JP3751574B2 - Target position detection method and target position detection system - Google Patents

Target position detection method and target position detection system Download PDF

Info

Publication number
JP3751574B2
JP3751574B2 JP2002120666A JP2002120666A JP3751574B2 JP 3751574 B2 JP3751574 B2 JP 3751574B2 JP 2002120666 A JP2002120666 A JP 2002120666A JP 2002120666 A JP2002120666 A JP 2002120666A JP 3751574 B2 JP3751574 B2 JP 3751574B2
Authority
JP
Japan
Prior art keywords
position detection
station
target
detection target
transmitting station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002120666A
Other languages
Japanese (ja)
Other versions
JP2003315449A (en
Inventor
丈治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002120666A priority Critical patent/JP3751574B2/en
Publication of JP2003315449A publication Critical patent/JP2003315449A/en
Application granted granted Critical
Publication of JP3751574B2 publication Critical patent/JP3751574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、航空機、船舶などの目標の位置を探知する目標位置探知方法および目標位置探知システムに係わり、さらに詳しくは、送信局から送信された電波が直接受信局に到来する時刻と目標で反射されて受信局に到来時刻の差を用いて、送信局から見た目標と受信局のなす角度および受信局から見た目標と送信局のなす角度を求め、三角測量の原理によって目標の位置を探知する目標位置探知方法および目標位置探知システムに関する。
【0002】
【従来の技術】
図9は、従来の目標位置の特定(探知)方法の一例(従来の方法1)を示す図である。
図において、30は位置探知の対象物である目標、31は第一の受信局、32は第二の受信局、19は第一の受信局31と第二の受信局32を結ぶ基線、41は第一の受信局31で測定した目標30の方位角(即ち、第一の受信局31から見た目標30と第二の受信局32のなす角度)、42は第二の受信局32で測定した目標30の方位角(即ち、第二の受信局32から見た目標30と第一の受信局31のなす角度)である。
従来の方法1は、図9に示すように、第一の受信局31と第二の受信局32の2つの受信局を設置し、各受信局において、目標30が送信する電波を受信して、目標30の方位角を測定する。
また、第一の受信局31と第二の受信局32を結ぶ基線19の距離は、測量等により既知である。
【0003】
従って、目標30の位置を三角形の頂点A、第一の受信局31の位置を三角形の頂点B、第二の受信局32の位置を三角形の頂点Cとすると、三角形ABCにおいて辺BCの長さとその両端の角度が求められることになり、三角測量の原理により頂点Aに位置を決定することができる。
即ち、基線19の距離(長さ)、第一の受信局31で測定した目標30の方位角41および第二の受信局32で測定した目標30の方位角42を用いて、三角測量の原理により目標30の位置を特定(探知)することができる。
【0004】
また、図10は、従来の別の方法による目標位置の特定(探知)方法(従来の方法2)を示す図である。
図において、21は時刻t1における受信局の第一の位置、22は時刻t2における受信局の第二の位置、30は位置探知の対象物である目標、23は時刻t1における受信局の第一の位置21と時刻t2における受信局の第二の位置22を結ぶ基線、24は時刻t1の第一の位置21において受信局が測定した目標の方位角、25は時刻t2の第二の位置22において受信局が測定した目標30の方位角である。
この従来の方法2においては、受信局は直線(即ち、基線23)上を移動しながら、時刻t1と時刻t2に目標30が送信する電波を受信することにより、第一の位置21および第二の位置22における目標30の方位角を測定する。
【0005】
また、時刻t1における受信局の第一の位置21と時刻t2における受信局の第二の位置22を結んだ基線23の距離も測定できるので、従来の方法1と同様に三角測量の原理により目標30の位置を特定することができる。
即ち、基線23の距離(長さ)、第一の位置21において受信局が測定した目標30の方位24および第二の位置22において受信局が測定した目標30の方位25を用いて、三角測量の原理により目標30の位置を特定(探知)することができる。
【0006】
【発明が解決しようとする課題】
従来の方法1では、目標30が電波を送信している必要がある。
また、各受信局間での目標30の方位角測定を同一時刻に行う必要があるほか、各受信局の位置をあらかじめ知っておく必要があるので、何らかの方法で受信局間の同期を取る必要があった。
また、従来の方法2では、目標30が電波を送信している必要があると共に、各時刻における移動する受信局の位置を知る必要があるほか、受信局位置を特定(探知)するまでに(時刻t2−時刻t1)の時間を必要とするなどの問題点があった。
【0007】
この発明は上記のような問題点を解消するためになされたもので、受信局間での同期を取ることなく、電波を送信していない目標の位置を探知できる目標位置探知方法および目標位置探知システムを提供することを目的とする。
また、電波を送信していない目標の位置探知を、短時間、かつ、高精度に行える目標位置探知方法および目標位置探知システムを提供することを目的とする。
また、電波を送信している目標が海面上にある場合に、目標の位置探知を容易に行える目標位置探知方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る目標位置探知方法は、所定時間で一回転する送信局のアンテナからパルス列信号の電波を位置探知目標および受信局に送信し、上記受信局に直接到来する上記パルス列信号の到来時刻と上記位置探知目標で反射されてから上記受信局に到来する上記パルス列信号の到来時刻との差に基づいて、上記送信局から直接上記受信局に至る第一の経路長と上記送信局から上記位置探知目標を経由して上記受信局に至る第二の経路長との経路長差を算出し、上記送信局のアンテナが所定時間で一回転することにより生じる振幅変調信号のピーク振幅が上記受信局に直接到来する到来時刻と、上記振幅変調信号のピーク振幅が上記位置探知目標で反射されてから上記受信局に到来する到来時刻との差に基づいて、上記送信局から見た上記位置探知目標と上記受信局のなす第一の角度を求め、上記送信局から送信され、上記位置探知目標で反射して上記受信局に到来する電波に基づいて、上記受信局から見た上記位置探知目標と上記送信局のなす第二の角度を求め、求められた上記経路長差、上記第一の角度および第二の角度を用いて、上記位置探知目標の位置を算出するものである。
【0009】
また、この発明に係る目標位置探知方法は、上記送信局から直接上記受信局に至る上記第一の経路長は既知であることを特徴とする。
【0010】
また、この発明に係る目標位置探知方法は、単位時間に所定の回転数で回転する送信局の指向性アンテナから位置探知目標に振幅変調信号の電波を送信すると共に、上記指向性アンテナが所定の方位を向いた時に上記送信局の無指向性アンテナから上記振幅変調信号の電波を全方位に送信し、上記指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号と、上記無指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号との位相差に基づいて、上記送信局から見た上記位置探知目標と上記受信局のなす第一の角度を求め、上記位置探知目標からの反射電波に基づいて、上記受信局から見た上記位置探知目標と上記送信局のなす第二の角度を求め、求められた上記第一の角度、第二の角度および既知の上記送信局と上記受信局間の距離を用いて、上記位置探知目標の位置を算出するものである。
【0011】
また、この発明に係る目標位置探知方法の送信局より送信される電波はパルス列信号を含み、上記受信局に直接到来する上記パルス列信号の到来時刻と上記位置探知目標で反射されてから上記受信局に到来する上記パルス列信号の到来時刻との差に基づいて、上記送信局から直接上記受信局に至る第一の経路長と上記送信局から上記位置探知目標を経由して上記受信局に至る第二の経路長との経路長差を算出し、算出された上記経路長差、求められた上記第一の角度および第二の角度を用いて、上記位置探知目標の位置を算出するものである。
【0012】
また、この発明に係る目標位置探知方法は、単位時間に所定の回転数で回転する第一の送信局の指向性アンテナから位置探知目標に第一の振幅変調信号の電波を送信すると共に、上記指向性アンテナが所定の方位を向いた時に上記第一の送信局の無指向性アンテナから上記第一の振幅変調信号の電波を全方位に送信し、単位時間に所定の回転数で回転する第二の送信局の指向性アンテナから位置探知目標に第二の振幅変調信号の電波を送信すると共に、上記第二の送信局の上記指向性アンテナが所定の方位を向いた時に上記第二の送信局の無指向性アンテナから上記第二の振幅変調信号の電波を全方位に送信し、上記第一の送信局の指向性アンテナから送信された第一の振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号と、上記第一の送信局の無指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号との位相差に基づいて、上記第一の送信局から見た上記位置探知目標と上記第二の送信局のなす第一の角度を求め、上記第二の送信局の指向性アンテナから送信された第二の振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号と、上記第二の送信局の無指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号との位相差に基づいて、上記第二の送信局から見た上記位置探知目標と上記第一の送信局のなす第二の角度を求め、
求められた上記第一の角度、第二の角度および既知の上記第一の送信局と上記第二の送信局間の距離を用いて、上記位置探知目標の位置を算出するものである。
【0014】
また、この発明に係る目標位置探知システムは、所定時間で一回転する送信局のアンテナからパルス列信号の電波を位置探知目標および受信局に送信する送信局と、上記位置探知目標で反射される電波と上記送信局から直接到来する電波を受信する受信局であって、上記送信局から直接到来する上記パルス列信号の到来時刻と上記位置探知目標で反射されてから到来する上記パルス列信号の到来時刻との差に基づいて、上記送信局から直接上記受信局に至る第一の経路長と上記送信局から上記位置探知目標を経由して上記受信局に至る第二の経路長との経路長差を算出する手段と、上記送信局のアンテナが所定時間で一回転することにより生じる振幅変調信号のピーク振幅が上記受信局に直接到来する到来時刻と、上記振幅変調信号のピーク振幅が上記位置探知目標で反射されてから上記受信局に到来する到来時刻との差に基づいて、上記送信局から見た上記位置探知目標と上記受信局のなす第一の角度を求める手段と、上記送信局から送信され、上記位置探知目標で反射して上記受信局に到来する電波に基づいて、上記受信局から見た上記位置探知目標と上記送信局のなす第二の角度を求める手段とを有した受信局とを備え、求められた上記経路長差、上記第一の角度および第二の角度を用いて、上記位置探知目標の位置を算出するものである。
【0015】
また、この発明に係る目標位置探知システムは、単位時間に所定の回転数で回転する指向性アンテナから位置探知目標に振幅変調信号の電波を送信すると共に、上記指向性アンテナが所定の方位を向いた時に無指向性アンテナから上記振幅変調信号の電波を全方位に送信する送信局と、上記送信局から送信され、上記位置探知目標で反射された電波を受信する受信局であって、上記指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号と、上記無指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号との位相差に基づいて、上記送信局から見た上記位置探知目標と上記受信局のなす第一の角度を求める手段と、上記位置探知目標からの反射電波に基づいて、上記受信局から見た上記位置探知目標と上記送信局のなす第二の角度を求める手段とを有した受信局を備え、求められた上記第一の角度、第二の角度および既知の上記送信局と上記受信局間の距離を用いて、上記位置探知目標の位置を算出するものである。
【0016】
また、この発明に係る目標位置探知システムの送信局は、送信する電波にパルス列信号を含み、上記受信局は、直接到来する上記パルス列信号の到来時刻と上記位置探知目標で反射されてから到来する上記パルス列信号の到来時刻との差に基づいて、上記送信局から直接上記受信局に至る第一の経路長と上記送信局から上記位置探知目標を経由して上記受信局に至る第二の経路長との経路長差を算出する手段をさらに有し、算出された上記経路長差、求められた上記第一の角度および第二の角度を用いて、上記位置探知目標の位置を算出するものである。
【0017】
また、この発明に係る目標位置探知システムは、単位時間に所定の回転数で回転する指向性アンテナからら位置探知目標に第一の振幅変調信号の電波を送信すると共に、上記指向性アンテナが所定の方位を向いた時に無指向性アンテナから上記第一の振幅変調信号の電波を全方位に送信する第一の送信局と、単位時間に所定の回転数で回転する指向性アンテナから位置探知目標に第二の振幅変調信号の電波を送信すると共に、上記指向性アンテナが所定の方位を向いた時に無指向性アンテナから上記第二の振幅変調信号の電波を全方位に送信する第二の送信局と、上記第一の送信局および上記第二の送信局から送信され、上記位置探知目標で反射された電波を受信する受信局であって、上記第一の送信局の指向性アンテナから送信された第一の振幅変調信号の電波が上記位置探知目標で反射してから受信される受信電波信号と、上記第一の送信局の無指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射してから受信される受信電波信号との位相差に基づいて、上記第一の送信局から見た上記位置探知目標と上記第二の受信局のなす第一の角度を求める手段と、上記第二の送信局の指向性アンテナから送信された第二の振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号と、上記第二の送信局の無指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号との位相差に基づいて、上記第二の送信局から見た上記位置探知目標と上記第一の送信局のなす第二の角度を求める手段を有した受信局とを備え、求められた上記第一の角度、第二の角度および既知の上記第一の送信局と上記第二の送信局間の距離を用いて、上記位置探知目標の位置を算出するものである。
【0018】
【発明の実施の形態】
この発明の一実施の形態について、図面に基づいて説明する。
なお、各図間において、同一符号は同一あるいは相当のものを表す。
実施の形態1.
図1は、実施の形態1による目標位置探知方法の要領を説明するための図である。
図において、1は送信局、2は受信局、3は位置探知目標(以下、単に目標と称す)、4は送信局1から受信局2に直接到来する電波(直接波)、5は送信局1から目標3に送信する電波(送信波)、6は目標3で反射して受信局に到来する電波(目標3からの反射波)、7は受信局2から見た目標3の方位角(即ち、受信局2から見た目標3と送信局1のなす角度)、8は送信局1から見た目標3の方位角(即ち、送信局1から見た目標3と受信局2のなす角度)である。
なお、送信局1は、アンテナを回転させながらパルス列信号の電波を送信するものとする。
【0019】
図2は、送信局1から送信されたパルス列信号の電波が直接受信局2に到達する電波(直接波)と、送信局1から送信されたパルス列信号の電波が目標3で反射され、受信局2に到達する電波(反射波)の時刻差を説明するための図である。
図において、(a)は送信局1から送信されるパルス列信号の電波、(b)は送信局1から送信され、受信局2に直接到来するパルス列信号の電波、(c)は送信局1から送信され、目標3で反射して受信局2に到来するパルス列信号の電波である。
図2に示すように、送信局1から受信局2に直接到来するパルス列信号の電波(直接波)4と、目標3で反射して受信局2に到来するパルス列信号の電波(目標からの反射波)6とには、その経路長に差があるため、送信されたパルス列の到来時刻にも差が生じ、その時刻差は経路差300m当たり1μsとなる。
従って、この時間(即ち、パルス列の到来時刻差)を測定することで、送信局1と受信局2の間の距離と送信局1から目標3を経由して受信局2に至る距離の差である経路差を算出できる。
【0020】
一方、送信局1のアンテナは所定の回転速度で回転しているため、図3に示すように、受信局2ではアンテナが一回転に要する時間を1周期として、振幅変化する信号として受信される。
即ち、受信局2で受信される電波の強さは、アンテナ一回転毎に振幅のピークが現れる。
図3において、(a)は送信局1から送信された電波が目標3で反射して受信局2に到来する反射波であり、(b)は送信局1から送信された電波が直接受信局2に到来する直接波である。
送信局1から受信局2に直接到来する電波(直接波)4の振幅ピークと、目標3で反射して受信局2に到来する電波(目標からの反射波)6の振幅ピークの時間差から、以下の式を計算することで、送信局1から見た目標3と受信局2とのなす角度8が求まる。
角度8 : 360゜ = ΔT : T
なお、Tはアンテナ一回転に要する時間、ΔTは目標3からの反射波6の振幅がピークになるとき時間と直接波4の振幅がピークになるときの時間との時間差(ピーク振幅時間差)である。
【0021】
また、受信局2から見た目標3の方位7は、目標3からの反射波6により受信局2で測定可能である。
このように本実施の形態では、送信局1から見た目標3と受信局2のなす角度8と受信局2から見た目標3と送信局1のなす角度7と、送信局1と受信局2の間の距離と送信局1から目標3を経由して受信局2に至る距離の差(経路差)が求まるので、目標3の位置は作図により算出が可能(即ち、探知が可能)である。
即ち、図1に示すように、目標3の位置を三角形の頂点A、送信局1の位置を三角形の頂点B、受信局2の位置を三角形の頂点Cとする三角形ABCにおいて、辺BCの両端の角度と、辺BCの長さと辺BA+辺ABの長さの差が求められることになり、三角測量の原理により頂点Aの位置を算出できる。
【0022】
この方法においては、送信局1の位置も作図により算出が可能であるので、送信局1がアンテナを回転させてパルス列を送信していれば、送信局1は受信局2とは何ら関係の無い設備であっても良い。
また、厳密にはΔTには経路差による時間差も含まれているが、経路差による時間差はms(ミリセカンド)オーダー、ΔTは秒オーダーであるので無視しても差し支えない。
【0023】
実施の形態2.
上述の実施の形態1による目標位置探知方法では、送信局の位置が不明な場合(送信局と受信局の間の距離が不明な場合)の例を示したが、送信局が地上施設等で位置が既知である場合、即ち、送信局と受信局の間の距離が既知である場合には、もっと容易に目標の位置を特定(探知)できる。
図4は、実施の形態2による目標位置探知方法の要領を説明するための図である。
図において、1は送信局、2は受信局、3は位置探知の対象物である目標、4は送信局1から受信局2に直接到来する電波(直接波)、5は送信局1から目標3に到達する電波(送信波)、6は目標3で反射して受信局2に到来する電波(目標からの反射波)、7は受信局2から見た目標3の方位角(即ち、受信局2から見た目標3と送信局1のなす角度)、8は送信局1から見た目標3の方位角(即ち、送信局1から見た目標3と受信局2のなす角度)である。
【0024】
なお、実施の形態1の場合と同様に、送信局1はアンテナを回転させてパルス列を送信するものとする。
従って、実施形態1と同様に、送信局1から受信局2に直接到来する電波4と、目標3で反射して受信局2に到来する電波6のピーク振幅の時間差(ピーク振幅時間差)から、以下の式を計算することで、送信局1から見た目標3と受信局2のなす角8が求まる。
角度8 : 360゜ = ΔT : T
なお、Tはアンテナ一回転に要する時間、ΔTは目標3からの反射波6の振幅がピークになるとき時間と直接波4の振幅がピークになるときの時間との時間差(ピーク振幅時間差)である。
また受信局2から見た目標3の方位角7は目標3からの反射波6により受信局2で測定可能である。
【0025】
このように、本実施の形態においては、目標3の位置を三角形の頂点A、送信局1の位置を三角形の頂点B、受信局2の位置を三角形の頂点Cとすると、三角形ABCにおいて、三角形の2つ角度、即ち、頂点Bの角度(送信局1から見た目標3と受信局2のなす角度8)と頂点Cの角度(受信局2から見た目標3と送信局1のなす角度7が求まり、また、1辺BCの長さ(送信局1と受信局2の間の距離)が既知であるので、三角測量の原理により、目標3の位置は作図により容易に算出が可能(即ち、探知が可能)である。
【0026】
実施の形態3.
また、前述の実施の形態1および2による目標位置探知方法では、送信局が受信局とは無関係な施設を利用した例を示したが、本実施の形態による目標位置探知方法では、VOR(超短波全方位無線標識)の原理を用いた送信局を利用することを特徴とする。
図5は、本実施の形態による目標位置探知方法の要領を説明するための図であり、また、図6は、本実施の形態による目標位置探知方法の原理を説明するための図である。
図5において、1は送信局、2は受信局、3は目標、4は送信局1から受信局2に直接到来する電波、5は送信局1から目標3に到達する電波、6は目標で反射して受信局2に到来する電波、7は受信局2から見た目標3と送信局1のなす角度、8は送信局1から見た目標3と受信局2のなす角度、9は送信局1から見た目標3の北からの方位角(真北方向に対する角度)である。
【0027】
本実施の形態による目標位置探知方法は、例えば、一秒間に30回転する送信局1の指向性アンテナから送信される電波信号の位相と、一秒間に30回全方位に送信を行う送信局1の無指向性アンテナからの送信される電波信号の位相を比較して、その信号の位相差に基づいて送信局1から見た目標3の真北からの方位角9を求めることを特徴とするものである。
本実施の形態においては、送信局1の指向性アンテナは、例えば一秒間に30回転しながら正弦波状の振幅変調信号の電波を送信しており、送信局1の指向性アンテナが真北を向いた時に、送信局1の無指向性アンテナからも同じ電波を全方位に送信する。
目標3は、指向性アンテナからの電波と無指向性アンテナからの電波の両方の電波を同時刻に受信すると共に、受信した両方の電波を受信局2に反射する。
【0028】
従って、例えば、送信局1の真北に目標3が位置している場合(送信局1から見た目標3の北からの方位角9が0°の場合)は、目標3で反射され受信局2で受信する無指向性アンテナから信号と指向性アンテナからの信号の間には、図6の(a)に示すように、その振幅変調信号の位相差(時間差)はない。
即ち、目標3で反射され、受信局3が受信する無指向性アンテナから信号と指向性アンテナからの信号の間に位相差(時間差)がなければ、送信局1から見た目標3の北からの方位角9は0°であることが判る。
また、送信局1の真南に目標3が位置しておれば(即ち、方位角9が180°の方向に目標3が位置しておれば)、目標3で反射され受信局2で受信する無指向性アンテナから信号と指向性アンテナからの信号の間には、図6の(c)に示すように、180°の位相差(例えば、指向性アンテナが1秒間に30回転している場合には、1/30÷2秒の時間差)がある。
即ち、目標3で反射され、受信局3が受信する無指向性アンテナからの信号と指向性アンテナからの信号の間の位相差が180°であれば、送信局1から見た目標3の北からの方位角9は180°であることが判る。
【0029】
同様に、送信局1の真東に目標3が位置しておれば(即ち、方位角9が90°の方向に目標3が位置しておれば)、目標3で反射され受信局2で受信する無指向性アンテナからの信号と指向性アンテナからの信号の間には、図6の(b)に示すように、90°の位相差がある。
即ち、目標3で反射され、受信局3が受信する無指向性アンテナから信号と指向性アンテナからの信号の間に位相差が90°であれば、送信局1から見た目標3の北からの方位角9は90°であることが判る。
なお、指向性アンテナからの電波信号と指向性アンテナからの電波信号は弁別が可能なように、その周波数は互いに異なっている。
【0030】
以上のように、本実施の形態においては、例えば、一秒間に30回転する送信局1の指向性アンテナから送信される電波信号の位相と、一秒間に30回全方位に送信を行う送信局1の無指向性アンテナからの送信される電波信号の位相を受信局2において比較して、その信号の位相差に基づいて、送信局1から見た目標3の真北からの方位9を求めることができる。
このように、目標3からの反射波の振幅変調の位相差には、送信局から見た目標の方位角9の情報が含まれており、目標3からの反射波の位相差を検知することにより角度9は容易に求められる。
送信局1から見た目標3と受信局2のなす角度8は、(90°−角度8)であるので、角度8はすぐに求まる。
【0031】
また、受信局2から見た目標3の方位7は、実施の形態2あるいは3の場合と同様に、目標3からの反射波6により受信局2で測定可能である。
なお、上述の説明では、基準となる方位を真北にした場合について述べているが、送信局と受信局の間で予め基準とする方位を決めておけば、基準方位は真北に限定されるものではない。
また、指向性アンテナが1秒間に30回転する場合について説明しているが、所定の比較的高い回転速度であればよく、これに限定されるものではない。
【0032】
いま、送信局1および受信局2の間の距離が既知であるとすると、本実施の形態においても、目標3の位置を三角形の頂点A、送信局1の位置を三角形の頂点B、受信局2の位置を三角形の頂点Cとすると、三角形ABCにおいて、三角形の2つ角度、即ち、頂点Bの角度(送信局1から見た目標3と受信局2のなす角度8)と頂点Cの角度(受信局2から見た目標3と送信局1のなす角度7が求まり、1辺BCの長さ(送信局1と受信局2の間の距離)が既知であるので、三角測量の原理により、目標3の位置は作図により算出が可能である。
【0033】
前述の実施の形態1あるいは2においては、送信局1のアンテナ1回転に要する時間は通常数秒以上のとなる場合が多く、測定に時間がかかるため目標位置の探知精度が悪くなる可能性がある。
例えば、アンテナが12秒で1回転し、目標3と受信局2が680m/s(マッハ2)で接近する方向に移動していると仮定すると、12秒間では約16kmの相対位置変化が生じる。
送信局1、受信局2および目標3間の距離が近接していた場合、お互いの相対方位の関係も大きく変化するので、目標位置の探知精度が悪くなる。
これに対して、本実施の形態では、アンテナの回転速度が高いため、短時間、かつ、高精度な目標位置の探知が可能となる。
また、送信局が高速で移動する場合でも用いることができる。
【0034】
実施の形態4.
前述の実施の形態3では、送信局の位置が既知の場合(送信局と受信局の間の距離が既知の場合)を示したが、送信局1の位置が未知の場合でも目標の位置が特定できる。
ただし、送信局1から送信する送信波は、パルス列の送信を行う必要がある。
そして実施の形態1の場合と同様に、送信局1からと受信局2に直接到来する電波4と、目標3で反射して受信局2に到来する電波6との時間差(パルス列の到来時刻差)から経路差(即ち、送信局1と受信局2の間の距離と送信局1から目標3を経由して受信局2に至る距離の差)を算出する。
なお、本実施の形態においても、実施の形態3と同様に、送信局1の指向性アンテナは、例えば、一秒間に30回転しながら正弦波状の振幅変調信号の電波を送信しており、送信局1の指向性アンテナが真北を向いた時に、送信局1の無指向性アンテナから同じ電波を全方位に送信する。
目標3は指向性アンテナからの電波と指向性アンテナからの電波の両方の電波を同時刻に受信すると共に、目標3は受信した両方の電波を受信局2に反射する。
【0035】
そして、受信局2において、一秒間に30回転する送信局1の指向性アンテナから送信される電波信号の位相と、一秒間に30回全方位に送信を行う送信局1の無指向性アンテナからの送信される電波信号の位相を比較し、その比較結果の位相差に基づいて、送信局1から見た目標3の真北からの方位角9を求めることができる。
送信局1から見た目標3と受信局2のなす角度8は、(90°−角度9)であるので、角度8はすぐに求まる。
また、受信局2から見た目標3の方位角7は、実施の形態2あるいは3の場合と同様に、目標3からの反射波6により受信局2で測定可能である。
【0036】
以上説明したように、本実施の形態においても、目標3の位置を三角形の頂点A、送信局1の位置を三角形の頂点B、受信局2の位置を三角形の頂点Cとする三角形ABCにおいて、辺BCの両端の角度(即ち、送信局1から見た目標3と受信局2のなす角度8と受信局2から見た目標3と送信局1のなす角度7)と、辺BCの長さと(辺BAの長さ+辺ABの長さ)の差が求められるので、三角測量の原理により頂点Aの位置(即ち、目標3の位置)を算出することができる。
【0037】
なお、実施の形態1と実施の形態4との主な相違点について、以下に説明しておく。
まず、送信局1については、実施の形態1では、実施の形態1による発明とは関係のない送信源、例えば、民間の気象レーダや航空路完成レーダを利用できる。
これに対して、本実施の形態では、VOR(超短波全方位無線標識)の原理を用いた送信機を送信局として使用し、所定のルールで変調をかけた電波を送信する。
次に、アンテナ回転数については、実施の形態1では通常10〜4rpmであるが、実施の形態4では1800rpmである。
また、角度の求め方については、実施の形態1では、図3のピーク振幅の時間差から図1の角度8を計算する。
これに対して、実施の形態4では、まず、図5の角度9を実施の形態3による方法で求め、次に送信局1から見た目標3と受信局2のなす角度8を求める。
一方、受信局2において、受信する目標3からの反射波により受信局2と目標3と受信局2と受信局1のなす角度7を計測して求める。
その結果、実施の形態1による目標位置探知方法は、送信局が高速移動している場合には探知精度は粗いが、実施の形態4による目標位置探知方法では、送信局1の位置が未知で、かつ、送信局が高速移動の場合でも良好な精度で目標位置の探知が行える。
【0038】
実施の形態5.
本実施の形態による目標探知方法は、上述の実施の形態4において、さらに、送信局1とは別の第二の送信局を設置したことを特徴とする。
図7において、1は第一の送信局、10は第二送信局、2は受信局、3は位置探知を行う対象物である目標、5は第一の送信局1から送信され目標3に到達する電波、11は第二の送信局10から送信され目標3に到達する電波、6は電波5が目標3で反射して受信局2に到来する電波、12は電波11が目標3で反射して受信局2に到来する電波、7は第二の送信局10から見た目標3と第一の送信局1のなす角度、8は第一の送信局1から見た目標3と第二の送信局10のなす角度、9は第一の送信局1から見た目標3の北からの方位角、13は第二の送信局10から見た目標3の北からの方位角、14は第一の送信局1と第二の送信局10を結ぶ基線である。
【0039】
なお、実施の形態3と同様に、第一の送信局1および第二の送信局10の指向性アンテナは、例えば一秒間に30回転しながら正弦波状の振幅変調信号の電波を送信している。
そして、それぞれの送信局では、指向性アンテナが真北を向いた時に、無指向性アンテナからも同じ電波を全方位に送信する。
目標3は第一の送信局1および第二の送信局10の指向性アンテナからの電波と無指向性アンテナからの電波の両方の電波を同時刻に受信すると共に、目標3は受信した電波を受信局2に反射する。
【0040】
目標3からの反射波の振幅変調の位相差には、第一の送信局1から見た目標3の北から方位角9および第二の送信局10から見た目標3の北からの方位角13の情報が含まれており、受信局2において角度9および角度13の測定が可能である。
角度9および角度13が求まれば、第一の送信局1から見た目標3と第二の送信局10のなす角度8および第二の送信局10から見た目標3と第一の送信局1のなす角度7は容易に求まる。
いま、送信局1および受信局の間の距離が既知であるとすると、本実施の形態においても、図7に示すように、目標3の位置を三角形の頂点A、第一の送信局1の位置を三角形の頂点B、第二の送信局10の位置を三角形の頂点Cとする三角形ABCにおいて、三角形の2つ角度、即ち、頂点Bの角度(角度8)と頂点Cの角度(角度7)が求まり、1辺BCの長さ(第一の送信局1と第二の送信局10間の距離、即ち、基線14の長さ)が既知であるので、三角測量の原理により、目標3の位置は作図により算出が可能である。
本実施の形態においては、目標3で反射され受信局2に到来する電波の位相差を求めるだけよく、電波の到来方向を測定する必要が無い。
そのため受信局2の設備は簡易なもので済む。
【0041】
発明の参考例
また、前述した実施形態1から5においては、送信局から直接受信局に到来する電波(直接波)と、送信局から送信され、目標で反射して受信局に到来する電波(反射波)を用いて、三角測量の原理で目標の位置を算出したが、反射電波の代わりに方位が既知のものを利用しても良い。
例えば、この発明の参考例を示す図8において、15は海面、2は受信局、3は艦船等の水上の目標、16は受信局から海面におろした垂線、17は受信局2から見た目標3と垂線16のなす角である。
また、垂線に沿った受信局2の高さは電波高度計などによりあらかじめ測定しておく。
艦船等の水上の目標であれば、必ず海面上に存在するため、目標3、海面15、受信局2により直角三角形ができる。
あとは受信局2から見た目標3と垂線16のなす角17と、垂線に沿った受信局2の高さがわかれば、作図により目標の位置が算出できる。
ただし、目標3が電波を送信していること、艦船等の海面上に存在する目標であることが必要である。
【0042】
なお、この参考例においては、目標3が送信する電波の到来方位を測定して、三角測量の原理で目標の位置を特定したが、電波の代わりに目標3が放射する赤外線や光の到来方位を測定しても良い。
電波よりも波長が短いため角度分解能が良くなるため、目標位置(距離)測定精度も良くなる。
【0043】
【発明の効果】
この発明による目標位置探知方法は、所定時間で一回転する送信局のアンテナからパルス列信号の電波を位置探知目標および受信局に送信し、受信局に直接到来するパルス列信号の到来時刻と位置探知目標で反射されてから受信局に到来するパルス列信号の到来時刻との差に基づいて、送信局から直接受信局に至る第一の経路長と送信局から位置探知目標を経由して受信局に至る第二の経路長との経路長差を算出し、送信局のアンテナが所定時間で一回転することにより生じる振幅変調信号のピーク振幅が受信局に直接到来する到来時刻と、振幅変調信号のピーク振幅が位置探知目標で反射されてから受信局に到来する到来時刻との差に基づいて、送信局から見た位置探知目標と受信局のなす第一の角度を求め、送信局から送信され、位置探知目標で反射して受信局に到来する電波に基づいて、受信局から見た位置探知目標と送信局のなす第二の角度を求め、求められた経路長差、第一の角度および第二の角度を用いて、位置探知目標の位置を算出するので、送信局と受信局の間の距離が未知であっても、三角測量の原理により自ら電波を送信していない位置探知目標の位置を容易に探知することが可能な目標位置探知方法を提供できる。
【0044】
また、この発明による目標位置探知方法は、送信局から直接受信局に至る第一の経路長は既知であるので、経路長差を求める必要がなく、三角測量の原理により自ら電波を送信していない位置探知目標の位置をさらに容易に探知することが可能な目標位置探知方法を提供できる。
【0045】
また、この発明による目標位置探知方法は、単位時間に所定の回転数で回転する送信局の指向性アンテナから位置探知目標に振幅変調信号の電波を送信すると共に、指向性アンテナが所定の方位を向いた時に送信局の無指向性アンテナから振幅変調信号の電波を全方位に送信し、指向性アンテナから送信された振幅変調信号の電波が位置探知目標で反射されて受信局で受信される受信電波信号と、無指向性アンテナから送信された振幅変調信号の電波が位置探知目標で反射されて受信局で受信される受信電波信号との位相差に基づいて、送信局から見た位置探知目標と受信局のなす第一の角度を求め、位置探知目標からの反射電波に基づいて、受信局から見た位置探知目標と送信局のなす第二の角度を求め、求められた第一の角度、第二の角度および既知の送信局と受信局間の距離を用いて、位置探知目標の位置を算出するので、三角測量の原理により自ら電波を送信していない探知位置目標の位置を、短時間、かつ、高精度に探知することが可能な目標位置探知方法を提供できる。
【0046】
また、この発明による目標位置探知方法の送信局より送信される電波はパルス列信号を含み、受信局に直接到来するパルス列信号の到来時刻と位置探知目標で反射されてから受信局に到来するパルス列信号の到来時刻との差に基づいて、送信局から直接受信局に至る第一の経路長と送信局から位置探知目標を経由して受信局に至る第二の経路長との経路長差を算出し、算出された経路長差、求められた第一の角度および第二の角度を用いて、位置探知目標の位置を算出するので、送信局と受信局の間の距離が未知であっても、三角測量の原理により自ら電波を送信していない位置探知目標の位置を短時間、かつ、高精度に探知することが可能な目標位置探知方法を提供できる。
【0047】
また、この発明による目標位置探知方法は、単位時間に所定の回転数で回転する第一の送信局の指向性アンテナから位置探知目標に第一の振幅変調信号の電波を送信すると共に、指向性アンテナが所定の方位を向いた時に第一の送信局の無指向性アンテナから第一の振幅変調信号の電波を全方位に送信し、単位時間に所定の回転数で回転する第二の送信局の指向性アンテナから位置探知目標に第二の振幅変調信号の電波を送信すると共に、第二の送信局の上記指向性アンテナが所定の方位を向いた時に第二の送信局の無指向性アンテナから第二の振幅変調信号の電波を全方位に送信し、第一の送信局の指向性アンテナから送信された第一の振幅変調信号の電波が位置探知目標で反射されて受信局で受信される受信電波信号と、第一の送信局の無指向性アンテナから送信された振幅変調信号の電波が位置探知目標で反射されて受信局で受信される受信電波信号との位相差に基づいて、第一の送信局から見た位置探知目標と第二の送信局のなす第一の角度を求め、第二の送信局の指向性アンテナから送信された第二の振幅変調信号の電波が位置探知目標で反射されて上記受信局で受信される受信電波信号と、上記第二の送信局の無指向性アンテナから送信された振幅変調信号の電波が位置探知目標で反射されて受信局で受信される受信電波信号との位相差に基づいて、第二の送信局から見た位置探知目標と第一の送信局のなす第二の角度を求め、求められた第一の角度、第二の角度および既知の第一の送信局と第二の送信局間の距離を用いて、位置探知目標の位置を算出するので、第一の送信局および第二の送信局における指向性アンテナおよび無指向性アンテナから送信され、位置探知目標で反射されて受信局に到来する電波の位相差を求めるだけで、第一の送信局から見た位置探知目標と第二の送信局のなす第一の角度と第二の送信局から見た位置探知目標と第一の送信局のなす第二の角度が求められ、また、第一の送信局と第二の送信局間の距離は既知であるので、三角測量の原理により容易に自ら電波を送信しない位置探知目標の位置を探知できると共に、受信局における電波の到来方向を測定する必要がなく、受信局の設備も簡便にすることが可能な目標位置探知方法を提供できる。
【0049】
また、この発明による目標位置探知システムは、所定時間で一回転する送信局のアンテナからパルス列信号の電波を位置探知目標および受信局に送信する送信局と、位置探知目標で反射される電波と送信局から直接到来する電波を受信する受信局であって、送信局から直接到来する上記パルス列信号の到来時刻と位置探知目標で反射されてから到来する上記パルス列信号の到来時刻との差に基づいて、送信局から直接上記受信局に至る第一の経路長と送信局から上記位置探知目標を経由して受信局に至る第二の経路長との経路長差を算出する手段と、送信局のアンテナが所定時間で一回転することにより生じる振幅変調信号のピーク振幅が受信局に直接到来する到来時刻と、振幅変調信号のピーク振幅が上記位置探知目標で反射されてから受信局に到来する到来時刻との差に基づいて、送信局から見た位置探知目標と受信局のなす第一の角度を求める手段と、送信局から送信され、位置探知目標で反射して受信局に到来する電波に基づいて、受信局から見た位置探知目標と送信局のなす第二の角度を求める手段とを有した受信局とを備え、求められた経路長差、上記第一の角度および第二の角度を用いて、位置探知目標の位置を算出するので、送信局と受信局の間の距離が未知であっても、三角測量の原理により自ら電波を送信していない位置探知目標の位置を容易に探知することが可能な目標位置探知システムを提供できる。
【0050】
また、この発明による目標位置探知システムは、単位時間に所定の回転数で回転する指向性アンテナから位置探知目標に振幅変調信号の電波を送信すると共に、指向性アンテナが所定の方位を向いた時に無指向性アンテナから上記振幅変調信号の電波を全方位に送信する送信局と、送信局から送信され、位置探知目標で反射された電波を受信する受信局であって、指向性アンテナから送信された振幅変調信号の電波が位置探知目標で反射されて受信局で受信される受信電波信号と、無指向性アンテナから送信された振幅変調信号の電波が位置探知目標で反射されて受信局で受信される受信電波信号との位相差に基づいて、送信局から見た位置探知目標と受信局のなす第一の角度を求める手段と、位置探知目標からの反射電波に基づいて、受信局から見た位置探知目標と送信局のなす第二の角度を求める手段とを有した受信局を備え、求められた第一の角度、第二の角度および既知の送信局と受信局間の距離を用いて、位置探知目標の位置を算出するので、三角測量の原理により自ら電波を送信していない探知位置目標の位置を、短時間、かつ、高精度に探知することが可能な目標位置探知システムを提供できる。
【0051】
また、この発明による目標位置探知システムの送信局は、送信する電波にパルス列信号を含み、受信局は、直接到来するパルス列信号の到来時刻と位置探知目標で反射されてから到来するパルス列信号の到来時刻との差に基づいて、送信局から直接受信局に至る第一の経路長と送信局から位置探知目標を経由して受信局に至る第二の経路長との経路長差を算出する手段をさらに有し、算出された経路長差、求められた第一の角度および第二の角度を用いて、位置探知目標の位置を算出するので、送信局と受信局の間の距離が未知であっても、三角測量の原理により自ら電波を送信していない位置探知目標の位置を短時間、かつ、高精度に探知することが可能な目標位置探知システムを提供できる。
【0052】
また、この発明による目標位置探知システムは、単位時間に所定の回転数で回転する指向性アンテナからら位置探知目標に第一の振幅変調信号の電波を送信すると共に、指向性アンテナが所定の方位を向いた時に無指向性アンテナから上記第一の振幅変調信号の電波を全方位に送信する第一の送信局と、単位時間に所定の回転数で回転する指向性アンテナから位置探知目標に第二の振幅変調信号の電波を送信すると共に、指向性アンテナが所定の方位を向いた時に無指向性アンテナから第二の振幅変調信号の電波を全方位に送信する第二の送信局と、第一の送信局および第二の送信局から送信され、位置探知目標で反射された電波を受信する受信局であって、第一の送信局の指向性アンテナから送信された第一の振幅変調信号の電波が位置探知目標で反射してから受信される受信電波信号と、第一の送信局の無指向性アンテナから送信された振幅変調信号の電波が位置探知目標で反射してから受信される受信電波信号との位相差に基づいて、第一の送信局から見た位置探知目標と第二の受信局のなす第一の角度を求める手段と、第二の送信局の指向性アンテナから送信された第二の振幅変調信号の電波が上記位置探知目標で反射されて受信局で受信される受信電波信号と、第二の送信局の無指向性アンテナから送信された振幅変調信号の電波が位置探知目標で反射されて受信局で受信される受信電波信号との位相差に基づいて、第二の送信局から見た位置探知目標と第一の送信局のなす第二の角度を求める手段を有した受信局とを備え、求められた第一の角度、第二の角度および既知の第一の送信局と第二の送信局間の距離を用いて、位置探知目標の位置を算出するので、第一の送信局および第二の送信局における指向性アンテナおよび無指向性アンテナから送信され、位置探知目標で反射されて受信局に到来する電波の位相差を求めるだけで、第一の送信局から見た位置探知目標と第二の送信局のなす第一の角度と第二の送信局から見た位置探知目標と第一の送信局のなす第二の角度が求められ、また、第一の送信局と第二の送信局間の距離は既知であるので、三角測量の原理により容易に自ら電波を送信しない位置探知目標の位置を探知できると共に、受信局における電波の到来方向を測定する必要がなく、受信局の設備も簡便にすることが可能な目標位置探知システムを提供できる。
【図面の簡単な説明】
【図1】 この発明の実施形態1による目標位置探知方法の要領を説明するための図である。
【図2】 この発明の実施形態1における送信局から送信されるパルス列信号の電波が、受信局へ直接到来する時刻と位置探知目標で反射されて、受信局へ直接到来する時刻の時刻差を説明するための図である。
【図3】 この発明の実施形態1における送信局の回転するアンテナにより振幅変化の生じた電波が、受信局へ直接到来する時刻と位置探知目標で反射されて、受信局へ直接到来する時刻の時刻差を説明するための図である。
【図4】 この発明の実施形態2による目標位置探知方法の要領を説明するための図である。
【図5】 この発明の実施形態3による目標位置探知方法の要領を説明するための図である。
【図6】 この発明の実施形態3による目標位置探知方法の原理を説明するための図である。
【図7】 この発明の実施形態5による目標位置探知方法の要領を説明するための図である。
【図8】 この発明の参考例による目標位置探知方法の要領を説明するための図である。
【図9】 従来の方法1による目標位置探知方法の要領を説明するための図である。
【図10】 従来の方法2による目標位置探知方法の要領を説明するための図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a target position detection method and a target position detection system for detecting the position of a target such as an aircraft or a ship. More specifically, the present invention reflects the radio wave transmitted from a transmitting station directly at the receiving station and the target. Then, using the difference in arrival time at the receiving station, the angle between the target seen from the transmitting station and the receiving station and the angle between the target seen from the receiving station and the transmitting station are found, and the target position is detected by the principle of triangulation The present invention relates to a target position detection method and a target position detection system.
[0002]
[Prior art]
FIG. 9 is a diagram illustrating an example (conventional method 1) of a conventional method for specifying (detecting) a target position.
In the figure, 30 is a target which is a position detection target, 31 is a first receiving station, 32 is a second receiving station, 19 is a base line connecting the first receiving station 31 and the second receiving station 32, 41 Is the azimuth angle of the target 30 measured at the first receiving station 31 (that is, the angle formed by the target 30 and the second receiving station 32 as viewed from the first receiving station 31), and 42 is measured at the second receiving station 32. The azimuth angle of the target 30 (that is, the angle formed between the target 30 and the first receiving station 31 as viewed from the second receiving station 32).
As shown in FIG. 9, the conventional method 1 has two receiving stations, a first receiving station 31 and a second receiving station 32, and each receiving station receives radio waves transmitted from the target 30. The azimuth angle of the target 30 is measured.
The distance of the base line 19 connecting the first receiving station 31 and the second receiving station 32 is known by surveying or the like.
[0003]
Therefore, if the position of the target 30 is the vertex A of the triangle, the position of the first receiving station 31 is the vertex B of the triangle, and the position of the second receiving station 32 is the vertex C of the triangle, the length of the side BC in the triangle ABC The angles of both ends are obtained, and the position of the vertex A can be determined by the principle of triangulation.
That is, using the distance (length) of the base line 19, the azimuth angle 41 of the target 30 measured at the first receiving station 31, and the azimuth angle 42 of the target 30 measured at the second receiving station 32, the principle of triangulation Thus, the position of the target 30 can be specified (detected).
[0004]
FIG. 10 is a diagram showing a target position specifying (detecting) method (conventional method 2) according to another conventional method.
In the figure, 21 is the first position of the receiving station at time t1, 22 is the second position of the receiving station at time t2, 30 is the target that is the position detection target, and 23 is the first position of the receiving station at time t1. A base line connecting the position 21 of the receiving station and the second position 22 of the receiving station at time t2, 24 is the target azimuth angle measured by the receiving station at the first position 21 at time t1, and 25 is the second position 22 of time t2. Is the azimuth angle of the target 30 measured by the receiving station.
In the conventional method 2, the receiving station moves on a straight line (that is, the base line 23) and receives radio waves transmitted by the target 30 at the time t1 and the time t2. The azimuth angle of the target 30 at the position 22 is measured.
[0005]
Further, since the distance between the base line 23 connecting the first position 21 of the receiving station at the time t1 and the second position 22 of the receiving station at the time t2 can also be measured, the target can be determined by the principle of triangulation as in the conventional method 1. Thirty positions can be identified.
That is, triangulation using the distance (length) of the base line 23, the azimuth 24 of the target 30 measured by the receiving station at the first position 21, and the azimuth 25 of the target 30 measured by the receiving station at the second position 22. The position of the target 30 can be specified (detected) by the above principle.
[0006]
[Problems to be solved by the invention]
In the conventional method 1, the target 30 needs to transmit radio waves.
In addition, it is necessary to measure the azimuth angle of the target 30 between the receiving stations at the same time, and it is necessary to know the position of each receiving station in advance, so it is necessary to synchronize the receiving stations by some method. was there.
Further, in the conventional method 2, the target 30 needs to transmit radio waves, needs to know the position of the moving receiving station at each time, and until the receiving station position is specified (detected) ( There is a problem that time t2−time t1) is required.
[0007]
The present invention has been made to solve the above problems, and a target position detection method and target position detection capable of detecting the position of a target not transmitting radio waves without synchronizing between receiving stations. The purpose is to provide a system.
It is another object of the present invention to provide a target position detection method and a target position detection system that can detect a target position that is not transmitting radio waves in a short time with high accuracy.
It is another object of the present invention to provide a target position detection method capable of easily detecting a target position when a target transmitting a radio wave is on the sea surface.
[0008]
[Means for Solving the Problems]
A target position detection method according to the present invention transmits a radio wave of a pulse train signal from a transmitting station antenna that rotates once in a predetermined time to a position detection target and a receiving station, and an arrival time of the pulse train signal that directly arrives at the receiving station, Based on the difference from the arrival time of the pulse train signal that arrives at the receiving station after being reflected by the position detection target, the first path length from the transmitting station directly to the receiving station and the position from the transmitting station The path length difference from the second path length reaching the receiving station via the detection target is calculated, and the peak amplitude of the amplitude modulation signal generated by one rotation of the antenna of the transmitting station in a predetermined time is the receiving station Based on the difference between the arrival time directly arriving at the receiving station and the arrival time arriving at the receiving station after the peak amplitude of the amplitude modulation signal is reflected by the position detection target. A first angle formed by a detection target and the receiving station is obtained, and the position detection seen from the receiving station is transmitted based on a radio wave transmitted from the transmitting station and reflected by the position detecting target and arriving at the receiving station. A second angle formed by the target and the transmitting station is obtained, and the position of the position detection target is calculated using the obtained path length difference, the first angle, and the second angle.
[0009]
The target position detection method according to the present invention is characterized in that the first path length from the transmitting station directly to the receiving station is known.
[0010]
The target position detection method according to the present invention transmits a radio wave of an amplitude-modulated signal from a directional antenna of a transmitting station that rotates at a predetermined number of rotations per unit time to a position detection target, and the directional antenna When the azimuth is directed, the radio wave of the amplitude modulation signal is transmitted from the omnidirectional antenna of the transmitting station in all directions, and the radio wave of the amplitude modulation signal transmitted from the directional antenna is reflected by the position detection target and Based on the phase difference between the received radio wave signal received at the receiving station and the received radio wave signal reflected at the position detection target and received at the receiving station by the amplitude modulated signal transmitted from the omnidirectional antenna. A first angle formed between the position detection target viewed from the transmitting station and the receiving station, and based on a reflected radio wave from the position detection target, the position detection target viewed from the receiving station; The second angle formed by the transmitting station is obtained, and the position of the position detection target is calculated using the obtained first angle, second angle and the known distance between the transmitting station and the receiving station. To do.
[0011]
In addition, the radio wave transmitted from the transmission station of the target position detection method according to the present invention includes a pulse train signal, the arrival time of the pulse train signal that directly arrives at the reception station, and the reception station after being reflected by the position detection target The first path length from the transmitting station directly to the receiving station and the first from the transmitting station to the receiving station via the position detection target based on the difference from the arrival time of the pulse train signal arriving at A path length difference from the second path length is calculated, and the position of the position detection target is calculated using the calculated path length difference and the obtained first angle and second angle. .
[0012]
Further, the target position detection method according to the present invention transmits a radio wave of the first amplitude modulation signal from the directional antenna of the first transmission station that rotates at a predetermined number of rotations per unit time to the position detection target. When the directional antenna is directed in a predetermined direction, the first amplitude-modulated signal is transmitted in all directions from the omnidirectional antenna of the first transmitting station, and is rotated at a predetermined number of rotations per unit time. A radio wave of a second amplitude-modulated signal is transmitted from the directional antenna of the second transmitting station to the position detection target, and the second transmission is performed when the directional antenna of the second transmitting station faces a predetermined direction. The radio wave of the second amplitude modulation signal is transmitted from the omnidirectional antenna of the station in all directions, and the radio wave of the first amplitude modulation signal transmitted from the directional antenna of the first transmission station is the position detection target. Reflected by and received by the above receiving station Phase difference between the received radio signal and the received radio signal of the amplitude-modulated signal transmitted from the omnidirectional antenna of the first transmitting station reflected by the position detection target and received by the receiving station. A second angle transmitted from the directional antenna of the second transmitting station, based on the first angle formed by the position detecting target viewed from the first transmitting station and the second transmitting station The radio wave of the modulated signal reflected by the position detection target and received by the receiving station, and the radio wave of the amplitude modulation signal transmitted from the omnidirectional antenna of the second transmitting station is the position detection target. The second angle formed by the position detection target viewed from the second transmitting station and the first transmitting station is obtained based on the phase difference from the received radio wave signal reflected by the receiving station and received by the receiving station. ,
The position of the position detection target is calculated using the obtained first angle, the second angle, and the known distance between the first transmitting station and the second transmitting station.
[0014]
The target position detection system according to the present invention includes a transmitting station that transmits a radio wave of a pulse train signal from a transmitting station antenna that rotates once in a predetermined time to a position detecting target and a receiving station, and a radio wave reflected by the position detecting target. And a receiving station that receives radio waves that arrive directly from the transmitting station, and an arrival time of the pulse train signal that arrives directly from the transmitting station and an arrival time of the pulse train signal that arrives after being reflected by the position detection target; Based on the difference between the first path length from the transmitting station directly to the receiving station and the second path length from the transmitting station to the receiving station via the position detection target. Means for calculating, the arrival time at which the peak amplitude of the amplitude modulation signal generated by one rotation of the antenna of the transmitting station at a predetermined time directly arrives at the receiving station, and the peak of the amplitude modulation signal Means for obtaining a first angle formed by the position detection target viewed from the transmitting station and the receiving station based on a difference between arrival times at which the width is reflected by the position detection target and arrives at the receiving station; Means for determining a second angle formed by the position detection target and the transmission station viewed from the reception station based on a radio wave transmitted from the transmission station and reflected by the position detection target and arriving at the reception station. The position detection target position is calculated using the obtained path length difference, the first angle, and the second angle.
[0015]
In addition, the target position detection system according to the present invention transmits a radio wave of an amplitude modulation signal from a directional antenna that rotates at a predetermined number of rotations per unit time to a position detection target, and the directional antenna has a predetermined direction. A transmitting station that transmits the radio wave of the amplitude-modulated signal from an omnidirectional antenna in all directions, and a receiving station that receives the radio wave transmitted from the transmitting station and reflected by the position detection target. The radio wave of the amplitude modulation signal transmitted from the directional antenna is reflected by the position detection target and received by the receiving station, and the radio wave of the amplitude modulation signal transmitted from the omnidirectional antenna is detected by the position detection. Based on the phase difference between the received radio wave signal reflected at the target and received at the receiving station, a first angle between the position detection target viewed from the transmitting station and the receiving station is obtained. And a reception station having means for determining a second angle formed by the position detection target viewed from the reception station and the transmission station based on a reflected radio wave from the position detection target, The position of the position detection target is calculated using the first angle, the second angle, and the known distance between the transmitting station and the receiving station.
[0016]
The transmitting station of the target position detection system according to the present invention includes a pulse train signal in the radio wave to be transmitted, and the receiving station arrives after being reflected by the arrival time of the pulse train signal that arrives directly and the position detection target. Based on the difference from the arrival time of the pulse train signal, a first path length directly from the transmitting station to the receiving station and a second path from the transmitting station to the receiving station via the position detection target Means for calculating a path length difference from a length, and calculating the position of the position detection target using the calculated path length difference, the obtained first angle and second angle; It is.
[0017]
The target position detection system according to the present invention transmits a radio wave of the first amplitude modulation signal from a directional antenna that rotates at a predetermined number of rotations per unit time to the position detection target, and the directional antenna is A position detection target from a first transmitting station that transmits the radio wave of the first amplitude-modulated signal from an omnidirectional antenna in all directions and a directional antenna that rotates at a predetermined number of revolutions per unit time The second transmission that transmits the radio wave of the second amplitude modulation signal to the omnidirectional and the radio wave of the second amplitude modulation signal from the omnidirectional antenna when the directional antenna faces a predetermined direction. A receiving station that receives radio waves transmitted from the first transmitting station and the second transmitting station and reflected by the position detection target, and transmitted from the directional antenna of the first transmitting station. First made The received radio signal received after the amplitude modulation signal radio wave is reflected by the position detection target, and the amplitude modulation signal radio wave transmitted from the omnidirectional antenna of the first transmission station is reflected by the position detection target. Means for determining a first angle formed by the position detection target viewed from the first transmitting station and the second receiving station based on a phase difference with a received radio wave signal received thereafter; A radio wave of the second amplitude modulation signal transmitted from the directional antenna of the second transmitting station is reflected by the position detection target and received by the receiving station, and an omnidirectional signal of the second transmitting station The position detection seen from the second transmitting station based on the phase difference between the radio wave of the amplitude modulated signal transmitted from the directional antenna and the received radio signal reflected by the position detection target and received by the receiving station. The target and the first transmitter station A receiving station having means for determining the angle, and using the determined first angle, the second angle, and the known distance between the first transmitting station and the second transmitting station, The position of the position detection target is calculated.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
In the drawings, the same reference numerals represent the same or equivalent.
Embodiment 1 FIG.
FIG. 1 is a diagram for explaining the outline of the target position detection method according to the first embodiment.
In the figure, 1 is a transmitting station, 2 is a receiving station, 3 is a position detection target (hereinafter simply referred to as a target), 4 is a radio wave (direct wave) that arrives directly from the transmitting station 1 to the receiving station 2, and 5 is a transmitting station. 1 is a radio wave transmitted from 1 to the target 3 (transmission wave), 6 is a radio wave that is reflected by the target 3 and arrives at the receiving station (a reflected wave from the target 3), and 7 is an azimuth angle of the target 3 viewed from the receiving station 2 (that is, , 8 is an azimuth angle of the target 3 viewed from the transmitting station 1 (that is, an angle formed by the target 3 and the receiving station 2 viewed from the transmitting station 1).
It is assumed that the transmission station 1 transmits a radio wave of a pulse train signal while rotating the antenna.
[0019]
2 shows that the radio wave (direct wave) in which the pulse train signal transmitted from the transmitting station 1 directly reaches the receiving station 2 and the radio wave of the pulse train signal transmitted from the transmitting station 1 are reflected by the target 3 and FIG. 6 is a diagram for explaining a time difference between radio waves (reflected waves) reaching 2.
In the figure, (a) is a radio wave of a pulse train signal transmitted from the transmitting station 1, (b) is a radio wave of a pulse train signal transmitted from the transmitting station 1 and directly arrives at the receiving station 2, and (c) is from the transmitting station 1. It is a radio wave of a pulse train signal that is transmitted and reflected by the target 3 and arrives at the receiving station 2.
As shown in FIG. 2, the radio wave (direct wave) 4 of the pulse train signal that directly arrives from the transmitting station 1 to the receiving station 2 and the radio wave (direct wave) of the pulse train signal that is reflected by the target 3 and arrives at the receiving station 2 Wave 6) has a difference in the path length, so that a difference also occurs in the arrival time of the transmitted pulse train, and the time difference is 1 μs per 300 m of the path difference.
Therefore, by measuring this time (that is, the arrival time difference of the pulse train), the difference between the distance between the transmitting station 1 and the receiving station 2 and the distance from the transmitting station 1 to the receiving station 2 via the target 3 is obtained. A certain path difference can be calculated.
[0020]
On the other hand, since the antenna of the transmitting station 1 rotates at a predetermined rotation speed, as shown in FIG. 3, the receiving station 2 receives the signal as an amplitude-changing signal with one period of time required for one rotation of the antenna. .
That is, the intensity of the radio wave received by the receiving station 2 has an amplitude peak every time the antenna rotates.
In FIG. 3, (a) is a reflected wave that the radio wave transmitted from the transmitting station 1 is reflected by the target 3 and arrives at the receiving station 2, and (b) is a radio wave that is transmitted from the transmitting station 1 directly to the receiving station. Direct wave arriving at 2.
From the time difference between the amplitude peak of the radio wave (direct wave) 4 coming directly from the transmitting station 1 to the receiving station 2 and the amplitude peak of the radio wave (reflected wave from the target) 6 reflected by the target 3 and coming to the receiving station 2, By calculating the following equation, an angle 8 formed between the target 3 and the receiving station 2 as viewed from the transmitting station 1 is obtained.
Angle 8: 360 ° = ΔT: T
T is the time required for one rotation of the antenna, and ΔT is the time difference (peak amplitude time difference) between the time when the amplitude of the reflected wave 6 from the target 3 peaks and the time when the amplitude of the direct wave 4 peaks. is there.
[0021]
Further, the azimuth 7 of the target 3 viewed from the receiving station 2 can be measured by the receiving station 2 by the reflected wave 6 from the target 3.
As described above, in the present embodiment, the angle 8 formed by the target 3 and the receiving station 2 viewed from the transmitting station 1, the angle 7 formed by the target 3 and the transmitting station 1 viewed from the receiving station 2, and the transmission station 1 and the receiving station 2 Since the difference between the distance between the transmitter station 1 and the distance from the transmitting station 1 to the receiving station 2 via the target 3 (path difference) is obtained, the position of the target 3 can be calculated by drawing (that is, can be detected).
That is, as shown in FIG. 1, in the triangle ABC where the position of the target 3 is the vertex A of the triangle, the position of the transmitting station 1 is the vertex B of the triangle, and the position of the receiving station 2 is the vertex C of the triangle, And the difference between the length of the side BC and the length of the side BA + side AB, the position of the vertex A can be calculated by the principle of triangulation.
[0022]
In this method, since the position of the transmitting station 1 can also be calculated by drawing, if the transmitting station 1 transmits the pulse train by rotating the antenna, the transmitting station 1 has nothing to do with the receiving station 2. It may be equipment.
Strictly speaking, ΔT includes a time difference due to a path difference. However, since the time difference due to the path difference is in the ms (millisecond) order and ΔT is in the second order, it can be ignored.
[0023]
Embodiment 2. FIG.
In the target position detection method according to the first embodiment described above, an example in which the position of the transmitting station is unknown (when the distance between the transmitting station and the receiving station is unknown) has been shown, but the transmitting station is a ground facility or the like. If the position is known, that is, if the distance between the transmitting station and the receiving station is known, the target position can be identified (detected) more easily.
FIG. 4 is a diagram for explaining the point of the target position detection method according to the second embodiment.
In the figure, 1 is a transmitting station, 2 is a receiving station, 3 is a target that is an object of position detection, 4 is a radio wave (direct wave) that arrives directly from the transmitting station 1 to the receiving station 2, and 5 is a target from the transmitting station 1 A radio wave that reaches 3 (transmitted wave), 6 is a radio wave that is reflected by the target 3 and arrives at the receiving station 2 (reflected wave from the target), and 7 is an azimuth angle of the target 3 viewed from the receiving station 2 (that is, the receiving station). 8 is an azimuth angle of the target 3 viewed from the transmitting station 1 (that is, an angle formed by the target 3 and the receiving station 2 viewed from the transmitting station 1).
[0024]
As in the case of the first embodiment, it is assumed that the transmission station 1 transmits a pulse train by rotating an antenna.
Accordingly, as in the first embodiment, the time difference between the peak amplitudes of the radio wave 4 that directly arrives at the receiving station 2 from the transmitting station 1 and the radio wave 6 that is reflected by the target 3 and arrives at the receiving station 2 (peak amplitude time difference) By calculating the following equation, an angle 8 formed by the target 3 and the receiving station 2 viewed from the transmitting station 1 is obtained.
Angle 8: 360 ° = ΔT: T
T is the time required for one rotation of the antenna, and ΔT is the time difference (peak amplitude time difference) between the time when the amplitude of the reflected wave 6 from the target 3 peaks and the time when the amplitude of the direct wave 4 peaks. is there.
Further, the azimuth angle 7 of the target 3 viewed from the receiving station 2 can be measured by the receiving station 2 by the reflected wave 6 from the target 3.
[0025]
Thus, in the present embodiment, assuming that the position of target 3 is the vertex A of the triangle, the position of the transmitting station 1 is the vertex B of the triangle, and the position of the receiving station 2 is the vertex C of the triangle, Of the vertex B (the angle 8 between the target 3 and the receiving station 2 viewed from the transmitting station 1) and the angle of the vertex C (the angle 7 between the target 3 and the transmitting station 1 viewed from the receiving station 2). Since the length of one side BC (distance between the transmitting station 1 and the receiving station 2) is known, the position of the target 3 can be easily calculated by drawing based on the principle of triangulation (that is, Can be detected).
[0026]
Embodiment 3 FIG.
In the target position detection method according to the first and second embodiments described above, an example in which the transmitting station uses a facility unrelated to the reception station has been described. However, in the target position detection method according to the present embodiment, VOR (ultra-high frequency) is used. It is characterized by using a transmitting station using the principle of omnidirectional radio beacon).
FIG. 5 is a diagram for explaining the point of the target position detection method according to the present embodiment, and FIG. 6 is a diagram for explaining the principle of the target position detection method according to the present embodiment.
In FIG. 5, 1 is a transmitting station, 2 is a receiving station, 3 is a target, 4 is a radio wave that arrives directly from the transmitting station 1 to the receiving station 2, 5 is a radio wave that reaches the target 3 from the transmitting station 1, and 6 is a target. Radio waves reflected and arrive at the receiving station 2, 7 is an angle formed by the target 3 and the transmitting station 1 viewed from the receiving station 2, 8 is an angle formed by the target 3 and the receiving station 2 viewed from the transmitting station 1, and 9 is a transmitting station 1 This is the azimuth angle from the north of the target 3 viewed from (the angle with respect to the true north direction).
[0027]
The target position detection method according to the present embodiment includes, for example, the phase of a radio signal transmitted from the directional antenna of the transmitting station 1 that rotates 30 times per second and the transmitting station 1 that transmits in all directions 30 times per second. Comparing the phase of a radio signal transmitted from an omnidirectional antenna and obtaining an azimuth angle 9 from the true north of the target 3 viewed from the transmitting station 1 based on the phase difference between the signals. It is.
In the present embodiment, for example, the directional antenna of the transmitting station 1 transmits a radio wave of an amplitude-modulated signal having a sinusoidal shape while rotating 30 times per second, and the directional antenna of the transmitting station 1 faces true north. The same radio wave is transmitted from the omnidirectional antenna of the transmitting station 1 in all directions.
The target 3 receives both radio waves from the directional antenna and radio waves from the omnidirectional antenna at the same time, and reflects both received radio waves to the receiving station 2.
[0028]
Therefore, for example, when the target 3 is located at the true north of the transmitting station 1 (when the azimuth angle 9 from the north of the target 3 as viewed from the transmitting station 1 is 0 °), it is reflected by the target 3 and received by the receiving station 2. As shown in FIG. 6A, there is no phase difference (time difference) between the amplitude-modulated signal between the signal from the omnidirectional antenna and the signal from the directional antenna.
That is, if there is no phase difference (time difference) between the signal from the omnidirectional antenna reflected by the target 3 and received by the receiving station 3 and the signal from the directional antenna, the signal from the north of the target 3 viewed from the transmitting station 1 It can be seen that the azimuth angle 9 is 0 °.
If the target 3 is located just south of the transmitting station 1 (that is, if the target 3 is positioned in the direction of the azimuth angle of 180 °), it is reflected by the target 3 and received by the receiving station 2. Between the signal from the omnidirectional antenna and the signal from the directional antenna, as shown in FIG. 6C, a phase difference of 180 ° (for example, when the directional antenna rotates 30 times per second) Has a time difference of 1/30/2 seconds).
That is, if the phase difference between the signal from the omnidirectional antenna reflected by the target 3 and received by the receiving station 3 and the signal from the directional antenna is 180 °, from the north of the target 3 viewed from the transmitting station 1 It can be seen that the azimuth angle 9 is 180 °.
[0029]
Similarly, if the target 3 is located just east of the transmitting station 1 (that is, if the target 3 is located in the direction where the azimuth angle 9 is 90 °), it is reflected by the target 3 and received by the receiving station 2. There is a phase difference of 90 ° between the signal from the omnidirectional antenna and the signal from the directional antenna as shown in FIG.
That is, if the phase difference between the signal from the omnidirectional antenna reflected by the target 3 and received by the receiving station 3 and the signal from the directional antenna is 90 °, the signal from the north of the target 3 viewed from the transmitting station 1 It can be seen that the azimuth angle 9 is 90 °.
The radio wave signal from the directional antenna and the radio signal from the directional antenna have different frequencies so that they can be distinguished.
[0030]
As described above, in the present embodiment, for example, the phase of the radio signal transmitted from the directional antenna of the transmitting station 1 that rotates 30 times per second and the transmitting station that transmits in all directions 30 times per second The phase of the radio signal transmitted from one omnidirectional antenna is compared at the receiving station 2 and the direction 9 from the true north of the target 3 viewed from the transmitting station 1 is obtained based on the phase difference between the signals. Can do.
Thus, the phase difference of the amplitude modulation of the reflected wave from the target 3 includes information on the target azimuth angle 9 as viewed from the transmitting station, and by detecting the phase difference of the reflected wave from the target 3 The angle 9 is easily determined.
Since the angle 8 formed by the target 3 and the receiving station 2 viewed from the transmitting station 1 is (90 ° −angle 8), the angle 8 can be obtained immediately.
[0031]
Further, the azimuth 7 of the target 3 viewed from the receiving station 2 can be measured by the receiving station 2 by the reflected wave 6 from the target 3 as in the case of the second or third embodiment.
In the above description, the reference azimuth is set to true north. However, if the reference azimuth is determined in advance between the transmitting station and the receiving station, the reference azimuth is limited to true north. It is not something.
Moreover, although the case where the directional antenna rotates 30 times per second is described, the rotation speed may be a predetermined relatively high rotation speed, and is not limited to this.
[0032]
Now, assuming that the distance between the transmitting station 1 and the receiving station 2 is known, also in this embodiment, the position of the target 3 is the vertex A of the triangle, the position of the transmitting station 1 is the vertex B of the triangle, and the receiving station Assuming that the position of 2 is the vertex C of the triangle, in the triangle ABC, two angles of the triangle, that is, the angle of the vertex B (the angle 8 between the target 3 and the receiving station 2 viewed from the transmitting station 1) and the angle of the vertex C ( The angle 7 formed by the target 3 and the transmitting station 1 viewed from the receiving station 2 is obtained, and the length of one side BC (distance between the transmitting station 1 and the receiving station 2) is known. The position of 3 can be calculated by drawing.
[0033]
In the above-described first or second embodiment, the time required for one rotation of the antenna of the transmitting station 1 is usually several seconds or more, and it takes time to measure, so the detection accuracy of the target position may be deteriorated. .
For example, assuming that the antenna rotates once in 12 seconds, and the target 3 and the receiving station 2 are moving in a direction approaching at 680 m / s (Mach 2), a relative position change of about 16 km occurs in 12 seconds.
When the distances between the transmitting station 1, the receiving station 2 and the target 3 are close to each other, the relative azimuth relationship also changes greatly, so that the target position detection accuracy is deteriorated.
On the other hand, in this embodiment, since the rotation speed of the antenna is high, it is possible to detect the target position with high accuracy in a short time.
It can also be used when the transmitting station moves at high speed.
[0034]
Embodiment 4 FIG.
In the third embodiment described above, the case where the position of the transmitting station is known (the case where the distance between the transmitting station and the receiving station is known) has been shown, but the target position is determined even when the position of the transmitting station 1 is unknown. Can be identified.
However, the transmission wave transmitted from the transmission station 1 needs to transmit a pulse train.
As in the first embodiment, the time difference between the radio wave 4 that arrives directly from the transmitting station 1 and the receiving station 2 and the radio wave 6 that arrives at the receiving station 2 after being reflected by the target 3 (difference in arrival time of the pulse train). ) To calculate the path difference (that is, the difference between the distance between the transmitting station 1 and the receiving station 2 and the distance from the transmitting station 1 to the receiving station 2 via the target 3).
Also in the present embodiment, as in the third embodiment, the directional antenna of the transmission station 1 transmits, for example, a sinusoidal amplitude-modulated signal radio wave while rotating 30 times per second. When the directional antenna of the station 1 faces true north, the same radio wave is transmitted from the omnidirectional antenna of the transmitting station 1 in all directions.
The target 3 receives both the radio wave from the directional antenna and the radio wave from the directional antenna at the same time, and the target 3 reflects both the received radio waves to the receiving station 2.
[0035]
In the receiving station 2, the phase of the radio signal transmitted from the directional antenna of the transmitting station 1 that rotates 30 times per second and the omnidirectional antenna of the transmitting station 1 that transmits in all directions 30 times per second. And the azimuth angle 9 from the true north of the target 3 viewed from the transmitting station 1 can be obtained based on the phase difference of the comparison result.
Since the angle 8 formed by the target 3 and the receiving station 2 as viewed from the transmitting station 1 is (90 ° −angle 9), the angle 8 can be obtained immediately.
Further, the azimuth angle 7 of the target 3 viewed from the receiving station 2 can be measured at the receiving station 2 by the reflected wave 6 from the target 3 as in the case of the second or third embodiment.
[0036]
As described above, also in the present embodiment, in the triangle ABC in which the position of the target 3 is the vertex A of the triangle, the position of the transmitting station 1 is the vertex B of the triangle, and the position of the receiving station 2 is the vertex C of the triangle, The angle between both ends of the side BC (that is, the angle 8 between the target 3 and the receiving station 2 viewed from the transmitting station 1 and the angle 7 between the target 3 and the transmitting station 1 viewed from the receiving station 2) and the length of the side BC (side Since the difference between the length of BA + the length of side AB is obtained, the position of vertex A (that is, the position of target 3) can be calculated by the principle of triangulation.
[0037]
The main differences between the first embodiment and the fourth embodiment will be described below.
First, for the transmission station 1, in the first embodiment, a transmission source unrelated to the invention according to the first embodiment, for example, a private weather radar or an airway completion radar can be used.
On the other hand, in this embodiment, a transmitter using the principle of VOR (Very Short-Wave Omnidirectional Radio Labeling) is used as a transmitting station, and radio waves modulated according to a predetermined rule are transmitted.
Next, the antenna rotation speed is normally 10 to 4 rpm in the first embodiment, but is 1800 rpm in the fourth embodiment.
As for how to obtain the angle, in Embodiment 1, the angle 8 in FIG. 1 is calculated from the time difference between the peak amplitudes in FIG.
On the other hand, in the fourth embodiment, first, the angle 9 in FIG. 5 is obtained by the method according to the third embodiment, and then the angle 8 formed by the target 3 and the receiving station 2 viewed from the transmitting station 1 is obtained.
On the other hand, in the receiving station 2, an angle 7 formed by the receiving station 2, the target 3, the receiving station 2, and the receiving station 1 is measured and obtained by a reflected wave from the target 3 to be received.
As a result, the target position detection method according to the first embodiment has poor detection accuracy when the transmission station is moving at a high speed. However, in the target position detection method according to the fourth embodiment, the position of the transmission station 1 is unknown. In addition, even when the transmitting station moves at high speed, the target position can be detected with good accuracy.
[0038]
Embodiment 5. FIG.
The target detection method according to the present embodiment is characterized in that a second transmission station different from the transmission station 1 is further installed in the above-described fourth embodiment.
In FIG. 7, 1 is a first transmitting station, 10 is a second transmitting station, 2 is a receiving station, 3 is a target that is an object for position detection, and 5 is transmitted from the first transmitting station 1 to a target 3. A radio wave that arrives, 11 is a radio wave that is transmitted from the second transmitting station 10 and reaches the target 3, 6 is a radio wave that is reflected by the target 3 and arrives at the receiving station 2, and 12 is a radio wave that is reflected by the target 3 The radio wave arriving at the receiving station 2, 7 is an angle formed by the target 3 and the first transmitting station 1 viewed from the second transmitting station 10, and 8 is the target 3 and the second transmission viewed from the first transmitting station 1. The angle formed by the station 10, 9 is the azimuth angle from the north of the target 3 viewed from the first transmitting station 1, 13 is the azimuth angle from the north of the target 3 viewed from the second transmitting station 10, and 14 is the first transmission. A base line connecting the station 1 and the second transmitting station 10.
[0039]
As in the third embodiment, the directional antennas of the first transmitting station 1 and the second transmitting station 10 transmit a sinusoidal amplitude-modulated signal radio wave while rotating, for example, 30 times per second. .
In each transmitting station, when the directional antenna faces true north, the same radio wave is transmitted from the omnidirectional antenna in all directions.
The target 3 receives both the radio waves from the directional antennas of the first transmitting station 1 and the second transmitting station 10 and the radio waves from the omnidirectional antenna at the same time, and the target 3 receives the received radio waves. Reflected to the receiving station 2.
[0040]
The phase difference of the amplitude modulation of the reflected wave from the target 3 includes the azimuth angle 9 from the north of the target 3 viewed from the first transmitting station 1 and the azimuth angle 13 from the north of the target 3 viewed from the second transmitting station 10. Information is included, and the receiving station 2 can measure the angles 9 and 13.
If the angle 9 and the angle 13 are obtained, the angle 8 formed by the target 3 and the second transmitter station 10 viewed from the first transmitter station 1 and the target 3 and the first transmitter station 1 viewed from the second transmitter station 10 are obtained. The formed angle 7 can be easily obtained.
Now, assuming that the distance between the transmitting station 1 and the receiving station is known, also in the present embodiment, as shown in FIG. 7, the position of the target 3 is the apex A of the triangle, the first transmitting station 1 In the triangle ABC where the position is the vertex B of the triangle and the position of the second transmitting station 10 is the vertex C of the triangle, two angles of the triangle, that is, the angle of the vertex B (angle 8) and the angle of the vertex C (angle 7) ) And the length of one side BC (the distance between the first transmitting station 1 and the second transmitting station 10, that is, the length of the base line 14) is known. The position of can be calculated by drawing.
In the present embodiment, it is only necessary to obtain the phase difference of the radio wave that is reflected by the target 3 and arrives at the receiving station 2, and there is no need to measure the direction of arrival of the radio wave.
Therefore, the equipment of the receiving station 2 can be simple.
[0041]
InventionReference example
  In the first to fifth embodiments described above, the radio wave (direct wave) that directly arrives at the receiving station from the transmitting station, and the radio wave (reflected wave) that is transmitted from the transmitting station and reflected at the target and arrives at the receiving station. The target position is calculated using the principle of triangulation, but a known position may be used instead of the reflected radio wave.
  For example,A reference example of the present invention is shown.In FIG. 8, 15 is the sea level, 2 is a receiving station, 3 is a water target such as a ship, 16 is a perpendicular line from the receiving station to the sea surface, and 17 is an angle formed by the target 3 and the perpendicular line 16 viewed from the receiving station 2. .
  The height of the receiving station 2 along the vertical line is measured in advance by a radio altimeter or the like.
  Since a water target such as a ship is always present on the sea surface, a right triangle is formed by the target 3, the sea surface 15, and the receiving station 2.
  After that, if the angle 17 formed by the target 3 and the perpendicular 16 viewed from the receiving station 2 and the height of the receiving station 2 along the perpendicular are known, the target position can be calculated by drawing.
  However, it is necessary that the target 3 is transmitting a radio wave and is a target existing on the sea surface such as a ship.
[0042]
  In addition,This reference exampleIn the above, the arrival direction of the radio wave transmitted by the target 3 is measured and the target position is specified by the principle of triangulation, but the arrival direction of the infrared ray or light emitted from the target 3 instead of the radio wave is measured. good.
  Since the wavelength is shorter than the radio wave, the angular resolution is improved, and the target position (distance) measurement accuracy is also improved.
[0043]
【The invention's effect】
The target position detection method according to the present invention transmits a radio wave of a pulse train signal from an antenna of a transmission station that rotates once in a predetermined time to a position detection target and a reception station, and arrives at a pulse train signal that arrives directly at the reception station and a position detection target. The first path length from the transmitting station directly to the receiving station and the transmitting station to the receiving station via the position detection target based on the difference from the arrival time of the pulse train signal arriving at the receiving station after being reflected by The path length difference from the second path length is calculated, and the arrival time at which the peak amplitude of the amplitude modulation signal that occurs when the antenna of the transmitting station makes one rotation at a predetermined time directly arrives at the receiving station, and the peak of the amplitude modulation signal Based on the difference between the arrival time at which the amplitude is reflected at the position detection target and the arrival time at the reception station, the first angle formed by the position detection target and the reception station viewed from the transmission station is determined and transmitted from the transmission station. Location Based on the radio wave reflected by the target and arriving at the receiving station, the second angle formed by the position detection target and the transmitting station viewed from the receiving station is obtained, and the obtained path length difference, the first angle, and the second angle are obtained. Because the position of the position detection target is calculated using the angle, even if the distance between the transmitting station and the receiving station is unknown, the position of the position detection target that is not transmitting radio waves by itself is triangulated. It is possible to provide a target position detection method that can be detected in a simple manner.
[0044]
In addition, the target position detection method according to the present invention knows the first path length from the transmitting station to the receiving station directly, so there is no need to obtain the path length difference, and the radio wave itself is transmitted by the principle of triangulation. It is possible to provide a target position detection method that can more easily detect the position of a position detection target that is not present.
[0045]
The target position detection method according to the present invention transmits a radio wave of an amplitude modulation signal from a directional antenna of a transmitting station that rotates at a predetermined number of rotations per unit time to a position detection target, and the directional antenna has a predetermined direction. Receives the amplitude modulated signal radio wave transmitted from the omnidirectional antenna of the transmitting station in all directions when facing, and the amplitude modulated signal radio wave transmitted from the directional antenna is reflected by the position detection target and received at the receiving station. The position detection target viewed from the transmitting station based on the phase difference between the radio wave signal and the received radio wave signal that is reflected by the position detection target and transmitted from the omnidirectional antenna. The first angle formed by the receiving station and the second angle formed by the transmitting station and the position detection target viewed from the receiving station based on the reflected radio wave from the position detection target. The second horn Since the position of the position detection target is calculated by using the distance between the known transmitting station and the receiving station, the position of the detection position target that is not transmitting radio waves by itself according to the triangulation principle It is possible to provide a target position detecting method capable of detecting with high accuracy.
[0046]
The radio wave transmitted from the transmitting station of the target position detection method according to the present invention includes a pulse train signal, and the pulse train signal that arrives at the receiving station after being reflected at the arrival time of the pulse train signal that directly arrives at the receiving station and the position detection target. Based on the difference from the arrival time of, calculate the path length difference between the first path length from the transmitting station directly to the receiving station and the second path length from the transmitting station to the receiving station via the position detection target Since the position of the position detection target is calculated using the calculated path length difference, the obtained first angle and the second angle, the distance between the transmitting station and the receiving station is unknown. Thus, it is possible to provide a target position detection method capable of detecting the position of a position detection target that does not transmit radio waves by itself in a short time and with high accuracy by the principle of triangulation.
[0047]
In addition, the target position detection method according to the present invention transmits a radio wave of the first amplitude modulation signal from the directional antenna of the first transmitting station that rotates at a predetermined number of rotations per unit time to the position detection target, and directivity. A second transmitting station that transmits a radio wave of the first amplitude-modulated signal from an omnidirectional antenna of the first transmitting station in all directions when the antenna is directed to a predetermined direction, and rotates at a predetermined number of rotations per unit time When transmitting the radio wave of the second amplitude modulation signal from the directional antenna to the position detection target, and when the directional antenna of the second transmitting station faces a predetermined direction, the omnidirectional antenna of the second transmitting station The second amplitude modulation signal radio wave is transmitted in all directions, and the first amplitude modulation signal radio wave transmitted from the directional antenna of the first transmission station is reflected by the position detection target and received by the receiving station. Received radio signal and the first transmitting station Based on the phase difference between the radio wave of the amplitude-modulated signal transmitted from the directional antenna and the radio wave signal received at the receiving station after being reflected by the position detecting target, the position detecting target and the first The first angle formed by the two transmitting stations is obtained, and the second amplitude modulated signal radio wave transmitted from the directional antenna of the second transmitting station is reflected by the position detection target and received by the receiving station. Based on the phase difference between the radio wave signal and the radio wave signal of the amplitude modulated signal transmitted from the omnidirectional antenna of the second transmitting station and reflected at the position detection target and received at the receiving station, The position detection target viewed from the two transmitting stations and the second angle formed by the first transmitting station are obtained, and the obtained first angle, the second angle, and the known first transmitting station and the second transmission are obtained. Since the position of the position detection target is calculated using the distance between stations, the first Seen from the first transmitting station, just obtaining the phase difference of the radio waves transmitted from the directional and omnidirectional antennas at the transmitting station and the second transmitting station, reflected by the position detection target and arriving at the receiving station. A first angle formed by the position detection target and the second transmission station and a second angle formed by the position detection target and the first transmission station viewed from the second transmission station are obtained, and the first transmission station is obtained. Since the distance between the transmitter and the second transmitting station is known, it is possible to easily detect the position of a position detection target that does not transmit radio waves by itself based on the principle of triangulation, and it is not necessary to measure the direction of arrival of radio waves at the receiving station Thus, it is possible to provide a target position detection method capable of simplifying the equipment of the receiving station.
[0049]
In addition, the target position detection system according to the present invention includes a transmission station that transmits a radio wave of a pulse train signal from an antenna of a transmission station that rotates once in a predetermined time to a position detection target and a reception station, and a radio wave reflected by the position detection target and a transmission A receiving station that receives radio waves coming directly from a station, based on the difference between the arrival time of the pulse train signal that arrives directly from the transmitting station and the arrival time of the pulse train signal that arrives after being reflected by the position detection target Means for calculating a path length difference between a first path length directly from the transmitting station to the receiving station and a second path length from the transmitting station to the receiving station via the position detection target; The arrival time at which the peak amplitude of the amplitude modulation signal generated by one rotation of the antenna for a predetermined time directly arrives at the receiving station and the peak amplitude of the amplitude modulation signal received after being reflected by the position detection target are received. Means for obtaining a first angle formed by the position detection target viewed from the transmitting station and the receiving station based on the difference between the arrival times arriving at the station and the receiving station transmitted from the transmitting station and reflected by the position detecting target. A receiving station having a position detection target viewed from the receiving station and a means for determining a second angle formed by the transmitting station based on the radio wave arriving at Since the position of the position detection target is calculated using the second angle and the second angle, even if the distance between the transmission station and the reception station is unknown, the position detection target that does not transmit radio waves by the principle of triangulation It is possible to provide a target position detection system that can easily detect the position of the target position.
[0050]
The target position detection system according to the present invention transmits a radio wave of an amplitude-modulated signal from a directional antenna that rotates at a predetermined number of rotations per unit time to a position detection target, and when the directional antenna faces a predetermined direction. A transmitting station that transmits the radio wave of the amplitude-modulated signal from the omnidirectional antenna in all directions, and a receiving station that receives the radio wave transmitted from the transmitting station and reflected by the position detection target, and transmitted from the directional antenna. The received radio signal reflected by the position detection target and received by the receiving station and the amplitude modulated signal transmitted from the omnidirectional antenna is reflected by the position detection target and received by the receiving station. Based on the phase difference from the received radio signal, a means for determining the first angle between the position detection target viewed from the transmission station and the reception station, and the reception based on the reflected radio wave from the position detection target A receiving station having a position detection target viewed from the above and a means for obtaining a second angle formed by the transmitting station, the first angle obtained, the second angle, and the distance between the known transmitting station and the receiving station Because the position of the position detection target is calculated using, the target position detection that can detect the position of the detection position target that does not transmit radio waves by itself using the principle of triangulation in a short time with high accuracy Can provide a system.
[0051]
The transmitting station of the target position detection system according to the present invention includes a pulse train signal in the radio wave to be transmitted, and the receiving station receives the arrival time of the pulse train signal that arrives directly and the arrival of the pulse train signal that arrives after being reflected by the position detection target. Means for calculating a path length difference between the first path length from the transmitting station directly to the receiving station and the second path length from the transmitting station to the receiving station via the position detection target based on the difference from the time The position of the position detection target is calculated using the calculated path length difference, the calculated first angle and the second angle, so that the distance between the transmitting station and the receiving station is unknown. Even if it exists, the target position detection system which can detect the position of the position detection target which has not transmitted the electromagnetic wave by itself with high accuracy in a short time can be provided.
[0052]
The target position detection system according to the present invention transmits a radio wave of the first amplitude modulation signal from a directional antenna that rotates at a predetermined number of rotations per unit time to the position detection target, and the directional antenna has a predetermined direction. The first transmitting station that transmits the radio wave of the first amplitude-modulated signal from the omnidirectional antenna when facing the omnidirectional and the directional antenna that rotates at a predetermined number of revolutions per unit time to the position detection target A second transmitting station that transmits the radio wave of the second amplitude modulation signal and transmits the radio wave of the second amplitude modulation signal in all directions from the omnidirectional antenna when the directional antenna faces a predetermined direction; A first amplitude modulated signal transmitted from a directional antenna of a first transmitting station, which is a receiving station that receives a radio wave transmitted from one transmitting station and a second transmitting station and reflected by a position detection target. Radio wave The received radio signal received after being reflected by the target and the received radio signal received after the amplitude modulated signal transmitted from the omnidirectional antenna of the first transmitting station is reflected by the position detection target. Based on the phase difference, a means for obtaining a first angle formed between the position detection target viewed from the first transmitting station and the second receiving station, and a second transmitted from the directional antenna of the second transmitting station The radio wave of the amplitude modulation signal reflected from the position detection target and received by the receiving station and the radio wave of the amplitude modulation signal transmitted from the omnidirectional antenna of the second transmission station is reflected by the position detection target. Receiving station having means for obtaining a second angle formed by the position detection target viewed from the second transmitting station and the first transmitting station based on the phase difference from the received radio signal received by the receiving station With the required first angle, second angle and existing Since the position of the position detection target is calculated using the distance between the first transmitting station and the second transmitting station, the directional antenna and the omnidirectional antenna in the first transmitting station and the second transmitting station The first angle between the position detection target and the second transmission station as viewed from the first transmission station and the second angle can be obtained simply by calculating the phase difference between the radio waves transmitted and reflected by the position detection target and arriving at the reception station. Since the second angle formed by the position detection target and the first transmitting station viewed from the transmitting station is known, and the distance between the first transmitting station and the second transmitting station is known, triangulation A target position detection system that can easily detect the position of a position detection target that does not transmit radio waves by itself, eliminates the need to measure the direction of arrival of radio waves at the receiving station, and simplifies the equipment of the receiving station. Can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a point of a target position detection method according to Embodiment 1 of the present invention;
FIG. 2 shows a time difference between a time when a radio wave of a pulse train signal transmitted from a transmitting station in Embodiment 1 of the present invention directly arrives at a receiving station and a time when it is reflected by a position detection target and directly arrives at a receiving station. It is a figure for demonstrating.
FIG. 3 shows the time at which a radio wave having an amplitude change caused by the rotating antenna of the transmitting station in Embodiment 1 of the present invention directly arrives at the receiving station and the time at which it directly reflects at the position detection target and arrives at the receiving station. It is a figure for demonstrating a time difference.
FIG. 4 is a diagram for explaining the outline of a target position detection method according to Embodiment 2 of the present invention;
FIG. 5 is a diagram for explaining the outline of a target position detection method according to Embodiment 3 of the present invention;
FIG. 6 is a diagram for explaining the principle of a target position detection method according to Embodiment 3 of the present invention;
FIG. 7 is a diagram for explaining the outline of a target position detection method according to Embodiment 5 of the present invention;
FIG. 8 of the present inventionReference exampleIt is a figure for demonstrating the point of the target position detection method by.
FIG. 9 is a diagram for explaining a point of a target position detection method according to a conventional method 1;
FIG. 10 is a diagram for explaining the outline of a target position detection method according to a conventional method 2;

Claims (9)

所定時間で一回転する送信局のアンテナからパルス列信号の電波を位置探知目標および受信局に送信し、
上記受信局に直接到来する上記パルス列信号の到来時刻と上記位置探知目標で反射されてから上記受信局に到来する上記パルス列信号の到来時刻との差に基づいて、上記送信局から直接上記受信局に至る第一の経路長と上記送信局から上記位置探知目標を経由して上記受信局に至る第二の経路長との経路長差を算出し、
上記送信局のアンテナが所定時間で一回転することにより生じる振幅変調信号のピーク振幅が上記受信局に直接到来する到来時刻と、上記振幅変調信号のピーク振幅が上記位置探知目標で反射されてから上記受信局に到来する到来時刻との差に基づいて、上記送信局から見た上記位置探知目標と上記受信局のなす第一の角度を求め、
上記送信局から送信され、上記位置探知目標で反射して上記受信局に到来する電波に基づいて、上記受信局から見た上記位置探知目標と上記送信局のなす第二の角度を求め、
求められた上記経路長差、上記第一の角度および第二の角度を用いて、上記位置探知目標の位置を算出することを特徴とする目標位置探知方法。
Transmit the radio wave of the pulse train signal to the position detection target and the receiving station from the antenna of the transmitting station that rotates once in a predetermined time,
Based on the difference between the arrival time of the pulse train signal directly arriving at the receiving station and the arrival time of the pulse train signal arriving at the receiving station after being reflected by the position detection target, the receiving station directly Calculating the path length difference between the first path length from the transmitting station and the second path length from the transmitting station to the receiving station via the position detection target,
The arrival time at which the peak amplitude of the amplitude modulation signal generated by one revolution of the antenna of the transmitting station directly arrives at the receiving station, and the peak amplitude of the amplitude modulation signal reflected from the position detection target Based on the difference from the arrival time arriving at the receiving station, a first angle formed by the position detection target viewed from the transmitting station and the receiving station is determined,
Based on the radio wave transmitted from the transmission station and reflected by the position detection target and arriving at the reception station, a second angle formed by the position detection target viewed from the reception station and the transmission station is obtained,
A target position detection method, wherein the position detection target position is calculated using the obtained path length difference, the first angle, and the second angle.
上記送信局から直接上記受信局に至る上記第一の経路長は既知であることを特徴とする請求項1に記載の目標位置探知方法。  The target position detecting method according to claim 1, wherein the first path length from the transmitting station directly to the receiving station is known. 単位時間に所定の回転数で回転する送信局の指向性アンテナから位置探知目標に振幅変調信号の電波を送信すると共に、上記指向性アンテナが所定の方位を向いた時に上記送信局の無指向性アンテナから上記振幅変調信号の電波を全方位に送信し、
上記指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号と、上記無指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号との位相差に基づいて、上記送信局から見た上記位置探知目標と上記受信局のなす第一の角度を求め、
上記位置探知目標からの反射電波に基づいて、上記受信局から見た上記位置探知目標と上記送信局のなす第二の角度を求め、
求められた上記第一の角度、第二の角度および既知の上記送信局と上記受信局間の距離を用いて、上記位置探知目標の位置を算出することを特徴とする目標位置探知方法。
A radio wave of an amplitude-modulated signal is transmitted from a directional antenna of a transmitting station that rotates at a predetermined number of rotations per unit time to a position detection target, and the omnidirectionality of the transmitting station when the directional antenna faces a predetermined direction. Transmit the amplitude-modulated signal from the antenna in all directions,
The radio wave of the amplitude modulated signal transmitted from the directional antenna is reflected by the position detection target and received by the receiving station, and the radio wave of the amplitude modulated signal transmitted from the omnidirectional antenna is Based on the phase difference between the received radio wave signal reflected by the position detection target and received by the receiving station, the first angle formed by the position detection target and the receiving station as seen from the transmitting station is obtained.
Based on the reflected radio wave from the position detection target, obtain a second angle formed by the position detection target and the transmission station viewed from the receiving station,
A target position detection method, wherein the position of the position detection target is calculated using the obtained first angle, second angle, and known distance between the transmitting station and the receiving station.
上記送信局より送信される電波は、パルス列信号を含み、
上記受信局に直接到来する上記パルス列信号の到来時刻と上記位置探知目標で反射されてから上記受信局に到来する上記パルス列信号の到来時刻との差に基づいて、上記送信局から直接上記受信局に至る第一の経路長と上記送信局から上記位置探知目標を経由して上記受信局に至る第二の経路長との経路長差を算出し、
算出された上記経路長差、求められた上記第一の角度および第二の角度を用いて、上記位置探知目標の位置を算出することを特徴とする請求項3に記載の目標位置探知方法。
The radio wave transmitted from the transmission station includes a pulse train signal,
Based on the difference between the arrival time of the pulse train signal directly arriving at the receiving station and the arrival time of the pulse train signal arriving at the receiving station after being reflected by the position detection target, the receiving station directly Calculating the path length difference between the first path length from the transmitting station and the second path length from the transmitting station to the receiving station via the position detection target,
4. The target position detection method according to claim 3, wherein the position of the position detection target is calculated using the calculated path length difference and the calculated first angle and second angle.
単位時間に所定の回転数で回転する第一の送信局の指向性アンテナから位置探知目標に第一の振幅変調信号の電波を送信すると共に、上記指向性アンテナが所定の方位を向いた時に上記第一の送信局の無指向性アンテナから上記第一の振幅変調信号の電波を全方位に送信し、
単位時間に所定の回転数で回転する第二の送信局の指向性アンテナから位置探知目標に第二の振幅変調信号の電波を送信すると共に、上記第二の送信局の上記指向性アンテナが所定の方位を向いた時に上記第二の送信局の無指向性アンテナから上記第二の振幅変調信号の電波を全方位に送信し、
上記第一の送信局の指向性アンテナから送信された第一の振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号と、上記第一の送信局の無指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号との位相差に基づいて、上記第一の送信局から見た上記位置探知目標と上記第二の送信局のなす第一の角度を求め、
上記第二の送信局の指向性アンテナから送信された第二の振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号と、上記第二の送信局の無指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号との位相差に基づいて、上記第二の送信局から見た上記位置探知目標と上記第一の送信局のなす第二の角度を求め、
求められた上記第一の角度、第二の角度および既知の上記第一の送信局と上記第二の送信局間の距離を用いて、上記位置探知目標の位置を算出することを特徴とする目標位置探知方法。
A radio wave of the first amplitude modulation signal is transmitted from the directional antenna of the first transmitting station that rotates at a predetermined number of rotations per unit time to the position detection target, and when the directional antenna is directed in a predetermined direction, Transmit the radio wave of the first amplitude modulation signal from the omnidirectional antenna of the first transmitting station in all directions,
A radio wave of the second amplitude modulation signal is transmitted from the directional antenna of the second transmitting station that rotates at a predetermined number of revolutions per unit time to the position detection target, and the directional antenna of the second transmitting station is The radio wave of the second amplitude modulation signal is transmitted in all directions from the omnidirectional antenna of the second transmitting station when facing the direction of
A radio wave of a first amplitude-modulated signal transmitted from the directional antenna of the first transmitting station is reflected by the position detection target and received by the receiving station; Based on the phase difference with the received radio wave signal that is reflected by the position detection target and received by the receiving station after the amplitude-modulated signal radio wave transmitted from the omnidirectional antenna is viewed from the first transmitting station. Find the first angle between the location target and the second transmitter station,
The radio wave of the second amplitude modulated signal transmitted from the directional antenna of the second transmitting station is reflected by the position detection target and received by the receiving station, and the radio wave of the second transmitting station Based on the phase difference from the received radio wave signal reflected by the position detection target and received at the receiving station, the amplitude modulated signal radio wave transmitted from the omnidirectional antenna is viewed from the second transmitting station. Find the second angle between the position detection target and the first transmitter station,
The position of the position detection target is calculated using the obtained first angle, the second angle, and the known distance between the first transmitting station and the second transmitting station. Target position detection method.
所定時間で一回転する送信局のアンテナからパルス列信号の電波を位置探知目標および受信局に送信する送信局と、A transmitting station that transmits radio waves of a pulse train signal from a transmitting station antenna that rotates once in a predetermined time to a position detection target and a receiving station;
上記位置探知目標で反射される電波と上記送信局から直接到来する電波を受信する受信局であって、A receiving station that receives radio waves reflected by the position detection target and radio waves that come directly from the transmitting station;
上記送信局から直接到来する上記パルス列信号の到来時刻と上記位置探知目標で反射されてから到来する上記パルス列信号の到来時刻との差に基づいて、上記送信局から直接上記受信局に至る第一の経路長と上記送信局から上記位置探知目標を経由して上記受信局に至る第二の経路長との経路長差を算出する手段と、Based on the difference between the arrival time of the pulse train signal that arrives directly from the transmission station and the arrival time of the pulse train signal that arrives after being reflected by the position detection target, the first from the transmission station to the reception station directly Means for calculating a path length difference between the path length of the second path length from the transmitting station to the receiving station via the position detection target;
上記送信局のアンテナが所定時間で一回転することにより生じる振幅変調信号のピーク振幅が上記受信局に直接到来する到来時刻と、上記振幅変調信号のピーク振幅が上記位置探知目標で反射されてから上記受信局に到来する到来時刻との差に基づいて、上記送信局から見た上記位置探知目標と上記受信局のなす第一の角度を求める手段と、The arrival time at which the peak amplitude of the amplitude modulation signal generated by one revolution of the antenna of the transmitting station directly arrives at the receiving station, and the peak amplitude of the amplitude modulation signal reflected from the position detection target Means for determining a first angle formed by the position detection target viewed from the transmitting station and the receiving station based on a difference between the arrival times arriving at the receiving station;
上記送信局から送信され、上記位置探知目標で反射して上記受信局に到来する電波に基づいて、上記受信局から見た上記位置探知目標と上記送信局のなす第二の角度を求める手段とを有した受信局とを備え、Means for obtaining a second angle between the position detection target viewed from the receiving station and the transmission station based on a radio wave transmitted from the transmission station and reflected by the position detection target and arriving at the receiving station; And a receiving station having
求められた上記経路長差、上記第一の角度および第二の角度を用いて、上記位置探知目標の位置を算出することを特徴とする目標位置探知システム。A target position detection system that calculates the position of the position detection target using the obtained path length difference, the first angle, and the second angle.
単位時間に所定の回転数で回転する指向性アンテナから位置探知目標に振幅変調信号の電波を送信すると共に、上記指向性アンテナが所定の方位を向いた時に無指向性アンテナから上記振幅変調信号の電波を全方位に送信する送信局と、A radio wave of an amplitude modulation signal is transmitted from a directional antenna that rotates at a predetermined number of revolutions per unit time to a position detection target, and the amplitude modulation signal of the amplitude modulation signal is transmitted from an omnidirectional antenna when the directional antenna faces a predetermined direction. A transmitting station that transmits radio waves in all directions;
上記送信局から送信され、上記位置探知目標で反射された電波を受信する受信局であって、A receiving station that receives a radio wave transmitted from the transmitting station and reflected by the position detection target,
上記指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号と、上記無指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号との位相差に基づいて、上記送信局から見た上記位置探知目標と上記受信局のなす第一の角度を求める手段と、The radio wave of the amplitude modulated signal transmitted from the directional antenna is reflected by the position detection target and received by the receiving station, and the radio wave of the amplitude modulated signal transmitted from the omnidirectional antenna is Means for obtaining a first angle formed by the position detection target viewed from the transmitting station and the receiving station based on a phase difference from a received radio wave signal reflected by the position detection target and received by the receiving station;
上記位置探知目標からの反射電波に基づいて、上記受信局から見た上記位置探知目標と上記送信局のなす第二の角度を求める手段とを有した受信局を備え、A receiving station having a means for obtaining a second angle formed by the position detecting target and the transmitting station viewed from the receiving station based on a reflected radio wave from the position detecting target;
求められた上記第一の角度、第二の角度および既知の上記送信局と上記受信局間の距離を用いて、上記位置探知目標の位置を算出することを特徴とする目標位置探知システム。  A target position detection system that calculates the position of the position detection target using the obtained first angle, second angle, and known distance between the transmitting station and the receiving station.
上記送信局は、送信する電波にパルス列信号を含み、The transmitting station includes a pulse train signal in a radio wave to be transmitted,
上記受信局は、直接到来する上記パルス列信号の到来時刻と上記位置探知目標で反射されてから到来する上記パルス列信号の到来時刻との差に基づいて、上記送信局から直接上記受信局に至る第一の経路長と上記送信局から上記位置探知目標を経由して上記受信局に至る第二の経路長との経路長差を算出する手段をさらに有し、Based on the difference between the arrival time of the pulse train signal that arrives directly and the arrival time of the pulse train signal that arrives after being reflected by the position detection target, the receiving station directly reaches the receiving station from the transmitting station. Means for calculating a path length difference between one path length and a second path length from the transmitting station to the receiving station via the position detection target;
算出された上記経路長差、求められた上記第一の角度および第二の角度を用いて、上記位置探知目標の位置を算出することを特徴とする請求項7に記載の目標位置探知システム。The target position detection system according to claim 7, wherein the position of the position detection target is calculated using the calculated path length difference and the calculated first angle and second angle.
単位時間に所定の回転数で回転する指向性アンテナからら位置探知目標に第一の振幅変調信号の電波を送信すると共に、上記指向性アンテナが所定の方位を向いた時に無指向性アンテナから上記第一の振幅変調信号の電波を全方位に送信する第一の送信局と、A radio wave of a first amplitude modulation signal is transmitted from a directional antenna that rotates at a predetermined number of revolutions per unit time to a position detection target, and when the directional antenna is in a predetermined direction, the omnidirectional antenna A first transmitting station that transmits radio waves of the first amplitude modulation signal in all directions;
単位時間に所定の回転数で回転する指向性アンテナから位置探知目標に第二の振幅変調信号の電波を送信すると共に、上記指向性アンテナが所定の方位を向いた時に無指向性アンテナから上記第二の振幅変調信号の電波を全方位に送信する第二の送信局と、A radio wave of the second amplitude modulation signal is transmitted from the directional antenna that rotates at a predetermined number of revolutions per unit time to the position detection target, and when the directional antenna is in a predetermined direction, the omnidirectional antenna A second transmitting station that transmits radio waves of two amplitude-modulated signals in all directions;
上記第一の送信局および上記第二の送信局から送信され、上記位置探知目標で反射された電波を受信する受信局であって、A receiving station that receives radio waves transmitted from the first transmitting station and the second transmitting station and reflected by the position detection target;
上記第一の送信局の指向性アンテナから送信された第一の振幅変調信号の電波が上記位置探知目標で反射してから受信される受信電波信号と、上記第一の送信局の無指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射してから受信される受信電波信号との位相差に基づいて、上記第一の送信局から見た上記位置探知目標と上記第二の受信局のなす第一の角度を求める手段と、The received radio wave signal received after the radio wave of the first amplitude modulation signal transmitted from the directional antenna of the first transmitting station is reflected by the position detection target, and the omnidirectionality of the first transmitting station Based on the phase difference with the received radio wave signal received after the radio wave of the amplitude-modulated signal transmitted from the antenna is reflected by the position detection target, the position detection target viewed from the first transmitting station and the first Means for obtaining a first angle formed by the two receiving stations;
上記第二の送信局の指向性アンテナから送信された第二の振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号と、上記第二の送信局の無指向性アンテナから送信された振幅変調信号の電波が上記位置探知目標で反射されて上記受信局で受信される受信電波信号との位相差に基づいて、上記第二の送信局から見た上記位置探知目標と上記第一の送信局のなす第二の角度を求める手段を有した受信局とを備え、The radio wave of the second amplitude modulated signal transmitted from the directional antenna of the second transmitting station is reflected by the position detection target and received by the receiving station, and the radio wave of the second transmitting station Based on the phase difference from the received radio wave signal reflected by the position detection target and received at the receiving station, the amplitude modulated signal radio wave transmitted from the omnidirectional antenna is viewed from the second transmitting station. A position detecting target and a receiving station having means for obtaining a second angle formed by the first transmitting station,
求められた上記第一の角度、第二の角度および既知の上記第一の送信局と上記第二の送信局間の距離を用いて、上記位置探知目標の位置を算出することを特徴とする目標位置探知システム。The position of the position detection target is calculated using the obtained first angle, the second angle, and the known distance between the first transmitting station and the second transmitting station. Target position detection system.
JP2002120666A 2002-04-23 2002-04-23 Target position detection method and target position detection system Expired - Fee Related JP3751574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002120666A JP3751574B2 (en) 2002-04-23 2002-04-23 Target position detection method and target position detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002120666A JP3751574B2 (en) 2002-04-23 2002-04-23 Target position detection method and target position detection system

Publications (2)

Publication Number Publication Date
JP2003315449A JP2003315449A (en) 2003-11-06
JP3751574B2 true JP3751574B2 (en) 2006-03-01

Family

ID=29536824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002120666A Expired - Fee Related JP3751574B2 (en) 2002-04-23 2002-04-23 Target position detection method and target position detection system

Country Status (1)

Country Link
JP (1) JP3751574B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561730B2 (en) 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
JP5733803B2 (en) * 2013-05-28 2015-06-10 有限会社アイ・アール・ティー Radar link device

Also Published As

Publication number Publication date
JP2003315449A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
EP1910864B1 (en) A system and method for positioning a transponder
US8416071B2 (en) Relative location determination of mobile sensor nodes
KR100904681B1 (en) Method and apparatus for transmitter locating using a single receiver
US20050043039A1 (en) Position detecting system, and transmitting and receiving apparatuses for the position detecting system
JP3041278B1 (en) Passive SSR device
US10468768B2 (en) Holonomically constrained (tethered) spin-around locator
JPH0534447A (en) Multistatic radar method
JP3751574B2 (en) Target position detection method and target position detection system
JPH1020017A (en) Displacement measuring system using ultrasonic wave and displacement measuring device
Fabrizio Geolocation of HF skywave radar signals using multipath in an unknown ionosphere
JPH0425507B2 (en)
JPH0429080A (en) Bistatic radar equipment
JP2008008780A (en) Position estimation system and position estimation method
KR102287852B1 (en) Radio positioning system and navigation method for unmanned aerial vehicle
JP6370121B2 (en) Own ship positioning device, radar device, own mobile object positioning device, and own ship positioning method
JP2982751B2 (en) Position locating method and device
JP7222608B2 (en) Radar device and correction method for radar device
JPH01292277A (en) System for detecting position of moving body
JPH05302971A (en) Position orientation system of radio-wave source
US20180153411A1 (en) Hybrid IR-US RTLS System
JPH08201501A (en) Electric wave source locating device
JP3389882B2 (en) Radio wave arrival direction measurement device and radio wave arrival direction measurement method
JP3623211B2 (en) Measuring device using radio wave reflector
JPH05172937A (en) Flying object monitoring device
JPH0157312B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees