JP3686580B2 - Optical electric field sensor device - Google Patents

Optical electric field sensor device Download PDF

Info

Publication number
JP3686580B2
JP3686580B2 JP2000320478A JP2000320478A JP3686580B2 JP 3686580 B2 JP3686580 B2 JP 3686580B2 JP 2000320478 A JP2000320478 A JP 2000320478A JP 2000320478 A JP2000320478 A JP 2000320478A JP 3686580 B2 JP3686580 B2 JP 3686580B2
Authority
JP
Japan
Prior art keywords
optical
field sensor
electric field
sensor device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000320478A
Other languages
Japanese (ja)
Other versions
JP2002131353A (en
Inventor
正俊 鬼澤
成典 鳥畑
良和 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2000320478A priority Critical patent/JP3686580B2/en
Publication of JP2002131353A publication Critical patent/JP2002131353A/en
Application granted granted Critical
Publication of JP3686580B2 publication Critical patent/JP3686580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光を用いて電界の測定を行う光電界センサ装置に係り、特に、EMC分野における電界測定、または放送用あるいは通信用電波の中継装置に用いて好適な干渉型光導波路を有する高感度の光電界センサ装置に関する。
【0002】
【従来の技術】
干渉型光導波路を有し、電気光学効果を利用して、電界測定を行う光電界センサ装置は、以下のような優れた特徴を持っている。
【0003】
即ち、
(1)金属部をほとんど持たないために被測定電界を乱さないこと、
(2)光ファイバで検出信号を伝送するので途中で誘導や電気的雑音の影響を受けないこと、
(3)結晶の電気光学効果を利用するので、高速応答が可能であり、かつ、その検出信号をそのまま少ない損失で伝送できること、
(4)センサ部に電源を必要としないこと、
さらには、
(5)光導波路部とアンテナ部を一体化でき、小型化が可能なこと、
などである。
【0004】
このような特性のために、光電界センサ装置は、EMC分野などの電界測定、または放送用あるいは通信用電波の中継装置における電波受信装置として用いられている。
【0005】
図6は、従来から用いられている光電界センサの外観図である。光ファイバ61aを通して入射した光は、LiNbO単結晶基板65の上の光導波路66aを経て、2本の分岐光導波路63aおよび63bに分岐されて伝搬する。そのとき、分岐光導波路63aと63bには、金属電極62a,62bにより、電界が印加され、屈折率の変化が生じている。
【0006】
また、金属電極62a,62bは、アンテナから導かれた電界が2つの分岐光導波路63aと63bに対して、逆向きに印加される形状となっている。いずれの分岐光導波路を伝播する光も、光導波路66bで再び合波されるが、2つの光路の屈折率の差異により生じた位相差のゆえに、合波後の光強度は変化する。このようにして変調された光は、光ファイバ61bに結合して、出射する。
【0007】
上記の光電界センサを光変調器として用い、光給電による高感度化をはかった従来の光電界センサ装置を図5に示す。
【0008】
図5の光電界センサ装置にて第2の光源56から出射した一定強度の光は、偏波保持ファイバ59を経て、光変調器54に入射し、アンテナ51に誘起され、増幅器52で増幅された電圧により、強度変調を受け、光ファイバ58bを経て、受光器57に導かれ電気信号に変換される。また、増幅器52を駆動するために、第1の光源55からの光パワーを光ファイバ58aにより伝送し、光電変換素子53により電力に変換している。
【0009】
【発明が解決しようとする課題】
しかしながら、従来の光給電による光電界センサ装置においては、光給電による増幅器の駆動において、光パワーから電力への変換効率が低く、増幅器を駆動するための電圧と電力を得るためには、大出力のレーザ光源が必要であり、装置全体の価格を高価なものとしていた。
【0010】
そこで、本発明の目的は、工業的に利用し易い高感度の特性であり、また低価格とした光電界センサ装置を提供することである。
【0011】
【課題を解決するための手段】
まず、光電界センサ装置の高感度化をはかるために、以下のような考察を行った。
【0012】
先の図5に示した一般的な光電界センサ装置においては、出力信号のS/Nは次式で表される。
【0013】
S/N=10 log[{i (π/2)(V/Vπ)/2}/{i RIN+2e・i+i )BW}]
【0014】
ここで、iはフォトダイオードの平均の光電流であり、光変調器への入射光強度に比例する。Vは電極に印加される信号電圧の振幅、Vπは半波長電圧、RINは光源の相対雑音強度、eは電子の電荷、iは光検出器の等価雑音電流、BWは信号帯域幅である。
【0015】
従って、S/Nを向上させるためには、即ち、感度を高くするためには、以下の方法が可能である。
【0016】
(1)電極に印加される信号電圧の振幅Vを大きくする。
(2)相対雑音強度RINが低く、光強度の大きな光源を使用する。
(3)半波長電圧Vπを小さくする。
【0017】
(2)については、RINが−165dB/Hz以下である半導体レーザ励起固体レーザ光源やRINが−155dB/Hz以下であるDFB(分布帰還型)半導体レーザが用いられるが、いずれも数10mW以上の出力が要求される。
【0018】
(3)については、電極長を長くすると、半波長電圧Vπは小さくなるが、容量成分、抵抗成分の増加といった問題があり、実際的には、干渉光導波路を折り返して使う反射型の光変調器が用いられることが多い。
【0019】
(1)については、信号電圧を増幅して、電極に印加する方法が有効である。
【0020】
ところで、光電界センサは、センサヘッド部に電源を持たないことを特徴とする利点を維持するために、電線による給電は行わず、信号電圧の増幅器を駆動するためには、従来例として説明したような光による給電法がとられる。
【0021】
上記の3つの方法のうち、(2)の相対雑音強度RINが低く、光強度の大きき光源を使うことに関しては、DFB半導体レーザが使いやすい。また、(3)の半波長電圧Vπを小さくするためには、反射型の光変調器を使うことが実用的である。
【0022】
本発明においては、(1)の方法に着目し、光による従来の給電手段に代えて、次のような光による給電手段を備えて光電界センサ装置を構成した。
【0023】
即ち、本発明の光電界センサ装置は、光電変換部に光パワーを供給する第1の光源と、供給された光パワーを電力に変換する光電変換部と、ここで発生した電圧を昇圧する昇圧回路と、この昇圧回路の出力によって駆動され、被測定電圧を増幅するための増幅器と、増幅された被測定電圧によって光強度を変調する光変調と、この光変調部に一定強度の光をもたらす第2の光源と、前記光変調部で変調された光を検出する光検出器とを備えて構成された光電界センサ装置である。
【0024】
また、本発明の光電界センサ装置は、前記光電変換部に光パワーを供給する第1の光源はレーザ光源と光ファイバを備えて成り、前記光電変換部は直列につないだ2個以上のフォトダイオードと、それらのフォトダイオードに前記光ファイバの出力を分配する光カップラとを備えて構成された光電界センサ装置である。
【0025】
また、本発明は、前記昇圧回路を、略1Vの電圧を2V以上から30V以下の範囲に昇圧する昇圧回路とする光電界センサ装置である。
【0026】
また、本発明の光電界センサ装置は、前記増幅器の電圧利得を5dB以上とする光電界センサ装置である。
【0027】
また、本発明の光電界センサ装置は、前記光変調器をLiNbO結晶上に作製したマッハツェンダ型光導波路を備えた光変調器とする光電界センサ装置である。
【0028】
また、本発明の光電界センサ装置は、前記光電変換部に供給される第1の光源からの光を、1.48μm帯の半導体レーザ光とする光電界センサ装置である。
【0029】
【発明の実施の形態】
本発明の実施の形態による光電界センサ装置について、以下に説明する。
【0030】
本発明の実施の形態による光電界センサ装置は、光電変換部に光パワーを供給する第1の光源と、供給された光パワーを電力に変換する光電変換部と、ここで発生した電圧を昇圧する昇圧回路と、この昇圧回路の出力によって駆動され、被測定電圧を増幅するための増幅器と、増幅された被測定電圧によって光強度を変調する光変調器と、この光変調器に一定強度の光をもたらす第2の光源と、前記光変調器で変調された光を検出する光検出器とを備えて構成された光電界センサ装置とするものである。
【0031】
図1は、本発明による光電界センサ装置のブロック図である。図1の光電界センサ装置にて、11は光による給電のための光パワーを発生する第1の光源であり、12aは光ファイバであり、13は光電変換部、14は昇圧回路、15は増幅器である。16は電界を検出するアンテナ、17は反射型LiNbO光変調器、19は無変調の光を発生する第2の光源、12b,12c,12dは光ファイバ、18は光サーキュレータ、20は変調光を電気信号に変換する受光器である。
【0032】
図4は、本発明の光電界センサ装置に用いられる光変調器17の外観図である。偏波保持ファイバ41からLiNbO基板42の上に形成された入出射光導波路43に入射した導波光は、分岐光導波路44aと44bに分岐され、金属電極45により電界が印加され、屈折率変化が生じた分岐光導波路44aと44bを進行し、反射ミラー46により反射され、分岐光導波路44aと44bを逆行した後、入出射光導波路43で合波され、偏波保持ファイバ41に出射される。
【0033】
このとき、出射光は、分岐光導波路の間の光路差によって生じた位相差に応じて、強度変調を受ける。言い換えると、この光変調器は光路長が印加される電圧によって変化するマッハツェンダ型干渉計として動作する。また、金属電極45に印加される電圧は、図1のアンテナ16に誘起され、増幅器15によって増幅された信号電圧である。
【0034】
図2は、本発明の光電界センサ装置の増幅器を駆動する手段の説明図である。
【0035】
図1、図2を参照して、本発明の実施の形態に係る光による給電手段と増幅器について、詳しく説明する。
【0036】
図1に示す第1の光源11として、1.48μm帯の半導体レーザを用いた。その光ファイバ出力は、70mWである。シングルモード光ファイバ12aを介して、光電変換部13に伝送された光パワーは、図2で模式的に示すように、光カップラで2つに分岐され、直列に接続された2つのInGaAsフォトダイオードに導かれ、電力に変換される。得られた1.1ボルトの出力電圧が、昇圧回路により、2.2ボルトに昇圧され、18mWの電力で増幅器を駆動し、この増幅器により、アンテナからの信号電圧を12dB増幅した。
【0037】
なお、図3は、本発明の光電界センサ装置の増幅器を駆動する電圧を示す図であり、フォトダイオード(PD)の出力から、増幅器を駆動するのに必要な2V以上の電圧が得られる様子を模式的に示した。
【0038】
ところで、昇圧回路を用いずに、フォトダイオードのみを直列につないで、2ボルト以上の電圧を得る方法は、フォトダイオードの光電変換効率が40%未満であるのに対し、昇圧回路ICにおいては、昇圧後の電力効率が80%におよぶことから実用的でない。
【0039】
なお、本発明の実施の形態においては、増幅器の利得を12dBとしたが、5dB未満では、本発明の給電手段に係るコストと、他の方法による高感度化、例えば、光源の光出力を増加させる方法などに係るコストと比較して利点がなくなる。
【0040】
また、光給電のための光源とフォトダイオードの組み合わせは、0.98μm帯半導体レーザとSiフォトダイオード、あるいは1.48μm帯半導体レーザとGeフォトダイオードの組み合わせなども実用的である。さらに、光パワー伝送用の光ファイバとしては、マルチモードファイバも実用的である。
【0041】
【発明の効果】
以上、説明したように、本発明によれば、工業的に広く用いられている構成部品から成る高感度の光電界センサ装置を提供することができる。また、本発明によれば、給電に用いる光パワーを低減し、高信頼の高感度光電界センサ装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例による光電界センサ装置のブロック図。
【図2】本発明の実施例による光電界センサ装置の増幅器を駆動する手段を説明する図。
【図3】本発明の実施例による光電界センサ装置の増幅器を駆動する電圧を示す図。
【図4】本発明の光電界センサ装置に使用される光変調器の外観図。
【図5】従来の光電界センサ装置の構成を示すブロック図。
【図6】従来の透過型の光電界センサ装置の外観図。
【符号の説明】
11,55 第1の光源
12a,12b,12c,12d,58a,58b,61a,61b 光ファイバ
13 光電変換部
14 昇圧回路
15,52 増幅器
16,51 アンテナ
17,54 光変調器
18 光サーキュレータ
19,56 第2の光源
20,57 受光器(光検出器)
41,59 偏波保持ファイバ
42,65 LiNbO単結晶基板
43 入出射光導波路
44a,44b,63a,63b 分岐光導波路
45 金属電極
46 反射ミラー
53 光電変換素子
62a,62b 分極電極
66a,66b 光導波路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical electric field sensor device for measuring an electric field using light, and more particularly, to an optical field sensor having an interference type optical waveguide suitable for electric field measurement in the field of EMC, or for broadcasting or communication radio wave relay devices. The present invention relates to an optical electric field sensor device of sensitivity.
[0002]
[Prior art]
An optical electric field sensor device that has an interference optical waveguide and performs electric field measurement using the electro-optic effect has the following excellent features.
[0003]
That is,
(1) Do not disturb the electric field to be measured because it has almost no metal part,
(2) Since the detection signal is transmitted through an optical fiber, it is not affected by induction or electrical noise on the way.
(3) Since the electro-optic effect of the crystal is used, high-speed response is possible, and the detection signal can be transmitted as it is with little loss.
(4) The sensor unit does not require a power source,
Moreover,
(5) The optical waveguide portion and the antenna portion can be integrated, and the size can be reduced.
Etc.
[0004]
Because of such characteristics, the optical electric field sensor device is used as a radio wave receiver in an electric field measurement in the EMC field or the like, or a broadcast or communication radio wave relay device.
[0005]
FIG. 6 is an external view of a conventional optical electric field sensor. The light incident through the optical fiber 61a is propagated through the optical waveguide 66a on the LiNbO 3 single crystal substrate 65, branched into two branched optical waveguides 63a and 63b. At that time, an electric field is applied to the branched optical waveguides 63a and 63b by the metal electrodes 62a and 62b, and a change in refractive index occurs.
[0006]
The metal electrodes 62a and 62b have a shape in which the electric field guided from the antenna is applied in the opposite direction to the two branch optical waveguides 63a and 63b. The light propagating through any of the branched optical waveguides is recombined by the optical waveguide 66b, but the light intensity after the combination changes due to the phase difference caused by the difference in refractive index between the two optical paths. The light modulated in this way is coupled to the optical fiber 61b and emitted.
[0007]
FIG. 5 shows a conventional optical electric field sensor device using the above optical electric field sensor as an optical modulator and achieving high sensitivity by optical power feeding.
[0008]
Light having a constant intensity emitted from the second light source 56 in the optical electric field sensor device of FIG. 5 enters the optical modulator 54 through the polarization maintaining fiber 59, is induced in the antenna 51, and is amplified by the amplifier 52. Is subjected to intensity modulation by the applied voltage, is guided to the light receiver 57 through the optical fiber 58b, and is converted into an electric signal. Further, in order to drive the amplifier 52, the optical power from the first light source 55 is transmitted through the optical fiber 58 a and converted into electric power by the photoelectric conversion element 53.
[0009]
[Problems to be solved by the invention]
However, in the conventional optical electric field sensor device by optical power feeding, the efficiency of conversion from optical power to power is low in driving the amplifier by optical power feeding, and in order to obtain the voltage and power for driving the amplifier, a large output Therefore, the price of the entire apparatus is expensive.
[0010]
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical electric field sensor device that has a high sensitivity characteristic that is industrially easy to use and is low in cost.
[0011]
[Means for Solving the Problems]
First, in order to increase the sensitivity of the optical electric field sensor device, the following consideration was made.
[0012]
In the general optical electric field sensor device shown in FIG. 5, the S / N of the output signal is expressed by the following equation.
[0013]
S / N = 10 log [{ i p 2 (π / 2) 2 (V i / V π) 2/2} / {i p 2 RIN + 2e · i p + i r 2 ) BW}]
[0014]
Here, i p is the average of the photocurrent of the photodiode is proportional to the intensity of light incident to the optical modulator. V i is the amplitude of the signal voltage applied to the electrodes, V [pi is half-wave voltage, RIN is the relative intensity noise of the light source, e is the electron charge, i r is the equivalent noise current of the photodetector, BW is the signal bandwidth It is.
[0015]
Therefore, in order to improve the S / N, that is, to increase the sensitivity, the following method is possible.
[0016]
(1) The amplitude V i of the signal voltage applied to the electrode is increased.
(2) A light source having a low relative noise intensity RIN and a high light intensity is used.
(3) Reduce the half-wave voltage .
[0017]
For (2), a semiconductor laser pumped solid-state laser light source having a RIN of −165 dB / Hz or a DFB (distributed feedback type) semiconductor laser having a RIN of −155 dB / Hz or less is used. Output is required.
[0018]
As for (3), when the electrode length is increased, the half-wave voltage decreases, but there is a problem that the capacitance component and the resistance component increase. In practice, the reflection type light used by folding the interference optical waveguide is used. A modulator is often used.
[0019]
For (1), a method of amplifying the signal voltage and applying it to the electrode is effective.
[0020]
By the way, in order to maintain the advantage that the optical electric field sensor does not have a power source in the sensor head part, power feeding by an electric wire is not performed, and a signal voltage amplifier is driven as a conventional example. Such a power feeding method using light is employed.
[0021]
Of the above three methods, the DFB semiconductor laser is easy to use when using a light source with a low relative noise intensity RIN and a high light intensity in (2). In order to reduce the half-wave voltage in (3), it is practical to use a reflection type optical modulator.
[0022]
In the present invention, paying attention to the method (1), an optical electric field sensor device is configured by including the following power supply means using light instead of the conventional power supply means using light.
[0023]
That is, the optical electric field sensor device of the present invention includes a first light source that supplies optical power to the photoelectric conversion unit, a photoelectric conversion unit that converts the supplied optical power into electric power, and a booster that boosts the voltage generated here. A circuit, an amplifier that is driven by the output of the booster circuit and amplifies the voltage to be measured, light modulation that modulates the light intensity by the amplified voltage to be measured, and light of a certain intensity is provided to the light modulator. It is an optical electric field sensor device configured to include a second light source and a photodetector that detects light modulated by the light modulation unit.
[0024]
In the optical electric field sensor device of the present invention, the first light source for supplying optical power to the photoelectric conversion unit includes a laser light source and an optical fiber, and the photoelectric conversion unit is connected in series to two or more photons. It is an optical electric field sensor device comprising diodes and an optical coupler that distributes the output of the optical fiber to the photodiodes.
[0025]
In addition, the present invention is an optical electric field sensor device in which the booster circuit is a booster circuit that boosts a voltage of approximately 1V to a range of 2V to 30V.
[0026]
The optical electric field sensor device of the present invention is an optical electric field sensor device in which the amplifier has a voltage gain of 5 dB or more.
[0027]
The optical electric field sensor device according to the present invention is an optical electric field sensor device in which the optical modulator is an optical modulator provided with a Mach-Zehnder type optical waveguide produced on a LiNbO 3 crystal.
[0028]
Moreover, the optical electric field sensor device of the present invention is an optical electric field sensor device that uses light from the first light source supplied to the photoelectric conversion unit as semiconductor laser light in a 1.48 μm band.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
An optical electric field sensor device according to an embodiment of the present invention will be described below.
[0030]
An optical electric field sensor device according to an embodiment of the present invention includes a first light source that supplies optical power to a photoelectric conversion unit, a photoelectric conversion unit that converts the supplied optical power into electric power, and boosts a voltage generated here. A boosting circuit that is driven by the output of the boosting circuit to amplify the voltage to be measured, an optical modulator that modulates the light intensity by the amplified voltage to be measured, and a constant intensity in the optical modulator The optical electric field sensor device includes a second light source that provides light and a light detector that detects light modulated by the light modulator.
[0031]
FIG. 1 is a block diagram of an optical electric field sensor device according to the present invention. In the optical electric field sensor device of FIG. 1, 11 is a first light source that generates optical power for power supply by light, 12a is an optical fiber, 13 is a photoelectric conversion unit, 14 is a booster circuit, 15 is It is an amplifier. 16 is an antenna that detects an electric field, 17 is a reflective LiNbO 3 optical modulator, 19 is a second light source that generates unmodulated light, 12b, 12c, and 12d are optical fibers, 18 is an optical circulator, and 20 is modulated light. Is a light receiver for converting the signal into an electric signal.
[0032]
FIG. 4 is an external view of the optical modulator 17 used in the optical electric field sensor device of the present invention. The guided light incident on the input / output optical waveguide 43 formed on the LiNbO 3 substrate 42 from the polarization maintaining fiber 41 is branched into the branched optical waveguides 44a and 44b, and an electric field is applied by the metal electrode 45 to change the refractive index. Travels through the branched optical waveguides 44a and 44b, and is reflected by the reflection mirror 46, travels backward through the branched optical waveguides 44a and 44b, and is multiplexed by the input / output optical waveguide 43 and output to the polarization maintaining fiber 41. .
[0033]
At this time, the emitted light undergoes intensity modulation according to the phase difference caused by the optical path difference between the branched optical waveguides. In other words, this optical modulator operates as a Mach-Zehnder interferometer whose optical path length changes depending on the applied voltage. The voltage applied to the metal electrode 45 is a signal voltage induced by the antenna 16 of FIG.
[0034]
FIG. 2 is an explanatory diagram of means for driving the amplifier of the optical electric field sensor device of the present invention.
[0035]
With reference to FIG. 1 and FIG. 2, the power feeding means and the amplifier using light according to the embodiment of the present invention will be described in detail.
[0036]
As the first light source 11 shown in FIG. 1, a 1.48 μm band semiconductor laser was used. The optical fiber output is 70 mW. As schematically shown in FIG. 2, the optical power transmitted to the photoelectric conversion unit 13 via the single mode optical fiber 12a is branched into two by an optical coupler, and two InGaAs photodiodes connected in series. To be converted into electric power. The obtained output voltage of 1.1 volts was boosted to 2.2 volts by a booster circuit, and the amplifier was driven with power of 18 mW. With this amplifier, the signal voltage from the antenna was amplified by 12 dB.
[0037]
FIG. 3 is a diagram showing a voltage for driving the amplifier of the optical electric field sensor device of the present invention, and a voltage of 2 V or more necessary for driving the amplifier can be obtained from the output of the photodiode (PD). Is shown schematically.
[0038]
By the way, a method of obtaining a voltage of 2 volts or more by connecting only photodiodes in series without using a booster circuit has a photoelectric conversion efficiency of the photodiode of less than 40%, whereas in a booster circuit IC, It is not practical because the power efficiency after boosting reaches 80%.
[0039]
In the embodiment of the present invention, the gain of the amplifier is set to 12 dB. However, when the gain is less than 5 dB, the cost of the power supply means of the present invention and the high sensitivity by other methods, for example, the light output of the light source is increased. There is no advantage compared to the cost associated with the method.
[0040]
As a combination of a light source and a photodiode for optical power feeding, a combination of a 0.98 μm band semiconductor laser and an Si photodiode, or a combination of a 1.48 μm band semiconductor laser and a Ge photodiode is practical. Furthermore, a multimode fiber is also practical as an optical fiber for transmitting optical power.
[0041]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a high-sensitivity optical electric field sensor device composed of components widely used in industry. In addition, according to the present invention, it is possible to provide a highly reliable high-sensitivity optical electric field sensor device with reduced optical power used for power feeding.
[Brief description of the drawings]
FIG. 1 is a block diagram of an optical electric field sensor device according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating means for driving an amplifier of the optical electric field sensor device according to the embodiment of the present invention.
FIG. 3 is a diagram showing a voltage for driving an amplifier of the optical electric field sensor device according to the embodiment of the present invention.
FIG. 4 is an external view of an optical modulator used in the optical electric field sensor device of the present invention.
FIG. 5 is a block diagram showing a configuration of a conventional optical electric field sensor device.
FIG. 6 is an external view of a conventional transmission type optical electric field sensor device.
[Explanation of symbols]
11, 55 1st light source 12a, 12b, 12c, 12d, 58a, 58b, 61a, 61b Optical fiber 13 Photoelectric conversion part 14 Booster circuit 15, 52 Amplifier 16, 51 Antenna 17, 54 Optical modulator 18 Optical circulator 19, 56 Second light source 20, 57 Light receiver (light detector)
41, 59 Polarization maintaining fibers 42, 65 LiNbO 3 single crystal substrate 43 Incoming / outgoing optical waveguides 44a, 44b, 63a, 63b Branching optical waveguide 45 Metal electrode 46 Reflecting mirror 53 Photoelectric conversion elements 62a, 62b Polarizing electrodes 66a, 66b Optical waveguide

Claims (6)

光電変換部に光パワーを供給する第1の光源と、供給された光パワーを電力に変換する光電変換部と、ここで発生した電圧を昇圧する昇圧回路と、この昇圧回路の出力によって駆動され、被測定電圧を増幅するための増幅器と、増幅された被測定電圧によって光強度を変調する光変調器と、この光変調器に一定強度の光をもたらす第2の光源と、前記光変調器で変調された光を検出する光検出器とを備えて構成されたことを特徴とする光電界センサ装置。Driven by a first light source that supplies optical power to the photoelectric conversion unit, a photoelectric conversion unit that converts the supplied optical power into electric power, a booster circuit that boosts the voltage generated here, and an output of the booster circuit An amplifier for amplifying the voltage to be measured, an optical modulator for modulating the light intensity by the amplified voltage to be measured, a second light source for providing light of a constant intensity to the optical modulator, and the optical modulator An optical electric field sensor device comprising: a photodetector for detecting light modulated by the optical field sensor. 前記光電変換部に光パワーを供給する第1の光源はレーザ光源と光ファイバを備えて成り、前記光電変換部は直列につないだ2個以上のフォトダイオードと、それらのフォトダイオードに前記光ファイバの出力を分配する光カップラとを備えて構成されたことを特徴とする請求項1記載の光電界センサ装置。A first light source for supplying optical power to the photoelectric conversion unit includes a laser light source and an optical fiber. The photoelectric conversion unit includes two or more photodiodes connected in series, and the optical fiber connected to the photodiodes. The optical electric field sensor device according to claim 1, further comprising an optical coupler that distributes the output of the optical field sensor. 前記昇圧回路は、略1Vの電圧を2V以上から30V以下の範囲に昇圧する昇圧回路とすることを特徴とする請求項1記載の光電界センサ装置。2. The optical electric field sensor device according to claim 1, wherein the booster circuit is a booster circuit that boosts a voltage of approximately 1V to a range of 2V to 30V. 前記増幅器は電圧利得が5dB以上であることを特徴とする請求項1記載の光電界センサ装置。2. The optical electric field sensor device according to claim 1, wherein the amplifier has a voltage gain of 5 dB or more. 前記光変調器はLiNbO結晶上に作製したマッハツェンダ型光導波路を備えた光変調器であることを特徴とする請求項1記載の光電界センサ装置。2. The optical electric field sensor device according to claim 1, wherein the optical modulator is an optical modulator provided with a Mach-Zehnder type optical waveguide manufactured on a LiNbO 3 crystal. 前記光電変換部に供給される第1の光源からの光は、1.48μm帯の半導体レーザ光であることを特徴とする請求項1または2のいずれかに記載の光電界センサ装置。3. The optical electric field sensor device according to claim 1, wherein the light from the first light source supplied to the photoelectric conversion unit is a 1.48 μm band semiconductor laser light. 4.
JP2000320478A 2000-10-20 2000-10-20 Optical electric field sensor device Expired - Lifetime JP3686580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000320478A JP3686580B2 (en) 2000-10-20 2000-10-20 Optical electric field sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000320478A JP3686580B2 (en) 2000-10-20 2000-10-20 Optical electric field sensor device

Publications (2)

Publication Number Publication Date
JP2002131353A JP2002131353A (en) 2002-05-09
JP3686580B2 true JP3686580B2 (en) 2005-08-24

Family

ID=18798757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000320478A Expired - Lifetime JP3686580B2 (en) 2000-10-20 2000-10-20 Optical electric field sensor device

Country Status (1)

Country Link
JP (1) JP3686580B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102829862A (en) * 2012-08-06 2012-12-19 南方电网科学研究院有限责任公司 Photoelectric detector for liquid dielectric electric field measurement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078633A (en) * 2005-09-16 2007-03-29 Seikoh Giken Co Ltd High sensitivity three-axis photoelectric field sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102829862A (en) * 2012-08-06 2012-12-19 南方电网科学研究院有限责任公司 Photoelectric detector for liquid dielectric electric field measurement

Also Published As

Publication number Publication date
JP2002131353A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
EP1079552B1 (en) Method, optical device, and system for optical fiber transmission
US6766070B2 (en) High power fiber optic modulator system and method
US20030118280A1 (en) Optical Transmission system
WO2000018044A9 (en) Linearization of a broadband analog link using two wavelengths
US20040136727A1 (en) Optical transmission system comprising a supervisory system
JPH1168675A (en) Optical transmission reception system
JPH07114305B2 (en) Interferometer device for reducing harmonic distortion in laser communication systems
US20140334824A1 (en) Fiber optic receiver, transmitter, and transceiver systems and methods of operating the same
JPH08274415A (en) Photon diplexer device
JP3328170B2 (en) Optical communication transmitter
JP2744092B2 (en) Laser equipment for optical communication equipment
JP3913547B2 (en) Optical modulator and optical signal and radio signal converter using the same
JP3686580B2 (en) Optical electric field sensor device
KR100350320B1 (en) Method and Apparatus for Removing Non-Linear Distortion in a Optic Transmitter
JP4694521B2 (en) Optical wavelength converter
JP2003307533A (en) Field sensing device and optical transmission system
US7072099B2 (en) Relative intensity noise (RIN) reduction in fiber-based raman amplifier systems
JP2866901B2 (en) Light modulator
JP5424939B2 (en) Optical phase noise suppression circuit, phase fluctuation detection circuit, and phase fluctuation detection method
JPH09246633A (en) Light source for optical communication
JPH0731314B2 (en) Optical signal modulator
JPS6397026A (en) Method and device for optical communication
JP2002340953A (en) Magnetic field sensor
KR100198948B1 (en) Optical transmission device having improved s/n
JP2661136B2 (en) Optical repeater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3686580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250