JP3665777B2 - Method for manufacturing glass substrate for magnetic recording medium, and method for manufacturing magnetic recording medium - Google Patents

Method for manufacturing glass substrate for magnetic recording medium, and method for manufacturing magnetic recording medium Download PDF

Info

Publication number
JP3665777B2
JP3665777B2 JP2002236978A JP2002236978A JP3665777B2 JP 3665777 B2 JP3665777 B2 JP 3665777B2 JP 2002236978 A JP2002236978 A JP 2002236978A JP 2002236978 A JP2002236978 A JP 2002236978A JP 3665777 B2 JP3665777 B2 JP 3665777B2
Authority
JP
Japan
Prior art keywords
glass substrate
magnetic recording
polishing
recording medium
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002236978A
Other languages
Japanese (ja)
Other versions
JP2003173518A (en
Inventor
利雄 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2002236978A priority Critical patent/JP3665777B2/en
Publication of JP2003173518A publication Critical patent/JP2003173518A/en
Application granted granted Critical
Publication of JP3665777B2 publication Critical patent/JP3665777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高密度記録再生が可能な磁気記録媒体に用いられる磁気記録媒体用ガラス基板の製造方法及び磁気記録媒体の製造方法に関する。
【0002】
【従来の技術】
近年、さらなる高密度記録に対応可能な磁気記録媒体が要請されている。磁気記録媒体の高密度記録化を達成するためには、磁気記録媒体表面に対する磁気ヘッドの浮上高さを小さくすることが重要となる。磁気ヘッドの浮上高さは磁気記録媒体表面の表面粗さに相関があるため、磁気記録媒体表面、磁気記録媒体用基板の表面粗さをより平滑にする試みがなされている。
【0003】
従来より磁気記録媒体用基板として機械的耐久性や高い平滑性が得られるなどの理由からガラス基板が用いられている。そして、ガラス基板を平滑にする方法として、特開平7−240025や特開平10−241144が知られている。
【0004】
【発明が解決しようとする課題】
特開平7−240025に記載されている方法は、除去ステップ(研磨工程)として、酸性になるようにpH調製されたコロイド粒子(コロイダルシリカ)溶液を用いて磁気ディスク用基板を作製する方法が開示されている。
【0005】
また、特開平10−241144に記載されている方法は、研削工程の後、酸化セリウム+水を用いた第1、2研磨工程、さらにコロイダルシリカ+水を用いた第3研磨工程によって磁気記録媒体用ガラス基板を作製する方法が開示されている。
【0006】
しかし、前者の方法は研磨液として酸性の水溶液を用いており、スラリーの凝集/定盤の腐食(酸化)といった問題がある。また、後者の方法は、ガラス基板表面を高平滑性とするために3段階の研磨工程を実施しており製造コストがかかる。また、第3研磨工程では、コロイダルシリカ+水の研磨液を用いているので研磨速度が遅く、研磨時間がかかり生産性が劣る。さらには、研磨工程後の洗浄として、水やアルカリ水溶液を用いて超音波洗浄が行われるが、水の場合、コロイダルシリカ研磨砥粒を十分に除去しきれず研磨残りが発生する。また、アルカリ水溶液(通常濃度7wt%(PHでは14.243)による洗浄の場合、コロイダルシリカ研磨砥粒は溶解除去されるため研磨残りの問題はないが、コロイダルシリカ研磨砥粒を除去するためにアルカリ水溶液濃度や洗浄条件等を強くするとガラス基板にアルカリ水溶液によるダメージ(凹欠陥)が発生するという問題がある。この凹欠陥は、基板上に少なくとも磁性層を形成して磁気記録媒体を作製し、記録再生を行った場合に、信号エラーとなる要因となる。
【0007】
そこで本発明は上記課題に鑑みてなされたものであり、研磨残りや凹欠陥のない高平滑性の磁気記録媒体用ガラス基板を提供し、生産性のよい磁気記録媒体用ガラス基板の製造方法、及び磁気記録媒体の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するための手段は以下の構成を有する。
(構成1)
円板状ガラス基板の表面を研削した後、コロイダルシリカ砥粒を含む研磨液によって研磨し、次いでアルカリ洗浄を行うことによってこの円板状ガラス基板の表面を所定の表面粗さにして磁気記録媒体用ガラス基板を得る磁気記録媒体用ガラス基板の製造方法であって、
前記研磨液は、アルカリを含有させることにより、そのpHが 10.2 を超え、 12 以下となるように調整されたものであり、
前記アルカリ洗浄における洗浄液のpHが、前記研磨における研磨液のpHより大きくなるように調整されていることを特徴とする。
(構成2)
構成1において、アルカリ洗浄における洗浄液のpHが 13.87 14.2 であることを特徴とする。
(構成3)
構成1又は2において、前記アルカリ洗浄における洗浄液のアルカリ成分は NaOH であり、その NaOH 濃度が 3 wt%〜5wt%であることを特徴とする。
(構成4)
構成1〜3のいずれかにおいて、前記磁気記録用ガラス基板の主表面の表面粗さが Rmax 3 nmであることを特徴とする。
ただし、前記 Rmax は、原子間顕微鏡(AFM)を用いて測定した最大高さである。
(構成5)
構成1〜4のいずれかにおいて、前記コロイダルシリカ砥粒の粒径が 0.02 0.5 μmであることを特徴とする。
(構成6)
構成1〜5のいずれかにおいて、前記磁気記録用ガラス基板は、アルミノシリケートガラスからなることを特徴とする。
(構成7)
構成1〜6の何れかに記載の磁気記録媒体用ガラス基板の製造方法によって得られた磁気記録媒体用ガラス基板の主表面上に少なくとも磁性層を形成することを特徴とする。
【0009】
上記構成1によれば、研磨液としてコロイダルシリカ砥粒の微細な研磨剤を用いることにより高い平滑性が得られ、かつ研磨液にアルカリを含有させて研磨液のpHが10.2を超え、12以下となるように調整しているので、平滑性を維持したままガラス基板に対する研磨速度を上げることができる。従って、従来のように研削工程の後、酸化セリウム砥粒などによる複数段階の研磨工程を行いさらに最終研磨工程としてコロイダルシリカ砥粒による精密研磨が行われていたのを、最終研磨工程前の研磨工程を1回、又は省略することができ、生産性を向上させてなおかつ高平滑性のガラス基板が得られる。
【0010】
研磨液のpHが10.2以下のアルカリ性の場合、ガラス基板に対する研磨速度が遅くなるので、生産性に劣るので好ましくない。また、pHが12を超える場合、コロイダルシリカ砥粒が溶解し、精密研磨が出来ないので好ましくない。また、研磨液のPHが小さくなると、コロイダルシリカ砥粒が凝集し、好適に研磨できなくなる場合がある。
【0011】
研磨液のpHを調整するアルカリとしては、例えば、NaOH、KOH、などが挙げられる。NaOHにより研磨液のPHを調節すると、好適に研磨できるので好ましい。
【0012】
研磨液のpHは生産性と研磨布の耐アルカリ性の点から10.5以上11以下とすることが好ましい。
【0013】
コロイダルシリカ砥粒の平均粒径は、研磨後に得る基板の平滑性(表面粗さ)によって適宜調整される。例えば、0.02〜0.5μmとする。近年の高密度記録再生が可能な高い平滑性(表面粗さRmax≦3nm)のガラス基板を得るためには、コロイダルシリカの平均砥径は0.5μm以下を必要とする。
【0014】
またコロイダルシリカ砥粒の濃度は、加工速度や表面粗さに応じて適宜調整される。例えば、加工速度を考慮して20〜35wt%とすることが好ましい。研磨剤濃度が高くなるに従って、基板の表面は粗くなる。
【0015】
本発明に用いるガラス基板の材料には特に制限はない。石英ガラス、ソーダライムガラス、アルミノシリケートガラス、ボロシリケートガラス、アルミノボロシリケートガラス、無アルカリガラス、結晶化ガラスなどが挙げられる。
【0016】
アルカリを含有させたコロイダルシリカ砥粒による研磨を行った後、アルカリ洗浄を行うことにより、コロイダルシリカの研磨残りを確実になくすことができるとともに、コロイダルシリカ砥粒を溶解除去するために行なわれるアルカリ洗浄のガラス基板に対する負荷(アルカリ濃度やPH)を低減することができるので、凹欠陥の発生を抑制することができる。研磨後のアルカリ洗浄の濃度は、研磨残りをなくすために研磨工程でのアルカリ濃度より大きいことが望ましく、pH14以上が好ましい。但し、アルカリ洗浄によるガラス基板に対するダメージ(凹欠陥)が起きない濃度(pH)が良い。以上の観点から本発明者が研究したところ、前記研磨後のガラス基板のアルカリ洗浄において好適な洗浄液のPHは、13.87〜14.20とするのが望ましい。
【0017】
研磨液に含有させるアルカリ及び、研磨後のアルカリ洗浄に用いるアルカリとして同じアルカリ成分、特にNaOHを使用することにより、基板表面における研磨剤残りなどの付着物を効果的に除去できるので好ましい。前記研磨後のアルカリ洗浄においてNaOHを用いる場合、洗浄液に含有するNaOHの濃度は3wt%〜5wt%とすると好適である。
【0018】
ガラス基板の材料としてアルミノシリケートガラスを用いることにより、アルカリに対する化学的耐久性が良いので、凹欠陥の発生を低減することができるので好ましい。
【0019】
アルカリに対する化学的耐久性が良いアルミノシリケートガラスの組成としては、SiO2を58〜75重量%、Al2O3を5〜23重量%、Li2Oを3〜10重量%、Na2Oを4〜13重量%含有するガラスが挙げられる。
【0020】
上記構成によって得られた磁気記録媒体用ガラス基板上に少なくとも磁性層を形成することにより、高密度記録再生が可能な磁気記録媒体を生産性よく、エラーの発生の起きない信頼性の高い磁気記録媒体が得られる。
【0021】
本発明に用いる磁性層の材料には特に制限はない。例えば、CoCrPtB、CoCrPtTa、CoCrPtNi、CoCrPt、CoCrNiTa、CoCrTa、CoCrNi、CoCrPtTaBなどが挙げられる。
【0022】
また、磁気特性や磁気ヘッドに対する耐久性、摺動特性に応じて、シード層、下地層、中間層、保護層、潤滑層を必要に応じて適宜設けることができる。
【0023】
シード層は、その上に形成する層の結晶粒径を制御する目的で設けられ、例えば、NiAl、AlCo、CrTi、CrNiなどの材料を用いることができる。
【0024】
下地層は、bcc構造を有するものを用いるのが一般的で、主に静磁気特性を良好にする目的で設けられ、例えば、CrやCr合金(CrMo、CrV、CrTi,CrW、CrTaなど)の材料を用いることができる。
【0025】
中間層は、hcp構造を有するものを用いるのが一般的で、hcp構造を有する磁性層の結晶配向を整える目的で設けられ、例えば、CoCr、CoCrB、CoCrPt、CoCrPtTaなどの材料を用いることができる。
【0026】
保護層は、磁気ヘッドに対する耐久性、耐食性のために設けられ、例えば、カーボン、水素化カーボン、窒化カーボン、SiO2、ZrO2などの材料を用いることができる。
【0027】
潤滑層は、磁気ヘッドに対する特性の向上のために設けられ、例えば、パーフルオロポリエーテル潤滑剤を用いるのが一般的である。
【0028】
【本発明の実施の形態】
本発明を実施例を挙げて具体的に説明する。
【0029】
(実施例1)
この実施例は、(1)粗研削工程、(2)形状加工工程、(3)端面研磨工程、(4)精研削工程、(5)第1研磨工程、(6)最終研磨工程、(7)最終研磨後洗浄工程、(8)化学強化工程、(9)強化後洗浄工程、(10)磁気ディスク製造工程の各工程を有する。以下、各工程を説明する。
【0030】
(1)粗研削工程
まず、溶融ガラスを、上型、下型、胴型を用いたダイレクトプレスして、直径66mmφ、厚さ1.2mmの円板状のアルミノシリケートガラスからなるガラス基板を得た。この場合、ダイレクトプレス以外に、ダウンドロー法やフロート法で形成したシートガラスから研削砥石で切り出して円板状のガラス基板を得ても良い。なお、アルミノシリケートガラスとしては、SiO2:58〜75重量%、Al2O3:5〜23重量%、LiO2:3〜10重量%、Na2O:4〜13重量%を主成分として含有する化学強化基板用ガラスを使用した。
【0031】
次いで、ガラス基板に研削工程を施した。研削工程は、寸法精度及び形状精度の向上を目的としている。研削工程は両面研削装置を用いて行い、砥粒の粒度を#400で行った。詳しくは、粒度#400のアルミナ砥粒を用い、荷重Lを100kg程度に設定して、内転ギアと外転ギアを回転させることによって、キャリア内に収納したガラス基板の両面を面制度0〜1μm、表面粗さRmaxで6μm程度に仕上げた。
【0032】
(2)形状加工工程
次に、円筒状の砥石を用いてガラス基板の中央部分に孔をあけると共に、外周端面も研削して直径65mmφとした後、外周端面および内周端面に所定の面取加工を施した。このときのガラス基板端面(内周、外周)の表面粗さは、Rmaxで4μmであった。
【0033】
(3)端面研磨工程
次いで、ブラシ研磨により、ガラス基板を回転させながらガラス基板の端面(内周、外周)の表面粗さをRmaxで1μm、Raで0.3μm程度に研磨した。上記端面研磨工程を終えたガラス基板の表面を水洗浄した。
【0034】
(4)精研削工程
次に、砥粒の粒度を#1000に変え、ガラス基板表面を研削することにより、平坦度3μm、表面粗さRmaxが2μm程度、Raが0.2μm程度とした。尚、Rmax、Raは原子間力顕微鏡(AFM)(デジタルインスツルメンツ社製ナノスコープ)にて測定、平坦度、は平坦度測定装置で測定したもので、基板表面の最も高い部分と、最も低い部分との上下方向(表面に垂直な方向)の距離(高低差)である。上記精研削工程を終えたガラス基板を、中性洗剤、水の各洗浄層に順次浸漬して洗浄した。
【0035】
(5)第1研磨工程
次に、研磨工程を施した。研磨工程は、上述した研磨工程で残留したキズや歪みの除去を目的とするもので、両面研磨装置を用いて行った。詳しくは、ポリシャとして硬質ポリシャを用い、以下の研磨条件で実施した。
研磨液:酸化セリウム(平均粒径:1.5μm)+水
荷重:80〜100g/cm2
研磨時間:30〜50分
除去量:35〜45μm
上記第1研磨工程を終えたガラス基板を、中性洗剤、純水、純水、IPA、IPA(蒸気乾燥)の各洗浄層に順次浸漬して洗浄した。
【0036】
(6)最終研磨工程
次に、第1研磨工程で使用したタイプと同じ両面研磨装置を用い、ポリシャとして軟質ポリシャに変えて最終研磨工程を実施した。研磨条件は、
研磨液:コロイダルシリカ(平均粒径:0.15μm、研磨剤濃度:32wt%)+NaOH(濃度1mol/l 添加量 400ml)+水
(pH:10.5(EUTEC社製pH Scanにより測定))
荷重:60〜120g/cm2
研磨時間:5〜40分
除去量:0.5〜8μm
とした。
図1に示すように、研磨速度は、0.07μm/minであった。
【0037】
(7)最終研磨後洗浄工程
上記最終研磨工程を終えたガラス基板を、濃度3〜5wt%のNaOH水溶液に浸漬してアルカリ洗浄を行った。尚、洗浄は超音波を印加して行った。さらに、中性洗剤、純水、純水、IPA、IPA(蒸気乾燥)の各洗浄槽に順次浸漬して洗浄した。この得られたガラス基板の表面をAFM(デジタルインスツルメンツ社製ナノスコープ)により観察したところ、コロイダルシリカの研磨残りは確認されなかった。また、アルカリ洗浄ダメージによる凹欠陥もなかった。
なお、濃度3wt%〜5wt%のNaOH水溶液のPHは、13.875〜14.097である。
【0038】
(8)化学強化工程
次に、上記研削、研磨、最終研磨後洗浄工程を終えたガラス基板に化学強化を施した。化学強化には、硝酸カリウム(60%)と硝酸ナトリウム(40%)を混合した化学強化塩を用意し、この化学強化塩を375℃に加熱し、300℃に予熱された洗浄済みガラス基板を約3時間浸漬して行った。
このように、化学強化塩に浸漬処理することによって、ガラス基板表層のリチウムイオン、ナトリウムイオンは、化学強化塩中のナトリウムイオン、カリウムイオンにそれぞれ置換されガラス基板は強化される。ガラス基板の表層に形成された圧縮応力層の厚さは約100〜200μmであった。上記化学強化を終えたガラス基板を20℃の水槽に浸漬して急冷し、約10分維持した。
【0039】
(9)強化後洗浄工程
上記急冷を終えたガラス基板を、約40℃に加熱した硫酸に浸漬し、超音波を掛けながら洗浄を行った。このようにして得られたガラス基板の表面粗さをAFM(デジタルインスツルメンツ社製ナノスコープ)で測定したところ、Rmax=2.62nm、Ra=0.31nmで良好な結果が得られた。
従って、Rmax/Raは。8.45である。
なお、Rmax及びRaは、日本工業規格(JIS)B0601に規定の定義に基づく。
【0040】
(10)磁気ディスク製造工程
上述した工程を経て得られた磁気ディスク用ガラス基板に対し、スパッタリング装置にて、NiAlシード層、CrV下地層、CoCrPtB磁性層、水素化カーボン保護層を成膜し、ディップ法によりパーフルオロポリエーテル潤滑層を形成して磁気ディスクを作製した。
得られた磁気ディスクに対し、グライド高さ、ロードアンロード試験(40万回)を行ったところ、浮上量4.5nmまでは、ヘッド−媒体間に接触が発生しないことが確認できた。また、クラッシュが発生せず、記録再生試験においても信号エラーはなかった。なお、グライド高さの観点でいえば、5.0nmまでは、ヘッド−媒体間に接触が発生しないことが好ましい。即ち、グライド高さは5.0nm以下であることが好ましい。
【0041】
(実施例2)
次に、実施例1において、研磨液中に含まれるアルカリの量を調整し、研磨液のpH濃度を調整した以外は実施例1と同様にして磁気ディスク用ガラス基板及び磁気ディスクを作製した。
【0042】
その結果、図1に示すように、pH濃度を上げるにしたがって、ガラス基板に対する研磨速度が向上することが確認できる。また、研磨液のpH濃度が12を超えた場合、コロイダルシリカの溶解が始まり加工できない結果となった。
【0043】
尚、研磨液のpH濃度が12以下の範囲内でpH濃度を変えて得られたガラス基板の表面粗さをAFM(デジタルインスツルメンツ社製ナノスコープ)で確認したところ、実施例1と同程度であり表面粗さにはほとんど変化していないことが確認された。
【0044】
実施例1と同様にこれらの得られたガラス基板表面のコロイダルシリカの研磨残りは確認されず、また、アルカリ洗浄ダメージによる凹欠陥もなかった。
【0045】
また、得られた磁気ディスクに対し、グライド高さ、ロードアンロード試験(40万回)を行ったところ、浮上量4.5nmまでは、ヘッド−媒体間に接触が発生しないことが確認できた。また、クラッシュが発生せず、記録再生試験においても信号エラーはなかった。
【0046】
(比較例1)
次に実施例1における最終研磨工程において、研磨液としてNaOHを加えなかった(研磨液のpH濃度:10.2)以外は実施例1と同様にして磁気ディスク用ガラス基板及び磁気ディスクを作製した。尚、コロイダルシリカ砥粒の研磨残りをなくすために、アルカリ洗浄におけるNaOH濃度は7wt%とし、超音波を強く印加した。なお、アルカリ洗浄におけるNaOH濃度が7wt%のとき、PHは14.243であった。比較例1の結果は図1に示す。
【0047】
その結果、図1に示すとおり、研磨速度は、0.04μm/minに低下した。従って、実施例と同様の表面粗さに仕上げるためには研磨加工時間が余計にかかり、これは、生産枚数に比べると100枚に相当する。(また、特開平10−241144にあるように、研磨工程を3段階にした場合と実施例と比較した場合、生産枚数に比べると150枚に相当する。)
【0048】
実施例1では、研磨速度は0.07μm/minであったので、例えば、研磨加工に必要な研磨除去量が1.5μmであった場合、21.4分の研磨時間が必要である。
比較例1では、研磨速度は0.04μm/minであったので、例えば研磨加工に必要な研磨除去量が1.5μmであった場合、37.5分の研磨時間が必要である。
【0049】
従って、例えば、一度に100枚の磁気ディスク用ガラス基板を研磨する研磨装置を用いた場合にあっては、実施例1の場合、1時間で約300枚の研磨加工でできるのに対し、比較例1の場合、1時間で100枚程度〜200枚未満しか研磨加工できないために、製造コストが高くなる。
本発明においては、研磨速度は0.05μm/min以上が得られると好ましい。この場合、例えば、研磨加工に必要な研磨除去量が1.5μmであった場合、研磨時間は30分となるので、例えば、一度に100枚の磁気ディスク用ガラス基板を研磨する研磨装置を用いた場合にあっては、1時間で200枚の研磨加工が可能となる。
【0050】
また、ガラス基板表面のコロイダルシリカの研磨残りは確認されなかったが、研磨剤を落とすためにアルカリ(NaOH)濃度が高く、洗浄条件(超音波)も強くなり、アルカリ洗浄ダメージによる凹欠陥も見られた。
【0051】
また、得られた磁気ディスクに対し、グライド高さ、ロードアンロード試験を行った結果、実施例との差は見られなかったが、記録再生試験において凹欠陥による信号エラーが確認された。
【0052】
(実施例3)
実施例1の(6)最終研磨工程において、研磨液に含有させるアルカリをNaOHに替えて、KOHとした(実施例3)。研磨液に含有させるアルカリをKOHに変更した点以外は実施例1と同様の製造方法による同様のガラス基板である。なお、研磨液のPHは10.8となるように、KOHの濃度を調節した。その結果、研磨速度は0.07μm/minであった。得られたガラス基板の表面粗さを実施例1と同様に測定したところ、Rmax=2.91nm、Ra=0.29nmであった。従って、Rmax/Ra=10であった。また、研磨残りと、アルカリ洗浄ダメージによる凹欠陥も確認されなかった。
【0053】
得られた磁気ディスク用ガラス基板に対して、実施例1と同様に(10)磁気ディスク製造工程を施し、得られた磁気ディスクを実施例1と同様に試験したところ、浮上量4.8nmまでは、ヘッド−媒体間に接触が発生しなかった。また、クラッシュが発生せず、記録再生試験においても信号エラーはなかった。
実施例1と実施例3と結果とを比較すると、実施例3においても好適な結果が得られていることが分かるが、実施例1ではグライド高さが4.5nmであるのに対し、実施例3では、グライド高さが4.8nmとやや悪化している。これは、実施例3において、Rmax/Raが10以上となったことによるものと考えられる。グライド高さの観点からは、本発明において、Rmax/Raが10未満とすると好ましいと考えられる。
【0054】
なお、実施例1に比べて実施例3でグライド高さがやや悪化した原因を調査したところ、目視検査では確認できなかったが、電子顕微鏡(SEM)を用いた精密検査の結果、極微量の研磨剤残りが基板表面に僅かに残留していることが分かった。
【0055】
(参考例)
次に実施例1におけるガラス基板を石英ガラスにし、研磨液に含まれるNaOHを変化させた以外は実施例1と同様にして磁気ディスク用ガラス基板及び磁気ディスクを作製した。
【0056】
その結果、pH濃度を変化させても研磨速度にはほとんど変化は見られなかった。また、アルカリ洗浄ダメージによる凹欠陥はなかった。
【0057】
また、得られた磁気ディスクに対するグライド高さ、ロードアンロード試験、記録再生試験においても実施例と同様の結果となった。
【0058】
よって、実施例と参考例の結果を比較すると、生産性を考慮して研磨速度を調整でき、かつアルカリに対する化学的耐久性に良好なアルミノシリケートガラスが適していることが確認された。
【0059】
【発明の効果】
本発明によれば、研磨残りや凹欠陥のない高い平滑性の磁気記録媒体用ガラス基板を得ることができ、磁気記録媒体の高密度記録化を達成することができる。
【図面の簡単な説明】
【図1】 研磨液のpH濃度と研磨速度の関係を示すグラフである。
[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a glass substrate for a magnetic recording medium used for a magnetic recording medium capable of high-density recording and reproduction, and a method for manufacturing a magnetic recording medium.
[0002]
[Prior art]
In recent years, there has been a demand for magnetic recording media that can cope with higher density recording. In order to achieve high density recording of the magnetic recording medium, it is important to reduce the flying height of the magnetic head with respect to the surface of the magnetic recording medium. Since the flying height of the magnetic head has a correlation with the surface roughness of the surface of the magnetic recording medium, attempts have been made to make the surface roughness of the surface of the magnetic recording medium and the substrate for the magnetic recording medium more smooth.
[0003]
Conventionally, a glass substrate has been used as a magnetic recording medium substrate for reasons such as mechanical durability and high smoothness. And as a method of smoothing a glass substrate, Unexamined-Japanese-Patent No. 7-240025 and Unexamined-Japanese-Patent No. 10-241144 are known.
[0004]
[Problems to be solved by the invention]
The method described in JP-A-7-240025 discloses a method for producing a magnetic disk substrate using a colloidal particle (colloidal silica) solution adjusted to have an acidic pH as a removal step (polishing step). Has been.
[0005]
Further, the method described in Japanese Patent Laid-Open No. 10-241144 is a magnetic recording medium in which a grinding process is followed by a first and second polishing process using cerium oxide + water, and a third polishing process using colloidal silica + water. A method for producing a glass substrate for use is disclosed.
[0006]
However, the former method uses an acidic aqueous solution as the polishing liquid, and has a problem of slurry aggregation / surface plate corrosion (oxidation). In the latter method, a three-step polishing process is performed in order to make the glass substrate surface highly smooth, and manufacturing costs are high. In the third polishing step, since a polishing liquid of colloidal silica + water is used, the polishing rate is slow, the polishing time is long, and the productivity is inferior. Furthermore, as cleaning after the polishing step, ultrasonic cleaning is performed using water or an alkaline aqueous solution. However, in the case of water, the colloidal silica polishing abrasive grains cannot be sufficiently removed and a polishing residue is generated. In the case of cleaning with an alkaline aqueous solution (usually 7 wt% (14.243 for PH)), the colloidal silica abrasive grains are dissolved and removed, so there is no problem of polishing residue. However, in order to remove the colloidal silica abrasive grains There is a problem that the glass substrate is damaged by the alkaline aqueous solution (concave defect) when the concentration of the alkaline aqueous solution, the cleaning condition, etc. is increased, and this concave defect forms a magnetic recording medium by forming at least a magnetic layer on the substrate. When recording / reproducing is performed, a signal error is caused.
[0007]
Therefore, the present invention has been made in view of the above problems, and provides a glass substrate for a magnetic recording medium with high smoothness free from polishing residue and concave defects, and a method for producing a glass substrate for magnetic recording medium with good productivity, It is another object of the present invention to provide a method for manufacturing a magnetic recording medium.
[0008]
[Means for Solving the Problems]
Means for solving the above problems has the following configuration.
(Configuration 1)
After the surface of the disk-shaped glass substrate is ground , the surface of the disk-shaped glass substrate is polished to a predetermined surface roughness by polishing with a polishing liquid containing colloidal silica abrasive grains and then performing alkali cleaning. A method for producing a glass substrate for a magnetic recording medium to obtain a glass substrate,
The polishing liquid is adjusted so that the pH is more than 10.2 and not more than 12 by containing alkali .
The pH of the cleaning liquid in the alkali cleaning is adjusted to be higher than the pH of the polishing liquid in the polishing .
(Configuration 2)
In Configuration 1, the pH of the cleaning liquid in the alkali cleaning is 13.87 to 14.2 .
(Configuration 3)
In Configuration 1 or 2, the alkali component of the cleaning liquid in the alkali cleaning is NaOH , and the NaOH concentration is 3 wt% to 5 wt%.
(Configuration 4)
In any one of configurations 1 to 3, the main surface of the glass substrate for magnetic recording has a surface roughness of Rmax 3 nm.
Here, Rmax is the maximum height measured using an atomic microscope (AFM).
(Configuration 5)
In any one of Configurations 1 to 4, the colloidal silica abrasive has a particle size of 0.02 to 0.5 μm.
(Configuration 6)
In any one of Configurations 1 to 5, the glass substrate for magnetic recording is made of aluminosilicate glass.
(Configuration 7)
At least a magnetic layer is formed on the main surface of the glass substrate for magnetic recording media obtained by the method for manufacturing a glass substrate for magnetic recording media according to any one of Structures 1 to 6.
[0009]
According to the said structure 1, high smoothness is obtained by using the fine abrasive | polishing agent of a colloidal silica abrasive grain as polishing liquid, and the pH of polishing liquid exceeds 10.2 by containing an alkali in polishing liquid, Since it is adjusted to be 12 or less, the polishing rate for the glass substrate can be increased while maintaining smoothness. Therefore, after the grinding process as in the prior art, a multi-stage polishing process using cerium oxide abrasive grains is performed, and the precision polishing using colloidal silica abrasive grains is performed as the final polishing process. The process can be omitted once or the productivity can be improved and a highly smooth glass substrate can be obtained.
[0010]
When the pH of the polishing liquid is alkaline at 10.2 or less, the polishing rate for the glass substrate is slow, which is not preferable because the productivity is poor. Moreover, when pH exceeds 12, since colloidal silica abrasives melt | dissolve and precision polishing cannot be performed, it is unpreferable. Moreover, when PH of polishing liquid becomes small, colloidal silica abrasive grains may aggregate and it may become unable to grind | polish suitably.
[0011]
Examples of the alkali that adjusts the pH of the polishing liquid include NaOH, KOH, and the like. It is preferable to adjust the pH of the polishing liquid with NaOH because it can be suitably polished.
[0012]
The pH of the polishing liquid is preferably 10.5 or more and 11 or less from the viewpoints of productivity and alkali resistance of the polishing pad.
[0013]
The average particle size of the colloidal silica abrasive is appropriately adjusted depending on the smoothness (surface roughness) of the substrate obtained after polishing. For example, it is set to 0.02 to 0.5 μm. In order to obtain a glass substrate with high smoothness (surface roughness Rmax ≦ 3 nm) capable of high-density recording / reproduction in recent years, the average abrasive diameter of colloidal silica needs to be 0.5 μm or less.
[0014]
Moreover, the density | concentration of a colloidal silica abrasive grain is suitably adjusted according to a processing speed and surface roughness. For example, it is preferably 20 to 35 wt% in consideration of the processing speed. As the abrasive concentration increases, the surface of the substrate becomes rougher.
[0015]
There is no restriction | limiting in particular in the material of the glass substrate used for this invention. Examples thereof include quartz glass, soda lime glass, aluminosilicate glass, borosilicate glass, aluminoborosilicate glass, alkali-free glass, and crystallized glass.
[0016]
After polishing with an alkali-containing colloidal silica abrasive, by performing alkali cleaning, the polishing residue of the colloidal silica can be surely eliminated, and the alkali used to dissolve and remove the colloidal silica abrasive Since the load (alkali concentration and PH) on the glass substrate for cleaning can be reduced, the occurrence of concave defects can be suppressed. The concentration of alkali cleaning after polishing is desirably higher than the alkali concentration in the polishing step in order to eliminate polishing residue, and is preferably pH 14 or higher. However, the concentration (pH) at which damage (concave defect) to the glass substrate due to alkali cleaning does not occur is good. As a result of researches by the present inventors from the above viewpoint, it is desirable that the pH of the cleaning solution suitable for alkali cleaning of the glass substrate after polishing is 13.87 to 14.20.
[0017]
By using the same alkali component, especially NaOH, as the alkali contained in the polishing liquid and the alkali used for the alkali cleaning after polishing, it is preferable because deposits such as abrasive residue on the substrate surface can be effectively removed. When NaOH is used in the alkali cleaning after the polishing, it is preferable that the concentration of NaOH contained in the cleaning liquid is 3 wt% to 5 wt%.
[0018]
The use of aluminosilicate glass as the material for the glass substrate is preferable because the chemical durability against alkali is good and the occurrence of concave defects can be reduced.
[0019]
The composition of an aluminosilicate glass having good chemical durability against alkali is a glass containing 58 to 75% by weight of SiO2, 5 to 23% by weight of Al2O3, 3 to 10% by weight of Li2O and 4 to 13% by weight of Na2O. Is mentioned.
[0020]
By forming at least a magnetic layer on the glass substrate for a magnetic recording medium obtained by the above configuration, a magnetic recording medium capable of high-density recording / reproduction is highly productive and highly reliable without causing an error. A medium is obtained.
[0021]
The material for the magnetic layer used in the present invention is not particularly limited. Examples thereof include CoCrPtB, CoCrPtTa, CoCrPtNi, CoCrPt, CoCrNiTa, CoCrTa, CoCrNi, and CoCrPtTaB.
[0022]
In addition, a seed layer, an underlayer, an intermediate layer, a protective layer, and a lubricating layer can be appropriately provided as necessary in accordance with magnetic characteristics, durability against a magnetic head, and sliding characteristics.
[0023]
The seed layer is provided for the purpose of controlling the crystal grain size of the layer formed thereon, and for example, a material such as NiAl, AlCo, CrTi, CrNi can be used.
[0024]
The underlayer generally has a bcc structure and is mainly provided for the purpose of improving the magnetostatic characteristics. For example, Cr or Cr alloy (CrMo, CrV, CrTi, CrW, CrTa, etc.) is used. Materials can be used.
[0025]
The intermediate layer generally has a hcp structure, and is provided for the purpose of adjusting the crystal orientation of the magnetic layer having the hcp structure. For example, a material such as CoCr, CoCrB, CoCrPt, or CoCrPtTa can be used. .
[0026]
The protective layer is provided for durability and corrosion resistance with respect to the magnetic head, and for example, materials such as carbon, hydrogenated carbon, carbon nitride, SiO2, and ZrO2 can be used.
[0027]
The lubricating layer is provided to improve the characteristics of the magnetic head, and for example, a perfluoropolyether lubricant is generally used.
[0028]
[Embodiments of the Invention]
The present invention will be specifically described with reference to examples.
[0029]
(Example 1)
In this example, (1) rough grinding step, (2) shape processing step, (3) end face polishing step, (4) fine grinding step, (5) first polishing step, (6) final polishing step, (7 And (8) a chemical strengthening step, (9) a post-strengthening cleaning step, and (10) a magnetic disk manufacturing step. Hereinafter, each process will be described.
[0030]
(1) Rough grinding process First, the molten glass is directly pressed using an upper mold, a lower mold, and a body mold to obtain a glass substrate made of a disc-shaped aluminosilicate glass having a diameter of 66 mmφ and a thickness of 1.2 mm. It was. In this case, in addition to the direct press, a disk-shaped glass substrate may be obtained by cutting out from a sheet glass formed by a downdraw method or a float method with a grinding wheel. As the aluminosilicate glass, chemically strengthened glass for glass containing SiO2: 58 to 75% by weight, Al2O3: 5 to 23% by weight, LiO2: 3 to 10% by weight, and Na2O: 4 to 13% by weight. It was used.
[0031]
Next, a grinding process was performed on the glass substrate. The grinding process aims to improve dimensional accuracy and shape accuracy. The grinding process was performed using a double-side grinding apparatus, and the grain size of the abrasive grains was # 400. Specifically, by using alumina abrasive grains having a particle size of # 400, the load L is set to about 100 kg, and the inner and outer rotation gears are rotated, so that both surfaces of the glass substrate housed in the carrier are surface systems 0 to 0. Finished to about 1 μm and a surface roughness Rmax of about 6 μm.
[0032]
(2) Shape processing step Next, a cylindrical grindstone is used to make a hole in the central portion of the glass substrate, and the outer peripheral end surface is ground to a diameter of 65 mmφ, and then a predetermined chamfer is formed on the outer peripheral end surface and the inner peripheral end surface. Processed. The surface roughness of the glass substrate end face (inner circumference, outer circumference) at this time was 4 μm in Rmax.
[0033]
(3) End face polishing step Next, the surface roughness of the end face (inner circumference, outer circumference) of the glass substrate was polished by brush polishing to about 1 μm at Rmax and about 0.3 μm at Ra while rotating the glass substrate. The surface of the glass substrate after the end face polishing step was washed with water.
[0034]
(4) Fine grinding step Next, the grain size of the abrasive grains was changed to # 1000, and the glass substrate surface was ground, so that the flatness was 3 μm, the surface roughness Rmax was about 2 μm, and Ra was about 0.2 μm. Rmax and Ra are measured by an atomic force microscope (AFM) (Nanoscope manufactured by Digital Instruments Co., Ltd.), and flatness is measured by a flatness measuring device. The highest part and the lowest part of the substrate surface. The distance (height difference) in the vertical direction (direction perpendicular to the surface). The glass substrate after the fine grinding step was washed by sequentially immersing it in each washing layer of neutral detergent and water.
[0035]
(5) First polishing step Next, a polishing step was performed. The polishing process is intended to remove scratches and distortions remaining in the above-described polishing process, and was performed using a double-side polishing apparatus. Specifically, a hard polisher was used as the polisher, and the polishing was performed under the following conditions.
Polishing liquid: cerium oxide (average particle diameter: 1.5 μm) + water load: 80 to 100 g / cm 2
Polishing time: 30-50 minutes Removal amount: 35-45 μm
The glass substrate after the first polishing step was sequentially immersed in each cleaning layer of neutral detergent, pure water, pure water, IPA, and IPA (steam drying) for cleaning.
[0036]
(6) Final polishing step Next, the same double-side polishing apparatus as the type used in the first polishing step was used, and the final polishing step was carried out by changing the polisher to a soft polisher. Polishing conditions are
Polishing liquid: colloidal silica (average particle size: 0.15 μm, polishing agent concentration: 32 wt%) + NaOH (concentration: 1 mol / l addition amount: 400 ml) + water (pH: 10.5 (measured by pH Scan manufactured by EUTEC))
Load: 60-120 g / cm2
Polishing time: 5 to 40 minutes Removal amount: 0.5 to 8 μm
It was.
As shown in FIG. 1, the polishing rate was 0.07 μm / min.
[0037]
(7) Cleaning process after final polishing The glass substrate after the final polishing process was immersed in an aqueous NaOH solution having a concentration of 3 to 5 wt% for alkali cleaning. The cleaning was performed by applying ultrasonic waves. Furthermore, it wash | cleaned by immersing in each washing tank of neutral detergent, a pure water, a pure water, IPA, and IPA (steam drying) sequentially. When the surface of the obtained glass substrate was observed with an AFM (Nanoscope manufactured by Digital Instruments), the polishing residue of colloidal silica was not confirmed. Moreover, there was no concave defect due to alkali cleaning damage.
The pH of the NaOH aqueous solution having a concentration of 3 wt% to 5 wt% is 13.875 to 14.097.
[0038]
(8) Chemical strengthening step Next, chemical strengthening was performed on the glass substrate after the grinding, polishing, and final post-polishing cleaning steps. For chemical strengthening, a chemically strengthened salt prepared by mixing potassium nitrate (60%) and sodium nitrate (40%) is prepared. The chemically strengthened salt is heated to 375 ° C., and a cleaned glass substrate preheated to 300 ° C. It was immersed for 3 hours.
Thus, by immersing in the chemically strengthened salt, the lithium ions and sodium ions on the surface of the glass substrate are replaced with sodium ions and potassium ions in the chemically strengthened salt, respectively, and the glass substrate is strengthened. The thickness of the compressive stress layer formed on the surface layer of the glass substrate was about 100 to 200 μm. The glass substrate after the chemical strengthening was immersed in a 20 ° C. water bath and rapidly cooled, and maintained for about 10 minutes.
[0039]
(9) Cleaning step after strengthening The glass substrate after the rapid cooling was immersed in sulfuric acid heated to about 40 ° C. and cleaned while applying ultrasonic waves. When the surface roughness of the glass substrate thus obtained was measured with an AFM (Nanoscope manufactured by Digital Instruments), good results were obtained with Rmax = 2.62 nm and Ra = 0.31 nm.
Therefore, Rmax / Ra is 8.45.
Rmax and Ra are based on definitions defined in Japanese Industrial Standard (JIS) B0601.
[0040]
(10) Magnetic disk manufacturing process A NiAl seed layer, a CrV underlayer, a CoCrPtB magnetic layer, and a hydrogenated carbon protective layer are formed on a glass substrate for a magnetic disk obtained through the above-described processes using a sputtering apparatus. A perfluoropolyether lubricating layer was formed by a dip method to produce a magnetic disk.
When the obtained magnetic disk was subjected to a glide height and load / unload test (400,000 times), it was confirmed that no contact occurred between the head and the medium up to a flying height of 4.5 nm. Also, no crash occurred and there was no signal error in the recording / reproducing test. In terms of glide height, it is preferable that contact between the head and the medium does not occur up to 5.0 nm. That is, the glide height is preferably 5.0 nm or less.
[0041]
(Example 2)
Next, a glass substrate for a magnetic disk and a magnetic disk were produced in the same manner as in Example 1 except that the amount of alkali contained in the polishing liquid was adjusted and the pH concentration of the polishing liquid was adjusted.
[0042]
As a result, as shown in FIG. 1, it can be confirmed that the polishing rate for the glass substrate is improved as the pH concentration is increased. In addition, when the pH concentration of the polishing liquid exceeded 12, the dissolution of colloidal silica started and the processing was impossible.
[0043]
In addition, when the surface roughness of the glass substrate obtained by changing the pH concentration within the range where the pH concentration of the polishing liquid is 12 or less was confirmed by AFM (Nanoscope manufactured by Digital Instruments), it was about the same as Example 1. It was confirmed that there was almost no change in the surface roughness.
[0044]
As in Example 1, the polishing residue of colloidal silica on the surface of the obtained glass substrate was not confirmed, and there was no concave defect due to alkali cleaning damage.
[0045]
Further, when the obtained magnetic disk was subjected to a glide height and a load / unload test (400,000 times), it was confirmed that no contact occurred between the head and the medium up to a flying height of 4.5 nm. . Also, no crash occurred and there was no signal error in the recording / reproducing test.
[0046]
(Comparative Example 1)
Next, in the final polishing step in Example 1, a glass substrate for a magnetic disk and a magnetic disk were produced in the same manner as in Example 1 except that NaOH was not added as the polishing liquid (pH concentration of the polishing liquid: 10.2). . In order to eliminate the polishing residue of the colloidal silica abrasive grains, the NaOH concentration in the alkali cleaning was set to 7 wt%, and ultrasonic waves were strongly applied. The pH was 14.243 when the NaOH concentration in alkali cleaning was 7 wt%. The results of Comparative Example 1 are shown in FIG.
[0047]
As a result, as shown in FIG. 1, the polishing rate decreased to 0.04 μm / min. Accordingly, it takes an extra polishing time to finish the surface roughness similar to that of the embodiment, which corresponds to 100 sheets compared to the number of sheets produced. (In addition, as disclosed in Japanese Patent Laid-Open No. 10-241144, when the polishing process is performed in three stages and compared with the embodiment, it corresponds to 150 sheets as compared with the number of production.)
[0048]
In Example 1, since the polishing rate was 0.07 μm / min, for example, when the removal amount necessary for polishing is 1.5 μm, a polishing time of 21.4 minutes is required.
In Comparative Example 1, the polishing rate was 0.04 μm / min. Therefore, for example, when the removal amount necessary for polishing is 1.5 μm, a polishing time of 37.5 minutes is required.
[0049]
Therefore, for example, in the case of using a polishing apparatus that polishes 100 glass substrates for a magnetic disk at a time, in the case of Example 1, about 300 sheets can be polished in one hour. In the case of Example 1, since only about 100 to less than 200 sheets can be polished in one hour, the manufacturing cost increases.
In the present invention, the polishing rate is preferably 0.05 μm / min or more. In this case, for example, when the removal amount necessary for the polishing process is 1.5 μm, the polishing time is 30 minutes. For example, a polishing apparatus that polishes 100 glass substrates for magnetic disks at a time is used. In such a case, 200 sheets can be polished in one hour.
[0050]
In addition, the polishing residue of colloidal silica on the surface of the glass substrate was not confirmed, but the alkali (NaOH) concentration was high to remove the abrasive, the cleaning conditions (ultrasonic waves) were strong, and concave defects due to alkali cleaning damage were also observed It was.
[0051]
Further, as a result of performing a glide height and a load / unload test on the obtained magnetic disk, no difference from the example was observed, but a signal error due to a concave defect was confirmed in the recording / reproducing test.
[0052]
(Example 3)
In the final polishing step (6) of Example 1, the alkali contained in the polishing liquid was replaced with NaOH to obtain KOH (Example 3). The same glass substrate by the same manufacturing method as in Example 1 except that the alkali contained in the polishing liquid is changed to KOH. The concentration of KOH was adjusted so that the polishing solution had a pH of 10.8. As a result, the polishing rate was 0.07 μm / min. When the surface roughness of the obtained glass substrate was measured in the same manner as in Example 1, Rmax = 2.91 nm and Ra = 0.29 nm. Therefore, Rmax / Ra = 10. Moreover, the polishing residue and the concave defect due to alkali cleaning damage were not confirmed.
[0053]
The obtained magnetic disk glass substrate was subjected to (10) magnetic disk manufacturing process in the same manner as in Example 1, and the obtained magnetic disk was tested in the same manner as in Example 1. As a result, the flying height was up to 4.8 nm. No contact occurred between the head and the medium. Also, no crash occurred and there was no signal error in the recording / reproducing test.
Comparing the results of Example 1 and Example 3 with the results, it can be seen that suitable results were obtained also in Example 3. In Example 1, the glide height was 4.5 nm. In Example 3, the glide height is slightly deteriorated to 4.8 nm. This is considered to be due to the fact that Rmax / Ra was 10 or more in Example 3. From the viewpoint of glide height, in the present invention, it is considered preferable that Rmax / Ra is less than 10.
[0054]
In addition, when the cause that the glide height was slightly deteriorated in Example 3 compared with Example 1 was investigated, it could not be confirmed by visual inspection, but as a result of precision inspection using an electron microscope (SEM), a very small amount was confirmed. It was found that the abrasive residue remained slightly on the substrate surface.
[0055]
(Reference example)
Next, a glass substrate for a magnetic disk and a magnetic disk were produced in the same manner as in Example 1 except that the glass substrate in Example 1 was changed to quartz glass and NaOH contained in the polishing liquid was changed.
[0056]
As a result, even if the pH concentration was changed, the polishing rate was hardly changed. Further, there were no concave defects due to alkali cleaning damage.
[0057]
Further, the same results as in Examples were obtained in the glide height, load / unload test, and recording / reproduction test for the obtained magnetic disk.
[0058]
Therefore, comparing the results of the example and the reference example, it was confirmed that an aluminosilicate glass that can adjust the polishing rate in consideration of productivity and has good chemical durability against alkali is suitable.
[0059]
【The invention's effect】
According to the present invention, it is possible to obtain a glass substrate for a magnetic recording medium having high smoothness free from polishing residue and concave defects, and to achieve high density recording of the magnetic recording medium.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the pH concentration of a polishing liquid and the polishing rate.

Claims (7)

円板状ガラス基板の表面を研削した後、コロイダルシリカ砥粒を含む研磨液によって研磨し、次いでアルカリ洗浄を行うことによってこの円板状ガラス基板の表面を所定の表面粗さにして磁気記録媒体用ガラス基板を得る磁気記録媒体用ガラス基板の製造方法であって、
前記研磨液は、アルカリを含有させることにより、そのpHが 10.2 を超え、 12 以下となるように調整されたものであり、
前記アルカリ洗浄における洗浄液のpHが、前記研磨における研磨液のpHより大きくなるように調整されていることを特徴とする磁気記録媒体用ガラス基板の製造方法。
After the surface of the disk-shaped glass substrate is ground , the surface of the disk-shaped glass substrate is polished to a predetermined surface roughness by polishing with a polishing liquid containing colloidal silica abrasive grains and then performing alkali cleaning. A method for producing a glass substrate for a magnetic recording medium to obtain a glass substrate,
The polishing liquid is adjusted so that the pH is more than 10.2 and not more than 12 by containing alkali .
The method for producing a glass substrate for a magnetic recording medium , wherein the pH of the cleaning liquid in the alkali cleaning is adjusted to be higher than the pH of the polishing liquid in the polishing .
前記アルカリ洗浄における洗浄液のpHがThe pH of the cleaning solution in the alkali cleaning is 13.8713.87 ~ 14.214.2 であることを特徴とする請求項1に記載の磁気記録媒体用ガラス基板の製造方法。The method for producing a glass substrate for a magnetic recording medium according to claim 1, wherein: 前記アルカリ洗浄における洗浄液のアルカリ成分はThe alkali component of the cleaning liquid in the alkali cleaning is NaOHNaOH であり、そのAnd that NaOHNaOH 濃度がConcentration 3Three wt%〜5wt%であることを特徴とする請求項1又は請求項2に記載の磁気記録媒体用ガラス基板の製造方法。The method for producing a glass substrate for a magnetic recording medium according to claim 1, wherein the glass substrate is for wt% to 5 wt%. 前記磁気記録用ガラス基板の主表面の表面粗さがThe surface roughness of the main surface of the glass substrate for magnetic recording is RmaxRmax 3Three nmであることを特徴とする請求項1乃至請求項3の何れかに記載の磁気記録媒体用ガラス基板の製造方法。The method for producing a glass substrate for a magnetic recording medium according to any one of claims 1 to 3, wherein the thickness is nm.
ただし、前記However, RmaxRmax は、原子間顕微鏡(AFM)を用いて測定した最大高さである。Is the maximum height measured using an atomic force microscope (AFM).
前記コロイダルシリカ砥粒の粒径がThe colloidal silica abrasive has a particle size of 0.020.02 ~ 0.50.5 μmであることを特徴とする請求項1乃至請求項4の何れかに記載の磁気記録媒体用ガラス基板の製造方法。The method for producing a glass substrate for a magnetic recording medium according to any one of claims 1 to 4, wherein the glass substrate is μm. 前記磁気記録用ガラス基板は、アルミノシリケートガラスからなることを特徴とする請求項1乃至請求項5の何れかに記載の磁気記録媒体用ガラス基板の製造方法。The magnetic recording glass substrate, method of manufacturing a glass substrate for a magnetic recording medium according to any one of claims 1 to 5, characterized in that it consists of aluminosilicate glass. 請求項1乃至請求項6の何れかに記載の磁気記録媒体用ガラス基板の製造方法によって得られた磁気記録媒体用ガラス基板の主表面上に少なくとも磁性層を形成することを特徴とする磁気記録媒体の製造方法。A magnetic recording layer comprising at least a magnetic layer formed on a main surface of the glass substrate for a magnetic recording medium obtained by the method for manufacturing a glass substrate for a magnetic recording medium according to any one of claims 1 to 6. A method for manufacturing a medium.
JP2002236978A 2001-09-28 2002-08-15 Method for manufacturing glass substrate for magnetic recording medium, and method for manufacturing magnetic recording medium Expired - Fee Related JP3665777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002236978A JP3665777B2 (en) 2001-09-28 2002-08-15 Method for manufacturing glass substrate for magnetic recording medium, and method for manufacturing magnetic recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-301232 2001-09-28
JP2001301232 2001-09-28
JP2002236978A JP3665777B2 (en) 2001-09-28 2002-08-15 Method for manufacturing glass substrate for magnetic recording medium, and method for manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2003173518A JP2003173518A (en) 2003-06-20
JP3665777B2 true JP3665777B2 (en) 2005-06-29

Family

ID=26623299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236978A Expired - Fee Related JP3665777B2 (en) 2001-09-28 2002-08-15 Method for manufacturing glass substrate for magnetic recording medium, and method for manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JP3665777B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082138A (en) * 2004-09-14 2006-03-30 Hoya Corp Method of manufacturing glass substrate for magnetic disk, and glass substrate for magnetic disk, as well as method of manufacturing magnetic disk, and magnetic disk
JP2006315160A (en) * 2005-05-16 2006-11-24 Fuji Electric Holdings Co Ltd Finish polishing method for glass substrate of magnetic disk
JP4836731B2 (en) 2006-07-18 2011-12-14 旭硝子株式会社 Manufacturing method of glass substrate for magnetic disk
JP5319095B2 (en) * 2007-09-28 2013-10-16 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk
JP2011040145A (en) * 2009-07-17 2011-02-24 Ohara Inc Method for manufacturing substrate for information storage medium
JPWO2011021478A1 (en) * 2009-08-17 2013-01-17 コニカミノルタアドバンストレイヤー株式会社 Glass substrate manufacturing method, glass substrate, magnetic recording medium manufacturing method, and magnetic recording medium
JP5975654B2 (en) 2011-01-27 2016-08-23 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
MY165019A (en) 2011-03-31 2018-02-28 Hoya Corp Method of manufacturing a glass substrate for a magnetic disk and method of manufacturing a magnetic disk
WO2015115653A1 (en) * 2014-01-31 2015-08-06 Hoya株式会社 Manufacturing method for magnetic disk-use substrate and manufacturing method for magnetic disk

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3554476B2 (en) * 1996-12-27 2004-08-18 Hoya株式会社 Glass substrate for information recording medium, method of manufacturing the same, magnetic recording medium using the substrate, and method of manufacturing the same
JP2000076649A (en) * 1998-08-26 2000-03-14 Hitachi Ltd Magnetic disk, glass substrate and their production
JP3512702B2 (en) * 1999-03-30 2004-03-31 Hoya株式会社 Method for manufacturing glass substrate for information recording medium and method for manufacturing information recording medium
US6440531B1 (en) * 1999-05-13 2002-08-27 Nippon Sheet Glass Co., Ltd Hydrofluoric acid etched substrate for information recording medium
JP2001084578A (en) * 1999-09-09 2001-03-30 Nippon Sheet Glass Co Ltd Production of glass substrate for information recording medium

Also Published As

Publication number Publication date
JP2003173518A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
US8821735B2 (en) Manufacturing method of a glass substrate for a magnetic disk
JP6078942B2 (en) Glass substrate manufacturing method, magnetic disk manufacturing method, and polishing composition for glass substrate
JP2003036528A (en) Base for information recording medium, its manufacturing method, and information recording medium
JP3527075B2 (en) Glass substrate for magnetic recording medium, magnetic recording medium, and method for producing them
JP5386036B2 (en) Manufacturing method of glass substrate for magnetic disk
JP3512702B2 (en) Method for manufacturing glass substrate for information recording medium and method for manufacturing information recording medium
JP2013140669A (en) Method of manufacturing glass substrate for magnetic disk
JP5037975B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP3665777B2 (en) Method for manufacturing glass substrate for magnetic recording medium, and method for manufacturing magnetic recording medium
JP4562274B2 (en) Manufacturing method of glass substrate for information recording medium and manufacturing method of information recording medium
JP2008090898A (en) Manufacturing method for glass substrate of information recording medium, and manufacturing method for information recording medium
JP5635078B2 (en) Manufacturing method of glass substrate for magnetic disk
US20030077982A1 (en) Method of producing a glass substrate for a magnetic recording medium and method of producing a magnetic recording medium
JP3639277B2 (en) Glass substrate for magnetic recording medium, magnetic recording medium, and manufacturing method thereof
JP4623211B2 (en) Manufacturing method of glass substrate for information recording medium and magnetic disk using the same
JP3665731B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2004241089A (en) Manufacturing method of glass substrate for magnetic disk, and manufacturing method of the magnetic disk
JP3564631B2 (en) A method for manufacturing a glass substrate for an information recording medium, a method for manufacturing an information recording medium, a method for manufacturing a glass substrate for a magnetic disk, and a method for manufacturing a magnetic disk.
JP2004086930A (en) Method of manufacturing magnetic disk glass substrate and magnetic disk
JP2007245265A (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP5386037B2 (en) Manufacturing method of glass substrate for magnetic disk
JP3600767B2 (en) Glass substrate for information recording medium, method of manufacturing the same, magnetic recording medium using the substrate, and method of manufacturing the same
JP5859757B2 (en) Manufacturing method of glass substrate for HDD
JPH10194786A (en) Production of glass substrate for information recording medium, and production of information recording medium
WO2012132073A1 (en) Method for manufacturing glass substrate for information recording medium, and information recording medium

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

R150 Certificate of patent or registration of utility model

Ref document number: 3665777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees