JP3676453B2 - Acicular ultrasonic probe - Google Patents

Acicular ultrasonic probe Download PDF

Info

Publication number
JP3676453B2
JP3676453B2 JP29169795A JP29169795A JP3676453B2 JP 3676453 B2 JP3676453 B2 JP 3676453B2 JP 29169795 A JP29169795 A JP 29169795A JP 29169795 A JP29169795 A JP 29169795A JP 3676453 B2 JP3676453 B2 JP 3676453B2
Authority
JP
Japan
Prior art keywords
ultrasonic
needle
inner needle
same
ultrasonic transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29169795A
Other languages
Japanese (ja)
Other versions
JPH09108216A (en
Inventor
野 秀 造 佐
藤 裕 佐
藤 由喜男 伊
藤 敏 郎 近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP29169795A priority Critical patent/JP3676453B2/en
Priority to US08/671,010 priority patent/US5829439A/en
Publication of JPH09108216A publication Critical patent/JPH09108216A/en
Application granted granted Critical
Publication of JP3676453B2 publication Critical patent/JP3676453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、針先に設けた超音波変換器を被検体内の生体組織へ直接刺入して超音波の2次元走査により上記生体組織の超音波画像を収集する針状超音波探触子に関し、特に生体組織への直接刺入により該生体組織に与える影響を抑えることができると共に、上記生体組織の超音波画像を短時間に収集でき、且つ1回の刺入で計測条件の異なる超音波画像を同時に収集できる針状超音波探触子及びその製造方法に関する。
【0002】
【従来の技術】
体腔内各部に発生した病変部を診断する方法として、生体検査(バイオプシ)が一般的に行われている。これは、超音波撮像装置で体腔内病変部を描出しながら穿刺針を所定箇所まで刺入し、針先端内部に病変部の生体組織の一部を捕獲・採取した後に観察試料を作成して、光学顕微鏡下に鑑別して病名の診断を行うものである。しかし、この方法では生体組織を体外に摘出した後に各種の処理を行って試料を作成する必要があることから診断に長時間を要し、また試料に各種の加工を加えることから組織が生体内の状態から変化する恐れがあるという問題があった。このような事情に対処して、近年、穿刺針に超音波変換器を取り付けて直接病変部に刺入し、病変部の組織性状を調べたり、周囲の生体組織を画像化する針状超音波探触子が例えば特公平4-78299号公報、特公平5-9097号公報などで提案されている。
【0003】
従来のこのような針状超音波探触子は、図1に示すと同様に、剛性材料で細径の中空パイプ状に形成された外針1の内側に、剛性材料で細径の丸棒状に形成されると共に先端部が円錐状に形成された内針2をその軸周りに回転可能及びその軸方向に並進可能に挿入し、上記内針2の先端部近傍の外側面には超音波を送受波する超音波変換器3を設けて成り、上記内針2及び外針1を被検体内に刺入して上記超音波変換器3から超音波を送受波すると共に上記内針2を回転及び並進の2次元走査を行って生体組織の超音波画像を収集するようになっていた。
【0004】
そして、図1におけるA−A線断面図を示すと、図15に示すように、内針2の外側面の一部には溝4が形成されており、この溝4内に上記超音波変換器3が嵌め込んで固定されていた。この超音波変換器3は、サファイアやシリコンなどの音響レンズ材5をベースにして、この音響レンズ材5の一方の面6に下部電極7と圧電体8と上部電極9とを設け、他方の面10には凹球面状に形成したレンズ面11を設けて成る。ここで、上記下部電極7と圧電体8と上部電極9とを駆動することにより、超音波12が発生され、この超音波12は上記レンズ面11で屈折して曲げられ、その屈折後の超音波12′は焦点13に収束するようになっている。なお、符号14は図2に示すと同様に内針2を矢印Bのように回転することにより上記焦点13によって得られる画像化領域を示し、符号15は被検体を示す。
【0005】
【発明が解決しようとする課題】
しかし、このような従来の針状超音波探触子においては、図15に示すように、超音波変換器3が内針2の外側面の一部に形成された溝4内に嵌め込んで固定されていただけなので、被検体15と接する音響レンズ材5の他方の面10は、上記内針2の部材の例えば円形断面に対して平面状又は凹面状となっていた。従って、図2に示すと同様に内針2を矢印Bのように回転して超音波走査すると、その平面状部又は凹面状部により被検体15の生体組織を傷めることがあった。また、上記音響レンズ材5の他方の面10が平面状又は凹面状となっていることから、焦点13からの超音波12′の経路での被検体15による吸収が多くなり、音場が乱れることがあった。従って、得られる超音波画像の画質が劣化することがあった。
【0006】
また、図1に示すと同様に、内針2の先端部近傍の外側面には超音波変換器3が1個しか設けられていなかったので、その焦点13の位置は1種類に固定されており、被検体15に対する1回の刺入で得られる深さ方向の超音波情報は一つのみであった。従って、被検体15の病変部について複数の超音波情報を得るためには、針状超音波探触子の刺入を複数回繰り返す必要があり、患者への負担が大きくなるものであった。さらに、上記1個の超音波変換器3では、それに固定された一つの中心周波数のみを用いているために、得られる超音波画像の画像分解能が1種類に決まってしまうものであった。従って、被検体15の病変部をより高精度に観察したい場合には、より高周波の中心周波数を有する超音波変換器3に交換して何回か計測する必要があった。このことから、上述と同様に、針状超音波探触子の刺入を複数回繰り返すこととなり、患者への負担が大きくなるものであった。
【0007】
さらにまた、上記1個の超音波変換器3では、図2に示すと同様に内針2を矢印Bのように回転し及び矢印Cのように並進して超音波を2次元走査するのに、図16に示すように、ある位置で上記内針2を矢印Bのように回転して画像化領域14上で焦点13を移動させ、その後上記内針2を矢印Cのように並進して他の位置へずらし、再び矢印Bのように回転することを繰り返さなければならない。従って、図16(b)に示すように、例えばa×bの面積を有する画像化領域14の全面にわたって2次元走査して超音波画像を得るには、時間がかかるものであった。このことからも、患者への負担が大きくなるものであった。
【0008】
そこで、本発明は、このような問題点に対処し、生体組織への直接刺入により該生体組織に与える影響を抑えることができると共に、上記生体組織の超音波画像を短時間に収集でき、且つ1回の刺入で計測条件の異なる超音波画像を同時に収集できる針状超音波探触子及びその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、発明による針状超音波探触子は、剛性材料で細径の中空パイプ状に形成された外針と、剛性材料で細径の丸棒状に形成されると共に先端部が円錐状に形成され、上記外針の内側に軸周りに回転可能及び軸方向に並進可能に挿入された内針と、上記内針の先端部近傍の外側面に設けられ、超音波を送受波する超音波変換器と、を備えた針状超音波探触子において、上記超音波変換器は音響レンズ材からなる同一ベース上に上記内針の軸方向に沿って適宜の間隔で並列に複数個設けられ、上記内針の先端部近傍にて上記複数個の超音波変換器設けられた部位の外側面形状該内針の他の部位の外側面と同一の円弧状断面となるように形成され、かつ内針全体の外側面平滑な表面に仕上げられ、上記内針及び外針を被検体内に刺入して上記複数個の超音波変換器から同時に超音波を送受波すると共に上記内針を回転及び並進の2次元走査を行って被検体の生体組織の超音波画像を収集可能としたものである。
【0011】
さらに、上記複数個の超音波変換器は、各超音波変換器が同一の中心周波数を有し、同一の上部電極を備え、発生超音波を収束させるレンズ条件を同じにしてもよい。
【0012】
さらにまた、上記複数個の超音波変換器は、各超音波変換器が同一又は異なる中心周波数を有し、同一又は異なる上部電極を備え、発生超音波を収束させるレンズ条件が同じ又は異なるものとしてもよい。
【0013】
また、上記複数個の超音波変換器は、各超音波変換器が異なる中心周波数を有し、異なる上部電極を備え、発生超音波を収束させるレンズ条件が異なるものとしてもよい。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて詳細に説明する。
図1は発明による針状超音波探触子の実施の形態を示す中央縦断面図である。この針状超音波探触子は、針先に設けた超音波変換器を被検体内の生体組織へ直接刺入して超音波の2次元走査により上記生体組織の超音波画像を収集するもので、図1に示すように、外針1と、内針2と、超音波変換器3とを有して成る。
【0017】
上記外針1は、内針2を内側に保持して被検体15の生体組織へ刺入する際のガイドをする部材となるもので、金属などの剛性材料で外径が2mm程度の細径の中空パイプ状に形成されている。上記外針1の内側には、内針2が挿入されている。この内針2は、後述の超音波変換器3を外側面に保持して被検体15の生体組織へ直接刺入するもので、金属などの剛性材料で外径が1〜2mm程度の細径の丸棒状に形成されると共に先端部16が円錐状に形成されており、上記外針1の内側に小さなクリアランスをあけて同軸状に挿入されて、図2に示すようにその軸周りに矢印Bのように回転可能及びその軸方向に矢印Cのように並進可能に設けられている。
【0018】
上記内針2の先端部16近傍の外側面には、超音波変換器3が設けられている。この超音波変換器3は、被検体15内に超音波を打ち出すと共に生体組織から反射してきたエコー信号を受波するもので、図3に示すように、内針2の外側面の一部に溝4が形成されており、この溝4内に嵌め込んで固定されている。上記超音波変換器3は、サファイアやシリコンなどの音響レンズ材5をベースにして、この音響レンズ材5の一方の面6に下部電極7と圧電体8と上部電極9とを設け、他方の面10には凹球面状に形成したレンズ面11を設けて成る。そして、上記下部電極7と圧電体8と上部電極9とを駆動することにより、超音波12が発生され、この超音波12は上記レンズ面11で屈折して曲げられ、その屈折後の超音波12′は焦点13に収束するようになっている。なお、符号14は図2に示すように内針2を矢印Bのように回転することにより上記焦点13によって得られる画像化領域を示している。また、図1に示すように、上記音響レンズ材5の一部に中間ベース17を搭載し、この中間ベース17と上記下部電極7、上部電極9とをそれぞれ信号線18でボンディングし、さらに上記中間ベース17にケーブル19を接続して図示外の制御装置に接続されている。
【0019】
このような状態で、上記内針2及び外針1を被検体15内に刺入し、超音波変換器3から超音波を被検体15内に送受波すると共に上記内針2を矢印Bのように回転及び矢印Cのように並進して2次元走査を行って、上記被検体15の生体組織の超音波画像を収集するようになっている。
【0020】
ここで、本発明においては、図3に示すように、内針2の先端部近傍にて超音波変換器3を設けた部位の外側面形状を、該内針2の他の部位の外側面と同一の円弧状断面となるように形成し、内針2全体の外側面を平滑な表面に仕上げてある。すなわち、内針2の外側面の一部に形成された溝4内に嵌め込まれた超音波変換器3のレンズ面11が設けられた部位の凹所に、充てん材20を充てんし、この充てん材20の外側面形状を上記内針2の他の部位の外側面と同一の円弧状断面となるように形成してある。そして、上記充てん材20としては、超音波変換器3のベース部材としての音響レンズ材5より音速が遅く、音響インピーダンスが低く、且つ音響的減衰が少なく、さらに生物学的適合性の良い材料を用いる。
【0021】
これにより、内針2全体として丸棒状の平滑な表面に仕上げられ、例えば図2に示すように、上記内針2を矢印Bのように回転して超音波走査しても、被検体15の生体組織を傷めることがない。また、図3から明らかなように、超音波12′の焦点13の近傍まで上記充てん材20が円弧状断面で形成されているので、被検体15による超音波の吸収が少なく、音場が乱れるのを防止することができる。従って、良い画質の超音波画像を得ることができる。
【0022】
図4は図3に示す例の変形例を示す断面図である。この例では、超音波変換器3の音響レンズ材5に形成されたレンズ面11の凹球面部分に音響整合層21を設け、その外側に上述の充てん材20を充てんして外側面形状を内針2の他の部位の外側面と同一の円弧状断面となるように形成したものである。この場合は、超音波感度を図3のときよりも向上してさらに画質を向上することができる。
【0023】
図5は図3に示す例の他の変形例を示す断面図である。この例では、超音波変換器3の音響レンズ材5の内側面に凸球面部分を設けてこれをレンズ面11とし、このレンズ面11の上面に凹球面に形成した下部電極7と圧電体8と上部電極9とを設け、さらに上記音響レンズ材5の外側面形状を内針2の他の部位の外側面と同一の円弧状断面となるように形成し、上記内針2全体として平滑な表面に仕上げたものである。この場合は、図3に示す充てん材20を省略することができる。
【0024】
図6は図5に示す例の変形例を示す断面図である。この例では、超音波変換器3の音響レンズ材5の外側面の円弧状断面部分に音響整合層22を設け、この音響整合層22の外側面形状を内針2の他の部位の外側面と同一の円弧状断面となるように形成したものである。この場合は、超音波感度を図5のときよりも向上してさらに画質を向上することができる。
【0025】
図7は発明の針状超音波探触子の他の実施形態を示す中央縦断面図である。この実施形態は、内針2の先端部近傍の外側面に、音響レンズ材5からなる同一ベース上に超音波変換器を複数個(3a,3b,3c)設けたものである。すなわち、図8(a)に示すように、音響レンズ材5を同一ベースとして、この同一ベース上の一方の面に下部電極7と圧電体8と上部電極9とを設け、他方の面には凹球面状に形成したレンズ面11を設けて成る超音波変換器3a,3b,3cが上記内針2の軸方向に沿って適宜の間隔で並列に設けられている。そして、図7及び図8(a)に示す例では、圧電体8は共通で同一の厚さとされ、上部電極9は同一形状の同一径とされると共に、レンズ面11の径も同一とされ、上記複数個の超音波変換器3a,3b,3cは、各超音波変換器3a〜3cの中心周波数を同一とすると共に、各超音波変換器3a〜3cの上部電極9及び発生超音波を収束させるレンズ条件が同じとされている。なお、上記の中心周波数は、例えば数10MHzから数100MHzの高周波とされており、数10μm程度の高分解能が得られるようになっている。
【0026】
このように複数個の超音波変換器3a,3b,3cが並列に設けられているので、図2に示すように内針2を矢印Bのように回転し及び矢印Cのように並進して超音波を2次元走査するのに、図8に示すように、ある位置で上記内針2を矢印Bのように回転して画像化領域14上で焦点13を移動させると、例えば3個並列に設けられた超音波変換器3a,3b,3cの三つの焦点13がある範囲で並んで走査することとなる。従って、図8(b)に示すように、例えばa×bの面積を有する画像化領域14の全面にわたって2次元走査して超音波画像を得るのに、図16(b)の従来例に比べ1回の回転走査で形成される範囲が例えば3倍となり、走査時間を短縮することができる。
【0027】
図9は図7に示す実施形態の変形例を示す超音波変換器の部分の縦断面図である。この例では、複数個の超音波変換器3a〜3cの圧電体8は共通で同一の厚さとされ、各々の上部電極9a,9b,9cの直径Dはそれぞれ異なったものとされると共に、各レンズ面11a,11b,11cの径もそれぞれ異なったものとされ、上記複数個の超音波変換器3a,3b,3cは、それぞれの中心周波数を同一とし、各々の上部電極9a,9b,9c及び発生超音波を収束させるレンズ条件はそれぞれ異なるものとされている。この場合は、上記各超音波変換器3a〜3cの焦点距離Lはそれぞれ異なったものとなり、被検体15内の異なった深度の観察位置23a,23b,23cを同時に選択できるので、従来のように刺入を繰り返すことなく同時に異なった観察位置23a,23b,23cの超音波画像を容易に収集することができる。
【0028】
図10は図7に示す実施形態の他の変形例を示す超音波変換器の部分の縦断面図である。この例では、複数個の超音波変換器3a〜3cの圧電体8a,8b,8cの厚さtがそれぞれ異なるものとし、各々の上部電極9の直径Dが同一とされると共に、各レンズ面11の径も同一とされ、上記複数個の超音波変換器3a,3b,3cは、それぞれの中心周波数を異なったものとし(圧電体の厚さtが厚いと周波数が低く、薄くなると周波数が高くなる)、それぞれの上部電極9及び発生超音波を収束させるレンズ条件は同じものとされている。この場合は、上記各超音波変換器3a〜3cの焦点距離Lは同一となり、被検体15内の同一深度の観察位置23,23,…に対して、それぞれ焦点深度Δd及び方位分解能Δrの異なる画像を各場所について同時に収集できるので、従来のように刺入を繰り返すことなく同時に異なった画質の超音波画像を収集することができる。これにより、低い周波数の超音波変換器3aで被検体15の画像化位置を検索し、高い周波数の超音波変換器3cでより解像度の良い画像を得て、より正確な組織性状診断を行うことができる。
【0029】
図11は図7に示す実施形態の更に他の変形例を示す超音波変換器の部分の縦断面図である。この例では、複数個の超音波変換器3a〜3cの圧電体8a,8b,8cの厚さtがそれぞれ異なるものとし、各々の上部電極9a,9b,9cの直径Dはそれぞれ異なったものとされると共に、各レンズ面11a,11b,11cの径もそれぞれ異なったものとされ、上記複数個の超音波変換器3a,3b,3cは、それぞれの中心周波数が異なるものとされると共に、各々の上部電極9a,9b,9c及び発生超音波を収束させるレンズ条件はそれぞれ異なるものとされている。さらに、各超音波変換器3a,3b,3cに対応する音響レンズ材5の厚さTをそれぞれ変化させて、各レンズ面11a,11b,11cによる焦点距離は異なるものの、被検体15内の観察位置23a,23b,23cは同じ深度L′に揃えるようになっている。この場合は、被検体15内の同一深度L′の観察位置23a,23b,23cに対して、それぞれ焦点深度及び方位分解能の異なる画像を各場所について同時に収集できるので、従来のように刺入を繰り返すことなく同時に異なった画質の超音波画像を収集することができる。これにより、低い周波数の超音波変換器3aで被検体15の画像化位置を検索し、高い周波数の超音波変換器3cでより解像度の良い画像を得ることができる。特に、周波数の高い超音波においては被検体15の生体組織での吸収が大きいことから、例えば第三の超音波変換器3cに対応する部分の音響レンズ材5の厚さTを厚くすることにより、生体組織による超音波の減衰を小さくできる。これによって、より解像度の良い画像を得て、より正確な組織性状診断を行うことができる。
【0030】
図12は、図9又は図10或いは図11に示す例の変形例を示す断面図である。この例では、同一ベースとしての音響レンズ材5をその長手方向において屈曲し、各超音波変換器3a,3b,3cからそれぞれ発生する超音波の焦点13が同一位置に合致するようにして配置したものである。なお、図7〜図12の例では、超音波変換器を3個(3a〜3c)並べて設けたものとしたが、本発明はこれに限らず、2個以上何個設けてもよい。
【0031】
図13は発明による針状超音波探触子を備えた超音波診断装置の全体構成を示すブロック図である。この超音波診断装置は、被検体15の体表面に当接する通常の探触子24と、この探触子24を駆動して超音波を送受波すると共に超音波画像を生成する超音波装置25と、この超音波装置25からの画像信号を取り込んで超音波画像を表示するモニタ26と、上記被検体15内の病変部27へ刺入して超音波を送受波する針状超音波探触子28と、この針状超音波探触子28の内針2(図1参照)を上記病変部27へ刺入した後に回転及び並進の2次元走査を行う駆動機構29と、上記針状超音波探触子28を駆動して超音波を送受波する送受波部30と、上記超音波装置25及び針状超音波探触子28の各部をコントロールする制御部31とから成る。
【0032】
以上のように構成された超音波診断装置において、通常の探触子24と超音波装置25との動作により病変部27の断層像をモニタ26の画面で観察しながら、針状超音波探触子28の内針2を駆動機構29により上記病変部27の所要部位まで刺入する。そして、送受波部30から、図1又は図7に示すケーブル19を介して図3に示す超音波変換器3の上部電極9に送波電圧を印加し、圧電体8より所定周波数の超音波12を発生させる。すると、この超音波12は、音響レンズ材5のレンズ面11で屈折、収束されて焦点13を形成すると共に、この焦点位置に対応する被検体15の生体組織からの反射波を超音波12′の経路で上記圧電体8に導いて受波電圧を発生させる。その後、上記ケーブル19を介して図13に示す送受波部30へ上記受波電圧を伝送し、制御部31を介してモニタ26の画面に針先像を表示する。このように、針状超音波探触子28から超音波の送受波を行いながら、制御部31を介して駆動機構29を作動し、図2に示すように内針2を画像化領域14内で回転及び並進の2次元走査をすることにより、リアルタイムに病変部27の生体組織の細胞レベルでの超音波画像を得ることができる。
【0033】
図14は発明による針状超音波探触子を製造する方法を示す説明図である。この例では、図10に示す構造の超音波変換器を有する針状超音波探触子を製造する場合について説明する。まず、図14(a)に示すように、所定形状に切り出す前の音響レンズ材5を同一ベースとしてその片面10に機械的或いは化学的加工により複数のレンズ面11,11,…を凹球面状に形成する。例えば、球状の研磨工具32を用いて機械的に研削加工するか、或いはフォトリソグラフィ工程とエッチング処理を用いて化学的加工により一括して形成する。
【0034】
次に、図14(b)に示すように、上記形成した各レンズ面11,11,…の位置に対応させて上記音響レンズ材5の反対側の片面6に下部電極7及び圧電体8a,8b,8c並びに上部電極9,9,…を真空蒸着又はスパッタリングで形成する。これと並行して、上記他の片面10上に形成されたレンズ面11,11,…に、音響整合層21,21,…を所定形状の孔を有するマスクを直接用いた真空蒸着或いはスパッタリングなどの薄膜プロセスにより形成するか、又は同様の薄膜プロセスとフォトリソグラフィ工程及びエッチング処理により形成する。その後、上記音響レンズ材5を所定形状に切断して超音波変換器を作製する。この例では、共通の音響レンズ材5と下部電極7の上に、圧電体8aと上部電極9とにより第一の超音波変換器3aが作製され、また圧電体8bと上部電極9とにより第二の超音波変換器3bが作製され、さらに圧電体8cと上部電極9とにより第三の超音波変換器3cが作製される。
【0035】
次に、図14(c)に示すように、上記超音波変換器3a〜3cの同一ベース上の一部に中間ベース17を搭載してこの中間ベース17と上記下部電極7、上部電極9,9,9とをそれぞれ信号線18,18,…でボンディングして接続する。
【0036】
その後、図14(d)に示すように、予め所定形状に形成した内針2の先端部16近傍の外側面の設置溝4に上記超音波変換器3a〜3cの同一ベースとしての音響レンズ材5を嵌め込んで固定すると共に、上記中間ベース17にケーブル19を接続する。そして最後に、図3に示すように、上記超音波変換器3a〜3cを嵌め込んだ内針2の外側面部分を他の部位の外側面と同一の円弧状断面となるように形成し、内針2全体の外側面を平滑な表面に仕上げる。これにより、第一の発明による針状超音波探触子を小形かつ細径に製造することができる。
【0037】
【発明の効果】
発明による針状超音波探触子は以上のように構成されたので、超音波を送受波する超音波変換器は音響レンズ材からなる同一ベース上に内針の軸方向に沿って適宜の間隔で並列に複数個設けられ、内針及び外針を被検体内に刺入して上記複数個の超音波変換器から同時に超音波を送受波することにより、内針の1回の回転走査で形成される画像化の範囲が従来よりも数倍に広くなり、所定の画像化領域の全面にわたって2次元走査する走査時間を従来より短縮することができる。従って、上記被検体の生体組織の超音波画像を短時間に収集でき、且つ1回の刺入で計測条件の異なる超音波画像を同時に収集できる。このことから、患者への負担を軽減することができる。また、剛性材料で細径の丸棒状に形成されると共に先端部が円錐状に形成された内針の先端部近傍にて上記複数個の超音波変換器を設けた部位の外側面形状を該内針の他の部位の外側面と同一の円弧状断面となるように形成し、内針全体の外側面を平滑な表面に仕上げたことにより、被検体の生体組織への直接刺入により該生体組織に与える影響を抑えることができる。例えば、上記内針を生体組織内で回転して超音波走査をしても、被検体の生体組織を傷めることがない。また、上記超音波変換器の焦点の近傍まで円弧状断面の部材で形成されているので、被検体による超音波の吸収が少なく、音場が乱れるのを防止することができる。従って、良い画質の超音波画像を得ることができる。
【図面の簡単な説明】
【図1】 発明による針状超音波探触子の実施の形態を示す中央縦断面図である。
【図2】内針を回転及び並進の2次元走査をする状態を示す斜視説明図である。
【図3】超音波変換器の構造を示す図1のA−A線拡大断面図である。
【図4】図3に示す例の変形例を示す断面図である。
【図5】図3に示す例の他の変形例を示す断面図である。
【図6】図5に示す例の変形例を示す断面図である。
【図7】 発明の針状超音波探触子の他の実施形態を示す中央縦断面図である。
【図8】図7に示す針状超音波探触子の超音波走査による画像化領域を示す説明図である。
【図9】図7に示す実施形態の変形例を示す超音波変換器の部分の縦断面図である。
【図10】図7に示す実施形態の他の変形例を示す超音波変換器の部分の縦断面図である。
【図11】図7に示す実施形態の更に他の変形例を示す超音波変換器の部分の縦断面図である。
【図12】図9又は図10或いは図11に示す例の変形例を示す断面図である。
【図13】 発明による針状超音波探触子を備えた超音波診断装置の全体構成を示すブロック図である。
【図14】 発明による針状超音波探触子を製造する方法を示す説明図である。
【図15】従来の針状超音波探触子における超音波変換器の構造を示す図1のA−A線断面に相当する拡大断面図である。
【図16】従来の針状超音波探触子の超音波走査による画像化領域を示す説明図である。
【符号の説明】
1…外針
2…内針
3,3a,3b,3c…超音波変換器
4…溝
5…音響レンズ材
7…下部電極
8,8a,8b,8c…圧電体
9,9a,9b,9c…上部電極
11,11a,11b,11c…レンズ面
13…焦点
14…画像化領域
15…被検体
16…先端部
17…中間ベース
18…信号線
19…ケーブル
20…充てん材
21,22…音響整合層
23,23a,23b,23c…観察位置
28…針状超音波探触子
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a needle-like ultrasonic probe that directly inserts an ultrasonic transducer provided at a needle tip into a living tissue in a subject and collects an ultrasonic image of the living tissue by two-dimensional scanning of the ultrasonic wave. In particular, it is possible to suppress the influence on the living tissue by direct insertion into the living tissue, and it is possible to collect ultrasonic images of the living tissue in a short time, and to perform measurement with different measuring conditions by one insertion. The present invention relates to a needle-like ultrasonic probe capable of simultaneously collecting sound images and a method for manufacturing the same.
[0002]
[Prior art]
As a method for diagnosing a lesion occurring in each part of a body cavity, a biopsy (biopsy) is generally performed. This is because an ultrasonic imaging device is used to draw the puncture needle to a predetermined location while depicting the lesion in the body cavity, and after capturing and collecting a part of the biological tissue of the lesion within the tip of the needle, an observation sample is prepared. The disease name is diagnosed by discrimination under an optical microscope. However, this method requires a long time for diagnosis because it is necessary to perform various treatments after the biological tissue is removed from the body, and various processing is applied to the sample. There was a problem that there was a risk of changing from the state of. In response to these circumstances, in recent years, an ultrasonic transducer that attaches an ultrasonic transducer to a puncture needle and directly punctures the lesion, examines the tissue properties of the lesion, or images surrounding living tissue Probes have been proposed in, for example, Japanese Patent Publication No. 4-78299 and Japanese Patent Publication No. 5-9097.
[0003]
In the conventional needle-like ultrasonic probe, as shown in FIG. 1, a round rod-like shape made of a rigid material is formed on the inner side of an outer needle 1 made of a rigid material in the shape of a thin hollow pipe. And an inner needle 2 having a conical tip formed therein is inserted so that it can rotate around its axis and translate in the axial direction. Is provided, and the inner needle 2 and the outer needle 1 are inserted into a subject to transmit and receive ultrasonic waves from the ultrasonic transducer 3 and the inner needle 2 is Two-dimensional scanning of rotation and translation is performed to collect ultrasonic images of living tissue.
[0004]
A cross-sectional view taken along the line AA in FIG. 1 shows that a groove 4 is formed in a part of the outer surface of the inner needle 2 as shown in FIG. The vessel 3 was fitted and fixed. The ultrasonic transducer 3 is based on an acoustic lens material 5 such as sapphire or silicon, and is provided with a lower electrode 7, a piezoelectric body 8, and an upper electrode 9 on one surface 6 of the acoustic lens material 5. The surface 10 is provided with a lens surface 11 formed in a concave spherical shape. Here, by driving the lower electrode 7, the piezoelectric body 8, and the upper electrode 9, an ultrasonic wave 12 is generated, and the ultrasonic wave 12 is refracted and bent by the lens surface 11, and the ultrasonic wave after the refraction is bent. The sound wave 12 ′ is focused on the focal point 13. In addition, the code | symbol 14 shows the imaging area | region obtained by the said focus 13 by rotating the inner needle 2 like arrow B similarly to FIG. 2, and the code | symbol 15 shows a test object.
[0005]
[Problems to be solved by the invention]
However, in such a conventional needle-like ultrasonic probe, as shown in FIG. 15, the ultrasonic transducer 3 is fitted into the groove 4 formed in a part of the outer surface of the inner needle 2. Since it was only fixed, the other surface 10 of the acoustic lens material 5 in contact with the subject 15 was flat or concave with respect to, for example, a circular cross section of the member of the inner needle 2. Accordingly, when the inner needle 2 is rotated as indicated by the arrow B as shown in FIG. 2 and ultrasonic scanning is performed, the living tissue of the subject 15 may be damaged by the planar portion or the concave portion. Further, since the other surface 10 of the acoustic lens material 5 is flat or concave, absorption by the subject 15 in the path of the ultrasonic wave 12 'from the focal point 13 increases, and the sound field is disturbed. There was a thing. Therefore, the image quality of the obtained ultrasonic image may be deteriorated.
[0006]
Further, as shown in FIG. 1, since only one ultrasonic transducer 3 is provided on the outer surface in the vicinity of the distal end portion of the inner needle 2, the position of the focal point 13 is fixed to one type. Therefore, there is only one ultrasonic information in the depth direction obtained by one insertion into the subject 15. Therefore, in order to obtain a plurality of ultrasonic information on the lesioned part of the subject 15, it is necessary to repeat the insertion of the needle-like ultrasonic probe a plurality of times, which increases the burden on the patient. Furthermore, since the single ultrasonic transducer 3 uses only one center frequency fixed thereto, the image resolution of the obtained ultrasonic image is determined to be one type. Therefore, when it is desired to observe the lesioned part of the subject 15 with higher accuracy, it is necessary to exchange the ultrasonic transducer 3 having a higher center frequency for measurement several times. From this, similarly to the above, the insertion of the needle-like ultrasonic probe is repeated a plurality of times, which increases the burden on the patient.
[0007]
Furthermore, in the single ultrasonic transducer 3, as shown in FIG. 2, the inner needle 2 is rotated as indicated by an arrow B and translated as indicated by an arrow C to perform two-dimensional scanning of ultrasonic waves. 16, the inner needle 2 is rotated at a certain position as indicated by an arrow B to move the focal point 13 on the imaging region 14, and then the inner needle 2 is translated as indicated by an arrow C. It must be repeated to shift to another position and rotate again as indicated by arrow B. Therefore, as shown in FIG. 16B, for example, it takes time to obtain an ultrasonic image by two-dimensionally scanning the entire imaging region 14 having an area of a × b. This also increased the burden on the patient.
[0008]
Therefore, the present invention addresses such problems, can suppress the influence on the living tissue by direct insertion into the living tissue, and can collect ultrasonic images of the living tissue in a short time, It is another object of the present invention to provide a needle-like ultrasonic probe that can simultaneously collect ultrasonic images with different measurement conditions by one insertion and a method for manufacturing the needle-like ultrasonic probe.
[0009]
[Means for Solving the Problems]
To achieve the above objective, Book The needle-like ultrasonic probe according to the invention has an outer needle formed in a thin hollow pipe shape with a rigid material, and is formed in a thin round bar shape with a rigid material and a tip portion formed in a conical shape, An inner needle inserted inside the outer needle so as to be rotatable about an axis and translated in the axial direction; an ultrasonic transducer provided on the outer surface near the tip of the inner needle, for transmitting and receiving ultrasonic waves; The ultrasonic transducer is provided on the same base made of an acoustic lens material. Parallel at appropriate intervals along the axial direction of the inner needle Multiple Is The plurality of ultrasonic transducers near the tip of the inner needle But Establishment Is Outside surface shape Is Formed to have the same arcuate cross section as the outer surface of the other part of the inner needle And The outer surface of the entire inner needle Is Finished with a smooth surface Is The inner needle and the outer needle are inserted into the subject and the above Multiple From ultrasonic transducer at the same time Ultrasound is transmitted and received and the inner needle is rotated and translated two-dimensionally to collect ultrasonic images of the living tissue of the subject. Made possible Is.
[0011]
Further, the plurality of ultrasonic transducers are each ultrasonic transducer. Have the same center frequency, with the same upper electrode, The lens conditions for converging the generated ultrasonic waves may be the same.
[0012]
Furthermore, the plurality of ultrasonic transducers are each ultrasonic transducer. Have the same or different center frequencies and comprise the same or different upper electrodes, Lens conditions to converge the generated ultrasound Are the same or different It may be a thing.
[0013]
In addition, the plurality of ultrasonic transducers are each ultrasonic transducer. Have different center frequencies, with different upper electrodes, Lens conditions to converge the generated ultrasound Is different It may be a thing.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
Figure 1 Book It is a center longitudinal cross-sectional view which shows embodiment of the acicular ultrasonic probe by invention. This needle-shaped ultrasonic probe is a device that directly inserts an ultrasonic transducer provided at the needle tip into a living tissue in a subject and collects an ultrasonic image of the living tissue by two-dimensional scanning of the ultrasonic wave. Thus, as shown in FIG. 1, the outer needle 1, the inner needle 2, and the ultrasonic transducer 3 are provided.
[0017]
The outer needle 1 is a member that holds the inner needle 2 on the inside and serves as a guide when inserting into the living tissue of the subject 15. The outer needle 1 is made of a rigid material such as metal and has a small outer diameter of about 2 mm. It is formed in the shape of a hollow pipe. An inner needle 2 is inserted inside the outer needle 1. The inner needle 2 holds an ultrasonic transducer 3 to be described later on the outer surface and directly inserts into the living tissue of the subject 15. The inner needle 2 is made of a rigid material such as metal and has a small diameter of about 1 to 2 mm. The tip 16 is formed in a conical shape, and is inserted coaxially inside the outer needle 1 with a small clearance, and as shown in FIG. It is provided so as to be rotatable like B and to be translated like an arrow C in the axial direction thereof.
[0018]
An ultrasonic transducer 3 is provided on the outer surface of the inner needle 2 near the distal end portion 16. The ultrasonic transducer 3 emits an ultrasonic wave into the subject 15 and receives an echo signal reflected from the living tissue. As shown in FIG. 3, the ultrasonic transducer 3 is formed on a part of the outer surface of the inner needle 2. A groove 4 is formed, and is fitted and fixed in the groove 4. The ultrasonic transducer 3 is based on an acoustic lens material 5 such as sapphire or silicon, and is provided with a lower electrode 7, a piezoelectric body 8 and an upper electrode 9 on one surface 6 of the acoustic lens material 5. The surface 10 is provided with a lens surface 11 formed in a concave spherical shape. . So Then, by driving the lower electrode 7, the piezoelectric body 8, and the upper electrode 9, an ultrasonic wave 12 is generated, and this ultrasonic wave 12 is refracted and bent by the lens surface 11, and the ultrasonic wave after being refracted. The sound wave 12 ′ is focused on the focal point 13. Reference numeral 14 denotes an imaging region obtained by the focal point 13 by rotating the inner needle 2 as shown by an arrow B as shown in FIG. Further, as shown in FIG. 1, an intermediate base 17 is mounted on a part of the acoustic lens material 5, the intermediate base 17, the lower electrode 7 and the upper electrode 9 are bonded to each other by signal lines 18, and further A cable 19 is connected to the intermediate base 17 and connected to a control device (not shown).
[0019]
In such a state, the inner needle 2 and the outer needle 1 are inserted into the subject 15, ultrasonic waves are transmitted and received from the ultrasonic transducer 3 into the subject 15, and the inner needle 2 is moved as indicated by the arrow B. As described above, the two-dimensional scanning is performed by rotating and translating as indicated by an arrow C, and an ultrasonic image of the living tissue of the subject 15 is collected.
[0020]
Here, in the present invention, as shown in FIG. 3, the outer surface shape of the portion where the ultrasonic transducer 3 is provided in the vicinity of the distal end portion of the inner needle 2 is the outer surface of the other portion of the inner needle 2. The inner needle 2 as a whole is formed to have the same arcuate cross section The outer surface of It has a smooth surface. That is, the filling material 20 is filled in the recess of the site where the lens surface 11 of the ultrasonic transducer 3 fitted in the groove 4 formed in a part of the outer surface of the inner needle 2 is provided. The outer surface shape of the material 20 is formed so as to have the same arcuate cross section as the outer surface of the other part of the inner needle 2. The filler 20 is made of a material having a sound velocity slower than that of the acoustic lens material 5 as a base member of the ultrasonic transducer 3, a low acoustic impedance, a low acoustic attenuation, and a good biological compatibility. Use.
[0021]
As a result, the inner needle 2 as a whole is finished with a round bar-like smooth surface. For example, as shown in FIG. Does not damage living tissue. Further, as is apparent from FIG. 3, since the filler 20 is formed in an arc-shaped cross section up to the vicinity of the focal point 13 of the ultrasonic wave 12 ', the ultrasonic wave is hardly absorbed by the subject 15 and the sound field is disturbed. Can be prevented. Therefore, an ultrasonic image with good image quality can be obtained.
[0022]
FIG. 4 is a cross-sectional view showing a modification of the example shown in FIG. In this example, the acoustic matching layer 21 is provided on the concave spherical surface portion of the lens surface 11 formed on the acoustic lens material 5 of the ultrasonic transducer 3, and the above-described filler material 20 is filled on the outer side thereof to form the outer surface shape. The needle 2 is formed so as to have the same arcuate cross section as the outer surface of the other part of the needle 2. In this case, it is possible to further improve the image quality by improving the ultrasonic sensitivity as compared with the case of FIG.
[0023]
FIG. 5 is a sectional view showing another modification of the example shown in FIG. In this example, a convex spherical surface portion is provided on the inner side surface of the acoustic lens material 5 of the ultrasonic transducer 3 to form a lens surface 11, and a lower electrode 7 and a piezoelectric body 8 formed into a concave spherical surface on the upper surface of the lens surface 11. And the upper electrode 9, and the outer surface shape of the acoustic lens material 5 is formed to have the same arcuate cross section as the outer surface of the other part of the inner needle 2, and the inner needle 2 as a whole is smooth. Finished on the surface. In this case, the filler 20 shown in FIG. 3 can be omitted.
[0024]
FIG. 6 is a cross-sectional view showing a modification of the example shown in FIG. In this example, an acoustic matching layer 22 is provided on the arc-shaped cross-section portion of the outer surface of the acoustic lens material 5 of the ultrasonic transducer 3, and the outer surface shape of the acoustic matching layer 22 is the outer surface of another part of the inner needle 2. Are formed to have the same arcuate cross section. In this case, the image quality can be further improved by improving the ultrasonic sensitivity as compared with the case of FIG.
[0025]
FIG. Book It is a center longitudinal cross-sectional view which shows other embodiment of the acicular ultrasonic probe of invention. In this embodiment, a plurality of ultrasonic transducers (3a, 3b, 3c) are provided on the same base made of the acoustic lens material 5 on the outer surface near the tip of the inner needle 2. That is, as shown in FIG. 8A, the acoustic lens material 5 is used as the same base, and the lower electrode 7, the piezoelectric body 8, and the upper electrode 9 are provided on one surface on the same base, and the other surface is provided on the other surface. Ultrasonic transducers 3a, 3b, 3c each having a lens surface 11 formed in a concave spherical shape are provided. Along the axial direction of the inner needle 2 They are provided in parallel at appropriate intervals. And FIG. And FIG. 8 (a). In the example shown in FIG. 5, the piezoelectric bodies 8 are common and have the same thickness, the upper electrode 9 has the same diameter and the same diameter, and the diameter of the lens surface 11 is also the same, and the plurality of ultrasonic transducers 3a. , 3b, and 3c have the same center frequency of the ultrasonic transducers 3a to 3c, and the same lens conditions for converging the upper electrodes 9 and the generated ultrasonic waves of the ultrasonic transducers 3a to 3c. . The center frequency is a high frequency of, for example, several tens of MHz to several hundreds of MHz, and a high resolution of about several tens of μm can be obtained.
[0026]
Since the plurality of ultrasonic transducers 3a, 3b, 3c are provided in parallel in this way, the inner needle 2 is rotated as indicated by arrow B and translated as indicated by arrow C as shown in FIG. When two-dimensional scanning of ultrasonic waves is performed, as shown in FIG. 8, when the inner needle 2 is rotated as shown by an arrow B at a certain position and the focal point 13 is moved on the imaging region 14, for example, three in parallel The three focal points 13 of the ultrasonic transducers 3a, 3b, and 3c provided in FIG. Therefore, as shown in FIG. 8B, for example, an ultrasonic image is obtained by two-dimensional scanning over the entire surface of the imaging region 14 having an area of a × b, compared to the conventional example of FIG. For example, the range formed by one rotation scanning is tripled, and the scanning time can be shortened.
[0027]
FIG. 9 is a longitudinal sectional view of a portion of an ultrasonic transducer showing a modification of the embodiment shown in FIG. In this example, the piezoelectric bodies 8 of the plurality of ultrasonic transducers 3a to 3c are common and have the same thickness, and the diameters D of the upper electrodes 9a, 9b, and 9c are different from each other. The diameters of the lens surfaces 11a, 11b, and 11c are different from each other. The plurality of ultrasonic transducers 3a, 3b, and 3c have the same center frequency, and the upper electrodes 9a, 9b, 9c, and The lens conditions for converging the generated ultrasonic waves are different from each other. In this case, the focal lengths L of the ultrasonic transducers 3a to 3c are different from each other, and observation positions 23a, 23b, and 23c at different depths in the subject 15 can be simultaneously selected. It is possible to easily collect ultrasonic images at different observation positions 23a, 23b, and 23c at the same time without repeating insertion.
[0028]
FIG. 10 is a longitudinal sectional view of a portion of an ultrasonic transducer showing another modification of the embodiment shown in FIG. In this example, the thicknesses t of the piezoelectric bodies 8a, 8b, 8c of the plurality of ultrasonic transducers 3a-3c are different from each other, the diameter D of each upper electrode 9 is made the same, and each lens surface 11 have the same diameter, and the plurality of ultrasonic transducers 3a, 3b, 3c have different center frequencies (the frequency is low when the thickness t of the piezoelectric material is thick, and the frequency is low when the thickness is thin). The lens conditions for converging the upper electrode 9 and the generated ultrasonic wave are the same. In this case, the focal length L of each of the ultrasonic transducers 3a to 3c is the same, and the focal depth Δd and the azimuth resolution Δr are different for the observation positions 23, 23,. Since images can be collected simultaneously for each location, ultrasonic images with different image quality can be collected simultaneously without repeating insertion as in the prior art. As a result, the imaging position of the subject 15 is searched with the ultrasonic transducer 3a with a low frequency, and an image with better resolution is obtained with the ultrasonic transducer 3c with a high frequency, so that more accurate tissue characterization is performed. Can do.
[0029]
FIG. 11 is a longitudinal sectional view of a portion of an ultrasonic transducer showing still another modification of the embodiment shown in FIG. In this example, the thicknesses t of the piezoelectric bodies 8a, 8b, and 8c of the plurality of ultrasonic transducers 3a to 3c are different from each other, and the diameters D of the upper electrodes 9a, 9b, and 9c are different from each other. In addition, the diameters of the lens surfaces 11a, 11b, and 11c are different from each other, and the plurality of ultrasonic transducers 3a, 3b, and 3c have different center frequencies, respectively. The upper electrodes 9a, 9b, 9c and the lens conditions for converging the generated ultrasonic waves are different from each other. Further, the thickness T of the acoustic lens material 5 corresponding to each of the ultrasonic transducers 3a, 3b, 3c is changed to observe the inside of the subject 15 although the focal lengths of the lens surfaces 11a, 11b, 11c are different. The positions 23a, 23b, and 23c are arranged at the same depth L ′. In this case, since images with different depths of focus and azimuth resolution can be collected simultaneously for each of the observation positions 23a, 23b, and 23c at the same depth L ′ in the subject 15, insertion is performed as in the past. It is possible to collect ultrasonic images of different image quality at the same time without repeating. As a result, the imaging position of the subject 15 can be searched with the low-frequency ultrasonic transducer 3a, and an image with better resolution can be obtained with the high-frequency ultrasonic transducer 3c. In particular, in the case of ultrasonic waves having a high frequency, the absorption of the subject 15 in the living tissue is large. For example, by increasing the thickness T of the acoustic lens material 5 corresponding to the third ultrasonic transducer 3c, for example. In addition, the attenuation of ultrasonic waves by the living tissue can be reduced. As a result, an image with better resolution can be obtained, and a more accurate tissue characterization can be performed.
[0030]
12 is a cross-sectional view showing a modification of the example shown in FIG. 9, FIG. 10, or FIG. In this example, the acoustic lens material 5 as the same base is bent in the longitudinal direction, and arranged so that the focal points 13 of the ultrasonic waves respectively generated from the ultrasonic transducers 3a, 3b, 3c coincide with the same position. Is. 7 to 12, three ultrasonic transducers (3a to 3c) are arranged side by side. However, the present invention is not limited to this, and any number of two or more ultrasonic transducers may be provided.
[0031]
FIG. Book It is a block diagram which shows the whole structure of the ultrasonic diagnosing device provided with the acicular ultrasonic probe by invention. This ultrasonic diagnostic apparatus includes a normal probe 24 that comes into contact with the body surface of the subject 15 and an ultrasonic apparatus 25 that drives the probe 24 to transmit and receive ultrasonic waves and generate an ultrasonic image. A monitor 26 that captures an image signal from the ultrasonic device 25 and displays an ultrasonic image; and a needle-like ultrasonic probe that inserts into the lesioned part 27 in the subject 15 and transmits / receives an ultrasonic wave. A needle 28, a drive mechanism 29 that performs two-dimensional rotation and translation after the inner needle 2 (see FIG. 1) of the needle-like ultrasonic probe 28 is inserted into the lesioned part 27, and the needle-like ultrasound The transmitting / receiving unit 30 drives the acoustic probe 28 to transmit / receive ultrasonic waves, and the control unit 31 controls each part of the ultrasonic device 25 and the needle-like ultrasonic probe 28.
[0032]
In the ultrasonic diagnostic apparatus configured as described above, the needle-like ultrasonic probe is performed while observing the tomographic image of the lesioned part 27 on the screen of the monitor 26 by the operation of the normal probe 24 and the ultrasonic apparatus 25. The inner needle 2 of the child 28 is inserted into the required part of the lesioned part 27 by the driving mechanism 29. Then, a transmission voltage is applied from the transmission / reception unit 30 to the upper electrode 9 of the ultrasonic transducer 3 shown in FIG. 3 via the cable 19 shown in FIG. 1 or FIG. 12 is generated. Then, the ultrasonic wave 12 is refracted and converged by the lens surface 11 of the acoustic lens material 5 to form a focal point 13 and a reflected wave from the living tissue of the subject 15 corresponding to the focal position is converted into the ultrasonic wave 12 ′. In this way, it is guided to the piezoelectric body 8 to generate a received voltage. Thereafter, the received voltage is transmitted to the transmission / reception unit 30 shown in FIG. 13 via the cable 19, and the needlepoint image is displayed on the screen of the monitor 26 via the control unit 31. In this way, while transmitting and receiving ultrasonic waves from the needle-like ultrasonic probe 28, the drive mechanism 29 is operated via the control unit 31, and the inner needle 2 is moved into the imaging region 14 as shown in FIG. By performing two-dimensional scanning with rotation and translation, an ultrasonic image at the cellular level of the living tissue of the lesioned part 27 can be obtained in real time.
[0033]
FIG. Book Acicular ultrasonic probe according to the invention Manufacture It is explanatory drawing which shows a method. In this example, a case where a needle-like ultrasonic probe having an ultrasonic transducer having the structure shown in FIG. 10 is manufactured will be described. First, as shown in FIG. 14A, a plurality of lens surfaces 11, 11,... Are formed into a concave spherical surface by mechanical or chemical processing on one surface 10 using the acoustic lens material 5 before being cut into a predetermined shape as the same base. To form. For example, it is mechanically ground using a spherical polishing tool 32, or is formed by chemical processing using a photolithography process and an etching process.
[0034]
Next, as shown in FIG. 14B, the lower electrode 7 and the piezoelectric body 8a, on the one surface 6 on the opposite side of the acoustic lens material 5 in correspondence with the positions of the lens surfaces 11, 11,. 8b, 8c and upper electrodes 9, 9,... Are formed by vacuum deposition or sputtering. In parallel with this, vacuum deposition or sputtering using the acoustic matching layers 21, 21... Directly on the lens surfaces 11, 11. Or a similar thin film process, a photolithography process, and an etching process. Thereafter, the acoustic lens material 5 is cut into a predetermined shape to produce an ultrasonic transducer. In this example, a first ultrasonic transducer 3 a is fabricated on the common acoustic lens material 5 and the lower electrode 7 by the piezoelectric body 8 a and the upper electrode 9, and the first ultrasonic transducer 3 a is fabricated by the piezoelectric body 8 b and the upper electrode 9. The second ultrasonic transducer 3b is manufactured, and further, the third ultrasonic transducer 3c is manufactured by the piezoelectric body 8c and the upper electrode 9.
[0035]
Next, as shown in FIG. 14C, the intermediate base 17 is mounted on a part of the same base of the ultrasonic transducers 3a to 3c, and the intermediate base 17, the lower electrode 7, the upper electrode 9, Are connected by signal lines 18, 18,..., Respectively.
[0036]
Thereafter, as shown in FIG. 14 (d), an acoustic lens material as the same base of the ultrasonic transducers 3a to 3c is provided in the installation groove 4 on the outer surface near the distal end portion 16 of the inner needle 2 formed in advance in a predetermined shape. 5 is fitted and fixed, and a cable 19 is connected to the intermediate base 17. And finally, as shown in FIG. 3, the outer surface portion of the inner needle 2 into which the ultrasonic transducers 3a to 3c are fitted is formed to have the same arcuate cross section as the outer surface of the other part, The outer surface of the entire inner needle 2 Finish with a smooth surface. As a result, the needle-like ultrasonic probe according to the first invention can be manufactured in a small size and a small diameter.
[0037]
【The invention's effect】
Book Since the needle-like ultrasonic probe according to the invention is configured as described above, the ultrasonic transducer for transmitting and receiving ultrasonic waves is on the same base made of an acoustic lens material. Parallel at appropriate intervals along the axial direction of the inner needle Multiple The inner needle and the outer needle are inserted into the subject, and ultrasonic waves are simultaneously transmitted and received from the plurality of ultrasonic transducers. As a result, the imaging range formed by one rotational scan of the inner needle is reduced. More than before The scanning time is several times wider and the scanning time for two-dimensional scanning over the entire surface of a predetermined imaging region is reduced. Than before It can be shortened. Therefore, ultrasonic images of the biological tissue of the subject can be collected in a short time, and ultrasonic images with different measurement conditions can be simultaneously collected with a single insertion. From this, the burden on the patient can be reduced. Further, the outer surface shape of the portion provided with the plurality of ultrasonic transducers in the vicinity of the distal end portion of the inner needle formed of a rigid material in the shape of a thin round bar and the distal end portion having a conical shape. The inner needle is formed to have the same arc-shaped cross section as the outer surface of the other part of the inner needle, and the outer surface of the entire inner needle is finished to a smooth surface, so that the subject can be directly inserted into the living tissue. The influence on the living tissue can be suppressed. For example, even when the inner needle is rotated in the living tissue and ultrasonic scanning is performed, the living tissue of the subject is not damaged. In addition, since it is formed of a member having an arc-shaped cross section up to the vicinity of the focal point of the ultrasonic transducer, it is possible to prevent the ultrasonic field from being absorbed by the subject and prevent the sound field from being disturbed. Therefore, an ultrasonic image with good image quality can be obtained.
[Brief description of the drawings]
[Figure 1] Book It is a center longitudinal cross-sectional view which shows embodiment of the acicular ultrasonic probe by invention.
FIG. 2 is a perspective explanatory view showing a state in which an inner needle is subjected to two-dimensional scanning of rotation and translation.
3 is an enlarged cross-sectional view taken along line AA of FIG. 1 showing the structure of the ultrasonic transducer.
4 is a cross-sectional view showing a modification of the example shown in FIG.
FIG. 5 is a cross-sectional view showing another modification of the example shown in FIG. 3;
6 is a cross-sectional view showing a modification of the example shown in FIG.
[Fig. 7] Book It is a center longitudinal cross-sectional view which shows other embodiment of the acicular ultrasonic probe of invention.
8 is an explanatory diagram showing an imaging region obtained by ultrasonic scanning of the needle-like ultrasonic probe shown in FIG. 7. FIG.
FIG. 9 is a longitudinal sectional view of a portion of an ultrasonic transducer showing a modification of the embodiment shown in FIG. 7;
10 is a longitudinal sectional view of a portion of an ultrasonic transducer showing another modification of the embodiment shown in FIG.
FIG. 11 is a longitudinal sectional view of a portion of an ultrasonic transducer showing still another modification of the embodiment shown in FIG. 7;
12 is a cross-sectional view showing a modification of the example shown in FIG. 9, FIG. 10, or FIG.
FIG. 13 Book It is a block diagram which shows the whole structure of the ultrasonic diagnosing device provided with the acicular ultrasonic probe by invention.
FIG. 14 Book Acicular ultrasonic probe according to the invention Manufacture It is explanatory drawing which shows a method.
15 is an enlarged cross-sectional view corresponding to the cross section taken along line AA of FIG. 1, showing the structure of the ultrasonic transducer in the conventional needle-like ultrasonic probe.
FIG. 16 is an explanatory diagram showing an imaging region by ultrasonic scanning of a conventional needle-like ultrasonic probe.
[Explanation of symbols]
1 ... Outer needle
2 ... Inner needle
3, 3a, 3b, 3c ... ultrasonic transducer
4 ... Groove
5 ... Acoustic lens material
7 ... Lower electrode
8, 8a, 8b, 8c ... Piezoelectric body
9, 9a, 9b, 9c ... upper electrode
11, 11a, 11b, 11c ... lens surface
13 ... Focus
14 ... Imaging area
15 ... Subject
16 ... tip
17 ... Intermediate base
18 ... Signal line
19 ... Cable
20 ... Filler
21, 22 ... acoustic matching layer
23, 23a, 23b, 23c ... observation position
28 ... acicular ultrasonic probe

Claims (4)

剛性材料で細径の中空パイプ状に形成された外針と、
剛性材料で細径の丸棒状に形成されると共に先端部が円錐状に形成され、上記外針の内側に軸周りに回転可能及び軸方向に並進可能に挿入された内針と、
上記内針の先端部近傍の外側面に設けられ、超音波を送受波する超音波変換器と、
を備えた針状超音波探触子において、
上記超音波変換器は音響レンズ材からなる同一ベース上に上記内針の軸方向に沿って適宜の間隔で並列に複数個設けられ
上記内針の先端部近傍にて上記複数個の超音波変換器設けられた部位の外側面形状該内針の他の部位の外側面と同一の円弧状断面となるように形成され、かつ内針全体の外側面平滑な表面に仕上げられ
上記内針及び外針を被検体内に刺入して上記複数個の超音波変換器から同時に超音波を送受波すると共に上記内針を回転及び並進の2次元走査を行って被検体の生体組織の超音波画像を収集可能とした
ことを特徴とする針状超音波探触子。
An outer needle formed in the shape of a thin hollow pipe with a rigid material,
An inner needle formed of a rigid material in the shape of a small-diameter round bar and having a distal end formed in a conical shape, inserted inside the outer needle so as to be rotatable about an axis and translated in the axial direction;
An ultrasonic transducer that is provided on the outer surface near the tip of the inner needle, and that transmits and receives ultrasonic waves;
In a needle-shaped ultrasonic probe equipped with
A plurality of the ultrasonic transducers are provided in parallel at an appropriate interval along the axial direction of the inner needle on the same base made of an acoustic lens material,
Outer surface shape of the portion the plurality of ultrasonic transducer is provided at the vicinity of the distal end portion of the inner needle is formed to have the same arcuate cross-section and the outer surface of the other portion of the inner needle, And the outer surface of the entire inner needle is finished to a smooth surface,
The inner needle and the outer needle are inserted into the subject, and ultrasonic waves are simultaneously transmitted and received from the plurality of ultrasonic transducers, and the inner needle is rotated and translated two-dimensionally to scan the living body of the subject. Made it possible to collect ultrasound images of tissues,
A needle-like ultrasonic probe characterized by that.
上記複数個の超音波変換器は、各超音波変換器が同一の中心周波数を有し、同一の上部電極を備え、発生超音波を収束させるレンズ条件を同じにしたことを特徴とする請求項1記載の針状超音波探触子。  The plurality of ultrasonic transducers are characterized in that each ultrasonic transducer has the same center frequency, the same upper electrode, and the same lens condition for converging the generated ultrasonic waves. The acicular ultrasonic probe according to 1. 上記複数個の超音波変換器は、各超音波変換器が同一又は異なる中心周波数を有し、同一又は異なる上部電極を備え、発生超音波を収束させるレンズ条件が同じ又は異なるものとしたことを特徴とする請求項1記載の針状超音波探触子。  In the plurality of ultrasonic transducers, the ultrasonic transducers have the same or different center frequencies, have the same or different upper electrodes, and have the same or different lens conditions for converging the generated ultrasonic waves. The needle-like ultrasonic probe according to claim 1, wherein 上記複数個の超音波変換器は、各超音波変換器が異なる中心周波数を有し、異なる上部電極を備え、発生超音波を収束させるレンズ条件が異なるものとしたことを特徴とする請求項1記載の針状超音波探触子。  2. The plurality of ultrasonic transducers according to claim 1, wherein each ultrasonic transducer has a different center frequency, a different upper electrode, and different lens conditions for converging the generated ultrasonic waves. The acicular ultrasonic probe as described.
JP29169795A 1995-06-28 1995-10-16 Acicular ultrasonic probe Expired - Fee Related JP3676453B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29169795A JP3676453B2 (en) 1995-10-16 1995-10-16 Acicular ultrasonic probe
US08/671,010 US5829439A (en) 1995-06-28 1996-06-28 Needle-like ultrasonic probe for ultrasonic diagnosis apparatus, method of producing same, and ultrasonic diagnosis apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29169795A JP3676453B2 (en) 1995-10-16 1995-10-16 Acicular ultrasonic probe

Publications (2)

Publication Number Publication Date
JPH09108216A JPH09108216A (en) 1997-04-28
JP3676453B2 true JP3676453B2 (en) 2005-07-27

Family

ID=17772236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29169795A Expired - Fee Related JP3676453B2 (en) 1995-06-28 1995-10-16 Acicular ultrasonic probe

Country Status (1)

Country Link
JP (1) JP3676453B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064280B2 (en) * 2008-03-28 2012-10-31 株式会社Ihi Ultrasonic inspection apparatus and ultrasonic inspection method
US20100063401A1 (en) * 2008-09-09 2010-03-11 Olympus Medical Systems Corp. Ultrasound endoscope system and ultrasound observation method
JP5489624B2 (en) * 2009-10-01 2014-05-14 キヤノン株式会社 measuring device

Also Published As

Publication number Publication date
JPH09108216A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
US5829439A (en) Needle-like ultrasonic probe for ultrasonic diagnosis apparatus, method of producing same, and ultrasonic diagnosis apparatus using same
US4546771A (en) Acoustic microscope
JP3654309B2 (en) Acicular ultrasonic probe
US5505088A (en) Ultrasound microscope for imaging living tissues
JP4815621B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
US11583252B2 (en) Miniature transducer device and related methods
JP4533615B2 (en) Puncture needle and ultrasonic endoscope system
JPH0419860B2 (en)
US6261232B1 (en) Continuous wave transmission/reception type ultrasonic imaging device and ultrasonic probe
WO2024027035A1 (en) Micro multi-frequency array type ultrasonic transducer, multi-frequency ultrasonic three-dimensional imaging probe, and imaging method thereof
CN105662477B (en) Optoacoustic/ultrasonic probe is peeped in hand-held full view
JP3676453B2 (en) Acicular ultrasonic probe
JP4074169B2 (en) Ultrasonic transceiver unit
JP2005118133A (en) Ultrasonic endoscope, observation probe, and endoscopic observation apparatus
JP3844869B2 (en) Needle-shaped ultrasonic probe and ultrasonic diagnostic apparatus
JP4785102B2 (en) Ultrasonic probe for body cavity, manufacturing method thereof, and ultrasonic diagnostic system
JP3483053B2 (en) Needle-like ultrasonic probe and ultrasonic diagnostic imaging apparatus using the same
JPS61168340A (en) Ultrasonic tomographic image regeneration method and apparatus and ultrasonic scanner
JP3462904B2 (en) Needle-shaped ultrasonic probe
JP3929524B2 (en) Needle-like ultrasonic probe and ultrasonic diagnostic apparatus using the same
JP3671764B2 (en) Endoscope removable electronic scanning ultrasonic inspection system
JP2007082629A (en) Ultrasonic probe
CN219000345U (en) Miniature multi-frequency array type ultrasonic transducer and multi-frequency ultrasonic three-dimensional imaging probe
JP2002320618A (en) Mechanical ultrasonic scanning apparatus
JPH0838477A (en) Needle-like ultrasonic probe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees