JP3691614B2 - Transmission control device - Google Patents

Transmission control device Download PDF

Info

Publication number
JP3691614B2
JP3691614B2 JP33349696A JP33349696A JP3691614B2 JP 3691614 B2 JP3691614 B2 JP 3691614B2 JP 33349696 A JP33349696 A JP 33349696A JP 33349696 A JP33349696 A JP 33349696A JP 3691614 B2 JP3691614 B2 JP 3691614B2
Authority
JP
Japan
Prior art keywords
torque
temperature
engine
oil temperature
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33349696A
Other languages
Japanese (ja)
Other versions
JPH10169483A (en
Inventor
益夫 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33349696A priority Critical patent/JP3691614B2/en
Priority to GB9726159A priority patent/GB2320339B/en
Priority to DE19755128A priority patent/DE19755128A1/en
Publication of JPH10169483A publication Critical patent/JPH10169483A/en
Application granted granted Critical
Publication of JP3691614B2 publication Critical patent/JP3691614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/1819Propulsion control with control means using analogue circuits, relays or mechanical links
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Fluid Gearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は変速機の制御装置に関し、特に、トルクコンバータ付きの変速機における変速機油の昇温防止の技術に関する。
【0002】
【従来の技術】
従来から、トルクコンバータを介して変速機に機関の発生トルクが伝達される構成の自動変速機において、自動変速機油(以下、ATFという)の温度上昇によるATFの劣化や摩擦要素,シール部材の劣化などを防止する方法として、ATFの温度が許容温度を越えたときや許容温度を越えそうな状況のときに、前記トルクコンバータに備えられたロックアップクラッチのロックアップ領域を拡大することで、トルクコンバータの滑りによる発熱量を減少させ、以って、ATFの温度上昇を抑制する方法があった(特開昭62−205829号公報,特開昭62−209265号公報,特開平5−302671号公報等参照)。
【0003】
【発明が解決しようとする課題】
しかしながら、例えば車両が登り坂を走行しているときには、車速の低下,アクセルからの足離し,変速などが頻繁に行われることになるため、ロックアップ領域を広げてもロックアップ領域に長く留まっているとは限らず、ATFの昇温を確実に防止することは困難であった。
【0004】
また、自動変速機の変速動作やロックアップを制御するコントロールユニットを変速機のケース内に一体的に設ける構成とした場合には、電子部品の保護のために、よりATFの昇温を低く抑える必要があるが、ロックアップ領域の拡大のみでは、必要十分にATFの昇温を抑えることは困難であった。
【0005】
本発明は上記問題点に鑑みなされたものであり、コントロールユニットを変速機のケース内に一体的に設ける構成とした場合であっても、ATFの温度を許容温度以内に確実に抑制できるようにすることを目的とする。
【0006】
【課題を解決するための手段】
そのため、請求項1記載の発明は、トルクコンバータ付き変速機の制御装置であって、前記変速機の油温又は該油温に相関する温度を検出する油温検出手段と、該油温検出手段で検出された温度が所定温度以上であるときに、機関の発生トルクを継続的に低減させる発生トルク低減手段と、該発生トルク低減手段により機関の発生トルクを継続的に低減させているときに、前記トルクコンバータに備えられたロックアップクラッチのロックアップ領域を通常よりも拡大するロックアップ領域拡大手段と、前記トルクコンバータにおける瞬時発生熱量を演算する瞬時発生熱量演算手段と、該瞬時発生熱量演算手段で演算された瞬時発生熱量を所定時間だけ積分する積分手段と、前記油温検出手段で検出された温度と前記積分手段における積分値とに基づいて前記発生トルク低減手段におけるトルクダウン量を設定するトルクダウン量設定手段と、を含んで構成される。
【0007】
かかる構成によると、機関の発生トルクの低減と、ロックアップ(トルクコンバータの入力側と出力側との機械的な直結)の積極的な実行とが同時に行われ、双方の作用で油温の低下を図る。
【0008】
また、発生熱量の積分値が大きく急激な温度上昇が見込まれるときには、たとえそのときの油温が低い場合であっても、機関の発生トルクを低減させるべくトルクダウン量を決定し、実際に油温が許容温度を越える前から温度上昇を抑制する制御を行わせることができる。
【0009】
請求項記載の発明では、前記発生トルク低減手段により機関の発生トルクを継続的に低減させている状態を運転者に警告する警告手段を設ける構成とした。
【0010】
かかる構成によると、トルクコンバータの油温を下げるために機関の発生トルクを強制的に低減させているときに、かかる制御の実行状態を例えば警告灯の点灯やブザーなどによって警告することで運転者が認知できる。
【0011】
尚、油温に相関する温度とは、例えば、油の雰囲気温度,変速機のケース温度などである。また、自動変速機において、変速機のケース内に変速動作やロックアップを制御するコントロールユニットを一体的に備える構成であっても良い。
【0012】
【発明の効果】
請求項1記載の発明によると、機関の発生トルクの低減と、ロックアップクラッチのロックアップ領域の拡大との双方により、変速機の油の温度低下を図るので、比較的大きな温度低下要求に対しても確実に対応でき、コントロールユニットが変速機と一体に設けられる場合であってもコントロールユニットの電子部品の保護を図れる程度に油温を低く制御できるという効果がある。
【0013】
また、発生熱量の積分値が大きく急激な温度上昇が見込まれるときには、たとえそのときの油温が低い場合であっても、機関の発生トルクを低減させるべくトルクダウン量を決定し、実際に油温が許容温度を越える前から温度上昇を抑制する制御を行わせることができ、以って、許容温度を越えること若しくは許容温度を大きく越えてしまうことを防止できる。
【0014】
請求項記載の発明によると、変速機の油温を低下させるための機関発生トルクの低減制御が実行されていることを運転者が認知でき、以って、前記低減制御による発生トルクの低下を機関不調によるものと誤認することを回避できるという効果がある。
【0015】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。図1は、本発明による変速機の制御装置の実施の形態を示すシステム構成図である。
【0016】
ここで、図示しない車両に搭載される内燃機関1のトルクは、自動有段変速機2を介して駆動輪(図示省略)に伝達される構成であり、前記自動有段変速機2は、ロックアップクラッチを備えたトルクコンバータを介して歯車式変速機にトルクを伝達する構成となっている。
【0017】
尚、変速機は、トルクコンバータを介して無段変速機に機関トルクを伝達する構成のものであっても良い。
【0018】
内燃機関1の吸気通路には、モータ3で開閉駆動されるスロットル弁4が介装されており、該スロットル弁4の開度によって機関1の吸入空気量が調整される。
【0019】
前記モータ3は、スロットル・コントロール・モジュール(以下、TCMという)5からの制御信号によって動作する。
【0020】
前記TCM5には、運転者によって操作されるアクセルベダルの踏込み量を検出するアクセル開度センサ9からのアクセル開度信号ACCが入力され、該アクセル開度ACCに応じて目標スロットル弁開度TVOtaを設定し、スロットルセンサ6で検出される実際のスロットル弁開度TVOが、前記目標スロットル弁開度TVOtaに一致するように、モータ3をフィードバック制御する。
【0021】
一方、前記自動有段変速機2の変速動作やロックアップの制御を行う自動変速機コントロールユニット(以下、A/T−C/Uという)7は、自動有段変速機2の作動油圧を制御する各種ソレノイドバルブや該ソレノイドバルブを駆動するパワートランジタなどと共に、前記自動有段変速機2のケース内に一体的に備えられている。
【0022】
また、前記A/T−C/U7には、車速センサ8からの車速信号VSP、前記アクセル開度センサ9からのアクセル開度信号ACC、機関1の回転数Ne(rpm)を検出する回転センサ10からの機関回転数信号Ne、更に、前記自動有段変速機2の油(以下、ATFという)の温度を検出する油温センサ11(油温検出手段)からの油温信号Tatf等が入力されるようになっている。
【0023】
そして、前記A/T−C/U7は、前記各種の信号に基づいて自動変速制御やロックアップ制御を行うと共に、図2のフローチャートに示すようにして、前記油温Tatfが許容温度を越えることを抑止する制御を行うようになっている。
【0024】
尚、本実施の形態において、前記A/T−C/U7は、発生トルク低減手段,ロックアップ領域拡大手段,トルクダウン量設定手段,瞬時発熱量演算手段,積分手段としての機能を、前記図2のフローチャートに示すように備えている。
【0025】
図2のフローチャートにおいて、まず、ステップ1(図中にはS1と記してある。以下同様)では、前記油温センサ11で検出されたATFの油温Tatfを読み込む。
ステップ2では、前記ステップ1で読み込んだ油温Tatfと所定温度(許容温度)tsとを比較する。そして、現在の油温Tatfが所定温度ts未満であるときには、本ルーチンをそのまま終了させるが、現在の油温Tatfが所定温度ts以上であるときには、ステップ3へ進む。
【0026】
ステップ3では、機関1の発生トルクを強制的に低減することで前記油温Tatfの低下を図るべく、図3に示すようにしてトルクダウン量を設定する。
【0027】
図3において、まず、機関回転数Neと機関発生トルクTeとからトルクコンバータにおける瞬時発熱量Qを求める(瞬時発熱量演算手段)。前記機関発生トルクTeは、スロットル開度やシリンダ吸入空気量などで代表させることができる。
【0028】
次に、前記瞬時発熱量Qを所定時間だけ積分し(積分手段)、該発熱量Qの積分値と前記油温センサ 11 で検出された油温T atf とに基づいてトルクダウン量を決定する(トルクダウン量設定手段)。
【0029】
前記積分値が大きく急激な温度上昇が見込まれるときには、たとえそのときの油温T atf が低い場合であっても、機関の発生トルクを低減させるべくトルクダウン量を決定し、実際に油温T atf が許容温度を越える前から温度上昇を抑制する制御を行わせる。
【0030】
前記瞬時発熱量Qは、トルクコンバータにおける損失分として以下の式により演算することができる。
【0031】
Q=K・Ne・Te・(1−η)
【0032】
ここで、Kは定数、Neは機関回転数( rpm )、Teは機関発生トルク、ηはトルクコンバータの効率である。また、機関発生トルクTeは、機関の吸入空気流量をQaとしたときに、Te=k×Qa/Ne(kは定数)と見做せるから、前記瞬時発熱量Qは、Q=K’・Qa・(1−η)として求めることができる。
【0033】
また、簡易には、予め機関回転数Neとスロットル開度(又はシリンダ吸入空気量Qa/Ne)に応じて瞬時発熱量Qを記憶したマップを備え、該マップを参照して瞬時発熱量Qを求めることもできる。
【0034】
図4に示すように、機関1の発生トルクTe及び機関1の回転数Neがトルクコンバータの発熱量に影響し、発生トルクが大きいときほど発熱量が多くなるから、発生トルクを減少させることでトルクコンバータの発熱量を減少させ、以って、変速機の油温を低下させることができるものである。
【0035】
次のステップ4では、前記ステップ3で設定したトルクダウン量をTCM5に送信する。TCM5では、アクセル開度に応じた通常の目標スロットル弁開度TVOtaを前記トルクダウン量に応じて減少補正し、該減少補正後の目標スロットル弁開度TVOtaに基づいてスロットル弁4の開度を制御する。
【0036】
これにより、油温Tatfが所定温度を越えている間、機関1の吸入空気量を強制的に減少させ、これにより機関1の発生トルクが継続的に低減され、以って、油温Tatfの所定温度以下への低下が図られる。
【0037】
また、次のステップ5では、最高速側の変速段に3速をセットすることで、通常の変速範囲である1速〜4速を用いずに、低速側の1速〜3速に制限して自動変速制御を行わせるようにする。
【0038】
これにより、通常のシフトスケジュールに因れば、4速に変速される運転条件において、3速にシフトダウンされることになり、該シフトダウンは、回転が上昇し、発生トルクが減少する方向の制御となるから(図4参照)、トルクコンバータにおける発熱量が減少することになる。
【0039】
従って、前記ステップ3,4におけるトルクダウン制御と前記ステップ5におけるシフトダウン制御とを併用することで、前記ステップ3,4のトルクダウン制御のみを行わせる場合よりも、より一層トルクコンバータにおける発熱量を低下させることが可能となり、以って、油温Tatfの速やかな低下が図れ、ATFの劣化防止が図られると共に、変速機2と一体に設けられるA/T−C/U7の保護を図れる。
【0040】
また、ステップ6では、そのときの車速VSPが所定車速を越えているか否かを判別し、所定車速以上であればステップ7へ進んで、トルクコンバータに備えられたロックアップクラッチのロックアップを実行させる。
【0041】
通常のロックアップ制御においては、4速がロックアップの条件となるが、上記のように4速への変速を禁止されているから、上記のロックアップ制御は、4速以外(3速)でロックアップを行わせることになり、ロックアップ領域の拡大に相当する。
【0042】
ロックアップが行われると、トルクコンバータにおける入力側と出力側とが機械的に直結されることになるから、トルクコンバータの滑りによる発熱を回避できることになる。
【0043】
また、車速が低くロックアップが行えないときには、前記ステップ3〜5の処理でトルクコンバータの発熱量が抑制されることになる。
【0044】
尚、油温Tatfが高いときに、ロックアップ領域の拡大を行い、該拡大されたロックアップ領域から外れたときにのみ、機関1の発生トルクを減少させる制御や強制的なシフトダウン制御(最高速段への変速の禁止)を行わせる構成としても良い。
【0045】
また、ステップ8では、油温Tatfを低下させるための機関発生トルクの低減制御や最高速段への変速の禁止が行われていることを運転者に認知させるべく、例えば運転席の計器部分に設けた警告灯12を点灯させる(警告手段)。
【0046】
これにより、油温を低下させるための発生トルクの低減制御を機関不調と運転者が誤認してしまうことを回避できる。
【0047】
尚、上記実施の形態では、スロットル弁の開度を減少させることで機関の吸入空気量を減少させ、以って、機関の発生トルクを低減する構成としたが、例えば点火時期を遅角させたり、空燃比をリーン化させたりして、機関1の発生トルクを低減させる構成であっても良い。
【0048】
また、油温Tatfを検出する代わりに、ATFの雰囲気の温度や、変速機2のケースの温度を検出させる構成としても良い。
【図面の簡単な説明】
【図1】実施の形態における変速機のシステム構成図。
【図2】実施の形態における油温制御の内容を示すフローチャート。
【図3】瞬時発熱量の積分値に基づくトルクダウン量の設定処理を示すブロック図。
【図4】機関トルク,回転数とトルクコンバータの発熱量との相関を示す線図。
【符号の説明】
1…内燃機関,2…自動有段変速機,3…モータ,4…スロットル弁,5…TCM,6…スロットルセンサ,7…A/T−C/U,8…車速センサ,9…アクセル開度センサ,10…回転センサ,11…油温センサ,12…警告灯
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transmission control device, and more particularly to a technique for preventing temperature rise of transmission oil in a transmission with a torque converter.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in an automatic transmission configured to transmit engine generated torque to a transmission via a torque converter, ATF deterioration due to temperature increase of automatic transmission oil (hereinafter referred to as ATF), friction element, and seal member deterioration. As a method for preventing the above, when the temperature of the ATF exceeds the allowable temperature or when the temperature is likely to exceed the allowable temperature, the lock-up area of the lock-up clutch provided in the torque converter is expanded to increase the torque. There has been a method of reducing the amount of heat generated by the slip of the converter, thereby suppressing the temperature rise of ATF (Japanese Patent Laid-Open Nos. 62-205829, 62-209265, and 5-302671). (See publications).
[0003]
[Problems to be solved by the invention]
However, for example, when the vehicle is traveling on an uphill, the vehicle speed decreases, the foot is released from the accelerator, and the gear shift is frequently performed. Therefore, even if the lockup area is widened, the lockup area remains long. However, it is difficult to reliably prevent the temperature rise of ATF.
[0004]
In addition, when the control unit for controlling the shifting operation and lockup of the automatic transmission is integrally provided in the case of the transmission, the temperature rise of the ATF is further suppressed to protect the electronic components. Although it is necessary, it is difficult to suppress the temperature rise of the ATF sufficiently and sufficiently only by expanding the lockup region.
[0005]
The present invention has been made in view of the above problems, and even when the control unit is integrally provided in the transmission case, the temperature of the ATF can be reliably suppressed within the allowable temperature. The purpose is to do.
[0006]
[Means for Solving the Problems]
Therefore, the invention according to claim 1 is a control device for a transmission with a torque converter, the oil temperature detecting means for detecting the oil temperature of the transmission or a temperature correlated with the oil temperature, and the oil temperature detecting means. When the detected temperature is equal to or higher than a predetermined temperature, the generated torque reducing means for continuously reducing the generated torque of the engine, and the generated torque of the engine is continuously reduced by the generated torque reducing means A lockup area expanding means for expanding a lockup area of a lockup clutch provided in the torque converter more than usual, an instantaneous heat generation amount calculating means for calculating an instantaneous heat generation amount in the torque converter, and an instantaneous heat generation calculation Integrating means for integrating the amount of instantaneously generated heat calculated by the means for a predetermined time; the temperature detected by the oil temperature detecting means; and the integral value in the integrating means Configured to include a, a torque reduction amount setting means for setting a torque-down amount in the generated torque reducing means on the basis of.
[0007]
According to this configuration, the engine torque is reduced and the lock-up (mechanical direct connection between the input side and output side of the torque converter) is performed at the same time. Plan.
[0008]
Also, when the integrated value of the generated heat is large and a sudden temperature rise is expected, even if the oil temperature at that time is low, the torque reduction amount is determined to reduce the generated torque of the engine, and the oil Control can be performed to suppress the temperature rise before the temperature exceeds the allowable temperature.
[0009]
According to a second aspect of the present invention, a warning means is provided to warn the driver that the generated torque of the engine is continuously reduced by the generated torque reducing means.
[0010]
According to such a configuration, when the generated torque of the engine is forcibly reduced to lower the oil temperature of the torque converter, the driver is warned of the execution state of such control by, for example, lighting of a warning light or a buzzer. Can be recognized.
[0011]
The temperature correlated with the oil temperature is, for example, the oil ambient temperature or the transmission case temperature. Further, the automatic transmission may be configured such that a control unit for controlling a shifting operation and lockup is integrally provided in a case of the transmission.
[0012]
【The invention's effect】
According to the first aspect of the invention, the temperature of the oil in the transmission is reduced by both reducing the torque generated by the engine and expanding the lockup region of the lockup clutch. Even when the control unit is provided integrally with the transmission, the oil temperature can be controlled low enough to protect the electronic components of the control unit.
[0013]
Also, when the integrated value of the generated heat is large and a sudden temperature rise is expected, even if the oil temperature at that time is low, the torque reduction amount is determined to reduce the generated torque of the engine, and the oil Control can be performed to suppress the temperature rise before the temperature exceeds the allowable temperature, thereby preventing the temperature from exceeding the allowable temperature or greatly exceeding the allowable temperature.
[0014]
According to the second aspect of the present invention, the driver can recognize that the engine generated torque reduction control for lowering the oil temperature of the transmission is being executed, and therefore the generated torque is reduced by the reduction control. It is possible to avoid misidentifying that is due to an engine failure.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a system configuration diagram showing an embodiment of a transmission control apparatus according to the present invention.
[0016]
Here, the torque of the internal combustion engine 1 mounted on the vehicle (not shown) is transmitted to the drive wheels (not shown) via the automatic stepped transmission 2, and the automatic stepped transmission 2 is locked. Torque is transmitted to the gear transmission through a torque converter having an up clutch.
[0017]
The transmission may be configured to transmit engine torque to the continuously variable transmission via a torque converter.
[0018]
A throttle valve 4 that is opened and closed by a motor 3 is interposed in the intake passage of the internal combustion engine 1, and the intake air amount of the engine 1 is adjusted by the opening degree of the throttle valve 4.
[0019]
The motor 3 is operated by a control signal from a throttle control module (hereinafter referred to as TCM) 5.
[0020]
The TCM 5 receives an accelerator opening signal ACC from an accelerator opening sensor 9 that detects the amount of depression of an accelerator pedal operated by a driver, and sets a target throttle valve opening TVOta according to the accelerator opening ACC. The motor 3 is feedback-controlled so that the actual throttle valve opening TVO detected by the throttle sensor 6 matches the target throttle valve opening TVOta.
[0021]
On the other hand, an automatic transmission control unit (hereinafter referred to as “A / TC / U”) 7 for controlling the shift operation and lockup of the automatic stepped transmission 2 controls the hydraulic pressure of the automatic stepped transmission 2. It is integrally provided in the case of the automatic stepped transmission 2 together with various solenoid valves that operate and a power transistor that drives the solenoid valve.
[0022]
The A / TC / U 7 includes a rotation speed sensor for detecting a vehicle speed signal VSP from the vehicle speed sensor 8, an accelerator position signal ACC from the accelerator position sensor 9, and a rotational speed Ne (rpm) of the engine 1. An engine speed signal Ne from 10 and an oil temperature signal Tatf from an oil temperature sensor 11 (oil temperature detecting means) for detecting the temperature of oil (hereinafter referred to as ATF) of the automatic stepped transmission 2 are input. It has come to be.
[0023]
The A / TC-U 7 performs automatic shift control and lockup control based on the various signals, and the oil temperature Tatf exceeds the allowable temperature as shown in the flowchart of FIG. The control which suppresses is performed.
[0024]
In the present embodiment, the A / TC / U 7 functions as generated torque reducing means, lockup area expanding means , torque down amount setting means, instantaneous heat generation amount calculating means, and integrating means . As shown in the flowchart of FIG.
[0025]
In the flowchart of FIG. 2, first, in step 1 (denoted as S1 in the figure, the same applies hereinafter), the ATF oil temperature Tatf detected by the oil temperature sensor 11 is read.
In step 2, the oil temperature Tatf read in step 1 is compared with a predetermined temperature (allowable temperature) ts. When the current oil temperature Tatf is lower than the predetermined temperature ts, this routine is terminated as it is. However, when the current oil temperature Tatf is equal to or higher than the predetermined temperature ts, the routine proceeds to step 3.
[0026]
In step 3, in order to reduce the oil temperature Tatf by forcibly reducing the generated torque of the engine 1, the torque down amount is set as shown in FIG.
[0027]
In FIG. 3, first, an instantaneous heat generation amount Q in the torque converter is obtained from the engine speed Ne and the engine generated torque Te (instantaneous heat generation calculating means). The engine generated torque Te can be represented by a throttle opening, a cylinder intake air amount, or the like.
[0028]
Next, the instantaneous heat generation amount Q is integrated for a predetermined time (integration means), and the torque reduction amount is determined based on the integrated value of the heat generation amount Q and the oil temperature T atf detected by the oil temperature sensor 11. (Torque down amount setting means).
[0029]
When the integral value is large and a rapid temperature increase is expected, even if the oil temperature T atf at that time is low, a torque reduction amount is determined to reduce the generated torque of the engine, and the oil temperature T Control to suppress the temperature rise before atf exceeds the allowable temperature.
[0030]
The instantaneous calorific value Q can be calculated by the following equation as a loss in the torque converter.
[0031]
Q = K · Ne · Te · (1-η)
[0032]
Here, K is a constant, Ne is the engine speed ( rpm ), Te is the engine generated torque, and η is the efficiency of the torque converter. Further, since the engine generated torque Te can be regarded as Te = k × Qa / Ne (k is a constant) when the intake air flow rate of the engine is Qa, the instantaneous calorific value Q is Q = K ′ · It can be calculated as Qa · (1−η).
[0033]
Further, simply, a map is provided in which the instantaneous heat generation amount Q is stored in advance according to the engine speed Ne and the throttle opening (or the cylinder intake air amount Qa / Ne), and the instantaneous heat generation amount Q is determined by referring to the map. You can ask for it.
[0034]
As shown in FIG. 4, the generated torque Te of the engine 1 and the rotational speed Ne of the engine 1 affect the heat generation amount of the torque converter, and the heat generation amount increases as the generated torque increases. reduces the heating value of the torque converter, I following, in which the oil temperature of the transmission can be reduced.
[0035]
In the next step 4, the torque down amount set in step 3 is transmitted to the TCM 5. In TCM5, the normal target throttle valve opening TVOta corresponding to the accelerator opening is corrected to decrease according to the torque reduction amount, and the opening of the throttle valve 4 is adjusted based on the target throttle valve opening TVOta after the correction. Control.
[0036]
As a result, while the oil temperature Tatf exceeds the predetermined temperature, the intake air amount of the engine 1 is forcibly reduced, and thereby the torque generated by the engine 1 is continuously reduced, so that the oil temperature Tatf is reduced. Reduction to a predetermined temperature or less is achieved.
[0037]
Further, in the next step 5, the third speed is set to the highest speed shift stage, so that the first speed to the third speed on the low speed side is limited without using the first speed to the fourth speed which is the normal speed range. To perform automatic gear shift control.
[0038]
As a result, according to the normal shift schedule, in the driving condition of shifting to the fourth speed, the gear is shifted down to the third speed, and the shift down is a direction in which the rotation increases and the generated torque decreases. Since it becomes control (refer FIG. 4) , the emitted-heat amount in a torque converter will reduce.
[0039]
Accordingly, the combined use of the torque down control in Steps 3 and 4 and the shift down control in Step 5 makes it possible to generate more heat in the torque converter than when only the torque down control in Steps 3 and 4 is performed. As a result, the oil temperature Tatf can be quickly lowered, the ATF can be prevented from being deteriorated, and the A / TC / U7 provided integrally with the transmission 2 can be protected. .
[0040]
In step 6, it is determined whether or not the vehicle speed VSP at that time exceeds a predetermined vehicle speed. If the vehicle speed VSP is equal to or higher than the predetermined vehicle speed, the process proceeds to step 7 to execute lockup of the lockup clutch provided in the torque converter. Let
[0041]
In normal lock-up control, the fourth speed is a condition for lock-up, but shifting to the fourth speed is prohibited as described above. Therefore, the lock-up control is performed at a speed other than the fourth speed (third speed). This means that lockup is performed, which corresponds to the expansion of the lockup area.
[0042]
When the lockup is performed, the input side and the output side of the torque converter are mechanically directly connected, so that heat generation due to slippage of the torque converter can be avoided.
[0043]
Further, when the vehicle speed is low and lockup cannot be performed, the amount of heat generated by the torque converter is suppressed by the processing in steps 3 to 5 described above.
[0044]
It should be noted that when the oil temperature Tatf is high, the lockup region is expanded, and only when the oil temperature Tatf is out of the expanded lockup region, control to reduce the torque generated by the engine 1 or forced downshift control (maximum (Prohibition of shifting to high speed) may be performed.
[0045]
Further, in step 8, in order to make the driver recognize that the engine generated torque reduction control for reducing the oil temperature Tatf and the shift to the maximum speed are prohibited, for example, in the instrument part of the driver's seat. The provided warning lamp 12 is turned on (warning means).
[0046]
As a result, it is possible to prevent the driver from misidentifying the engine malfunction and the generated torque reduction control for lowering the oil temperature.
[0047]
In the above embodiment, the intake air amount of the engine is reduced by reducing the opening of the throttle valve, thereby reducing the generated torque of the engine. However, for example, the ignition timing is retarded. or, and or to lean air-fuel ratio, it may be configured to reduce the torque of the engine 1.
[0048]
Moreover, it is good also as a structure which detects the temperature of the atmosphere of ATF, and the temperature of the case of the transmission 2 instead of detecting the oil temperature Tatf.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a transmission according to an embodiment.
FIG. 2 is a flowchart showing the contents of oil temperature control in the embodiment.
FIG. 3 is a block diagram showing a torque down amount setting process based on an integrated value of instantaneous heat generation amount.
FIG. 4 is a diagram showing the correlation between engine torque and rotational speed and the amount of heat generated by the torque converter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Automatic stepped transmission, 3 ... Motor, 4 ... Throttle valve, 5 ... TCM, 6 ... Throttle sensor, 7 ... A / TC / U, 8 ... Vehicle speed sensor, 9 ... Accelerator opening Degree sensor, 10 ... Rotation sensor, 11 ... Oil temperature sensor, 12 ... Warning light

Claims (2)

トルクコンバータ付き変速機の制御装置であって、
前記変速機の油温又は該油温に相関する温度を検出する油温検出手段と、
該油温検出手段で検出された温度が所定温度以上であるときに、機関の発生トルクを継続的に低減させる発生トルク低減手段と、
該発生トルク低減手段により機関の発生トルクを継続的に低減させているときに、前記トルクコンバータに備えられたロックアップクラッチのロックアップ領域を通常よりも拡大するロックアップ領域拡大手段と、
前記トルクコンバータにおける瞬時発生熱量を演算する瞬時発生熱量演算手段と、
該瞬時発生熱量演算手段で演算された瞬時発生熱量を所定時間だけ積分する積分手段と、
前記油温検出手段で検出された温度と前記積分手段における積分値とに基づいて前記発生トルク低減手段におけるトルクダウン量を設定するトルクダウン量設定手段と、
を含んで構成されたことを特徴とする変速機の制御装置。
A control device for a transmission with a torque converter,
An oil temperature detecting means for detecting an oil temperature of the transmission or a temperature correlated with the oil temperature;
Generated torque reducing means for continuously reducing the generated torque of the engine when the temperature detected by the oil temperature detecting means is equal to or higher than a predetermined temperature;
Lockup area expanding means for expanding the lockup area of the lockup clutch provided in the torque converter more than usual when the generated torque of the engine is continuously reduced by the generated torque reducing means;
Instantaneous heat generation amount calculating means for calculating the instantaneous heat generation amount in the torque converter;
Integration means for integrating the instantaneous heat generation calculated by the instantaneous heat generation calculation means for a predetermined time;
Torque down amount setting means for setting a torque down amount in the generated torque reducing means based on the temperature detected by the oil temperature detecting means and the integrated value in the integrating means;
A control apparatus for a transmission, comprising:
前記発生トルク低減手段により機関の発生トルクを継続的に低減させている状態を運転者に警告する警告手段を設けたことを特徴とする請求項記載の変速機の制御装置。Control device for a transmission according to claim 1, characterized in that a warning means for warning a state in which continuously reduce the generated torque of the engine by the generated torque reducing means to the driver.
JP33349696A 1996-12-13 1996-12-13 Transmission control device Expired - Fee Related JP3691614B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP33349696A JP3691614B2 (en) 1996-12-13 1996-12-13 Transmission control device
GB9726159A GB2320339B (en) 1996-12-13 1997-12-10 Control system for controlling temperature of transmission fluid in an automatic power transmission with a torque converter
DE19755128A DE19755128A1 (en) 1996-12-13 1997-12-11 Control system for controlling the temperature of the transmission fluid in an automatic powershift transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33349696A JP3691614B2 (en) 1996-12-13 1996-12-13 Transmission control device

Publications (2)

Publication Number Publication Date
JPH10169483A JPH10169483A (en) 1998-06-23
JP3691614B2 true JP3691614B2 (en) 2005-09-07

Family

ID=18266715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33349696A Expired - Fee Related JP3691614B2 (en) 1996-12-13 1996-12-13 Transmission control device

Country Status (3)

Country Link
JP (1) JP3691614B2 (en)
DE (1) DE19755128A1 (en)
GB (1) GB2320339B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19834532A1 (en) * 1998-07-31 2000-02-03 Bayerische Motoren Werke Ag Method for influencing the torque of an internal combustion engine
DE19844618A1 (en) * 1998-09-29 2000-03-30 Zahnradfabrik Friedrichshafen Method for reducing the thermal load on an automatic transmission for a motor vehicle in an emergency mode
DE19849058A1 (en) 1998-10-24 2000-04-27 Zahnradfabrik Friedrichshafen Method for controlling high temperature mode of operation of electronically controlled automatic gears selects temperature reducing gear changing programme if temperature is high
DE19932755A1 (en) * 1999-07-14 2001-02-01 Luk Lamellen & Kupplungsbau Control device
EP1217261B1 (en) 2000-12-20 2010-02-17 Sew-Eurodrive GmbH & Co. KG Optimization of the time intervals for oil change of a transmission
DE10142751B4 (en) * 2000-12-20 2012-04-12 Sew-Eurodrive Gmbh & Co. Kg Device for a drive and method for the device
DE10259142B4 (en) 2002-03-05 2022-03-31 Sew-Eurodrive Gmbh & Co Kg Drive Component and Method
DE10214546A1 (en) * 2002-04-02 2003-10-16 Volkswagen Ag Overheating protection method for components in motor vehicles with temperature within component determined dependent upon temperature model and movement parameters
JP3910122B2 (en) * 2002-08-30 2007-04-25 ジヤトコ株式会社 Engine output torque control device for vehicle transmission system
GB2396080B (en) 2002-11-26 2006-03-01 Nec Technologies Improvements in standby time for dual mode mobile communication devices
DE10306896B4 (en) * 2003-02-18 2019-01-24 Volkswagen Ag Method for controlling the operation of a clutch of a motor vehicle
DE102004002761B4 (en) * 2004-01-20 2017-01-05 Daimler Ag Method for operating a drive train of a motor vehicle
DE102004021575A1 (en) * 2004-05-03 2005-12-01 Adam Opel Ag Automatic railcar gearbox system controlling method, involves finding difference between actual acceleration and reference acceleration of railcar, and changing peak program into standard switch program, if difference exceeds preset value
JP2006207606A (en) * 2005-01-25 2006-08-10 Fuji Heavy Ind Ltd Oil temperature control device for vehicle
US7223205B2 (en) * 2005-02-17 2007-05-29 General Motors Corporation Method for controlling engine and/or transmission temperature
US7217222B2 (en) 2005-04-05 2007-05-15 Ford Global Technologies, Llc Method and system for inferring and controlling transmission fluid temperature
US7315775B2 (en) * 2005-04-20 2008-01-01 Gm Global Technology Operations, Inc. Automotive transmission control system and method
DE102005042363A1 (en) * 2005-09-07 2007-03-15 Zf Friedrichshafen Ag Automatic gearbox switching control method for motor vehicle, involves determining actual temperature of heated friction switching unit before switching process, and disabling heat treatment of unit based on actual temperature
SE529237C2 (en) 2005-10-21 2007-06-05 Scania Cv Abp engine Control Systems
KR100828674B1 (en) * 2006-08-02 2008-05-09 현대자동차주식회사 Engine torque limitation apparatus of automatic transmission on vehicle and method thereof
JP4913535B2 (en) 2006-10-19 2012-04-11 本田技研工業株式会社 Shift control device for automatic transmission
JP2009058023A (en) * 2007-08-30 2009-03-19 Aisin Aw Co Ltd Device for preventing excessive rise in oil temperature in torque converter of automatic transmission equipped with vehicular torque converter
US8147378B2 (en) * 2008-04-29 2012-04-03 GM Global Technology Operations LLC Airflow based idle speed control power security
JP2010236382A (en) * 2009-03-30 2010-10-21 Honda Motor Co Ltd Liquid temperature warning system for engine
CN102114817B (en) * 2010-07-15 2013-03-13 浙江吉利汽车研究院有限公司 Method for controlling automatic transmission to enter different hot mode levels
DE102011115279A1 (en) 2011-09-29 2012-12-20 Audi Ag Drive arrangement for motor vehicle, has electric motor and transmission, where electric motor has cooling circuit with cooling medium and transmission has lubricating circuit with lubricating medium
FR2981140B1 (en) * 2011-10-06 2013-11-01 Renault Sa METHOD AND SYSTEM FOR CONTROLLING A MOTOR POWERTRAIN ACCORDING TO THE TEMPERATURE OF A HYDRAULIC TORQUE CONVERTER.
FR3041405B1 (en) * 2015-09-18 2018-08-31 Renault S.A.S METHOD FOR CONTROLLING FUNCTIONAL FLUID TEMPERATURE
JP6937909B2 (en) * 2018-06-14 2021-09-22 ジヤトコ株式会社 Control device for automatic transmission
US11111999B2 (en) 2019-10-01 2021-09-07 Allison Transmission, Inc. Transmission systems to control heat exchangers to manage transmission sump temperature
DE102022211333A1 (en) 2022-10-26 2024-05-02 Stellantis Auto Sas Gear selection procedure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659791B2 (en) * 1985-12-05 1994-08-10 トヨタ自動車株式会社 Vehicle engine torque control device

Also Published As

Publication number Publication date
GB2320339A (en) 1998-06-17
GB2320339B (en) 1999-03-03
JPH10169483A (en) 1998-06-23
DE19755128A1 (en) 1998-06-25
GB9726159D0 (en) 1998-02-11

Similar Documents

Publication Publication Date Title
JP3691614B2 (en) Transmission control device
US6773372B2 (en) Vehicle drive control apparatus and method
US8335621B2 (en) Vehicle control apparatus
US6908413B2 (en) Driving control apparatus for vehicle and driving control method for vehicle
JP4119613B2 (en) Automatic transmission lockup control device
US6860833B2 (en) Driving control apparatus for vehicle and control method of same
JP3031257B2 (en) Lock-up clutch slip control device
US7833128B2 (en) Control device for automatic transmission
JP5257508B2 (en) Drive source control apparatus and control method
JP4684174B2 (en) Control device for automatic transmission
JP2002205576A (en) Vehicular driving torque control method and vehicle
JP2005240576A (en) Controller of vehicle
JP4047254B2 (en) Control device for vehicle with automatic transmission
JP2005172078A (en) Lock-up control device for torque converter
JP2010249190A (en) Control device of automatic transmission for vehicle
JPH11193732A (en) Vehicle with idling speed controller
US11970990B1 (en) Control apparatus for vehicle
JP2008025376A (en) Control device and control method for power train, program executing the control method, and recording medium recording the program
JP2010116799A (en) Control device for engine and control method for the same
JP4442427B2 (en) Control device for internal combustion engine
JPH11350999A (en) Idling control system for vehicle with automatic transmission
JP2626394B2 (en) Slip control device for vehicle direct coupling clutch
US20080033619A1 (en) Vehicle controller and method of controlling a vehicle
JP3348141B2 (en) Transmission control device for automatic transmission
JP2004197595A (en) Gear shaft control device of automatic transmission

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees