JPH05172937A - Flying object monitoring device - Google Patents

Flying object monitoring device

Info

Publication number
JPH05172937A
JPH05172937A JP3345499A JP34549991A JPH05172937A JP H05172937 A JPH05172937 A JP H05172937A JP 3345499 A JP3345499 A JP 3345499A JP 34549991 A JP34549991 A JP 34549991A JP H05172937 A JPH05172937 A JP H05172937A
Authority
JP
Japan
Prior art keywords
antennas
flying object
pulse signal
pulse signals
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3345499A
Other languages
Japanese (ja)
Inventor
Tetsuzo Tanaka
鐵三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3345499A priority Critical patent/JPH05172937A/en
Publication of JPH05172937A publication Critical patent/JPH05172937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To obtain a flying object monitoring device when can measure the altitude of a flying object with high accuracy without relying on an airborne transponder. CONSTITUTION:By forming fan-shaped beam surfaces intersecting each other at right angles and respectively oscillating the surfaces in orthogonal directions, slant ranges are respectively found from a time difference between transmitted pulse signals and the reflected pulse signals of the transmitted pulse signals from a target flying object at the moment the reflected pulse signals are received and, in addition, the deviated angle of each antenna beam is found at the same moment. Then the altitude and ground range of the target flying object is calculated by respectively assuming circular arcs having radii equal to slant ranges on the beam surfaces of a first and second antennas 1 and 2 based on the information and finding the intersection of both arcs. The calculated height and ground range are displayed on a display 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、航空機等のように空
間を飛翔する物体の高度を高精度に測定可能な飛翔体監
視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flying body monitoring apparatus capable of highly accurately measuring the altitude of an object flying in space such as an aircraft.

【0002】[0002]

【従来の技術】従来、航空機を管制塔から監視する場
合、SSR(二次監視レーダ)のモードCを利用し、目
的の航空機に質問信号を送り、機上のトランスポンダか
らの応答信号を受信して、航空機側で測定された高度情
報を得ている。
2. Description of the Related Art Conventionally, when an aircraft is monitored from a control tower, a mode C of SSR (secondary surveillance radar) is used to send an inquiry signal to a target aircraft and receive a response signal from a transponder onboard the aircraft. And obtains altitude information measured on the aircraft side.

【0003】しかしながら、航空機側で測定される高度
情報は気圧情報から換算したものであり、最小単位が1
00フィート程度で、精度が低い。また、機上トランス
ポンダに依存するため、トランスポンダ故障時やトラン
スポンダ非搭載機に対しては対応することができない。
However, the altitude information measured on the aircraft side is converted from atmospheric pressure information, and the minimum unit is 1
The accuracy is low at around 00 feet. Further, since it depends on the on-board transponder, it is not possible to deal with a transponder failure or a machine without a transponder.

【0004】[0004]

【発明が解決しようとする課題】以上述べたように従来
では、SSRのモードCに飛翔体に搭載されるトランス
ポンダ応答信号を利用して、機上の気圧−高度換算情報
から高度情報を得ていたため、精度が低く、トランスポ
ンダ故障時やトランスポンダ非搭載機に対しては対応す
ることができなかった。
As described above, conventionally, the altitude information is obtained from the atmospheric pressure-altitude conversion information on board the aircraft by using the transponder response signal mounted on the flying vehicle in the mode C of the SSR. Therefore, the accuracy is low, and it is not possible to deal with a transponder failure or a machine without a transponder.

【0005】この発明は上記の課題を解決するためにな
されたもので、機上トランスポンダに依存しないで飛翔
体の高度を高精度で測定できる飛翔体監視装置を提供す
ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a flying object monitoring apparatus capable of highly accurately measuring the altitude of a flying object without depending on an onboard transponder.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
にこの発明に係る飛翔体監視装置は、それぞれ実質的に
幅の狭いビームを形成する第1、第2のアンテナと、前
記第1、第2のアンテナのビームを互いに直交する方向
に走査させて扇状のビーム面を形成しつつ、各ビーム面
を互いに直交する方向に振るビーム走査制御装置と、前
記第1、第2のアンテナを通じてパルス信号を放射し、
目標飛翔体からの反射パルス信号を受信検波するパルス
送受信手段と、この手段により前記第1、第2のアンテ
ナ受信出力から得られる反射パルス信号の送信パルス信
号に対する時間差からそれぞれスラントレンジを求める
と共にその受信時点での各アンテナビーム偏移角を求
め、これらの情報をもとに第1、第2のアンテナの各ビ
ーム面にそれぞれスラントレンジを半径とする円弧を想
定し、両者の交点を求め、この交点から前記目標飛翔体
の高さ及びグランドレンジを求める情報処理装置と、こ
の情報処理装置で求めた高さ及びグランドレンジを表示
する表示器とを具備して構成される。
In order to achieve the above object, a flying object monitoring apparatus according to the present invention includes first and second antennas each forming a beam having a substantially narrow width, and the first and second antennas. A beam scanning controller that scans the beams of the second antenna in directions orthogonal to each other to form a fan-shaped beam surface, and swings each beam surface in directions orthogonal to each other, and a pulse through the first and second antennas. Emits a signal,
Pulse transmission / reception means for receiving and detecting the reflected pulse signal from the target flying object, and the slant range is obtained from the time difference between the reflected pulse signal obtained from the reception outputs of the first and second antennas with respect to the transmitted pulse signal by this means, and Obtain each antenna beam deviation angle at the time of reception, and based on these information, assume an arc with the slant range as the radius on each beam surface of the first and second antennas, and find the intersection point between them. An information processing apparatus that obtains the height and the ground range of the target flying object from this intersection, and a display that displays the height and the ground range obtained by this information processing apparatus are configured.

【0007】[0007]

【作用】上記構成による飛翔体監視装置では、互いに直
交する扇状のビーム面を形成して互いに直交する方向に
振り、送信パルス信号に対する目標飛翔体からの反射パ
ルス信号を受信検波した時点で、反射パルス信号の送信
パルス信号に対する時間差からそれぞれスラントレンジ
を求め、同時にその受信時点での各アンテナビーム偏移
角を求め、これらの情報をもとに第1、第2のアンテナ
の各ビーム面にそれぞれスラントレンジを半径とする円
弧を想定し、両者の交点を求めることにより、目標飛翔
体の高さ及びグランドレンジを演算し、表示器に表示さ
せるようにしている。
In the flying object monitoring apparatus having the above-described structure, the fan-shaped beam surfaces orthogonal to each other are formed, the beams are swung in the directions orthogonal to each other, and the reflection pulse signal from the target flying object with respect to the transmission pulse signal is received and detected. The slant range is calculated from the time difference between the pulse signal and the transmission pulse signal, and at the same time the antenna beam deviation angle at the time of reception is calculated. Based on this information, the beam planes of the first and second antennas are respectively calculated. The height of the target flying object and the ground range are calculated and displayed on the display by assuming an arc having a slant range as a radius and determining the intersection of the two.

【0008】[0008]

【実施例】以下、図面を参照してこの発明の一実施例を
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0009】図1はこの発明に係る飛翔体(ここでは航
空機とする)監視装置の構成を示すものである。図1に
おいて、1,2はビーム走査アンテナで、それぞれ走査
方向に対して幅の狭いファンビームを形成するか、また
はモノパルスパターンにより等価的にビーム幅を狭くで
きるアンテナである。但し、航空機は高速で移動するた
め、高速走査が必要であり、このためには電子走査アン
テナが適当である。
FIG. 1 shows the structure of a flying body (here, an aircraft) monitoring apparatus according to the present invention. In FIG. 1, reference numerals 1 and 2 denote beam scanning antennas, each of which is capable of forming a fan beam having a narrow width in the scanning direction or equivalently narrowing the beam width by a monopulse pattern. However, since the aircraft moves at high speed, high-speed scanning is required, and an electronic scanning antenna is suitable for this purpose.

【0010】アンテナ1,2は近接配置され、そのアン
テナビームの走査はビーム走査制御装置によって制御さ
れる。このビーム走査制御装置3は、ビームを互いに直
交する方向に走査させて扇状のビーム面BM1,BM2
を形成しつつ、各ビーム面BM1,BM2をそれぞれ互
いに直交する方向に振るようにしている。
The antennas 1 and 2 are arranged close to each other, and the scanning of the antenna beam is controlled by a beam scanning controller. The beam scanning control device 3 scans the beams in directions orthogonal to each other to form fan-shaped beam surfaces BM1 and BM2.
, The beam surfaces BM1 and BM2 are swung in directions orthogonal to each other.

【0011】上記アンテナ1,2に対してそれぞれ送信
機4,5が設けられ、この送信機4,5からそれぞれ所
定周期で発せられるパルス信号は送受切換器6,7を介
し、アンテナ1,2から放射される。また、各アンテナ
1,2の受信信号はそれぞれ送受切換器6,7を介して
モノパルスパターンの場合はモノパルス受信機8,9に
供給される。
Transmitters 4 and 5 are provided for the antennas 1 and 2, respectively, and pulse signals emitted from the transmitters 4 and 5 at predetermined intervals are transmitted via the transmission / reception switchers 6 and 7 to the antennas 1 and 2. Emitted from. Further, the reception signals of the antennas 1 and 2 are supplied to the monopulse receivers 8 and 9 via the transmission / reception switchers 6 and 7 in the case of a monopulse pattern.

【0012】上記モノパルス受信機8,9はそれぞれア
ンテナ受信信号中から航空機からの反射パルス信号を検
波する。各受信機8,9で検波された反射パルス信号は
情報処理装置10に供給される。
The monopulse receivers 8 and 9 detect reflected pulse signals from the aircraft from the antenna reception signals. The reflected pulse signal detected by each of the receivers 8 and 9 is supplied to the information processing device 10.

【0013】この情報処理装置10には、さらにビーム
走査制御装置3からビーム指向角情報が供給され、各送
信機4,5からパルス送信タイミング情報が供給され
る。この情報処理装置10は図2に示すフローチャート
(詳細は後述する)の流れに沿って、送信機4,5及び
ビーム走査制御装置3をコントロールしつつ、入力情報
から目標航空機の方位、位置、高さを求める。これらの
航空機情報は表示器11に送られ、画面表示される。上
記構成において、以下、その動作を説明する。
The information processing apparatus 10 is further supplied with beam directivity angle information from the beam scanning control apparatus 3 and pulse transmission timing information from each of the transmitters 4 and 5. The information processing device 10 controls the transmitters 4, 5 and the beam scanning control device 3 according to the flow of the flowchart (details will be described later) shown in FIG. Ask for These pieces of aircraft information are sent to the display 11 and displayed on the screen. The operation of the above configuration will be described below.

【0014】まず、アンテナ1,2は図3(a)に示す
(A−A′,B−B′)座標系の原点Oに配置されてい
るものとする。アンテナ1によるビーム面BM1はB−
B′に沿って形成され、A−A′方向に振られる。ま
た、アンテナ2によるビーム面BM2はA−A′に沿っ
て形成され、B−B′方向に振られる。尚、A−A′,
B−B′の方向は東西南北が望ましい。
First, it is assumed that the antennas 1 and 2 are arranged at the origin O of the (AA ', BB') coordinate system shown in FIG. 3 (a). The beam surface BM1 by the antenna 1 is B-
It is formed along B'and is swung in the AA 'direction. The beam surface BM2 formed by the antenna 2 is formed along AA 'and is swung in the BB' direction. Incidentally, A-A ',
The direction of BB 'is preferably north, south, east and west.

【0015】ここで、航空機がアンテナ1,2の覆域に
入った場合を考えると、ビーム面BM1,BM2を高速
で振ることにより、両ビーム面BM1,BM2が航空機
Pの位置で交差する。航空機が図中Pの位置で各ビーム
面が交差したときのビーム面BM1のビーム偏移角θ
(原点Oの鉛直方向ZとBM1とのなす角)を図3
(b)に示し、ビーム面BM2のビーム偏移角ρ(原点
Oの鉛直方向ZとBM2とのなす角)を図3(c)に示
す。以下、この時点での動作を図2のフローチャートに
沿って説明する。
Considering the case where the aircraft enters the coverage area of the antennas 1 and 2, the beam surfaces BM1 and BM2 intersect at the position of the aircraft P by shaking the beam surfaces BM1 and BM2 at high speed. Beam deviation angle θ of beam plane BM1 when the aircraft intersects each beam plane at position P in the figure
(An angle formed by the vertical direction Z of the origin O and BM1) is shown in FIG.
FIG. 3C shows the beam deviation angle ρ of the beam surface BM2 (angle formed by the vertical direction Z of the origin O and BM2). The operation at this point will be described below with reference to the flowchart of FIG.

【0016】まず、各送信機4,5からのパルス信号が
それぞれアンテナ1,2から放射され(ステップa)、
航空機Pで反射された反射パルス信号が各アンテナ1,
2で受信されて各モノパルス受信機8,9で検波される
と(ステップb)、情報処理装置10は各ビーム面BM
1,BM2におけるパルス送信タイミング情報、反射パ
ルス受信タイミング情報を受取り、パルス送信タイミン
グに対する反射パルス受信タイミングの時間差を求め、
各ビーム面BM1,BM2におけるスラントレンジR,
rを演算する(ステップc)。スラントレンジR,rは
OP間の距離であり、R=rである。
First, pulse signals from the transmitters 4 and 5 are radiated from the antennas 1 and 2 (step a),
The reflected pulse signal reflected by the aircraft P is transmitted to each antenna 1,
2 is received and detected by each of the monopulse receivers 8 and 9 (step b), the information processing device 10 determines that each beam surface BM
1, receives the pulse transmission timing information and the reflection pulse reception timing information in BM2, and obtains the time difference between the reflection pulse reception timing and the pulse transmission timing,
Slant range R on each beam surface BM1, BM2
Calculate r (step c). The slant range R, r is the distance between OPs, and R = r.

【0017】次に、情報処理装置10は、ビーム走査制
御装置3からのビーム走査方向情報と受信機8,9から
の受信情報とからモノパルス測角を行い、各ビーム面B
M1,BM2の偏移角θ,ρを演算する。そして、各ビ
ーム面BM1,BM2について、図4に示すように上記
スラントレンジR,rを半径とする円弧を想定し、その
交点Pの座標を求める(ステップd)。
Next, the information processing device 10 performs monopulse angle measurement from the beam scanning direction information from the beam scanning control device 3 and the received information from the receivers 8 and 9 to obtain each beam surface B.
The shift angles θ and ρ of M1 and BM2 are calculated. Then, for each of the beam surfaces BM1 and BM2, an arc having a radius of the slant ranges R and r is assumed as shown in FIG. 4, and the coordinates of the intersection point P are obtained (step d).

【0018】さらに、情報処理装置10は、交点Pの座
標をZ軸に投影して航空機Pの高さを求め(ステップ
e)、地上座標に投影して基準方向(図4ではA)から
の角度φ(Aが北ならば方位角となる)及び原点Oから
の距離(グランドレンジ)γを求める(ステップf)。
このようにして得られたH,φ,γの情報は表示器11
に送られ、例えば図5に示すように画面表示される(ス
テップg)。
Further, the information processing apparatus 10 projects the coordinates of the intersection P on the Z axis to obtain the height of the aircraft P (step e), and projects it on the ground coordinates to obtain the height from the reference direction (A in FIG. 4). An angle φ (an azimuth angle if A is north) and a distance (ground range) γ from the origin O are obtained (step f).
The information of H, φ, γ thus obtained is displayed on the display unit 11.
And is displayed on the screen as shown in FIG. 5 (step g).

【0019】尚、図5では、(A−A′,B−B′)に
よる二次元座標系に、OAに基準線をひき、この基準線
からφだけ回転させて、原点Oから距離γだけ離れた位
置に航空機のシンボル×を表示し、その近傍に高さHを
数字で表示するようにしている。
In FIG. 5, a reference line is drawn on the OA in the two-dimensional coordinate system defined by (A-A ', BB'), and the reference line is rotated by φ, so that only a distance γ from the origin O is obtained. The symbol x of the aircraft is displayed at a distant position, and the height H is displayed as a number in the vicinity thereof.

【0020】したがって、上記構成による航空機監視装
置は、互いに直交したビーム面を高速で振り、航空機の
位置Pを通る円弧を想定し、その交点Pの座標を求める
ようにしているので、機上トランスポンダに依存しない
で飛翔体の高度を高精度で測定できる。
Therefore, the aircraft monitoring device having the above-described structure swings the beam planes orthogonal to each other at a high speed, assumes an arc passing through the position P of the aircraft, and obtains the coordinates of the intersection point P. Therefore, the on-board transponder. The altitude of the flying object can be measured with high accuracy without depending on.

【0021】尚、上記実施例では、目標飛翔体として航
空機の場合を説明したが、ミサイル等の飛翔体であって
も同様に表示可能である。特に、トランスポンダを搭載
しない飛翔体には極めてその効果が大きい。また、アン
テナ1,2の覆域に複数の飛翔体が入った場合には、さ
らにSSRを追加して、各航空機からその識別情報を読
み出すことにより、複数の飛翔体のシンボルを同一画面
に表示することもできる。その他、この発明の要旨を逸
脱しない範囲で種々変形しても、同様に実施可能である
ことはいうまでもない。
In the above embodiment, the case where the target flying object is an aircraft has been described, but a flying object such as a missile can be similarly displayed. In particular, the effect is extremely large for a flying object that does not have a transponder. Further, when a plurality of flying objects enter the coverage area of the antennas 1 and 2, by adding an SSR and reading the identification information from each aircraft, the symbols of the plurality of flying objects are displayed on the same screen. You can also do it. Needless to say, the present invention can be similarly implemented even if various modifications are made without departing from the scope of the present invention.

【0022】[0022]

【発明の効果】以上のようにこの発明によれば、機上ト
ランスポンダに依存しないで飛翔体の高度を高精度で測
定できる飛翔体監視装置を提供することができる。
As described above, according to the present invention, it is possible to provide a flying object monitoring apparatus capable of highly accurately measuring the altitude of a flying object without depending on the onboard transponder.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る飛翔体監視装置の一実施例を示
すブロック図。
FIG. 1 is a block diagram showing an embodiment of a flying body monitoring apparatus according to the present invention.

【図2】同実施例の情報処理動作を説明するためのフロ
ーチャート。
FIG. 2 is a flowchart for explaining an information processing operation of the embodiment.

【図3】同実施例のビーム面の動きを説明するための概
念図。
FIG. 3 is a conceptual diagram for explaining the movement of the beam surface of the embodiment.

【図4】同実施例により目標航空機の方向、距離、高さ
を求める様子を示す概念図。
FIG. 4 is a conceptual diagram showing how to obtain the direction, distance and height of a target aircraft according to the embodiment.

【図5】同実施例により図4で得られた情報を画面表示
した一例を示す図。
FIG. 5 is a diagram showing an example in which the information obtained in FIG. 4 is displayed on the screen according to the embodiment.

【符号の説明】[Explanation of symbols]

1,2…ビーム走査アンテナ、3…ビーム走査制御装
置、4,5…送信機、6,7…送受切換器、8,9…モ
ノパルス受信機、10…情報処理装置、11…表示器。
1, 2 ... Beam scanning antenna, 3 ... Beam scanning control device, 4, 5 ... Transmitter, 6, 7 ... Transmission / reception switcher, 8, 9 ... Monopulse receiver, 10 ... Information processing device, 11 ... Display device.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】それぞれ実質的に幅の狭いビームを形成す
る第1、第2のアンテナと、前記第1、第2のアンテナ
のビームを互いに直交する方向に走査させて扇状のビー
ム面を形成しつつ、各ビーム面を互いに直交する方向に
振るビーム走査制御装置と、前記第1、第2のアンテナ
を通じてパルス信号を放射し、目標飛翔体からの反射パ
ルス信号を受信検波するパルス送受信手段と、この手段
により前記第1、第2のアンテナ受信出力から得られる
反射パルス信号の送信パルス信号に対する時間差からそ
れぞれスラントレンジを求めると共にその受信時点での
各アンテナビーム偏移角を求め、これらの情報をもとに
第1、第2のアンテナの各ビーム面にそれぞれスラント
レンジを半径とする円弧を想定し、両者の交点を求め、
この交点から前記目標飛翔体の高さ及びグランドレンジ
を求める情報処理装置と、この情報処理装置で求めた高
さ及びグランドレンジを表示する表示器とを具備する飛
翔体監視装置。
1. A fan-shaped beam surface is formed by scanning beams of first and second antennas, each of which forms a beam having a substantially narrow width, and beams of the first and second antennas, which are orthogonal to each other. In addition, a beam scanning control device that swings each beam surface in a direction orthogonal to each other, and a pulse transmission / reception means that radiates a pulse signal through the first and second antennas and receives and detects a reflected pulse signal from a target flying object. By this means, the slant range is obtained from the time difference between the reflected pulse signal obtained from the first and second antenna reception outputs with respect to the transmission pulse signal, and each antenna beam deviation angle at the time of reception is obtained. Assuming an arc with the radius of the slant range on each beam surface of the first and second antennas based on
A flying body monitoring apparatus comprising: an information processing apparatus that obtains the height and the ground range of the target flying body from the intersection; and a display that displays the height and the ground range obtained by the information processing apparatus.
【請求項2】前記第1、第2のアンテナは電子走査アン
テナであることを特徴とする請求項1記載の飛翔体監視
装置。
2. The flying object monitoring apparatus according to claim 1, wherein the first and second antennas are electronic scanning antennas.
JP3345499A 1991-12-26 1991-12-26 Flying object monitoring device Pending JPH05172937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3345499A JPH05172937A (en) 1991-12-26 1991-12-26 Flying object monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3345499A JPH05172937A (en) 1991-12-26 1991-12-26 Flying object monitoring device

Publications (1)

Publication Number Publication Date
JPH05172937A true JPH05172937A (en) 1993-07-13

Family

ID=18377001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3345499A Pending JPH05172937A (en) 1991-12-26 1991-12-26 Flying object monitoring device

Country Status (1)

Country Link
JP (1) JPH05172937A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095024A (en) * 2018-09-18 2020-05-01 深圳市大疆创新科技有限公司 Height determination method, height determination device, electronic equipment and computer-readable storage medium
WO2023041683A3 (en) * 2021-09-16 2023-05-19 Neura Robotics GmbH Radar system and method for detecting an object in space

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095024A (en) * 2018-09-18 2020-05-01 深圳市大疆创新科技有限公司 Height determination method, height determination device, electronic equipment and computer-readable storage medium
WO2023041683A3 (en) * 2021-09-16 2023-05-19 Neura Robotics GmbH Radar system and method for detecting an object in space

Similar Documents

Publication Publication Date Title
US7474256B2 (en) Position detecting system, and transmitting and receiving apparatuses for the position detecting system
US8886373B2 (en) System and method for assisting in the decking of an aircraft
US4048637A (en) Radar system for detecting slowly moving targets
US4052693A (en) Depth sounder
CN111801592A (en) Three-and four-dimensional mapping of space using microwave and millimeter wave parallax
US4990921A (en) Multi-mode microwave landing system
US10551493B2 (en) Widely spaced radar nodes with unambiguous beam pattern
RU190804U1 (en) Device for providing navigation and landing of shipboard aircraft
US4621267A (en) Bearing intersection deghosting by altitude comparison system and methods
JPH05172937A (en) Flying object monitoring device
JPH05142341A (en) Passive ssr device
JPH0425507B2 (en)
KR102287852B1 (en) Radio positioning system and navigation method for unmanned aerial vehicle
JP3559236B2 (en) Radar signal processing method and radar apparatus using this method
EA028100B1 (en) Approach radar
JP2596164B2 (en) Precision approaching radar
US2703880A (en) Radio object locating system
JP2730521B2 (en) Antenna measuring device
WO2019003194A1 (en) 3d scanning radar and method for determining altitude of a present object
JPH1123689A (en) Position orienting method and device
JPH02102481A (en) Ultrasonic guidance device
JPH05302971A (en) Position orientation system of radio-wave source
WO2023106134A1 (en) Radar system
JP7445628B2 (en) Location information derivation system
JPH02163685A (en) Airway monitoring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20071126

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20101126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20111126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20111126

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250