JP2828797B2 - Measuring method for depth of minute concave surface - Google Patents

Measuring method for depth of minute concave surface

Info

Publication number
JP2828797B2
JP2828797B2 JP12045991A JP12045991A JP2828797B2 JP 2828797 B2 JP2828797 B2 JP 2828797B2 JP 12045991 A JP12045991 A JP 12045991A JP 12045991 A JP12045991 A JP 12045991A JP 2828797 B2 JP2828797 B2 JP 2828797B2
Authority
JP
Japan
Prior art keywords
concave surface
optical system
light
angle
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12045991A
Other languages
Japanese (ja)
Other versions
JPH063119A (en
Inventor
尚人 谷脇
省三 野村
篤 岡副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP12045991A priority Critical patent/JP2828797B2/en
Publication of JPH063119A publication Critical patent/JPH063119A/en
Application granted granted Critical
Publication of JP2828797B2 publication Critical patent/JP2828797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、物体の3次元形状を非
接触で認識する形状認識方法の内、特に液体表面の形状
を認識する微小凹面の深さ測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recognizing a three-dimensional shape of an object in a non-contact manner, and more particularly to a method for measuring the depth of a minute concave surface for recognizing the shape of a liquid surface.

【0002】[0002]

【従来の技術】物体の3次元形状を非接触で認識するた
めに、従来より多くの提案がなされており、そのうちい
くつかの技術については具現化され実用に供されてい
る。そのうちで最も簡単に非接触で物体までの距離を測
定するためのセンサとしては、所謂三角測量の原理を応
用したスポット光型の距離センサがある。この距離セン
サの簡単な原理図を図18に示す。
2. Description of the Related Art There have been many proposals for recognizing the three-dimensional shape of an object in a non-contact manner, and some of them have been embodied and put to practical use. Among them, a spotlight type distance sensor that applies the so-called triangulation principle is the simplest sensor for measuring the distance to an object without contact. FIG. 18 shows a simple principle diagram of this distance sensor.

【0003】この距離センサは例えば半導体レーザ等を
用いた光源部1から発生された光を例えばレンズ等を用
いた投光光学系2でスポット光に集光し、測定対象物6
表面に結像されたスポット光の像3を受光光学系4で受
光素子上に再結像させる。この再結像される受光素子と
してはスポット光の結像位置を電気信号に変換する例え
ばPSDのような光電変換素子5を用いる。
In this distance sensor, for example, light generated from a light source unit 1 using a semiconductor laser or the like is condensed into a spot light by a light projecting optical system 2 using a lens or the like, and an object 6 to be measured is collected.
The image 3 of the spot light formed on the surface is re-imaged on the light receiving element by the light receiving optical system 4. As the light receiving element to be re-imaged, a photoelectric conversion element 5 such as a PSD for converting the image forming position of the spot light into an electric signal is used.

【0004】この原理によれば、距離センサから測定対
象物6までの距離Lが変化すると受光素子上に結像され
るスポット光の結像位置がそれに対応して変化する。こ
の結像位置の変化により距離センサから測定対象物6ま
での距離を求める事になる。このような三角測量の原理
を応用した距離センサの内、5の光電変換素子としてP
SDを用いたものはその応答速度が速いことを特徴と
し、またセンサ部が小型化でき、その上信号処理が容易
であるという利点を有する。
According to this principle, when the distance L from the distance sensor to the measuring object 6 changes, the image forming position of the spot light formed on the light receiving element changes correspondingly. The distance from the distance sensor to the measurement object 6 is obtained from the change in the image formation position. Of the distance sensors to which such a principle of triangulation is applied, five photoelectric conversion elements P
The one using the SD is characterized by its high response speed, and has the advantage that the sensor section can be downsized and the signal processing is easy.

【0005】[0005]

【発明が解決しようとする課題】ところが光電変換素子
5としてPSDを用いた場合、測定対象物6の表面に何
らかの原因、例えば2次反射等により発生した光がこの
光電変換素子5に入り込むと、測定用のスポット光とこ
のノイズ光を識別することが不可能であるため、誤測定
を引き起こすという問題があった。
However, when a PSD is used as the photoelectric conversion element 5, if light generated due to some cause, for example, secondary reflection, etc., enters the photoelectric conversion element 5 on the surface of the measuring object 6, Since it is impossible to distinguish between the spot light for measurement and the noise light, there is a problem that erroneous measurement is caused.

【0006】この問題点を、表面が鏡面である粘性の高
い液体を塗布した際にその塗布量を検出するために微小
な凹面である液面の深さを測定する場合について考察し
てみる。先ず図19は測定対象物6が平面である場合に
おける投光された光の反射モデルと、受光光学系への反
射光量の例である。このように測定対象物6が平面であ
れば、スポット光以外のノイズ光はほかに別の外部光源
を考えない限り存在せず、従って測定対象物までの距離
測定も正確に行われる。図中Xは投光軸、Yは受光軸、
Zは表面の反射パターンを示す。
This problem will be considered in the case of measuring the depth of a minute concave liquid surface in order to detect the amount of application when a highly viscous liquid having a mirror surface is applied. First, FIG. 19 shows an example of a reflection model of projected light when the measurement target 6 is a flat surface, and an example of a reflected light amount to a light receiving optical system. As described above, when the measurement target 6 is a flat surface, noise light other than spot light does not exist unless another external light source is considered, so that the distance measurement to the measurement target is also accurately performed. In the figure, X is a light emitting axis, Y is a light receiving axis,
Z indicates the reflection pattern on the surface.

【0007】ところが前述したような微小な凹面である
液面を考えた場合には、その対象特有の問題が発生す
る。この微小な凹面である液面を考えた場合の光学モデ
ルを図20(図21はその拡大図)に示す。この測定対
象物6である液体の表面は微小な凹面を形成しており、
かつ液体表面は正反射にちかい反射特性をもっている。
この場合投光光学系から投光されたスポット光Xa以外
に、同じ投光光学系から出された光の内スポット光とし
て集光されなかった成分Xb(以後、迷光成分と呼ぶ)
が、強度的には小さいが、対象凹面6aの全域にわたっ
て存在する。しかるにこの対象凹面が測定センサの投受
光角となす角度によっては、対象凹面6aの表面の傾き
が、投光光学系から出された光を受光光学系へ正反射す
る場合がある。Ybが上記迷光成分Xbに対応する正反
射成分の受光成分を示す。
However, when considering a liquid surface that is a minute concave surface as described above, a problem specific to the object occurs. An optical model when considering the liquid surface is the small concave shown in FIGS. 20 (21 enlarged view). The surface of the liquid that is the measurement object 6 has a minute concave surface,
Further, the liquid surface has a reflection characteristic close to regular reflection.
In this case, in addition to the spot light Xa projected from the light projecting optical system, a component Xb not collected as a spot light among the lights emitted from the same light projecting optical system (hereinafter referred to as a stray light component).
Although it is small in strength, it exists over the entire area of the target concave surface 6a. However, depending on the angle that the target concave surface forms with the light projecting / receiving angle of the measurement sensor, the inclination of the surface of the target concave surface 6a may cause the light emitted from the light projecting optical system to be specularly reflected to the light receiving optical system. Yb indicates a light receiving component of a regular reflection component corresponding to the stray light component Xb.

【0008】これを受光光学系から見ると、受光光学系
にはスポット光Xaの対象表面での拡散反射成分Yc
と、前述の受光光学系に対して正反射をする傾きを有す
る表面により、迷光成分Xbが正反射された成分Ybと
が観測されることになる。 このように投光スポットX
a以外のノイズ光が、その対象の形状特徴に起因して定
常的に発生し、これにより測定対象物6の表面までの距
離測定が妨げられる。
When this is viewed from the light receiving optical system, the light receiving optical system has a diffuse reflection component Yc of the spot light Xa on the target surface.
And a component Yb in which the stray light component Xb is specularly reflected by the surface having an inclination for specular reflection with respect to the above-described light receiving optical system. Thus, the floodlight spot X
Noise light other than “a” is constantly generated due to the shape characteristic of the object, thereby preventing distance measurement to the surface of the measurement target 6.

【0009】これを避けるためには、特開平1−320
415号に示されるように光電変換素子5としてたとえ
ばCCD素子を用いて再結像する複数のスポット光像か
ら例えばその強度差等を比較することにより真のスポッ
ト光とノイズ光を分離して真のスポット光を認識し、そ
れにより測定対象物までの正確な距離を求める方法もあ
る。
To avoid this, Japanese Patent Laid-Open Publication No.
As shown in Japanese Patent No. 415, a true spot light and a noise light are separated from a plurality of spot light images which are re-imaged using, for example, a CCD element as the photoelectric conversion element 5 to compare the spot light image and the noise light. There is also a method of recognizing the spot light of the target and thereby obtaining an accurate distance to the object to be measured.

【0010】但しこのような方法を用いると、前述した
ようなPSDを用いたことによる利点が無くなってしま
うことは言うまでもない。本発明はこのような問題点に
鑑みて為されたもので、その目的とするところは、スポ
ット光型の測定器を用いて測定対象物までの距離を測定
する際に、形状特徴により発生するノイズ光を避けて、
測定対象物までの距離を正確に測定することができる微
小凹面の深さ測定方法を提供するにある。
However, if such a method is used, it goes without saying that the advantage of using the PSD as described above is lost. The present invention has been made in view of such problems, Toko filtrate is an object of the present invention, when measuring the distance to the measurement object using the spot light type meter, generated by the shape feature Avoid noise light
It is an object of the present invention to provide a method for measuring the depth of a minute concave surface, which can accurately measure the distance to an object to be measured.

【0011】[0011]

【課題を解決するための手段】上述の目的を達成する為
に、本発明は、表面が鏡面である粘性の高い液体を塗布
した際にその塗布量を検出するために微小な凹面である
液面の深さを測定する測定方法で、対象の凹面部分にス
ポット光を当てて三角測量の原理を用いて測定対象物ま
での距離を測定する測定器を用いて測定を行う際、測定
器の投光軸と受光軸が成す角度により決まる一定の角度
を有する正反射面が、対象凹面の測定点以外でかつ受光
光学系の視野内に存在する時、測定器の投光軸と受光軸
の成す角度を一定に保ったまま、測定器の光学系が対象
凹面と成す角度に所定の角度を与え、上記対象凹面内に
存在する正反射面が受光光学系の視野内に存在しないよ
うにして、対象凹面の深さ測定を行う。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a liquid having a minute concave surface for detecting the amount of application when a highly viscous liquid having a mirror surface is applied. When measuring using a measuring instrument that measures the distance to the object to be measured using the principle of triangulation by irradiating a spot light on the concave part of the object with a measuring method that measures the depth of the surface, When a specular reflection surface having a certain angle determined by the angle between the light projecting axis and the light receiving axis exists at a position other than the measurement point of the target concave surface and within the field of view of the light receiving optical system, the light projecting axis of the measuring device and the light receiving axis While keeping the formed angle constant, the optical system of the measuring instrument gives a predetermined angle to the angle formed with the target concave surface, so that the regular reflection surface present in the target concave surface does not exist in the field of view of the light receiving optical system. Then, the depth of the target concave surface is measured.

【0012】前記測定器の光学系が対象凹面と成す角度
が少しずつ異なるように測定器の傾きを変化させなが
ら、対象凹面の深さを測定し、前記受光光学系の視野内
に存在する正反射面による誤測定が発生した場合、上記
複数の測定値の内、最も深い測定値を示すものを真値と
して用いても良い。また前記測定器の受光光学系に当た
る位置にTVカメラを配し、投光光学系から投光された
スポット光の像をモニタTVに表示し、上記測定器の光
学系の角度をわずかずつ変化させながら上記スポット光
の像と正反射光の像の位置関係を調べることにより対象
凹面の液面の角度分布を明確にして、測定器の光学系の
角度を対象凹面の形状に対して最適な角度に設定しても
良い。
The depth of the concave surface of the object is measured while changing the inclination of the measuring device so that the angle formed by the optical system of the measuring device and the concave surface of the object slightly changes, and the depth of the positive surface existing in the field of view of the light receiving optical system is measured. When an erroneous measurement due to the reflection surface occurs, the one indicating the deepest measured value among the plurality of measured values may be used as a true value. Further, a TV camera is arranged at a position corresponding to the light receiving optical system of the measuring instrument, an image of the spot light projected from the light projecting optical system is displayed on the monitor TV, and the angle of the optical system of the measuring instrument is gradually changed. While examining the positional relationship between the image of the spot light and the image of the specular reflection light, the angular distribution of the liquid surface of the target concave surface is clarified, and the angle of the optical system of the measuring instrument is set to the optimum angle with respect to the shape of the target concave surface. May be set.

【0013】更に前記対象凹面の直径方向に、前記測定
器を走査させて、対象凹面の横断面方向に対応した測定
器の出力値を記憶し、この走査を、測定器の光学系が対
象凹面と成す角度を僅かに変化させて繰り返し、得られ
た複数の対象凹面の横断面方向の出力値変化を比較する
ことで、測定器の光学系の角度を対象凹面の形状に対し
て最適な角度に設定してもよい。
Further, the measuring device is caused to scan in the diameter direction of the concave surface of the object, and the output value of the measuring device corresponding to the cross-sectional direction of the concave surface of the object is stored, and this scanning is performed by the optical system of the measuring device. The angle of the optical system of the measuring instrument is adjusted to the optimal angle with respect to the shape of the target concave surface by comparing the obtained output value changes in the cross-sectional direction of the plurality of target concave surfaces with a slight change in the angle formed. May be set.

【0014】[0014]

【作用】上述したように、ノイズ光の原因は、測定器の
光学系と対象凹面のなす角度によるものであるが、本発
明は測定器の投光軸Xと受光軸Yのなす角度θを図1に
示すように一定に保ったまま、測定器の光学系全体を一
定方向にある角度θaだけ傾けることにより、反射パタ
ーンZが傾いて測定対象物6の凹面6a内に前述のよう
な測定器の受光光学系に対しては正反射の傾きとなる面
が存在しなくなり、結果として測定器の受光素子には測
定スポット光の像だけが入ることとなり、測定対象物6
の表面までの距離を正確に測定することが可能となる。
As described above, the cause of the noise light is due to the angle between the optical system of the measuring instrument and the concave surface of the object. However, the present invention sets the angle θ between the light projecting axis X and the light receiving axis Y of the measuring instrument. By tilting the entire optical system of the measuring device by a certain angle θa in a fixed direction while maintaining the constant as shown in FIG. 1, the reflection pattern Z is tilted and the above-described measurement is performed in the concave surface 6 a of the measuring object 6. There is no longer any surface having a regular reflection slope with respect to the light receiving optical system of the measuring instrument. As a result, only the image of the measurement spot light enters the light receiving element of the measuring instrument, and the measurement object 6
It is possible to accurately measure the distance to the surface.

【0015】[0015]

【実施例】以下本発明を実施例により説明する。 (実施例1)実施例に用いる測定器は、図18に示した
距離センサを使用するもので、特に図示しない。
The present invention will be described below with reference to examples. (Embodiment 1) The measuring device used in the embodiment uses the distance sensor shown in FIG. 18 and is not particularly shown.

【0016】図2(a)、(b)で示すのは、距離セン
サの光学系を傾けなかった場合のモデル図である。セン
サの投光軸Xと受光軸Yのなす角度をθとすれば、距離
センサの受光光学系に対して正反射をする凹面6aの傾
は、1/2θとなる。この場合のスポット光Xaと、
正反射光によるノイズ光の発生する場所までの距離をd
で示す。
FIGS. 2A and 2B are model diagrams when the optical system of the distance sensor is not tilted. Assuming that the angle between the light projecting axis X and the light receiving axis Y of the sensor is θ, the inclination of the concave surface 6a that makes regular reflection with respect to the light receiving optical system of the distance sensor is 1 / 2θ. In this case, the spot light Xa
Let d be the distance to the place where noise light is generated by specular reflection light.
Indicated by

【0017】次に図3(a)(b)で示すのは、正反射
面を避けるために距離センサの投光軸Xと受光軸Yのな
す角をαだけ増やした場合のモデル図である。こうする
ことによって距離センサの受光光学系に対して正反射を
する面の傾きは、1/2(θ+α)となり、スポット光
Xaと、正反射光によるノイズ光の発生する場所までの
距離dを前述の図2の場合よりも大きくすることができ
る。図4(a)(b)は同様に正反射面を避けるために
距離センサの光学系をψ傾けた場合のモデル図である。
Next, FIGS. 3A and 3B are model diagrams in the case where the angle between the light projecting axis X and the light receiving axis Y of the distance sensor is increased by α in order to avoid the regular reflection surface. . By doing so, the inclination of the surface of the distance sensor that makes regular reflection with respect to the light receiving optical system becomes ((θ + α), and the distance d between the spot light Xa and the place where noise light is generated due to the regular reflection light is set. It can be larger than in the case of FIG. FIGS. 4A and 4B are model diagrams when the optical system of the distance sensor is similarly tilted by ψ in order to avoid the regular reflection surface.

【0018】こうすることによって、距離センサの受光
光学系に対して正反射をする面の傾きは、1/2θ+ψ
となり、スポット光Xaと、正反射光によるノイズ光の
発生する場所までの距離dは前述の2つの例に比べて、
より効果的に大きくすることができ、場合によっては対
象凹面6a内にその角度を持つ正反射面を持たないよう
な状態にすることも可能となる。
By doing so, the inclination of the surface that regularly reflects the light receiving optical system of the distance sensor is 1 / 2θ + θ.
And the distance d between the spot light Xa and the place where the noise light is generated due to the specular reflection light is smaller than the two examples described above.
It is possible to increase the size more effectively, and in some cases, it becomes possible not to have a regular reflection surface having the angle in the target concave surface 6a.

【0019】図5(a)(b),図6(a)(b)及び
図7(a)(b),図8(a)(b)は同じく距離セン
サの光学系を傾けない場合と傾けた場合の違いを、対象
凹面6aの深さが変化した場合について示すものであ
る。図5(a)、図6(a)に示す距離センサの光学系
を傾けない場合には、各図(b)に示すように受光光学
系の視野内に、測定用のスポット光Xaの位置と、正反
射光スポット光Xbの位置の画像が得られる。
FIGS. 5A, 5B, 6A, 6B, 7A, 7B, 8A, and 8B show the case where the optical system of the distance sensor is not tilted. The difference in the case of tilting is shown when the depth of the target concave surface 6a changes. When the optical system of the distance sensor shown in FIGS. 5A and 6A is not tilted, the position of the spot light Xa for measurement is located within the field of view of the light receiving optical system as shown in FIG. Thus, an image at the position of the regular reflection light spot light Xb is obtained.

【0020】これに対して同じ対象凹面6aに対して距
離センサの光学系を図7(a)、図8(a)に示すよう
にψだけ傾けた場合は受光光学系の視野内の画像は図7
(b)、図8(b)のようになり、受光光学系の視野内
の測定用のスポット光Xaと、ノイズ光である正反射光
スポット光Xbの位置関係は変化し、それによって測定
値も変化していることが判る。
On the other hand, when the optical system of the distance sensor is tilted by ψ with respect to the same concave surface 6a as shown in FIGS. 7A and 8A, the image in the field of view of the light receiving optical system becomes FIG.
(B), as shown in FIG. 8 (b), the positional relationship between the spot light Xa for measurement in the field of view of the light receiving optical system and the spot light Xb of the regular reflection light which is noise light changes, and the measured value is thereby changed. Is also changing.

【0021】このように測定対象である微小な凹面6a
と測定器である距離センサの光学系がなす角度を適宜に
設定してやることで、ノイズ光である正反射光スポット
光Xbの影響を避けて、測定対象物までの距離を正確に
測定することが可能となる。 (実施例2) 実施例1で説明したように、対象凹面6aの形状に応じ
て距離センサの光学系の角度を調整してやれば、ノイズ
光である正反射光スポット光の影響を受けることなく正
確な測定が可能となる。
The minute concave 6a is a constant subject measured in this way
By properly setting the angle formed by the optical system of the distance sensor that is the measuring device, it is possible to accurately measure the distance to the measurement object while avoiding the influence of the specularly reflected light spot light Xb that is noise light. It becomes possible. Second Embodiment As described in the first embodiment, if the angle of the optical system of the distance sensor is adjusted in accordance with the shape of the target concave surface 6a, accurate measurement can be performed without being affected by the specular reflected light spot light that is noise light. Measurement is possible.

【0022】本実施例は距離センサの傾きを少しずつ変
化させながら、対象凹面6aまでの距離を繰り返し測定
し、その測定値の変化を調べるようにしたものである。
まず対象凹面6aの正反射面によるノイズ光の影響で誤
測定が発生した場合、その測定値は必ず真値に対して浅
い値、すなわち距離センサと対象凹面6a間の距離が短
い値を示すことは明らかである。
In this embodiment, the distance to the target concave surface 6a is repeatedly measured while gradually changing the inclination of the distance sensor, and the change in the measured value is examined.
First, when an erroneous measurement occurs due to the influence of noise light due to the specular reflection surface of the target concave surface 6a, the measured value must be a value that is shallower than the true value, that is, a value where the distance between the distance sensor and the target concave surface 6a is shorter. Is clear.

【0023】従って本実施例では上述したように距離セ
ンサの角度を変えながら測定を繰り返した際に、距離セ
ンサの測定値が最も低い値を示したものを真値として採
用する。あるいは距離センサの測定値が変化を示さなく
なった時点での測定値を真値として採用する。こうする
ことにより、ノイズ光の影響を避けて前述のPSDを用
いたスポット光型の距離センサにより測定対象物までの
距離を正確に測定することができるのである。
Accordingly, in the present embodiment, when the measurement is repeated while changing the angle of the distance sensor as described above, the one with the lowest measured value of the distance sensor is adopted as the true value. Alternatively, the measured value at the time when the measured value of the distance sensor stops showing a change is adopted as a true value. By doing so, the distance to the object to be measured can be accurately measured by the spot light type distance sensor using the PSD while avoiding the influence of noise light.

【0024】図9は距離センサの測定値が最も低い値を
示したものを真値として採用する場合の測定手順のフロ
ーチャートを示しており、この場合距離センサの角度を
初期値θに設定した後、距離センサの角度をΔθだけ変
化させ、その都度対象凹面6aまでの距離を測定して測
定値P(i)を読み取り、変化範囲を終了した時点で測
定値P(i)の内の最低値を真値として採用するのであ
る。
FIG. 9 is a flow chart of a measurement procedure in the case where the one with the lowest measured value of the distance sensor is adopted as the true value. In this case, after setting the angle of the distance sensor to the initial value θ. The angle of the distance sensor is changed by Δθ, the distance to the target concave surface 6a is measured each time, and the measured value P (i) is read. When the change range is completed, the lowest value of the measured values P (i) is obtained. Is adopted as a true value.

【0025】図10は距離センサの出力値が変化を示さ
なくなった時点での測定値の最低値を真値として採用す
る場合の測定手順のフローチャートを示しており、この
場合には測定値P(i)の変化があるかどうかを測定の
度に判定して変化がなくなったときに測定値P(i)を
真値として採用している。つまりこの時の測定値P
(i)が最低値であるからである。
FIG. 10 shows a flowchart of a measurement procedure when the minimum value of the measured value when the output value of the distance sensor stops showing a change is adopted as a true value. In this case, the measured value P ( Whether or not there is a change in i) is determined each time the measurement is made, and when no change is found, the measured value P (i) is adopted as a true value. That is, the measured value P at this time
This is because (i) is the lowest value.

【0026】図11は特定の微小凹面6aを測定した場
合の距離センサの傾きと測定値P(i)の関係を示すグ
ラフである。 (実施例3)本実施例は、距離センサの受光光学系にあ
たる箇所にTVカメラ7を配置し、そのTVカメラ7を
介してモニタTVの画面上に測定対象面での正反射スポ
ット光の状態をモニタできるような光学系を用意したも
のである。
FIG. 11 is a graph showing the relationship between the inclination of the distance sensor and the measured value P (i) when a specific minute concave surface 6a is measured. (Embodiment 3) In the present embodiment, a TV camera 7 is arranged at a position corresponding to a light receiving optical system of a distance sensor, and the state of specularly reflected spot light on a surface to be measured is displayed on a monitor TV screen via the TV camera 7. An optical system that can monitor the image is prepared.

【0027】この光学系を用いて、距離センサの光源部
1からの投光による対象凹面6aでの正反射スポット光
の状態を実際に目視により観察を行いながら、光学系が
対象凹面6aとなす角度ψを図12(a),図13
(a),図14(a)で示すように角度ψ=0,ψ1
ψ2というように変化させていき、光学系の角度と、測
定用のスポット光Xa及びノイズ光である正反射スポッ
トXbの出現の傾向を図12(b),図13(b),図
14(b)で示すモニタTVの画面で事前に確認して明
確にすることで、対象凹面6aの角度分布を求め、前記
PSDを用いたスポット光型の距離センサにより対象凹
面6aまでの距離を測定する際に、距離センサの光学系
の角度を対象凹面6aの形状に対して予め最適な角度に
設定しておくことが可能となり、形状特徴により発生す
るノイズ光を避けて、測定対象物までの距離を正確に測
定することができる。
Using this optical system, the optical system forms the target concave surface 6a while actually observing the state of the specularly reflected spot light on the target concave surface 6a due to the light emitted from the light source unit 1 of the distance sensor. FIG. 12A and FIG.
(A), as shown in FIG. 14 (a), angles ψ = 0, ψ 1 ,
gradually varied so on [psi 2, and angle of the optical system, FIG trends appearance of a spot light Xa and noise light for measuring specular reflection spot Xb 12 (b), FIG. 13 (b), the 14 The angle distribution of the target concave surface 6a is obtained by previously confirming and clarifying on the screen of the monitor TV shown in (b), and the distance to the target concave surface 6a is measured by the spot light type distance sensor using the PSD. In this case, the angle of the optical system of the distance sensor can be set to an optimum angle in advance with respect to the shape of the target concave surface 6a. The distance can be measured accurately.

【0028】(実施例4)本実施例は図15(a)〜図
17(a)に示すように距離センサAを対象凹面6aの
直径方向に走査し、その間の距離センサAからの出力信
号を記録することができる手段を準備し、距離センサA
の光学系が対象凹面6aと成す角度を図15(a)〜図
17(a)に示すようにψ=0、ψ1、ψ2と僅かに変化
させて繰り返すことにより、図15(b)〜図17
(b)の如く得られる対象凹面6aの横断面方向の出力
変化を比較することで、対象凹面6aの角度分布を求
め、前記PSDを用いたスポット光型の距離センサによ
り対象凹面6aまでの距離を測定する際に、距離センサ
の光学系の角度を対象凹面6aの形状に対して予め最適
な角度に設定しておくことが可能となり、形状特徴によ
り発生するノイズ光を避けて、測定対象物までの距離を
正確に測定することができる。尚図中dは距離センサの
出力値、xはセンサ変位を示す。
(Embodiment 4) In this embodiment, as shown in FIGS. 15 (a) to 17 (a), the distance sensor A scans in the diameter direction of the target concave surface 6a, and the output signal from the distance sensor A during that time. And a distance sensor A
15 (a) to 17 (a), the angle formed by the optical system with the object concave surface 6a is slightly changed to ψ = 0, ψ 1 , 繰 り 返 す2 as shown in FIGS. ~ FIG.
By comparing the output change in the cross section direction of the target concave surface 6a obtained as shown in (b), the angular distribution of the target concave surface 6a is obtained, and the distance to the target concave surface 6a is obtained by the spot light type distance sensor using the PSD. When measuring the object, it is possible to set the angle of the optical system of the distance sensor to an optimum angle in advance with respect to the shape of the target concave surface 6a, and to avoid noise light generated by the shape characteristic, Distance can be accurately measured. In the figure, d indicates the output value of the distance sensor, and x indicates the sensor displacement.

【0029】[0029]

【発明の効果】請求項1記載の発明は、表面が鏡面であ
る粘性の高い液体を塗布した際にその塗布量を検出する
ために微小な凹面である液面の深さを測定する測定方法
で、対象の凹面部分にスポット光を当てて三角測量の原
理を用いて測定対象物までの距離を測定する測定器を用
いて測定を行う際、測定器の投光軸と受光軸が成す角度
により決まる一定の角度を有する正反射面が、対象凹面
の測定点以外でかつ受光光学系の視野内に存在する時、
測定器の投光軸と受光軸の成す角度を一定に保ったま
ま、測定器の光学系が対象凹面と成す角度に所定の角度
を与え、上記対象凹面内に存在する正反射面が受光光学
系の視野内に存在しないようにして、対象凹面の深さ測
定を行うので、測定器の受光光学系に対しては正反射の
傾きとなる面が存在しなくなり、結果として形状特徴に
より発生するノイズ光を避けることができ、測定器の受
光素子には測定スポット光の像だけが入り、対象凹面ま
での距離を正確に測定することができるという効果があ
る。
According to the first aspect of the present invention, there is provided a measuring method for measuring the depth of a minute concave liquid surface in order to detect the amount of application when a highly viscous liquid having a mirror surface is applied. When measuring with a measuring instrument that measures the distance to the object to be measured using the principle of triangulation by irradiating a spot light on the concave part of the object, the angle between the light emitting axis and the light receiving axis of the measuring instrument When the specular reflection surface having a certain angle determined by is present in the field of view of the light receiving optical system other than the measurement point of the target concave surface,
While maintaining the angle between the light-emitting axis and the light-receiving axis of the measuring instrument constant, the optical system of the measuring instrument gives a predetermined angle to the angle formed by the concave surface of the object, and the specular reflection surface existing in the concave surface of the object forms the light receiving optical axis. Since the depth measurement of the concave surface of the object is performed so as not to be present in the field of view of the system, there is no surface having a regular reflection slope with respect to the light receiving optical system of the measuring instrument, and as a result, the surface is generated by the shape feature. Noise light can be avoided, and only the image of the measurement spot light enters the light receiving element of the measuring instrument, so that the distance to the target concave surface can be measured accurately.

【0030】請求項2記載の発明は、前記測定器の光学
系が対象凹面と成す角度が少しずつ異なるように測定器
の傾きを変化させながら、対象凹面の深さを測定し、前
記受光光学系の視野内に存在する正反射面による誤測定
が発生した場合、上記複数の測定値の内、最も深い測定
値を示すものを真値として用いたもので、請求項1記載
の発明と同様な効果がある。
According to a second aspect of the present invention, the depth of the concave surface of the object is measured while changing the inclination of the measuring device so that the angle formed by the optical system of the measuring device and the concave surface of the object is slightly different, and the light receiving optical system is provided. In the case where an erroneous measurement occurs due to a specular reflection surface present in the field of view of the system, a value indicating the deepest measurement value among the plurality of measurement values is used as a true value, and is the same as the invention according to claim 1. Has a significant effect.

【0031】また請求項3記載の発明は、前記測定器の
受光光学系に当たる位置にTVカメラを配し、投光光学
系から投光されたスポット光の像をモニタTVに表示
し、上記測定器の光学系の角度をわずかずつ変化させな
がら上記スポット光の像と正反射光の像の位置関係を調
べることにより対象凹面の液面の角度分布を明確にし
て、測定器の光学系の角度を対象凹面の形状に対して最
適な角度に設定し、請求項4記載の発明は前記対象凹面
の直径方向に、前記測定器を走査させて、対象凹面の横
断面方向に対応した測定器の出力値を記憶し、この走査
を、測定器の設定を測定器の光学系が対象凹面と成す角
度を僅かに変化させて繰り返し、得られた複数の対象凹
面の横断面方向の出力変化を比較することで、測定器の
光学系の角度を対象凹面の形状に対して最適な角度に設
定しているので、これら発明も、請求項1記載の発明と
同様な効果がある。
According to a third aspect of the present invention, a TV camera is arranged at a position corresponding to a light receiving optical system of the measuring instrument, and an image of a spot light projected from the light projecting optical system is displayed on a monitor TV. The angle distribution of the liquid surface of the target concave surface is clarified by examining the positional relationship between the image of the spot light and the image of the specular reflection light while slightly changing the angle of the optical system of the measuring instrument, and the angle of the optical system of the measuring instrument Is set to an optimum angle with respect to the shape of the target concave surface, and the invention according to claim 4 scans the measuring device in the diameter direction of the target concave surface, and sets the measuring device corresponding to the cross-sectional direction of the target concave surface. The output value is stored, and this scanning is repeated by slightly changing the angle of the optical system of the measuring device with the target concave surface, and comparing the obtained output changes in the cross-sectional direction of the plurality of target concave surfaces. The angle of the optical system of the measuring instrument Since the is set to an optimal angle with respect to shape, these inventions also have invention the same effect as in claim 1, wherein.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】距離センサの光学系を傾けなかった場合の説明
図である。
[2] The distance is an explanatory view when bought Do tilted optical system of the sensor.

【図3】距離センサの投光軸と受光軸のなす角度をα
増やした場合の説明図である。
FIG. 3 is an angle α between the light emitting axis and the light receiving axis of the distance sensor .
FIG. 7 is an explanatory diagram in a case where the number of light beams is increased.

【図4】本発明の実施例1の距離センサの光学系をψ傾
けた場合の説明図である。
FIG. 4 is an explanatory diagram when the optical system of the distance sensor according to the first embodiment of the present invention is tilted by ψ.

【図5】対象凹面の深さが浅く距離センサの光学系を傾
けない場合における説明図である。
FIG. 5 is an explanatory diagram in a case where the depth of an object concave surface is shallow and the optical system of the distance sensor is not tilted.

【図6】対象凹面の深さが深く距離センサの光学系を傾
けない場合における説明図である。
FIG. 6 is an explanatory diagram in a case where the depth of an object concave surface is deep and the optical system of the distance sensor is not tilted.

【図7】対象凹面の深さが浅く距離センサの光学系をψ
だけ傾けた本発明の実施例2の説明図である。
FIG. 7 shows an optical system of the distance sensor in which the depth of the concave surface of the object is small.
FIG. 9 is an explanatory view of Embodiment 2 of the present invention, which is tilted only.

【図8】対象凹面の深さが深く距離センサの光学系をψ
だけ傾けた本発明の実施例2の説明図である。
FIG. 8 shows an optical system of the distance sensor in which the depth of the concave surface of the object is deep.
FIG. 9 is an explanatory view of Embodiment 2 of the present invention, which is tilted only.

【図9】本発明の実施例2の最低値を真値として採用す
る場合の測定手順を示すフローチャートである。
FIG. 9 is a flowchart illustrating a measurement procedure when the lowest value according to the second embodiment of the present invention is adopted as a true value.

【図10】本発明の実施例2の測定値の変化に注目する
場合の測定手順を示すフローチャートである。
FIG. 10 is a flowchart illustrating a measurement procedure when focusing on a change in a measurement value according to the second embodiment of the present invention.

【図11】本発明の実施例2の距離センサの傾きと出力
値との関係説明図である。
FIG. 11 is a diagram illustrating the relationship between the inclination and the output value of the distance sensor according to the second embodiment of the present invention.

【図12】本発明の実施例3の距離センサの光学系を傾
なかった場合の説明図である。
FIG. 12 is an explanatory diagram when the optical system of the distance sensor according to the third embodiment of the present invention is not tilted.

【図13】本発明の実施例3の距離センサの光学系をψ
1だけ傾けた場合の説明図である。
FIG. 13 illustrates an optical system of a distance sensor according to a third embodiment of the present invention.
It is an explanatory view when inclined by 1.

【図14】本発明の実施例3の距離センサの光学系をψ
2だけ傾けた場合の説明図である。
FIG. 14 illustrates an optical system of a distance sensor according to a third embodiment of the present invention.
FIG. 4 is an explanatory diagram in the case of tilting by two .

【図15】本発明の実施例4の距離センサの光学系を傾
なかった場合の説明図である。
FIG. 15 is an explanatory diagram when the optical system of the distance sensor according to the fourth embodiment of the present invention is not tilted.

【図16】本発明の実施例4の距離センサの光学系をψ
1だけ傾けた場合の説明図である。
FIG. 16 illustrates an optical system of a distance sensor according to a fourth embodiment of the present invention.
It is an explanatory view when inclined by 1.

【図17】本発明の実施例4の距離センサの光学系をψ
2だけ傾けた場合の説明図である。
FIG. 17 illustrates an optical system of a distance sensor according to a fourth embodiment of the present invention.
FIG. 4 is an explanatory diagram in the case of tilting by two .

【図18】三角測量の原理を応用したスポット光型の距
離センサの原理説明図である。
FIG. 18 is a diagram illustrating the principle of a spot light type distance sensor to which the principle of triangulation is applied.

【図19】距離センサの投光光学系からでた光と、平面
の測定対象物体表面での反射光とそれを受光するための
受光光学系の関係説明図である。
FIG. 19 is an explanatory diagram showing a relationship between light emitted from a light projecting optical system of a distance sensor, light reflected on a flat surface of an object to be measured, and a light receiving optical system for receiving the light.

【図20】距離センサの投光光学系からでた光と、微小
凹面での反射光とそれを受光するための受光光学系の関
係説明図である。
FIG. 20 is a diagram illustrating the relationship between light emitted from a light projecting optical system of a distance sensor, light reflected on a minute concave surface, and a light receiving optical system for receiving the light.

【図21】図20の要部を拡大した説明図である。21 is an enlarged explanatory view of a main part of FIG. 20;

【符号の説明】[Explanation of symbols]

X 投光軸 Y 受光軸 Z 反射パターン 6a 対象凹面 6 測定対象物 X Projecting axis Y Receiving axis Z Reflection pattern 6a Concave concave surface 6 Measurement object

フロントページの続き (56)参考文献 特開 平2−105002(JP,A) 特開 平4−181108(JP,A) 特開 昭60−36908(JP,A) 特開 昭62−115315(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 - 11/30 G01C 3/00 - 3/32Continuation of front page (56) References JP-A-2-105002 (JP, A) JP-A-4-181108 (JP, A) JP-A-60-36908 (JP, A) JP-A-62-115315 (JP) , A) (58) Fields investigated (Int. Cl. 6 , DB name) G01B 11/00-11/30 G01C 3/00-3/32

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】表面が鏡面である粘性の高い液体を塗布し
た際にその塗布量を検出するために微小な凹面である液
面の深さを測定する測定方法で、対象の凹面部分にスポ
ット光を当てて三角測量の原理を用いて測定対象物まで
の距離を測定する測定器を用いて測定を行う際、測定器
の投光軸と受光軸が成す角度により決まる一定の角度を
有する正反射面が、対象凹面の測定点以外でかつ受光光
学系の視野内に存在する時、測定器の投光軸と受光軸の
成す角度を一定に保ったまま、測定器の光学系が対象凹
面と成す角度に所定の角度を与え、上記対象凹面内に存
在する正反射面が受光光学系の視野内に存在しないよう
にして、対象凹面の深さ測定を行うことを特徴とする微
小凹面の深さ測定方法。
1. A measuring method for measuring the depth of a minute concave liquid surface in order to detect the amount of application when a highly viscous liquid having a mirror surface is applied. When measuring using a measuring instrument that measures the distance to the object to be measured using the principle of triangulation by irradiating light, a positive angle having a fixed angle determined by the angle formed by the projecting axis and the receiving axis of the measuring instrument When the reflection surface is located at a point other than the measurement point of the concave surface of the object and is within the field of view of the light receiving optical system, the optical system of the measuring device is moved to the concave surface while keeping the angle between the light emitting axis and the light receiving axis of the measuring device constant. And a predetermined angle to the angle formed, so that the regular reflection surface present in the target concave surface does not exist in the field of view of the light receiving optical system, the depth of the target concave surface characterized by performing a depth measurement of the concave surface Depth measurement method.
【請求項2】前記測定器の光学系が対象凹面と成す角度
が少しずつ異なるように測定器の傾きを変化させなが
ら、対象凹面の深さを測定し、前記受光光学系の視野内
に存在する正反射面による誤測定が発生した場合、上記
複数の測定値の内、最も深い測定値を示すものを真値と
して用いることを特徴とする請求項1記載の微小凹面の
深さ測定方法。
2. The depth of an object concave surface is measured while changing the inclination of the measuring device so that an angle formed by the optical system of the measuring device with the concave surface of the object is slightly different, and the depth of the concave surface is within the field of view of the light receiving optical system. 2. The method according to claim 1, wherein, when an erroneous measurement by the specular reflection surface occurs, a value indicating the deepest measured value among the plurality of measured values is used as a true value.
【請求項3】前記測定器の受光光学系に当たる位置にT
Vカメラを配し、投光光学系から投光されたスポット光
の像をモニタTVに表示し、上記測定器の光学系の角度
をわずかずつ変化させながら上記スポット光の像と正反
射光の像の位置関係を調べることにより対象凹面の液面
の角度分布を明確にして、測定器の光学系の角度を対象
凹面の形状に対して最適な角度に設定することを特徴と
する請求項1記載の微小凹面の深さ測定方法。
3. A T position at a position corresponding to a light receiving optical system of the measuring device.
A V-camera is arranged, an image of the spot light projected from the light projecting optical system is displayed on the monitor TV, and the angle of the optical system of the measuring device is changed little by little to change the image of the spot light and the specular reflected light. 2. The method according to claim 1, wherein an angular distribution of the liquid surface of the target concave surface is clarified by examining a positional relationship between the images, and an angle of an optical system of the measuring instrument is set to an optimum angle with respect to a shape of the target concave surface. The method for measuring the depth of a minute concave surface described in the above.
【請求項4】前記対象凹面の直径方向に、前記測定器を
走査させて、対象凹面の横断面方向に対応した測定器の
出力値を記憶し、この走査を、測定器の光学系が対象凹
面と成す角度を僅かに変化させて繰り返し、得られた複
数の対象凹面の横断面方向の出力値変化を比較すること
で、測定器の光学系の角度を対象凹面の形状に対して最
適な角度に設定することを特徴とする請求項1記載の微
小凹面の深さ測定方法。
4. The measuring device is scanned in the diameter direction of the concave surface of the object, and the output value of the measuring device corresponding to the cross-sectional direction of the concave surface of the object is stored, and the scanning is performed by the optical system of the measuring device. By repeatedly changing the angle formed with the concave surface and repeating the obtained output value change in the cross-sectional direction of the plurality of target concave surfaces, the angle of the optical system of the measuring instrument is optimized for the shape of the target concave surface. 2. The method according to claim 1, wherein the angle is set to an angle.
JP12045991A 1991-05-24 1991-05-24 Measuring method for depth of minute concave surface Expired - Fee Related JP2828797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12045991A JP2828797B2 (en) 1991-05-24 1991-05-24 Measuring method for depth of minute concave surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12045991A JP2828797B2 (en) 1991-05-24 1991-05-24 Measuring method for depth of minute concave surface

Publications (2)

Publication Number Publication Date
JPH063119A JPH063119A (en) 1994-01-11
JP2828797B2 true JP2828797B2 (en) 1998-11-25

Family

ID=14786700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12045991A Expired - Fee Related JP2828797B2 (en) 1991-05-24 1991-05-24 Measuring method for depth of minute concave surface

Country Status (1)

Country Link
JP (1) JP2828797B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893763B2 (en) * 1998-08-17 2007-03-14 富士ゼロックス株式会社 Voice detection device
JP2007033263A (en) * 2005-07-27 2007-02-08 Nagasaki Univ On-board measuring method of shape error of micro recessed surface shape, and measuring device
JP6677075B2 (en) * 2016-05-19 2020-04-08 富士通株式会社 Water level measuring device, method and program
CN114459362B (en) * 2021-12-31 2024-03-26 深圳市瑞图生物技术有限公司 Measuring device and measuring method thereof

Also Published As

Publication number Publication date
JPH063119A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
JP2919267B2 (en) Shape detection method and device
JP2651093B2 (en) Shape detection method and device
JPH0650720A (en) Height measuring method and device
US5568258A (en) Method and device for measuring distortion of a transmitting beam or a surface shape of a three-dimensional object
JP2828797B2 (en) Measuring method for depth of minute concave surface
AU739618B2 (en) Non-contact method for measuring the shape of an object
JP3695170B2 (en) Optical sensor
JPS59231403A (en) Non-contact type three-dimensional measuring device
JPH0334563B2 (en)
JP3798212B2 (en) 3D shape measuring device
JPH0587681A (en) Measuring method and apparatus of coating state
US11131543B2 (en) Three-dimensional measuring apparatus and robot system
JPH06102028A (en) Noncontact optical range finder and range finding method
US5631738A (en) Laser ranging system having reduced sensitivity to surface defects
JPH0311401B2 (en)
JP2522191B2 (en) IC lead height measuring device
JP3817232B2 (en) Displacement measuring device
JP2943498B2 (en) Scanning laser displacement meter
JP3751605B2 (en) Reference target
JPS62291512A (en) Distance measuring apparatus
KR19990051522A (en) 3D measuring device using cylindrical lens and laser scanner
JPH10197336A (en) Laser beam-measuring apparatus
JPH0357914A (en) Optical probe
JPH02300617A (en) Shape measuring instrument

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980901

LAPS Cancellation because of no payment of annual fees