10〜20μmとした。
【0076】
また、本例の粉体塗膜は白色であり、散乱光の強度が高いが、必要な強度の散乱光が得られるのであれば、白色以外の色彩の塗膜でもかまわない。
【0077】
この基準ターゲット40を、図14に示すようなステージ301に取り付け、本例の変位測定装置10(図14中では変位測定装置300が表示されている)によって該基準ターゲット40(図14中では基準ターゲット200が表示されている)を被測定物体5として正反射系と乱反射系の各受光部13,14で測定を行い、基準ターゲット40の移動量 (変位)と各位置検出素子22,22の変位出力(変位信号)との関係が正比例となるような補正データを求め、本変位測定装置10の記憶手段 (図14のROMに相当する)に記憶させる。これによって原点を挟んだ被測定物体5の遠い側と近い側とで同じ感度を得ることができ、前述したような本変位測定装置10における正反射と乱反射を使い分けることで得られる前記効果を確実に達成することができる。
【0078】
なお、本変位測定装置10によれば、被測定物体5において測定用のレーザー光のビームを所定方向 (X方向)に沿って走査し、これに同期して同走査方向と直交する方向 (Y方向)について本変位測定装置10と被測定物体5を相対移動させることにより、被測定物体5の測定面の全面を走査することができる。そして、その走査において上述のように適当に選択した変位信号と光量信号を出力し、これを図示しない画像処理部において本変位測定装置10の図示しない制御装置からの信号とともに適当に処理すれば、被測定物体5の測定面の面積や被測定物体5の体積等が正確に再現でき、被測定物体5の精密な距離画像を生成することもできる。
【0079】
以上説明した実施の形態では、乱反射受光部14が被測定物体5の測定面に対して垂直な光軸を有する垂直受光部であったが、乱反射受光部14は被測定物体5の測定面に対して必ずしも垂直に配置する必要はない。
【0080】
また、以上説明した実施の形態では、乱反射受光部14は1つであったが、2以上設けて相対的に光量の大きい方の乱反射光の変位信号及び光量信号を用いるようにする等、適宜使い分けても良いし、2つの乱反射受光部14からの乱反射光による信号を合成する等、何らかの演算を加えて使用しても良い。例えば、はんだの部分の測定精度を向上させるために、2つの乱反射受光部の変位信号を平均して使用してもよい。また、はんだの投光側壁面については、垂直受光部は迷光の影響を受ける可能性があるため、この垂直受光部以外の他の乱反射受光部の変位を使用してもよい。なお、ここで迷光とは測定物体に当たった光が散乱することにより、別の物体に当たって受光部に到達してしまった光を言う。
【0081】
また、以上説明した実施の形態の変位測定装置10は、低反射率領域と高反射率領域とを有していたり、測定面に測定光の陰になる領域が生じるような被測定物の変位測定に特に有用であったが、本発明の基準ターゲット40が適用できる変位測定装置の測定対象がこれらのものに限定されないことはもちろんである。
【0082】
また、以上説明した実施の形態では、基準ターゲット40を正反射系と乱反射系の2つの受光部13,14を有する変位測定装置10の校正に使用したが、本例の前記基準ターゲット40は正反射にも乱反射にも使用できるのであるから、正反射系と乱反射系の2つの受光部を有する変位測定装置のみに適用するものではなく、正反射系と乱反射系のいずれか一方の受光部を有する変位測定装置 (例えば図8に示した正反射光を用いる従来の変位測定装置)にも適用することができる。
【0083】
【発明の効果】
以上説明したように、請求項1に記載された基準ターゲットによれば、被測定物体に測定光を照射する投光部と、前記被測定物体からの反射光を受光する受光部と、前記受光部からの信号を用いて前記被測定物体の変位信号を出力する信号処理部を有する変位測定装置の校正において、投光部からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射用の変位測定装置の校正にも、乱反射用の変位測定装置の校正にも用いることができる。
【0084】
請求項2に記載された基準ターゲットによれば、被測定物体に測定光を照射する投光部と、前記被測定物体からの正反射光を受光する正反射受光部と、前記被測定物体からの乱反射光を受光する乱反射受光部と、前記正反射受光部からの信号と前記乱反射受光部からの信号とを用いて前記被測定物体の変位信号を出力する信号処理部を有する変位測定装置の校正において、投光部からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射受光部の校正にも、乱反射受光部の校正にも共通して用いることができ、基準ターゲットの交換により校正精度が低下することがない。
【0085】
請求項3に記載された基準ターゲットによれば、被測定物体に測定光を照射する投光部と、前記被測定物体からの正反射光を受光して正反射変位信号と正反射光量信号を出力する正反射受光部と、前記被測定物体からの乱反射光を受光して乱反射変位信号と乱反射光量信号を出力する乱反射受光部と、前記正反射受光部からの正反射変位信号及び正反射光量信号と前記乱反射受光部からの乱反射変位信号及び乱反射光量信号とを用いて前記被測定物体の変位信号を出力する信号処理部を有する変位測定装置の校正において、正反射受光部の校正にも、乱反射受光部の校正にも共通して用いることができ、基準ターゲットを交換しなくてよいので校正精度が低下することがなく、正反射と乱反射を用いた上記所期の性能が十分に発揮されるような校正を行なうことができる。
【0086】
請求項4に記載された基準ターゲットによれば、前記信号処理部が、
前記正反射光量信号のしきい値と、前記乱反射光量信号のしきい値と、前記正反射光量信号と、前記乱反射光量信号とを入力され、前記正反射変位信号と前記乱反射変位信号のいずれか一方を選択するための選択信号を生成するデータ判定部と、
前記正反射変位信号と前記乱反射変位信号と前記データ判定部からの前記選択信号が入力され、前記正反射変位信号と前記乱反射変位信号のいずれか一方を選択して出力する変位選択部と、
を有している請求項3に記載の変位測定装置の校正において、
正反射受光部の校正にも、乱反射受光部の校正にも共通して用いることができ、基準ターゲットを交換しなくてよいので校正精度が低下することがなく、正反射と乱反射によって得られる上記各信号を用いた上記所期の性能が十分に発揮されるような校正を行なうことができる。
【0087】
請求項5に記載された基準ターゲットは、前記データ判定部が、
前記正反射光量信号が前記正反射光量信号のしきい値より大きいと判定した場合には、前記正反射光量信号がその上限値より大きい場合に前記乱反射変位信号を選択する選択信号を出力するとともに、前記正反射光量信号がその上限値よりも小さい場合に前記正反射変位信号を選択する選択信号を出力し、
前記正反射光量信号が前記正反射光量信号のしきい値より小さいと判定した場合には、前記乱反射光量信号が前記乱反射光量信号のしきい値より大きい場合に前記乱反射変位信号を選択する選択信号を出力するとともに、前記乱反射光量信号が前記乱反射光量信号のしきい値より小さい場合には測定不能信号を出力する請求項4に記載の変位測定装置の校正において、
投光部からの光は基準ターゲットで正反射されるとともに乱反射されるので、正反射受光部の校正にも、乱反射受光部の校正にも共通して用いることができ、基準ターゲットを交換しなくてよいので校正精度が低下することがなく、正反射と乱反射によって得られる上記各信号としきい値を用いた上記所期の性能が十分に発揮されるような校正を行なうことができる。
【0088】
請求項6に記載された基準ターゲットは、請求項1〜5に記載の基準ターゲットにおいて、前記基板が光非浸透性材料からなり、前記乱反射膜が前記基板の表面に形成された所定厚さの塗膜を研磨してなるので、正反射と乱反射の機能を確実に兼備することができ、投光部からの光は、基準ターゲットの研磨された乱反射膜で正反射されるとともに乱反射される。これによって、正反射受光部の校正にも、乱反射受光部の校正にも共通して用いることができ、基準ターゲットの交換により校正精度が低下することがなく、正反射光と乱反射光を用いた上記変位測定装置の所期の性能を十分に発揮させることができる。
【0089】
請求項7に記載された基準ターゲットは、請求項1〜5に記載の基準ターゲットにおいて、前記基板が金属板であり、前記乱反射膜が前記金属板の表面に形成された厚さ10〜20μmの白色の粉体塗膜を研磨してなるので、投光部からの光は、基準ターゲットの研磨された白色の粉体塗膜からなる乱反射膜で正反射されるとともに乱反射される。このため、正反射受光部の校正にも、乱反射受光部の校正にも共通して用いることができ、基準ターゲットの交換により校正精度が低下することがなく、正反射光と乱反射光を用いた上記変位測定装置の所期の性能を十分に発揮させることができる。
【図面の簡単な説明】
【図1】図1は、本実施の形態における変位測定装置の概略構成図である。
【図2】図2は同変位測定装置の信号処理における信号の入出力状態を示すブロック図である。
【図3】図3は同変位測定装置の信号処理部のブロック図である。
【図4】図4は同信号処理部における処理手順を示す流れ図である。
【図5】図5は同変位測定装置における2系統の受光部の各結像レンズが連結された状態を示す図である。
【図6】図6は同変位測定装置における2系統の受光部の各結像レンズの位置調整を示す模式図である。
【図7】図7は本実施の形態における基準ターゲットとその入反射光の光路を示す断面図である。
【図8】図8は従来の正反射光を利用した変位測定装置の光学系の構造を示す概略斜視図である。
【図9】(a)は図8に示した変位測定装置に用いる基準ターゲットとその校正時における光路を示す図であり、(b)は乱反射光を利用した従来の変位測定装置に用いる基準ターゲットとその校正時における光路を示す図である。
【図10】はんだ等が設けられたプリント基板と、該プリント基板の各部における正反射光の強度と、乱反射光の強度を対比して示す図である。
【図11】従来の変位測定装置において光源からの測定光が被測定物のはんだで正反射して受光素子に入射した場合の問題点を示す図であって、入射光及び反射光の波形図を重ねて示す光路図である。
【図12】従来の変位測定装置において光源からの測定光が被測定物のはんだで正反射して受光素子に入射する場合に測定できない陰が生じることを示す図である。
【図13】変位測定装置における測定対象物の移動量と受光素子の変位出力との関係を正反射光と乱反射光とについて示す図である。
【図14】変位測定装置の校正に用いられる校正装置(ステージ及び補正手段)と基準ターゲットを示す略図である。
【符号の説明】
2…高反射率領域を構成するパッド、3…低反射率領域を構成するはんだ、
4…高反射率領域を構成するレジスト、5…被測定物体、
10…変位測定装置、12…投光部、13…正反射受光部、
14…乱反射受光部、15…信号処理部、
20…減衰フィルターとしてのNDフィルター、21…結像レンズ、
22…位置検出素子、25…データ判定部、26…変位選択部、
30…固定手段、
40…基準ターゲット、41…基板、42…乱反射膜、
A…正反射変位信号、B…正反射光量信号、C…乱反射変位信号、
D…乱反射光量信号、E…正反射光量信号のしきい値、
F…乱反射光量信号の第1のしきい値、
G…乱反射光量信号の第2のしきい値、
H…変位信号、I…光量信号、
J…高反射率領域認識信号としてのパッド認識信号、S…選択信号。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reference target used for calibration of a displacement measuring apparatus capable of measuring the displacement of a measured object in a non-contact manner, and in particular, accurately determines the displacement on a measured object whose reflectance varies greatly depending on the region. This is related to a reference target that can be used to calibrate a displacement measuring device that can measure the area and volume of the object to be measured more accurately in order to reduce the non-measurable area behind the convex part of the object to be measured. is there.
[0002]
[Prior art]
The following Patent Document 1 discloses a displacement measuring device having a structure as shown in FIG.
This displacement measuring device is a device that measures the height displacement (unevenness) of the surface to be measured using light. As shown in FIG. 8, in the light projecting unit, the laser beam output from the light source 121 is deflected by a deflecting device 122 such as a rotating mirror type or a vibrating mirror type, and the deflected light is predetermined by a lens 123 on the same plane. A beam whose optical axis moves in parallel within the range. This beam is emitted to the surface 100a of the measurement object 100 on the reference plane 200, and the irradiation point S of the beam defined on the surface 100a of the measurement object 100 is linear (actually, the surface of the measurement object surface). One-way or reciprocating scanning is performed.
[0003]
The light receiving unit that receives the reflected light from the irradiation point S is configured by a lens array 125, an imaging lens 126, and a light receiving element 127.
[0004]
The lens array 125 is integrally formed of synthetic resin or glass so that a plurality (five in FIG. 8) of condensing lens portions 125a to 125e having the same focal length are arranged in a line.
[0005]
The imaging lens 126 has a diameter larger than the scanning width of the beam emitted from the light projecting unit, and one surface orthogonal to the optical axis is formed in a spherical shape, and focuses the beam from the lens array 125. Then, an image of the irradiation point S is formed on the light receiving surface 127 a of the light receiving element 127.
[0006]
The light receiving element 127 has a rectangular light receiving surface 127a, and is configured to output a signal corresponding to a position along the vertical direction of the light receiving surface 127a among the positions of light irradiated on the light receiving surface 127a. .
[0007]
In this conventional example, the optical axis of the beam from the light projecting unit and the optical axis of the lens array 125 of the light receiving unit are equal to each other across the normal line of the reference plane 2 in order to secure the amount of received light. That is, it is set in advance so as to be in the direction of regular reflection.
[0008]
According to this displacement measuring apparatus, the irradiation point S of the beam emitted toward the measuring object 100 is scanned on the surface 100a of the measuring object 100 in a certain direction. The light from this irradiation point is converged into a substantially parallel beam by the spherical focusing condenser portions 125 a to 125 e of the lens array 125 and is incident on the spherical focusing imaging lens 126. The image of the irradiation point S is formed in a spot shape on the light receiving surface 127a of the light receiving element 127 after being deflected and focused. According to the present invention, even when the surface to be measured is rough and the light from the irradiation point spreads, highly accurate measurement can be performed at high speed.
[0009]
In the conventional displacement measuring apparatus using specular reflection light as described above, the displacement of the measurement object and the output of the light receiving element are not directly proportional to each other due to errors caused by the optical system, and linearity is obtained. I can't. Since the degree of non-linearity in the output of the light receiving element varies from product to product, it must be calibrated to a certain level. For this calibration, a reference target manufactured with a constant reference with little variation is used as a common measurement object.
[0010]
FIG. 9A is a diagram showing the reference target 200 used in the displacement measuring apparatus using the specularly reflected light shown in FIG. 8 and the optical path at the time of calibration. The reference target 200 for regular reflection has a mirror surface by aluminum deposition.
[0011]
Note that the displacement measuring apparatus shown in FIG. 8 is a regular reflection type, and the measurement light is incident on the measurement object obliquely as described above. Therefore, the incident point changes when the measurement object is displaced. Although it cannot be taken widely, strong reflected light is obtained on the mirror surface and the measurement resolution is high.
[0012]
On the other hand, some displacement measuring devices use irregular reflection. In the irregular reflection type, a reference target 201 for irregular reflection as shown in FIG. 9B is used. The reference target 201 for irregular reflection is a diffuse reflection surface formed by attaching smoke generated by burning magnesium to the surface of a substrate to form a white film of magnesium oxide. As shown in FIG. 9B, in the irregular reflection type displacement measuring apparatus, the measurement light (light projection) is perpendicularly incident on the measurement object and scattered from a direction oblique to the surface of the measurement object. Measurement is performed by receiving light.
[0013]
In the diffuse reflection type displacement measuring device, the measurement light is incident on the measurement object vertically as described above, and therefore the incident point does not change even if the measurement object is displaced, so the measurement range is relative to that of the regular reflection type. However, the measurement resolution is relatively lower than that of the regular reflection type.
[0014]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-83426
[0015]
[Problems to be solved by the invention]
Fig.10 (a) shows the printed circuit board 1 which is a to-be-measured object of the said displacement measuring apparatus. A pad 2 is provided on the printed board 1, and a solder 3 is provided on the pad 2. A resist 4 is provided around the solder 3 so as to cover a part of the pad 2.
[0016]
The solder 3 is formed in a convex shape having a certain height from the surface of the printed circuit board 1 and the pad 2 and is a low reflectance region where the reflectance is relatively low optically. The pad 2 and the resist 4 surrounding the periphery of the solder 3 have a relatively high reflectivity compared to the solder 3, and are high reflectivity regions having reflectivities almost close to mirror surfaces.
[0017]
Therefore, when the printed circuit board 1 is measured by the displacement measuring apparatus using only regular reflection light, a sufficient amount of reflected light cannot be obtained at the portion of the solder 3 as shown in FIG. However, since the surrounding area of the pad 2 and the resist 4 regularly reflects the measurement light with high reflectance, the amount of light received by the light receiving element becomes very high.
[0018]
According to the conventional displacement measuring apparatus shown in FIG. 8, when the measurement light from the light source is regularly reflected by the solder 3 of the object to be measured and is incident on the light receiving element 127 as shown in FIG. Since the rate is small as described above, the amount of light received by the light receiving element 127 is small. However, since the laser beam coming from the light source has an intensity distribution that has a high center and spreads (flare) as shown in the figure, when the measurement light scans the solder 3, the flare portion is soldered. 3 is specularly reflected by the resist 4 having a high reflectivity around 3 and reaches the light receiving element 127 together with the specularly reflected light from the solder 3. Therefore, it cannot be said that the signal obtained by the light receiving element 127 by the light regularly reflected by the solder 3 has sufficient strength as compared with the signal by the regular reflected light from the surroundings. That is, since the relative intensity difference between the regular reflection light from the solder 3 and the regular reflection light of the flare light by the surrounding resist 4 or the like is small, the displacement of the solder 3 is accurately determined using the regular reflection light from the solder 3. However, it was difficult to measure.
[0019]
Also, as shown in FIG. 12, the solder 3 on the printed circuit board 1 is formed in a convex shape having a certain height from the surface of the circuit board and the pad, so that the incident angle and the reflection angle are equal to the normal line. When the measurement light is incident and reflected, there is a problem that a region W which is the shadow of the solder 3 is formed around the convex solder 3 and the measurement object (solder 3) cannot be measured accurately.
[0020]
That is, in FIG. 12, the measurement light specularly reflected by the region W on the right side of the solder 3 is behind the solder 3 and does not reach the light receiving element. Further, since the measurement light does not reach the region W on the left side of the solder 3, the reflected light does not reach the light receiving element.
[0021]
Therefore, the inventors of the present application re-examined the reflectance of the measurement light on the printed circuit board, and as a result, as shown in FIG. We came up with the idea of using regular reflection and irregular reflection according to the reflectance of the measured object.
[0022]
That is, as shown in FIG. 10C, in the case of irregular reflection, the amount of light received by the light receiving element due to irregular reflection at the pad 2 and the resist 4 around the solder 3 is relatively large. A certain amount of received light can be obtained in the light receiving element by irregular reflection. That is, as described above, the amount of light incident on the light receiving element is large between the solder 3 and the pad 2 in the case of regular reflection, but is small in the case of irregular reflection.
[0023]
Therefore, in order to solve the above-mentioned problems, the present inventor has a low reflectance region with a relatively low reflectance and a high reflectance with a relatively high reflectance around the low reflectance region. Research and development of a displacement measuring device that can accurately measure displacement (height measurement) by using specular reflection and irregular reflection optimally even when it has an index region. As a result, as will be described in detail in the section of the embodiment of the present invention, a novel and inventive combination of regular reflection light and irregular reflection light type displacement measuring device that has never been achieved has been completed.
[0024]
However, even in a displacement measuring apparatus using both regular reflection light and irregular reflection light type, as described in the section of the prior art, the displacement of the measurement object and the output of the light receiving element are not directly proportional, and the linearity is not. Since it cannot be obtained, calibration is required. In particular, as shown in FIG. 13, the relationship between the amount of movement (displacement) of the measurement object and the output of the light receiving element (displacement output) differs between specularly reflected light and irregularly reflected light. It is necessary to calibrate each other so as to have a direct proportional relationship using a correction device as shown.
[0025]
That is, as shown in FIG. 14, the measurement is performed by setting the reference target 200 on a stage 301 that is movable relative to the displacement measuring apparatus 300. The amount of movement of the stage 301 with respect to the displacement measuring device 300 (that is, the displacement of the reference target 200) and the displacement output from the displacement measuring device 300 are input to the correcting means 302. The correction unit 302 performs calculation so that the relationship between the amount of movement of the reference target 200 and the displacement output of the light receiving element is directly proportional, and stores the correction value obtained as a result in the ROM 303 provided in the displacement measuring apparatus 300.
[0026]
However, as shown in FIGS. 9 (a) and 9 (b), the conventional reference target is separately provided for regular reflection and for irregular reflection. Therefore, the calibration work described above is performed for each of regular reflection and irregular reflection. The reference targets 200 and 201 must be used separately. However, if the reference target is exchanged and the calibration work is performed in this way, it is not possible to prevent the deterioration of the calibration accuracy due to the displacement at the time of exchange. That is, since the attachment state of each reference target 200, 201 to the stage 301 is not necessarily the same, it corresponds to the incident point of the measurement light with respect to the reference target 200, 201 and the incident point of the light reflected therefrom to the light receiving element. There is a problem that the origin of measurement is shifted between the two types of reference targets 200 and 201.
[0027]
Therefore, the present invention is a conventional non-conventional specular reflection / diffuse reflection type displacement measurement device that can accurately measure displacement (height measurement) by properly using regular reflection and irregular reflection. By providing a reference target that can be used in common for any of these calibrations, the calibration accuracy of the displacement measurement device with specular reflection / diffuse reflection light is improved and the convenience of the displacement measurement device is maximized. It is intended to be demonstrated.
[0028]
[Means for Solving the Problems]
The reference target according to claim 1 uses a light projecting unit that irradiates the measurement object 5 with measurement light, a light receiving unit that receives reflected light from the measurement object 5, and a signal from the light receiving unit. And used for calibration of a displacement measuring apparatus having a signal processing unit for outputting a displacement signal of the object to be measured 5, characterized in that it has a diffused reflection film having a mirror finish on the surface of the substrate.
[0029]
Since the light from the light projecting unit is regularly reflected and diffusely reflected by the reference target, it can be used for calibration of the displacement measuring device for regular reflection as well as for the displacement measuring device for diffuse reflection.
[0030]
The reference target described in claim 2 includes a light projecting unit 12 that irradiates the measurement object 5 with measurement light, a regular reflection light receiving unit 13 that receives specular reflection light from the measurement object 5, and the measurement target. A signal that outputs a displacement signal H of the object to be measured 5 by using the irregular reflection light receiving unit 14 that receives irregular reflection light from the object 5, the signal from the regular reflection light receiving unit 13, and the signal from the irregular reflection light receiving unit 14. It is used for calibrating the displacement measuring apparatus 10 having the processing unit 15 and has a diffused reflection film having a mirror finish on the surface of the substrate.
[0031]
Since the light from the light projecting unit 12 is regularly reflected and diffusely reflected by the reference target, it can be commonly used for calibration of the regular reflection light receiving unit 13 and the irregular reflection light receiving unit 14. Calibration accuracy will not be reduced by replacement.
[0032]
The reference target described in claim 3 includes a light projecting unit 12 that irradiates the measurement object 5 with measurement light, a regular reflection light from the measurement object, and a regular reflection displacement signal A and a regular reflection light amount signal. A regular reflection light receiving unit 13 for outputting B, a diffuse reflection light receiving unit 14 for receiving diffuse reflection light from the object to be measured and outputting a diffuse reflection displacement signal C and a diffuse reflection light amount signal D, and a positive reflection light from the regular reflection light receiving unit 13. Displacement having a signal processing unit 15 that outputs a displacement signal H of the object to be measured 5 using the reflected displacement signal A and the regular reflection light amount signal B and the irregular reflection displacement signal C and the irregular reflection light amount signal D from the irregular reflection light receiving unit 14. It is used for calibration of the measuring apparatus 10 and is characterized in that it has an irregular reflection film having a mirror finish on the surface of the substrate.
[0033]
The signal processing unit 15 uses the regular reflection displacement signal A and the regular reflection light amount signal B from the regular reflection light receiving unit 13 and the irregular reflection displacement signal C and the irregular reflection light amount signal D from the irregular reflection light reception unit 14, thereby Displacement measurement that enables accurate displacement measurement (height measurement) of the object to be measured 5 in a non-contact manner by selecting a signal by selectively using regular reflection and irregular reflection according to the reflectance of the object to be measured 5 In the calibration work of the apparatus 10, the light from the light projecting unit 12 is specularly reflected and irregularly reflected by the reference target, and thus is commonly used for calibration of the regular reflection light receiving unit 13 and the diffuse reflection light receiving unit 14. Since the reference target does not need to be exchanged, the calibration accuracy is not lowered, and the calibration can be performed so that the expected performance using regular reflection and irregular reflection is sufficiently exhibited.
[0034]
The reference target according to claim 4 is the reference target according to claim 3, wherein the signal processing unit 15 of the displacement measuring device 10 includes:
The threshold value E of the regular reflection light amount signal B, the first threshold value F of the irregular reflection light amount signal D, the regular reflection light amount signal B, and the irregular reflection light amount signal D are input, and the regular reflection displacement A data determination unit 25 for generating a selection signal S for selecting one of the signal A and the irregular reflection displacement signal C;
The regular reflection displacement signal A, the irregular reflection displacement signal C, and the selection signal S from the data determination unit 25 are input, and one of the regular reflection displacement signal A and the irregular reflection displacement signal C is selected and output. A displacement selector 26;
It is characterized by having.
[0035]
The regular reflection light amount signal B is compared with the threshold value E, the irregular reflection light amount signal D is compared with the first threshold value F, and based on the result, the regular reflection displacement signal A and the irregular reflection displacement signal are compared. Any one of C can be selected and output, and the correct displacement of the object to be measured 5 can be selected by selecting a signal by selectively using regular reflection and irregular reflection corresponding to the reflectance of the object to be measured 5. In the calibration operation of the displacement measuring apparatus 10 that can perform measurement (height measurement) in a non-contact manner, the light from the light projecting unit 12 is regularly reflected and irregularly reflected by the reference target. It can be used both for calibration and for calibration of the irregular reflection light receiving unit 14, and since the reference target does not have to be exchanged, the calibration accuracy does not decrease, and the above signals obtained by regular reflection and irregular reflection are used. Was above Period performance can perform calibration as sufficiently exhibited.
[0036]
The reference target according to claim 5 is the reference target according to claim 4, wherein the data determination unit 25
When it is determined that the regular reflection light amount signal B is larger than the threshold value E of the regular reflection light amount signal, the selection signal for selecting the irregular reflection displacement signal C when the regular reflection light amount signal B is larger than the upper limit value thereof. S and a selection signal S for selecting the regular reflection displacement signal A when the regular reflection light amount signal B is smaller than the upper limit value,
When it is determined that the regular reflection light amount signal B is smaller than the threshold value E of the regular reflection light amount signal, the irregular reflection light amount signal D is greater than the first threshold value F of the irregular reflection light amount signal. A selection signal S for selecting the displacement signal C is output, and an unmeasurable signal is output when the irregular reflection light amount signal D is smaller than a first threshold value F of the irregular reflection light amount signal.
[0037]
According to this displacement measuring apparatus 10, when it is determined that the regular reflection light amount signal B is larger than the threshold value E of the regular reflection light amount signal B, the regular reflection light amount signal B is larger than the upper limit value. When the irregular reflection displacement signal C is selected, and the regular reflection light amount signal B is smaller than the upper limit value, the regular reflection displacement signal A is selected, the selection signal S is output, and the regular reflection light amount signal B is When it is determined that the irregular reflection light amount signal B is smaller than the threshold value E of the regular reflection light amount signal B, if the irregular reflection light amount signal D is larger than the first first threshold value F, the irregular reflection displacement signal C is selected. When the irregular reflection light amount signal D is smaller than the first threshold value F, measurement is impossible, so that the signal is selected using regular reflection and irregular reflection according to the reflectance of the object to be measured 5. By , It can be performed accurately displacement measurement of the object to be measured 5 (height measurements) without contact. In the calibration operation of the displacement measuring apparatus 10, the light from the light projecting unit 12 is regularly reflected and irregularly reflected by the reference target, so that the regular reflection light receiving unit 13 and the diffuse reflection light receiving unit 14 are calibrated. Can be used in common, and it is not necessary to exchange the reference target, so the calibration accuracy does not decrease, and the expected performance using the signals and threshold values obtained by regular reflection and irregular reflection is sufficient. Can be calibrated as shown in
[0038]
A reference target according to claim 6 is the reference target according to any one of claims 1 to 5, wherein the substrate is made of a light non-permeable material, and the irregular reflection film is formed on a surface of the substrate. It is characterized by polishing the coating film.
[0039]
The light from the light projecting unit 12 is specularly reflected and diffusely reflected by the polished irregular reflection film of the reference target, and thus is commonly used for calibration of the regular reflection light receiving unit 13 and the diffuse reflection light receiving unit 14. In other words, the calibration accuracy is not lowered by replacing the reference target. For this reason, the expected performance of the said displacement measuring apparatus using regular reflection light and irregular reflection light can fully be exhibited.
[0040]
The reference target according to claim 7 is the reference target according to claims 1 to 5, wherein the substrate is a metal plate, and the irregular reflection film is formed on the surface of the metal plate with a thickness of 10 to 20 μm. It is characterized by polishing a white powder coating film.
[0041]
Since the light from the light projecting unit 12 is regularly reflected and irregularly reflected by the irregular reflection film made of the polished white powder coating of the reference target, the irregular reflection light receiving unit 14 is also used for calibration of the regular reflection light receiving unit 13. The calibration accuracy is not lowered by exchanging the reference target. For this reason, the expected performance of the said displacement measuring apparatus using regular reflection light and irregular reflection light can fully be exhibited.
[0042]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a schematic configuration diagram of a displacement measuring apparatus according to the present embodiment, FIG. 2 is a block diagram showing signal input / output states in signal processing of the displacement measuring apparatus, and FIG. 3 is the displacement measuring apparatus. FIG. 4 is a flowchart showing a processing procedure in the signal processing unit, and FIG. 5 shows a state in which the imaging lenses of the two light receiving units in the displacement measuring apparatus are connected. FIG. 6 is a schematic diagram showing the position adjustment of the imaging lenses of the two light receiving units in the displacement measuring device, and FIG. 7 is common to the calibration of the two light receiving units in the displacement measuring device. It is sectional drawing which shows the reference | standard target which concerns on this invention, and its incident / reflection optical path.
[0043]
As shown in FIG. 1, the displacement measuring device 10 of this example has a case 11 shown in a simplified form as a main body. Inside the housing 11, a light projecting unit 12 that irradiates the measurement object 5 with measurement light, receives regular reflection light from the measurement object 5, and outputs a regular reflection displacement signal and a regular reflection light amount signal. The regular reflection light receiving unit 13, the irregular reflection light receiving unit 14 that receives diffuse reflection light from the object 5 to be measured and outputs a diffuse reflection displacement signal and a diffuse reflection light amount signal, and signals from these two light receiving units 13 and 14 are input. It has a signal processing unit 15 that performs predetermined processing to be described later.
[0044]
The displacement measuring apparatus 10 irradiates the measurement object 5 with a laser beam for measurement in the above configuration, and measures the displacement of the measurement location on the measurement object 5 in a non-contact manner using the principle of triangulation. To do. As described with reference to FIG. 10A, the displacement measuring apparatus 10 has a relatively low reflectivity region (for example, the solder 3) having a relatively low reflectivity and a reflectivity around the relatively low reflectivity region. It is suitable for measurement of an object to be measured 5 (for example, the printed circuit board 1 or the like) having a high reflectance region (for example, the pad 2 and the resist 4).
[0045]
The light projecting unit 12 is a laser light source 16 that emits a laser beam, a polygon mirror 17 that is driven and rotated to scan the beam from the laser light source 16 in a predetermined direction, and scanning from the polygon mirror 17. And a lens 18 that deflects the beam so that the optical axis moves in parallel within a predetermined range on the reference plane of the object 5 to be measured.
[0046]
The specular reflection light receiving unit 13 receives first specular light reflected at the same reflection angle as the incident angle of the beam incident from the lens 18 of the light projecting unit 12 with respect to the reference surface of the measured object 5. It is a system. The regular reflection light receiving unit 13 includes a condensing lens 19 (array), an ND (neutral density) filter 20 as an attenuation filter, an imaging lens 21, and an optical axis from the side close to the measured object 5. The position detection element 22 is arranged and fixed in order.
[0047]
The irregular reflection light receiving unit 14 has an optical path perpendicular to the reference plane of the measured object 5, and a second light receiving system that receives irregularly reflected light in which the beam from the light projecting unit 12 is irregularly reflected by the measured object 5. According to the optical path arrangement of this example, it can also be referred to as a vertical light receiving unit. Like the regular reflection light receiving unit 13, the irregular reflection light receiving unit 14 includes a condenser lens 19 (array), an imaging lens 21, and a position detection element 22 along the optical axis from the side close to the measured object 5. However, the ND filter 20 is not provided.
[0048]
The reason why the ND filter 20 is provided only in the regular reflection light receiving unit 13 and is not provided in the irregular reflection light receiving unit 14 is that the intensity of the reflected light is greater in the regular reflected light than in the scattered light, and thus different reflected light is used. This is to balance the intensity of the reflected light received by each of the light receiving sections 13 and 14 in the displacement measuring apparatus 10 having two light receiving sections.
[0049]
Therefore, according to the displacement measuring apparatus 10, it is possible to employ an attenuation filter having an optimum attenuation rate according to the intensity ratio of the scattered light and the specularly reflected light in the measured object 5. It is possible to realize the optimum displacement measurement by the displacement measuring apparatus 10 corresponding to the physical properties.
[0050]
The imaging lenses 21 and 21 of the two light receiving systems 13 and 14 have a diameter larger than the beam scanning width of the light projecting unit 12, and one surface orthogonal to the optical axis is formed in a spherical shape. The beams from the condensing lenses (arrays) 19 and 19 are converged, and an image of the irradiation point on the object to be measured 5 is formed on the light receiving surfaces of the light receiving elements 22 and 22.
[0051]
Each of the light receiving elements 22 and 22 of the two light receiving systems 13 and 14 has a rectangular light receiving surface, and a signal corresponding to a position along the vertical direction of the light receiving surface among the positions of light irradiated on the light receiving surface ( Displacement signal) and a signal (light quantity signal) corresponding to the intensity of the light irradiated on the light receiving surface. Here, the displacement signal output from the regular reflection light receiving unit 13 is a regular reflection displacement signal, the light amount signal output from the regular reflection light receiving unit 13 is a regular reflection light amount signal, and the displacement signal output from the irregular reflection light receiving unit 14 is an irregular reflection displacement signal or diffuse reflection. The light amount signal output from the light receiving unit 14 is referred to as an irregular reflection light amount signal.
[0052]
As shown in FIG. 1, the light receiving elements 22 and 22 of the two light receiving systems 13 and 14 are connected to a common signal processing unit 15. The signal processing unit 15 uses the specular reflection displacement signal and specular reflection light amount signal from the regular reflection light receiving unit 13 and the irregular reflection displacement signal and irregular reflection light amount signal from the irregular reflection light receiving unit 14 to detect the displacement signal of the measured object 5. Is output. The signal processing unit 15 is connected to an image processing unit (not shown) and can synthesize an image of the measured object 5 by processing the displacement signal and the like.
[0053]
More specifically, as shown in the block diagram of FIG. 2 showing an input / output state of a signal or the like, in the signal processing unit 15 of this example, as described above, the regular reflection displacement from the regular reflection light receiving unit 13 is performed. In addition to the signal A and the regular reflection light quantity signal B, and the irregular reflection displacement signal C and the irregular reflection light quantity signal D from the irregular reflection light receiving unit 14, the threshold E of the regular reflection light quantity signal and the first of the irregular reflection light quantity signal And a second second threshold value G of the irregularly reflected light amount signal are input, and the displacement signal H and the light amount are calculated from these signals and the threshold value by signal processing according to a predetermined algorithm described later. Signal I and pad recognition signal J are obtained.
[0054]
Here, the threshold value E of the regular reflection light amount signal represents the regular reflection solder luminance set in order to recognize the solder 3 having a low reflectance, and is a variable parameter. The first threshold value F of the irregularly reflected light amount signal represents the irregularly reflected solder luminance set for recognizing the solder 3 having a low reflectance, and is a dark level that cannot be measured with irregularly reflected light. It is a value for recognizing the level and is a variable parameter. The second threshold value G of the irregularly reflected light amount signal is a value for recognizing the pad 2 with irregularly reflected light and is a variable parameter.
[0055]
Each of the threshold values E, F, G is a variable parameter as described above, and can be optimally set according to the reflectance of the measurement surface of the object 5 to be measured. Accurate displacement measurement can be performed by using specular reflection and irregular reflection separately with the optimum setting corresponding to the optical property of the measurement object.
[0056]
In the block diagram showing the input / output states of signals and the like shown in FIG. 2, the signal processing algorithm using each signal and each threshold value is executed by the signal processing unit 15 having the block configuration shown in FIG.
[0057]
As shown in FIG. 3, the signal processing unit 15 has a data determination unit 25. The data determination unit 25 includes a threshold E of the regular reflection light quantity signal, a first first threshold F of the irregular reflection light quantity signal, a second threshold G of the irregular reflection light quantity signal, The regular reflection light amount signal B and the irregular reflection light amount signal D are input, and a selection signal S for selecting either the regular reflection displacement signal A or the irregular reflection displacement signal C is generated.
[0058]
The data determination unit 25 sets the pad recognition signal J to 1 if the diffusely reflected light amount signal D is equal to or greater than the second threshold G, and sets J to 0 if it is equal to or less than the second threshold G.
[0059]
Further, as shown in FIG. 3, the signal processing unit 15 includes a displacement selection unit 26. The displacement selection unit 26 receives the regular reflection displacement signal A, the irregular reflection displacement signal C, and the selection signal S from the data determination unit 25, and either the regular reflection displacement signal A or the irregular reflection displacement signal C. Is output as a displacement signal H.
[0060]
As shown in FIG. 3, the signal processing unit 15 has a light amount selection unit 27. The light quantity selection unit 27 outputs the regular reflection light quantity signal B as a light quantity signal I according to a preset setting. Note that the irregular reflection light amount signal D can be output as the light amount signal I by changing the setting. Further, by inputting the regular reflection light amount signal B, the irregular reflection light amount signal D, and the selection signal S from the data determination unit 25, either the regular reflection light amount signal B or the irregular reflection light amount signal D is selected and the light amount is selected. It can be set so that it can be output as the signal I.
[0061]
A processing procedure in the signal processing unit 15 having the configuration shown in FIG. 3 will be described with reference to the flowchart of FIG. First, the data determination unit 25 determines whether or not the regular reflection light amount signal B is larger than the threshold E of the regular reflection light amount signal (ST1). If it is determined that it is large (YES in ST1), it is determined whether or not the regular reflection light amount signal B is larger than the upper limit (whether it is “bright”) (ST2). If it is bright (YES in ST2, that is, if the regular reflection exceeds the limit and bright), the displacement signal C by irregular reflection is employed (K1). If it is not bright (NO in ST2, that is, if regular reflection does not exceed the brightness limit), the displacement signal A by regular reflection is employed (K2).
[0062]
If it is not determined that the regular reflection light amount signal B is greater than the threshold value E of the regular reflection light amount signal (NO in ST1), whether or not the irregular reflection light amount signal D is greater than the first threshold value F of the irregular reflection light amount signal. Is determined (ST3). If it is determined to be large (YES in ST3), the displacement signal C due to irregular reflection is employed (K1). If it is not determined to be large (NO in ST3, if the amount of light in both regular reflection and irregular reflection is smaller than the threshold value, that is, “dark”), neither regular reflection nor irregular reflection displacement signals can be used and measurement is impossible. (K3).
[0063]
In the signal processing unit 15 of this example, in the above signal processing procedure, if the irregular reflection light amount signal D is equal to or larger than the second threshold value G, a signal indicating that the pad 2 that is a high reflectance region is recognized. The pad recognition signal J is output as 1. If it is less than or equal to the second threshold G, J is output as 0 as a signal indicating that the pad 2 that is a high reflectance region is not recognized.
[0064]
As described above, according to the displacement measuring apparatus 10, if an appropriate threshold value is set for a high reflectance region that is particularly desired to be detected, depending on whether or not the diffusely reflected light amount signal D is greater than or equal to the threshold value, The high reflectance region can be accurately detected and immediately output as a signal, which can be used effectively for various purposes. For example, the pad recognition signal J can be effectively used when a pad surface is used as a reference surface instead of a resist surface.
[0065]
Next, in this displacement measuring apparatus 10, the imaging lens 21 of the regular reflection light receiving unit 13 and the imaging lens 21 of the irregular reflection light receiving unit 14 are connected to each other by a fixing means 30 schematically shown in FIG.
As shown in detail in FIG. 5, the imaging lens 21 of each light receiving portion is a housing whose position can be freely adjusted by fastening means such as a screw 32 via a substantially L-shaped attachment 31. 11 is attached. That is, a long hole 31 b is provided in the flange 31 a of the attachment tool 31, and a screw 32 passing through the long hole 31 b is screwed into the housing 11, thereby fixing the attachment tool 31 to the housing 11.
[0066]
Therefore, if the screw 32 is loosened, the attachment tool 31 can be moved with respect to the housing 11, and as shown by the arrows in FIGS. 6 and 5B, the light receiving portions 13 and 14 are both in the optical axis direction. The position of the imaging lens 21 can be adjusted, and the imaging position in the direction perpendicular to the light receiving surface of the position detection element 22 can be adjusted as appropriate.
[0067]
The adjustment of the imaging position in the direction parallel to the light receiving surface of the position detection element 22 is performed by moving the position detection element 22 in the same direction while detecting the light reception signal of the reflected light output from the position detection element 22. Can be done.
[0068]
After the positions of the two imaging lenses 21 and 21 are adjusted in this way and the screws 32 are tightened and fixed to the housing 11, the two fixtures 31 and 31 are attached to each other as shown in FIG. They are connected by a common fixing means 30. The fixing means 30 of this example is a rigid connecting plate, and is fixed to each attachment tool 31, 31 by fastening means such as a screw 32.
[0069]
The displacement measuring apparatus 10 has two light receiving parts, a regular reflection light receiving part 13 and a diffuse reflection light receiving part 14. From the two light receiving systems 13 and 14 according to the amount of reflected light from the object 5 to be measured. Since the principle of selecting an optimal light receiving system and selecting and using a regular reflection or irregular reflection light reception signal is employed, the positions of the imaging lenses 21 and 21 are shifted in these two light receiving systems 13 and 14. As a result, an error occurs between the light receiving systems in the displacement detected by shifting the light receiving positions of the light receiving elements 22 and 22. The cause of the positional deviation of the imaging lens 21 may be, for example, stress applied to the component due to expansion or contraction of the component due to a change in temperature, and as a result, the position may be shifted. However, according to the displacement measuring apparatus 10, the two image-receiving lenses 21 and 21 of the two light receiving systems after adjustment are firmly coupled by the fixing means 30, and the mutual positional relationship is stably held in an intended state. Therefore, there is no possibility that the light receiving position of the reflected light on the position detecting element 22 is deviated from the intended position after the adjustment.
[0070]
Therefore, by selectively using the two light receiving systems 13 and 14, the features of the displacement measuring apparatus 10 that performs displacement measurement (height measurement) by selectively using regular reflection light and irregular reflection light are not impaired, and low reflectance is obtained. There is an effect that the accuracy of the displacement measurement for the object to be measured 5 having the region and the high reflectance region is sufficiently secured.
[0071]
However, as described above with reference to FIGS. 5A and 6, the positions of the imaging lenses 21 and 21 in the optical axis direction are adjusted, and the screws 32 are tightened to make the relative positions of the imaging lenses 21 and 21 relative to each other. Even if the target position is fixed by the fixing means 30, in practice, a correct displacement measurement cannot always be performed. In general, the displacement signal output from the position detection element 22 must be calibrated. That is, as shown in FIG. 13, the relationship between the movement amount (displacement) of the measured object 5 and the displacement output (displacement signal) of the position detection element 22 is not directly proportional, but is closer to the far side of the measured object 5. And the sensitivity is different. Further, the relationship between the amount of movement (displacement) of the measured object 5 and the displacement output (displacement signal) of the position detection element 22 differs between the case of regular reflection light and the case of irregular reflection light. Therefore, software is used so that the amount of movement (displacement) of the measured object 5 and the displacement output from each position detection element 22, 22 are in direct proportion so that the sensitivity of each position detection element 22, 22 is the same. Correction (calibration) must be performed.
[0072]
The above calibration is performed for each product using the same reference target that can be used for both regular reflection and irregular reflection in order to avoid an error caused by replacement of the reference target. As shown in FIG. 7, the reference target 40 used for calibration of the present displacement measuring apparatus has a diffused reflection film 42 formed on the surface of a substrate 41. The diffused reflection film 42 is polished into a mirror state by lapping. A regular reflection function is also provided.
[0073]
More specifically, the substrate 41 of this example is a non-porous material or a light non-permeable material, and is a plate made of a metal such as iron, aluminum, or brass as a material on which powder coating is easily placed. Therefore, a porous material such as ceramic that is easily penetrated by light is not preferable as a substrate. In particular, since iron can be fixed with a magnet, the effect of simplifying attachment to the stage during calibration can be obtained.
[0074]
A white resin powder is electrostatically attached to the surface of the substrate 41 and baked to dissolve the resin powder to form a uniform irregular reflection film 42. This powder coating film is stronger than the coating film obtained by applying ordinary liquid paint, and the thickness can be precisely set to the desired value, so it can be damaged even by strong mechanical processing such as lapping. There is no mirror and can be finished to a mirror surface.
[0075]
The thickness of this powder coating film is the minimum necessary to obtain the strength that can withstand wrapping, and if it is too thick, the incident light will penetrate too much into the interior and the intensity of the scattered light will become unnecessarily weak. In this example, the thickness is set to 10 to 20 μm as an example.
[0076]
In addition, the powder coating film of this example is white and the intensity of scattered light is high, but a coating film having a color other than white may be used as long as scattered light having a required intensity can be obtained.
[0077]
The reference target 40 is attached to a stage 301 as shown in FIG. 14, and the reference target 40 (reference reference in FIG. 14) is displayed by the displacement measuring apparatus 10 of this example (displacement measuring apparatus 300 is shown in FIG. 14). The target 200 is displayed) and the light receiving units 13 and 14 of the regular reflection system and the irregular reflection system are used for measurement, and the amount of movement (displacement) of the reference target 40 and the position detection elements 22 and 22 are measured. Correction data such that the relationship with the displacement output (displacement signal) is in direct proportion is obtained and stored in the storage means (corresponding to the ROM in FIG. 14) of the displacement measuring apparatus 10. As a result, the same sensitivity can be obtained on the far side and the near side of the measured object 5 across the origin, and the effect obtained by properly using regular reflection and irregular reflection in the displacement measuring apparatus 10 as described above is ensured. Can be achieved.
[0078]
According to the displacement measuring apparatus 10, the measurement object 5 is scanned with a laser beam for measurement along a predetermined direction (X direction), and a direction (Y By moving the displacement measuring apparatus 10 and the measured object 5 relative to each other in the direction), the entire measurement surface of the measured object 5 can be scanned. If the displacement signal and the light amount signal appropriately selected as described above are output in the scanning, and this is appropriately processed together with a signal from a control device (not shown) of the displacement measuring device 10 in an image processing unit (not shown), The area of the measurement surface of the object to be measured 5 and the volume of the object to be measured 5 can be accurately reproduced, and a precise distance image of the object to be measured 5 can be generated.
[0079]
In the embodiment described above, the irregular reflection light receiving unit 14 is a vertical light receiving unit having an optical axis perpendicular to the measurement surface of the measured object 5, but the diffuse reflection light receiving unit 14 is arranged on the measurement surface of the measured object 5. However, it is not necessarily arranged vertically.
[0080]
In the embodiment described above, the number of the irregular reflection light receiving units 14 is one. However, two or more irregular reflection light receiving units 14 are provided to appropriately use the displacement signal and the light amount signal of the irregular reflection light having a relatively large light amount. It may be used properly, or may be used with some calculation added, such as combining signals from the diffusely reflected light from the two irregularly reflected light receiving units 14. For example, in order to improve the measurement accuracy of the solder portion, the displacement signals of the two irregular reflection light receiving portions may be averaged and used. Further, since the vertical light receiving unit may be affected by stray light on the solder light projecting side wall surface, the displacement of the irregular reflection light receiving unit other than the vertical light receiving unit may be used. Here, stray light refers to light that has reached the light-receiving unit by hitting another object due to scattering of light hitting the measurement object.
[0081]
Further, the displacement measuring apparatus 10 according to the embodiment described above has a low-reflectance region and a high-reflectance region, or the displacement of the object to be measured such that a region that is shaded by measurement light is generated on the measurement surface. Although it was particularly useful for measurement, it is needless to say that the measurement target of the displacement measuring apparatus to which the reference target 40 of the present invention can be applied is not limited to these.
[0082]
Further, in the embodiment described above, the reference target 40 is used for calibration of the displacement measuring apparatus 10 having the two light receiving units 13 and 14 of the regular reflection system and the irregular reflection system. Since it can be used for both reflection and irregular reflection, it is not applied only to the displacement measuring device having two light receiving parts of the regular reflection system and the irregular reflection system, and the light receiving part of either the regular reflection system or the irregular reflection system is used. The present invention can also be applied to a displacement measuring apparatus having the same (for example, a conventional displacement measuring apparatus using specularly reflected light shown in FIG. 8).
[0083]
【The invention's effect】
As described above, according to the reference target recited in claim 1, the light projecting unit that irradiates the measurement object with the measurement light, the light reception unit that receives the reflected light from the measurement object, and the light reception In the calibration of the displacement measuring device having the signal processing unit that outputs the displacement signal of the object to be measured using the signal from the unit, the light from the light projecting unit is regularly reflected and diffusely reflected by the reference target. It can be used for calibration of a displacement measuring device for reflection and also for calibration of a displacement measuring device for diffuse reflection.
[0084]
According to the reference target recited in claim 2, the light projecting unit that irradiates the measurement object with the measurement light, the regular reflection light receiving unit that receives the regular reflection light from the measurement object, and the measurement object. A displacement measuring device having a diffused reflection light receiving unit that receives the irregularly reflected light, and a signal processing unit that outputs a displacement signal of the measured object using a signal from the regular reflection light receiving unit and a signal from the irregular reflection light receiving unit. In calibration, the light from the light projecting part is specularly reflected and diffusely reflected by the reference target, so that it can be used in both the calibration of the specular reflection light receiving part and the calibration of the irregular reflection light receiving part. Calibration accuracy will not be reduced by replacement.
[0085]
According to the reference target described in claim 3, the light projecting unit that irradiates the measurement object with the measurement light, the regular reflection light from the measurement object, and the regular reflection displacement signal and the regular reflection light amount signal are received. A regular reflection light receiving unit for outputting, a diffuse reflection light receiving unit for receiving irregular reflection light from the object to be measured and outputting a diffuse reflection displacement signal and a diffuse reflection light amount signal, and a regular reflection displacement signal and a regular reflection light amount from the regular reflection light reception unit In the calibration of the displacement measuring device having a signal processing unit that outputs the displacement signal of the object to be measured using the signal and the diffuse reflection displacement signal and the diffuse reflection light amount signal from the irregular reflection light receiving unit, It can also be used in common for calibration of diffuse reflection light receiving parts, and it is not necessary to replace the reference target, so the calibration accuracy does not decrease, and the expected performance using regular reflection and irregular reflection is fully demonstrated. Like It is possible to perform the calibration.
[0086]
According to the reference target described in claim 4, the signal processing unit includes:
The threshold value of the regular reflection light amount signal, the threshold value of the irregular reflection light amount signal, the regular reflection light amount signal, and the irregular reflection light amount signal are input, and one of the regular reflection displacement signal and the irregular reflection displacement signal A data determination unit that generates a selection signal for selecting one of the two;
A displacement selection unit that receives the regular reflection displacement signal, the irregular reflection displacement signal, and the selection signal from the data determination unit, and selects and outputs either the regular reflection displacement signal or the irregular reflection displacement signal;
In the calibration of the displacement measuring device according to claim 3,
It can be used both for calibration of the regular reflection light receiving unit and for the calibration of the irregular reflection light receiving unit, and it is not necessary to exchange the reference target. Calibration can be performed so that the desired performance using each signal is sufficiently exhibited.
[0087]
In the reference target described in claim 5, the data determination unit
When it is determined that the regular reflection light amount signal is larger than the threshold value of the regular reflection light amount signal, a selection signal for selecting the irregular reflection displacement signal is output when the regular reflection light amount signal is larger than the upper limit value thereof. A selection signal for selecting the regular reflection displacement signal when the regular reflection light amount signal is smaller than the upper limit value;
When it is determined that the regular reflection light amount signal is smaller than the threshold value of the regular reflection light amount signal, the selection signal for selecting the irregular reflection displacement signal when the irregular reflection light amount signal is larger than the threshold value of the irregular reflection light amount signal. In the calibration of the displacement measuring device according to claim 4, wherein when the irregularly reflected light amount signal is smaller than a threshold value of the irregularly reflected light amount signal, a measurement impossible signal is output.
Since the light from the light projecting part is regularly reflected and diffusely reflected by the reference target, it can be used in both the calibration of the regular reflection light receiving part and the calibration of the irregular reflection light receiving part, without replacing the reference target. Therefore, the calibration accuracy is not lowered, and the calibration can be performed so that the desired performance using the signals and threshold values obtained by the regular reflection and the irregular reflection is sufficiently exhibited.
[0088]
A reference target according to claim 6 is the reference target according to any one of claims 1 to 5, wherein the substrate is made of a light non-permeable material, and the irregular reflection film is formed on a surface of the substrate. Since the coating film is polished, the functions of regular reflection and irregular reflection can be reliably achieved, and the light from the light projecting portion is regularly reflected and irregularly reflected by the polished irregular reflection film of the reference target. As a result, it can be used both for calibration of the regular reflection light receiving part and for the calibration of the irregular reflection light receiving part, and the calibration accuracy is not lowered by exchanging the reference target, and regular reflection light and irregular reflection light are used. The expected performance of the displacement measuring device can be sufficiently exhibited.
[0089]
The reference target according to claim 7 is the reference target according to claims 1 to 5, wherein the substrate is a metal plate, and the irregular reflection film is formed on the surface of the metal plate with a thickness of 10 to 20 μm. Since the white powder coating is polished, the light from the light projecting part is regularly reflected and irregularly reflected by the irregular reflection film made of the polished white powder coating of the reference target. For this reason, it can be used for both calibration of the regular reflection light receiving unit and the diffuse reflection light receiving unit, and the calibration accuracy is not lowered by exchanging the reference target, and regular reflection light and irregular reflection light are used. The expected performance of the displacement measuring device can be sufficiently exhibited.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a displacement measuring apparatus according to the present embodiment.
FIG. 2 is a block diagram showing a signal input / output state in signal processing of the displacement measuring apparatus;
FIG. 3 is a block diagram of a signal processing unit of the displacement measuring apparatus.
FIG. 4 is a flowchart showing a processing procedure in the signal processing unit.
FIG. 5 is a view showing a state in which image forming lenses of two light receiving units in the displacement measuring apparatus are connected to each other.
FIG. 6 is a schematic diagram showing position adjustment of each imaging lens of two light receiving sections in the displacement measuring apparatus.
FIG. 7 is a cross-sectional view showing a reference target and an optical path of incident / reflected light in the present embodiment.
FIG. 8 is a schematic perspective view showing the structure of an optical system of a conventional displacement measuring apparatus using regular reflection light.
9A is a diagram showing a reference target used in the displacement measuring apparatus shown in FIG. 8 and an optical path at the time of calibration, and FIG. 9B is a reference target used in a conventional displacement measuring apparatus using irregularly reflected light. It is a figure which shows the optical path at the time of the calibration.
FIG. 10 is a diagram showing a comparison between the intensity of specularly reflected light and the intensity of irregularly reflected light at a printed board on which solder or the like is provided, and at each part of the printed board.
FIG. 11 is a diagram showing a problem when the measurement light from the light source is regularly reflected by the solder of the object to be measured and enters the light receiving element in the conventional displacement measuring apparatus, and is a waveform diagram of the incident light and the reflected light. FIG.
FIG. 12 is a diagram showing that a shadow that cannot be measured is generated when measurement light from a light source is regularly reflected by solder of an object to be measured and enters a light receiving element in a conventional displacement measuring apparatus.
FIG. 13 is a diagram showing the relationship between the amount of movement of the measurement object and the displacement output of the light receiving element for the regular reflection light and the irregular reflection light in the displacement measuring apparatus.
FIG. 14 is a schematic diagram showing a calibration device (stage and correction means) and a reference target used for calibration of the displacement measuring device.
[Explanation of symbols]
2 ... Pad constituting a high reflectance region, 3 ... Solder constituting a low reflectance region,
4... Resist that constitutes a high reflectivity region 5. Object to be measured,
DESCRIPTION OF SYMBOLS 10 ... Displacement measuring device, 12 ... Light projection part, 13 ... Regular reflection light-receiving part,
14 ... irregular reflection light receiving unit, 15 ... signal processing unit,
20 ... ND filter as attenuation filter, 21 ... Imaging lens,
22 ... position detection element, 25 ... data determination unit, 26 ... displacement selection unit,
30 ... Fixing means,
40 ... Reference target, 41 ... Substrate, 42 ... Diffuse reflection film,
A: Regular reflection displacement signal, B: Regular reflection light amount signal, C: Diffuse reflection displacement signal,
D: diffusely reflected light amount signal, E: specularly reflected light amount signal threshold,
F: a first threshold value of the diffusely reflected light amount signal,
G: the second threshold value of the diffusely reflected light amount signal,
H: Displacement signal, I: Light quantity signal,
J: Pad recognition signal as a high reflectance region recognition signal, S: Selection signal.

Claims (7)

被測定物体(5)に測定光を照射する投光部(12)と、前記被測定物体からの反射光を受光する受光部(13,14)と、前記受光部からの信号を用いて前記被測定物体の変位信号(H)を出力する信号処理部(15)を有する変位測定装置(10)の校正に使用され、基板の表面に鏡面仕上げされた乱反射膜を有することを特徴とする基準ターゲット。The light projecting part (12) for irradiating the measurement object (5) with measurement light, the light receiving part (13, 14) for receiving the reflected light from the measurement object, and the signal from the light receiving part A reference used for calibration of a displacement measuring device (10) having a signal processing unit (15) for outputting a displacement signal (H) of an object to be measured, and having a diffused reflection film having a mirror finish on the surface of a substrate target. 被測定物体(5)に測定光を照射する投光部(12)と、前記被測定物体からの正反射光を受光する正反射受光部(13)と、前記被測定物体からの乱反射光を受光する乱反射受光部(14)と、前記正反射受光部からの信号と前記乱反射受光部からの信号とを用いて前記被測定物体の変位信号(H)を出力する信号処理部(15)を有する変位測定装置(10)の校正に使用され、基板の表面に鏡面仕上げされた乱反射膜を有することを特徴とする基準ターゲット。A light projecting unit (12) for irradiating the measurement object (5) with measurement light, a regular reflection light receiving unit (13) for receiving specular reflection light from the measurement object, and irregular reflection light from the measurement object A diffused reflection light receiving unit (14) for receiving light, and a signal processing unit (15) for outputting a displacement signal (H) of the measured object using a signal from the regular reflection light receiving unit and a signal from the irregular reflection light receiving unit. A reference target used for calibration of a displacement measuring apparatus (10) having a diffusely reflecting film having a mirror finish on the surface of a substrate. 被測定物体(5)に測定光を照射する投光部(12)と、前記被測定物体からの正反射光を受光して正反射変位信号(A)と正反射光量信号(B)を出力する正反射受光部(13)と、前記被測定物体からの乱反射光を受光して乱反射変位信号(C)と乱反射光量信号(D)を出力する乱反射受光部(14)と、前記正反射受光部からの正反射変位信号及び正反射光量信号と前記乱反射受光部からの乱反射変位信号及び乱反射光量信号とを用いて前記被測定物体の変位信号(H)を出力する信号処理部(15)を有する変位測定装置(10)の校正に使用され、基板の表面に鏡面仕上げされた乱反射膜を有することを特徴とする基準ターゲット。A light projecting unit (12) for irradiating the measurement object (5) with measurement light, and receiving regular reflection light from the measurement object and outputting a regular reflection displacement signal (A) and a regular reflection light amount signal (B). A regular reflection light receiving unit (13) that receives irregular reflection light from the object to be measured and outputs a diffuse reflection displacement signal (C) and a diffuse reflection light amount signal (D); and the regular reflection light reception A signal processing unit (15) for outputting a displacement signal (H) of the measured object using the regular reflection displacement signal and regular reflection light amount signal from the unit and the irregular reflection displacement signal and irregular reflection light amount signal from the irregular reflection light receiving unit; A reference target used for calibration of a displacement measuring apparatus (10) having a diffusely reflecting film having a mirror finish on the surface of a substrate. 前記変位測定装置(10)の前記信号処理部(15)が、
前記正反射光量信号(B)のしきい値(E)と、前記乱反射光量信号(D)の第1のしきい値(F)と、前記正反射光量信号と、前記乱反射光量信号とを入力され、前記正反射変位信号(A)と前記乱反射変位信号(C)のいずれか一方を選択するための選択信号(S)を生成するデータ判定部(25)と、
前記正反射変位信号と前記乱反射変位信号と前記データ判定部からの前記選択信号が入力され、前記正反射変位信号と前記乱反射変位信号のいずれか一方を選択して出力する変位選択部(26)と、
を有することを特徴とする請求項3に記載の基準ターゲット。
The signal processing unit (15) of the displacement measuring device (10)
The threshold value (E) of the regular reflection light amount signal (B), the first threshold value (F) of the irregular reflection light amount signal (D), the regular reflection light amount signal, and the irregular reflection light amount signal are input. A data determination unit (25) for generating a selection signal (S) for selecting one of the regular reflection displacement signal (A) and the irregular reflection displacement signal (C);
A displacement selection unit (26) that receives the regular reflection displacement signal, the irregular reflection displacement signal, and the selection signal from the data determination unit, and selects and outputs either the regular reflection displacement signal or the irregular reflection displacement signal. When,
The reference target according to claim 3, wherein
前記データ判定部(25)は、
前記正反射光量信号(B)が前記正反射光量信号のしきい値(E)より大きいと判定した場合には、前記正反射光量信号がその上限値より大きい場合に前記乱反射変位信号(C)を選択する選択信号(S)を出力するとともに、前記正反射光量信号がその上限値よりも小さい場合に前記正反射変位信号(A)を選択する選択信号を出力し、
前記正反射光量信号が前記正反射光量信号のしきい値より小さいと判定した場合には、前記乱反射光量信号(D)が前記乱反射光量信号の第1のしきい値(F)より大きい場合に前記乱反射変位信号を選択する選択信号を出力するとともに、前記乱反射光量信号が前記乱反射光量信号のしきい値より小さい場合には測定不能信号を出力することを特徴とする請求項4に記載の基準ターゲット。
The data determination unit (25)
When it is determined that the regular reflection light amount signal (B) is larger than the threshold (E) of the regular reflection light amount signal, the irregular reflection displacement signal (C) is obtained when the regular reflection light amount signal is larger than the upper limit value. And a selection signal for selecting the regular reflection displacement signal (A) when the regular reflection light amount signal is smaller than the upper limit value.
When it is determined that the regular reflection light amount signal is smaller than the threshold value of the regular reflection light amount signal, the irregular reflection light amount signal (D) is larger than the first threshold value (F) of the irregular reflection light amount signal. 5. The reference according to claim 4, wherein a selection signal for selecting the irregular reflection displacement signal is output, and an unmeasurable signal is output when the irregular reflection light amount signal is smaller than a threshold value of the irregular reflection light amount signal. target.
前記基板は、光非浸透性材料からなり、前記乱反射膜は、前記基板の表面に形成された所定厚さの塗膜を研磨してなることを特徴とする請求項1〜5に記載の基準ターゲット。The reference according to claim 1, wherein the substrate is made of a light-impermeable material, and the irregular reflection film is formed by polishing a coating film having a predetermined thickness formed on the surface of the substrate. target. 前記基板は、金属板であり、前記乱反射膜は、前記金属板の表面に形成された厚さ10〜20μmの白色の粉体塗膜を研磨してなることを特徴とする請求項1〜5に記載の基準ターゲット。6. The substrate is a metal plate, and the irregular reflection film is obtained by polishing a white powder coating film having a thickness of 10 to 20 [mu] m formed on the surface of the metal plate. Reference target described in.
JP2003160747A 2003-06-05 2003-06-05 Reference target Expired - Fee Related JP3751605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003160747A JP3751605B2 (en) 2003-06-05 2003-06-05 Reference target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003160747A JP3751605B2 (en) 2003-06-05 2003-06-05 Reference target

Publications (2)

Publication Number Publication Date
JP2004361272A JP2004361272A (en) 2004-12-24
JP3751605B2 true JP3751605B2 (en) 2006-03-01

Family

ID=34053441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003160747A Expired - Fee Related JP3751605B2 (en) 2003-06-05 2003-06-05 Reference target

Country Status (1)

Country Link
JP (1) JP3751605B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113916775B (en) * 2021-08-26 2024-05-03 中国工程物理研究院激光聚变研究中心 High-identification diffuse reflection target

Also Published As

Publication number Publication date
JP2004361272A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP5341351B2 (en) Measuring apparatus and method based on basic principle of confocal microscope system
EP1806571B1 (en) Apparatus and method for evaluating driving characteristics of scanner
US7812969B2 (en) Three-dimensional shape measuring apparatus
US7443513B2 (en) Apparatus for optical measurement of an object
US8244023B2 (en) Shape measuring device and shape measuring method
US6825454B2 (en) Automatic focusing device for an optical appliance
US20100277748A1 (en) Method and System for Measuring Relative Positions Of A Specular Reflection Surface
US6594006B1 (en) Method and array for detecting the position of a plane scanned with a laser scanner
KR20140048824A (en) Calibration apparatus, calibration method, and measurement apparatus
US7327440B2 (en) Distance measuring device
US5329358A (en) Device for optically measuring the height of a surface
KR20060045055A (en) Lens meter
US6396589B1 (en) Apparatus and method for measuring three-dimensional shape of object
US20200264284A1 (en) Optoelectronic sensor and method for detecting an object
JP3751605B2 (en) Reference target
US7525648B2 (en) Apparatus for the examination of the properties of optical surfaces
US6862098B1 (en) Apparatus and method for measuring displacement
CN113299575B (en) Focusing method and apparatus, focusing device, and storage medium
US20060226335A1 (en) Apparatus and a method for the determination of the focal distance
JP3817232B2 (en) Displacement measuring device
JP4911113B2 (en) Height measuring apparatus and height measuring method
JP2828797B2 (en) Measuring method for depth of minute concave surface
JP2021110698A (en) Optical three-dimensional shape measurement device
US11774239B1 (en) Optical measurement device and calibration method thereof
JP3206948B2 (en) Interferometer and interferometer alignment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees