JP3656715B2 - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP3656715B2
JP3656715B2 JP20990299A JP20990299A JP3656715B2 JP 3656715 B2 JP3656715 B2 JP 3656715B2 JP 20990299 A JP20990299 A JP 20990299A JP 20990299 A JP20990299 A JP 20990299A JP 3656715 B2 JP3656715 B2 JP 3656715B2
Authority
JP
Japan
Prior art keywords
liquid
light
emitting element
light emitting
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20990299A
Other languages
Japanese (ja)
Other versions
JP2001036148A (en
Inventor
勝 杉本
英二 塩浜
二郎 橋爪
秀吉 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP20990299A priority Critical patent/JP3656715B2/en
Publication of JP2001036148A publication Critical patent/JP2001036148A/en
Application granted granted Critical
Publication of JP3656715B2 publication Critical patent/JP3656715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/56Cooling arrangements using liquid coolants
    • F21V29/58Cooling arrangements using liquid coolants characterised by the coolants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Led Device Packages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は固体発光素子を用いた照明用の光源装置に関するものである。
【0002】
【従来の技術】
通常の発光ダイオード(LED)は、金属製リードフレーム上に実装されており、これをエポキシ樹脂にて埋め込んだ構造になっている。表面実装用のLEDも、セラミックまたはエポキシベースの配線基板に実装し、エポキシや射出成形用の樹脂で覆われている。
【0003】
一方、放熱を改善したLEDの例として、LEDを実装するリードフレームを大きくしたり、リード線の本数を増すことにより、外部への熱的な接続効率を高くしたものや、リードフレームの代わりに金属ベースの土台を用いたものなどがある。
【0004】
また、熱応力の緩和を目指した例として、米国特許第5,514,627号に開示されているように、ゲル状の透明物質で発光素子を覆い、更にその周囲を硬い樹脂で覆った構造のものがある。
【0005】
通常のLEDの構造では、発光素子からリード線への熱抵抗が250℃/W程度である。したがって、LEDに80mWの負荷をかけると、リード線に対して20℃程度ジャンクション温度が上昇する。照明装置としてLEDを使用する場合、通常の自然対流では、ランプ近傍の温度は室温より20℃程度は上昇する。したがって、ジャンクション温度は、60〜70℃に達する。この結果、LEDの発光効率は20〜30%低下する。
【0006】
この状況は、前述のように、LEDを実装するリードフレームを大きくしたり、リード線の本数を増すことにより、外部への熱的な接続効率を高くしたものや、リードフレームの代わりに金属ベースの土台を用いたものなどでは、若干改善されている。すなわち、熱抵抗が125℃/W程度になっている。
【0007】
LEDの放熱の問題点は、このような放熱特性を改良したLEDにおいても、LEDの底面からのみ放熱しているということである。LEDは、他のLSIなどの素子と異なり、光を外部に放射する必要性から、全体を不透明物質で覆う訳にはいかない。そのために、底面以外は、熱伝導の良くない透明な樹脂で覆われているのである。
【0008】
1個のLEDに多くの電流を流して、少ない発光素子数で、大きな光束を得ようとした場合、発光素子から生じた熱を如何に逃がすかが重要な課題となる。LEDはPNジャンクション部の温度が上がると効率が大幅に低下し、寿命も短くなるからである。
【0009】
さらに、黄緑より長波長の非常に明るいLEDは、GaAsの基板を用いて作られているが、これが非常に脆弱であり、外部からの応力に弱い。発熱によって、発光素子とその周辺物質の両方が膨張するが、それらの熱膨張率が異なると、固体同士の場合、大きな応力が生じる。これがLEDの点滅によって、繰り返し圧縮・引っ張りのサイクルがあると、発光素子は大きなダメージを被る。
【0010】
そこで、本発明者らは、発光素子の熱を効率的に外部へ逃がし、発光効率を高めると同時に、熱応力によって発光素子がダメージを受けることを防止できるような光源装置を考案した
【0011】
本発明者らの考案した光源装置では、絶縁性かつ不活性で透光性を有する液体に発光素子を浸漬するような構造にする。発光素子を従来のように固体中にモールドしたのでは、発光素子は非常に小さく、表面積が小さいので、熱伝導で熱を逃すには限度があった。しかしながら、流動性のある液体に浸漬すれば、対流によって発光素子から熱を輸送できるので、熱の輸送量が大きくなる。従来は発光素子からリードフレームへのみ熱が輸送されていたが、本発明者らの考案した光源装置では、発光素子から全ての方向へ放熱できるようになる。これによって、発光素子の6面が全て放熱に寄与することになるから、放熱効果は6倍以上に向上する。
【0012】
さらに発光素子の周囲に充填されるのが液体であるので、液体を発光モジュールの各部へ流入させたり、あるいは外部へ導出させることによって、液体の熱をモジュールの外へ放熱させることも容易である。
【0013】
また、発光素子を浸漬するので、用いる液体は絶縁性である必要性があるが、これによって、モジュール筺体と発光素子との間で熱交換を十分に行いながら、しかも、十分な絶縁を保つことが可能となった。
【0014】
さらに、従来は、発光素子からの光による光化学反応によってモールド樹脂を変質劣化させていたが、このような問題も解決される。確かに、液体も長時間の光の照射で劣化すると思われるが、液体は流動するので、樹脂モールドの場合のように、発光素子のごく近傍で反応が進み、着色が生じ、それが光の吸収を促進して、加速度的に劣化するというようなことが無い。液体の総量が多ければ、劣化は大きな体積中に平均化されてしまい、殆ど問題にならない。
【0015】
また、発光素子の周囲に充填されるのが液体であるので、僅かな空間が設けられてさえいれば、熱膨張などによって、発光素子に応力を及ぼすことは無く、発光素子の劣化を促進させないのは言うまでもない。さらに、液体では、様々な物質を混合、溶解、分散させることが可能である。これらの作用によって、様々な応用が可能となる。
【0016】
【発明が解決しようとする課題】
本発明は、このような点に鑑みてなされたものであり、液体中に分散させた波長変換性もしくは光拡散性を有する粉体と液体の比重の違いを利用して、発光色や光の散乱具合を変えることができる光源装置を提供しようとするものである。
【0017】
【課題を解決するための手段】
請求項1の光源装置は、発光素子が絶縁性かつ不活性で透光性を有する液体に浸漬された光源装置であって、波長変換性もしくは光拡散性を有し、液体よりも比重が十分に大き い粉体を液体中に分散され、粉体が沈殿する部分よりも上方に発光素子が配置され、発光素子の前方にレンズが配置されており、レンズと発光素子の間に液体が満たされていることを特徴とする。
【0018】
請求項2の光源装置は、請求項1において、装置本体に振動を与える手段を備えることを特徴とする。
【0019】
請求項3の光源装置は、発光素子が絶縁性かつ不活性で透光性を有する液体に浸漬された光源装置であって、波長変換性もしくは光拡散性を有し、常温では液体の比重と略等しく、高温では液体の比重よりも相対的に重く沈殿傾向になる粉体を液体中に分散され、粉体が沈殿する部分よりも上方に発光素子が配置され、発光素子の前方にレンズが配置されており、レンズと発光素子の間に液体が満たされていることを特徴とする。
【0020
【発明の実施の形態】
前提となる構成
に本発明の前提となる構成を示す。LEDのような固体発光素子1を金属ベースの配線基板2上に実装し、穴の空いた枠体3を基板2に固着し、液体4を入れた後に、透明な樹脂で成形されたレンズ5を有するレンズ板6を固着する。このとき用いる液体4は、無色な不活性液体であり、フッ素系不活性液体がこれに使用できる。液体の自然対流によって、発光素子1や基板2からの熱輸送が促進され、更に、発光素子1の熱応力による劣化や封入物質の劣化着色も殆ど無くなる。
【0021】
図10に本発明用いる波長変換物質の特性図を示す。図中、Bは青色LEDの発光色、Yは波長変換物質としての蛍光体の発光色、Cは比較対照のために示す白熱灯の発光色のスペクトラムである。図9の構造において、液体中に波長変換をすることのできる物質を分散させる。例えば、(Ya,Gd1-a 3 (Alb ,Ga1-b 5 12:C5 3+のような蛍光体を用いる。発光素子には、青色に発光するものを用いる。上記の蛍光体は、青色の光を吸収して黄色く光るので、両方の光が混合されて、白色光を生じる。蛍光体の分散量を変えると、青色と黄色の比率が変化するので、発光色を変化させることができる。
【0022】
図11は本発明よる発光色の設計可能範囲を示す色度図である。図中、Fは蛍光体の発光色範囲、Bは青色LEDの発光色、Tは発光色の色温度を示している。本では、上述の図10において、蛍光体の種類と分散量を変化させることにより、破線で示す扇形内部の色を表現することが可能であり、色度図内の広い範囲の色を出すことができる。これによって、装飾性に富んだ照明用光源を得ることが出来る。
【0023
また、液体に分散させる物質は、単に、光を散乱するのみでも良い。例えば、シリカの微粒子などが分散されていればよい。LEDの発光色が単色の場合、この微粒子のサイズによって、前方散乱される割合が変化するから、これによって配光を制御することが可能である
【0024
(実施例
及び図に本発明の実施例を示す。本実施例では、光散乱性の粉体を分散した液体を用いる。図中、液体4中に描かれた黒丸は光散乱性の粉体を示す。ここで、粉体の比重は、液体4の比重よりも十分に大きいものとする。さらにレンズ5を用いて、レンズ5の焦点位置に発光素子1が配置されるようにする。12は装置本体、13は電源等である。このような構造のランタンを考える。このランタンは、静かに置いておくと、図に示すように、光散乱性の粉体が沈殿し、液体4は透明になり、発光素子1からの光はレンズ5によって集光される。一方、振動を与えると、図に示すように、粉体が液体4中に拡散されるので、発光素子1からの光が散乱され、レンズ5の集光作用が十分に機能せず、散光が得られる。ここで用いる粉体の比重は液体の比重よりも軽いものを用いても同様の効果を得ることができる。
【0025
(実施例
本実施例では、図及び図に示す実施例において、光散乱性の粉体に代えて、波長変換性を有する粉体を分散した液体を用いる。図中、液体4中に描かれた黒丸は波長変換性を有する粉体を示す。ここで、粉体の比重は、液体の比重よりも十分に大きいものとする。さらにレンズ5を用いて、レンズ5の焦点位置に発光素子1が配置されるようにする。このような構造のランタンを考える。このランタンは、静かに置いておくと、図に示すように、波長変換性の粉体が沈殿し、液体4は透明になり、発光素子1からの発光色そのものが得られる。一方、振動を与えると、図に示すように、粉体が液体4中に拡散されるので、発光素子1からの光の一部が波長変換され、元の光と混合した光が得られる。ここで用いる粉体の比重は液体の比重よりも軽いものを用いても同様の効果を得ることができる。
【0026
(実施例
及び図に本発明の実施例を示す。本実施例では、上述の実施例において、粉体と液体の比重が十分に異なり、余分な粉体が収納される部分14を設けておくことを特徴とする。ここで、粉体の比重は、液体の比重よりも十分に大きいものとする。図に示すように、装置本体12を縦置きにすると、余分な粉体が沈殿し、発光素子1からの光は散乱されないので、レンズ5によって集光され、ビーム光が得られる。一方、図に示すように、装置本体12を横置きにすると、粉体が発光素子1の周囲に集まり、発光素子1からの光が散乱されるので、レンズ5の集光作用が十分に機能せず、拡散光が得られる。これにより、光源装置を置く方向によって、散光・集光を選択できる。ここで用いる粉体の比重は液体よりも軽いものを用いても同様の効果を得ることができる。
【0027
これらの実施例は、例えば、図及び図に示すように、コンセント差し込み式、充電式の非常用ランタンなどとして実現する。図〜図において、13は充電回路等を含む電源部であり、図に示す栓刃15の収納部を兼ねている。また、振動を与える実施形態の場合には、小型のバイブレータを収納していても良い。
【0028
(実施例
実施例において、波長変換性を有する粉体と液体の比重が十分に異なり、余分な粉体が収納される部分を設けておけば、光源を置く方向によって、波長変換作用の有無を選択できるので、光色を選択することができる。粉体の比重が液体の比重よりも重い場合の作用説明図を図と図に示すが、ここで用いる粉体の比重は液体よりも軽いものを用いても同様の効果を得ることができる。
【0029
(実施例
実施例において、比重の異なる複数の物質を液体中に分散させる。例えば、1つの粉体として、波長変換機能を有し、液体よりも比重が大きいものを用いると共に、他の粉体として、光散乱機能を有し、液体よりも比重が小さいものを用いる。発光素子が青色LEDであり、波長変換機能を有する粉体が図10で述べた蛍光体である場合、振動中は白色散光となり、振動が止まると、蛍光体の沈殿により青色散光となり、その後、光散乱性の粉体が浮き上がることにより、液体は透明となり、青色集光へと変化する。
【0030
(実施例
及び図に本発明の実施例を示す。図は常温時、図は高温時の状態を示している。図中、液体4中に描かれた黒丸は波長変換性あるいは光拡散性を有する粉体を示す。液体4の比重は温度によって変化するので、周囲温度の変化、発光素子1の温度変化、積極的に温度を変化させる機構(ヒーターや冷却装置)を用いて、上述の波長変換性の粉体や光拡散性の粉体を液体中に分散させたり、あるいは沈殿させたりして、光色や配光を変化させることができる。
【0031
例えば、図10に示した青色から黄色への波長変換性の蛍光体を液体中に分散させておけば、周囲温度が上がると、液体の温度も上がり、液体の比重が小さくなるので、蛍光体の比重は相対的に大きくなり、沈殿傾向になる。この結果、周囲温度の低いときよりも青っぽい涼しい色の発光が得られる。周囲温度が低いときには、この逆で、黄色い光が多くなり、暖色になる。これによって、周囲温度によって、光色が自動的に変化する照明装置が得られる。
【0032
【発明の効果】
本発明によれば、発光素子が絶縁性かつ不活性で透光性を有する液体に浸漬されたことにより、発光素子の冷却効果が高まり、効率、寿命が向上した。また、熱応力による劣化が無くなった。また、従来のような樹脂着色などによる劣化も無くなった。さらに液体中に波長変換性光散乱性物質を分散、混合することによって、多様な機能が付与できるようになった。
【図面の簡単な説明】
【図】 本発明の実施例の静置時の断面図である。
【図】 本発明の実施例の振動時の断面図である。
【図】 本発明の実施例の縦置き時の断面図である。
【図】 本発明の実施例の横置き時の断面図である。
【図】 本発明の実施例の正面側から見た斜視図である。
【図】 本発明の実施例の背面側から見た斜視図である。
【図】 本発明の実施例の常温時の断面図である。
【図】 本発明の実施例の高温時の断面図である。
【図】 本発明の前提となる構成の断面図である。
【図10】 本発明用いる波長変換物質の特性図である。
【図11】 本発明よる発光色の設計可能範囲を示す色度図である。
【符号の説明】
1 発光素子
2 基板
3 枠体
4 液体
5 レンズ
6 レンズ板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light source device for illumination using a solid light emitting element.
[0002]
[Prior art]
A normal light emitting diode (LED) is mounted on a metal lead frame and has a structure embedded with an epoxy resin. The LED for surface mounting is also mounted on a ceramic or epoxy-based wiring board and covered with epoxy or resin for injection molding.
[0003]
On the other hand, as an example of an LED with improved heat dissipation, the lead frame on which the LED is mounted is enlarged or the number of lead wires is increased to increase the thermal connection efficiency to the outside. There are things using a metal base.
[0004]
Further, as an example aiming at mitigating thermal stress, as disclosed in US Pat. No. 5,514,627, a structure in which a light-emitting element is covered with a gel-like transparent substance and the periphery thereof is covered with a hard resin. There are things.
[0005]
In a normal LED structure, the thermal resistance from the light emitting element to the lead wire is about 250 ° C./W. Therefore, when a load of 80 mW is applied to the LED, the junction temperature rises by about 20 ° C. with respect to the lead wire. When an LED is used as the lighting device, the temperature in the vicinity of the lamp rises by about 20 ° C. from room temperature in normal natural convection. Therefore, the junction temperature reaches 60-70 ° C. As a result, the luminous efficiency of the LED is reduced by 20 to 30%.
[0006]
As described above, this is because, as described above, the lead frame for mounting the LED is enlarged or the number of lead wires is increased to increase the thermal connection efficiency to the outside, or the metal base is used instead of the lead frame. Some improvements have been made in the case of using the foundation. That is, the thermal resistance is about 125 ° C./W.
[0007]
The problem of LED heat dissipation is that even in an LED with improved heat dissipation characteristics, heat is radiated only from the bottom surface of the LED. Unlike other elements such as LSI, an LED cannot be entirely covered with an opaque material because it needs to emit light to the outside. For this reason, the portion other than the bottom surface is covered with a transparent resin having poor heat conduction.
[0008]
When a large amount of current is passed through one LED to obtain a large luminous flux with a small number of light emitting elements, how to release heat generated from the light emitting elements is an important issue. This is because when the temperature of the PN junction is increased, the efficiency of the LED is greatly reduced and the lifetime is shortened.
[0009]
Furthermore, a very bright LED having a longer wavelength than yellowish green is made using a GaAs substrate, which is very fragile and weak to external stress. Although both the light emitting element and the surrounding material expand due to heat generation, if the coefficients of thermal expansion are different, a large stress is generated in the case of solids. If the LED is blinked and there are repeated compression / pulling cycles, the light emitting element suffers great damage.
[0010]
In view of this , the present inventors have devised a light source device that can efficiently release the heat of the light emitting element to the outside, thereby improving the light emitting efficiency and preventing the light emitting element from being damaged by thermal stress.
[0011]
In the light source apparatus devised by the inventors of the present invention, a structure such as immersing the light-emitting element in a liquid having a light-transmitting in insulating and inert. When the light emitting element is molded in a solid as in the conventional case, the light emitting element is very small and has a small surface area, so that there is a limit in releasing heat by heat conduction. However, when immersed in a fluid liquid, heat can be transported from the light-emitting element by convection, so that the amount of heat transport increases. Conventionally, heat is transported only from the light emitting element to the lead frame. However, the light source device devised by the present inventors can radiate heat from the light emitting element in all directions. As a result, all six surfaces of the light emitting element contribute to heat dissipation, so that the heat dissipation effect is improved six times or more.
[0012]
Furthermore , since it is a liquid that fills the periphery of the light emitting element, it is easy to dissipate the heat of the liquid to the outside of the module by flowing the liquid into each part of the light emitting module or by letting it out to the outside. is there.
[0013]
In addition, since the light emitting element is immersed, the liquid to be used needs to be insulative. By this, sufficient heat exchange is performed between the module housing and the light emitting element, and sufficient insulation is maintained. Became possible.
[0014]
Further, conventionally, the mold resin is altered and deteriorated by a photochemical reaction by light from the light emitting element, but such a problem is also solved. Certainly, it seems that the liquid will also deteriorate due to long-term light irradiation, but since the liquid flows, the reaction proceeds in the very vicinity of the light emitting element as in the case of the resin mold, and coloring occurs, which is Absorption is accelerated and there is no such thing as deterioration at an accelerated rate. If the total amount of liquid is large, the degradation will be averaged over a large volume, which is hardly a problem.
[0015]
Further, since the liquid filled around the light emitting element is liquid, as long as a small space is provided, the light emitting element is not stressed by thermal expansion or the like, and the deterioration of the light emitting element is not promoted. Needless to say. Furthermore, in a liquid, various substances can be mixed, dissolved, and dispersed. These applications enable various applications.
[0016]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and by utilizing the difference in specific gravity between the powder having wavelength conversion property or light diffusibility dispersed in the liquid and the liquid, the emission color and the light An object of the present invention is to provide a light source device capable of changing the degree of scattering.
[0017]
[Means for Solving the Problems]
The light source device according to claim 1 is a light source device in which a light emitting element is immersed in an insulating, inert, and translucent liquid, and has a wavelength conversion property or a light diffusion property, and has a specific gravity more sufficient than the liquid. to be dispersed has a size powder in a liquid, powder emitting element is arranged above the portion that precipitates is arranged lens is in front of the light emitting element, the liquid is less than between the lens and the light emitting element It is characterized by being.
[0018]
According to a second aspect of the present invention, the light source device according to the first aspect further includes means for applying vibration to the apparatus main body.
[0019]
The light source device according to claim 3 is a light source device in which a light emitting element is immersed in an insulating, inert, and translucent liquid, and has a wavelength conversion property or light diffusibility, and has a specific gravity of the liquid at room temperature. The powder, which is substantially equal and is relatively heavier than the specific gravity of the liquid at high temperatures and tends to settle, is dispersed in the liquid, the light emitting element is disposed above the portion where the powder is precipitated, and the lens is disposed in front of the light emitting element. And a liquid is filled between the lens and the light emitting element.
[00 20 ]
DETAILED DESCRIPTION OF THE INVENTION
( Prerequisite configuration )
FIG. 9 shows the premise of the present invention. A solid-state light emitting device 1 such as an LED is mounted on a metal-based wiring board 2, a frame body 3 with holes is fixed to the board 2, a liquid 4 is poured, and then a lens 5 formed of a transparent resin. The lens plate 6 having the above is fixed. The liquid 4 used at this time is a colorless inert liquid, and a fluorine-type inert liquid can be used for this. The natural convection of the liquid promotes heat transport from the light emitting element 1 and the substrate 2, and furthermore, deterioration due to thermal stress of the light emitting element 1 and deterioration coloring of the encapsulated material are almost eliminated.
[0021]
Shows a characteristic diagram of a wavelength conversion material for use in the present invention in FIG. 10. In the figure, B is the emission color of the blue LED, Y is the emission color of the phosphor as the wavelength converting material, and C is the spectrum of the emission color of the incandescent lamp shown for comparison. In the structure of FIG. 9, a substance capable of wavelength conversion is dispersed in a liquid. For example, a phosphor such as (Ya, Gd 1-a ) 3 (Al b , Ga 1-b ) 5 O 12 : C 5 3+ is used. A light emitting element that emits blue light is used. Since the above phosphor absorbs blue light and shines yellow, both lights are mixed to generate white light. When the amount of phosphor dispersion is changed, the ratio of blue to yellow changes, so that the emission color can be changed.
[0022]
Figure 11 is a chromaticity diagram showing the design range of the emission color in accordance with the present invention. In the figure, F indicates the emission color range of the phosphor, B indicates the emission color of the blue LED, and T indicates the color temperature of the emission color. In this example , in FIG. 10 described above, by changing the type and dispersion amount of the phosphor, it is possible to represent the color inside the sector indicated by the broken line, and to produce a wide range of colors in the chromaticity diagram. be able to. This makes it possible to obtain an illumination light source rich in decoration.
[00 23 ]
In addition, the substance dispersed in the liquid may simply scatter light. For example, silica fine particles or the like may be dispersed. When the emission color of the LED is a single color, the ratio of forward scattering varies depending on the size of the fine particles, so that it is possible to control the light distribution .
[00 24 ]
(Example 1 )
1 and 2 show a first embodiment of the present invention. In this embodiment, a liquid in which light scattering powder is dispersed is used. In the figure, black circles drawn in the liquid 4 indicate light scattering powder. Here, the specific gravity of the powder is sufficiently larger than the specific gravity of the liquid 4. Further, the lens 5 is used so that the light emitting element 1 is disposed at the focal position of the lens 5. Reference numeral 12 denotes an apparatus main body, and 13 denotes a power source. Consider a lantern with such a structure. If this lantern is placed gently, as shown in FIG. 1 , light scattering powder precipitates, the liquid 4 becomes transparent, and the light from the light emitting element 1 is collected by the lens 5. On the other hand, when the vibration is applied, the powder is diffused into the liquid 4 as shown in FIG. 2 , so that the light from the light emitting element 1 is scattered and the condensing function of the lens 5 does not function sufficiently, and the diffused light is scattered. Is obtained. Even if the specific gravity of the powder used here is lighter than the specific gravity of the liquid, the same effect can be obtained.
[00 25 ]
(Example 2 )
In this embodiment, in the first embodiment shown in FIGS. 1 and 2, in place of the light scattering of the powder, use of a liquid obtained by dispersing powder having a wavelength conversion property. In the figure, black circles drawn in the liquid 4 indicate powders having wavelength conversion properties. Here, the specific gravity of the powder is sufficiently larger than the specific gravity of the liquid. Further, the lens 5 is used so that the light emitting element 1 is disposed at the focal position of the lens 5. Consider a lantern with such a structure. If this lanthanum is placed gently, as shown in FIG. 1 , the wavelength-converting powder precipitates, the liquid 4 becomes transparent, and the emission color itself from the light-emitting element 1 is obtained. On the other hand, when vibration is applied, the powder is diffused into the liquid 4 as shown in FIG. 2 , so that a part of the light from the light-emitting element 1 is wavelength-converted and light mixed with the original light is obtained. . Even if the specific gravity of the powder used here is lighter than the specific gravity of the liquid, the same effect can be obtained.
[00 26 ]
(Example 3 )
3 and 4 show a third embodiment of the present invention. The present embodiment is characterized in that the specific gravity of the powder and the liquid is sufficiently different from those in the first embodiment, and a portion 14 for storing the excess powder is provided. Here, the specific gravity of the powder is sufficiently larger than the specific gravity of the liquid. As shown in FIG. 3 , when the apparatus main body 12 is placed vertically, excess powder precipitates and light from the light emitting element 1 is not scattered, so that it is condensed by the lens 5 and beam light is obtained. On the other hand, as shown in FIG. 4 , when the apparatus main body 12 is placed horizontally, the powder gathers around the light emitting element 1 and the light from the light emitting element 1 is scattered, so that the light condensing function of the lens 5 is sufficient. Does not function and diffuse light is obtained. Thereby, depending on the direction in which the light source device is placed, it is possible to select light scattering / condensing. The same effect can be obtained even if the specific gravity of the powder used here is lighter than the liquid.
[00 27 ]
These examples are, for example, as shown in FIGS. 5 and 6, outlet bayonet, realized as such emergency lantern rechargeable. 1 to 4 , reference numeral 13 denotes a power supply unit including a charging circuit and the like, which also serves as a storage unit for the plug blade 15 shown in FIG. 6 . In the case of an embodiment that applies vibration, a small vibrator may be housed.
[00 28 ]
(Example 4 )
In Example 2 , if the specific gravity of the wavelength-converting powder and liquid is sufficiently different and a portion for storing excess powder is provided, the presence or absence of wavelength conversion action can be selected depending on the direction in which the light source is placed. So you can choose the light color. FIG. 3 and FIG. 4 are diagrams for explaining the operation when the specific gravity of the powder is heavier than that of the liquid. The same effect can be obtained even if the specific gravity of the powder used here is lighter than that of the liquid. it can.
[00 29 ]
(Example 5 )
In Examples 1 and 2 , a plurality of substances having different specific gravities are dispersed in a liquid. For example, one powder having a wavelength conversion function and having a specific gravity greater than that of a liquid is used as one powder, and another powder having a light scattering function and having a specific gravity smaller than that of a liquid is used. When the light emitting element is a blue LED and the powder having a wavelength conversion function is the phosphor described in FIG. 10 , white light is scattered during vibration, and when the vibration stops, blue light is scattered due to precipitation of the phosphor, and then When the light-scattering powder floats, the liquid becomes transparent and changes to blue light collection.
[00 30 ]
(Example 6 )
7 and 8 show a sixth embodiment of the present invention. FIG. 7 shows a state at normal temperature, and FIG. 8 shows a state at high temperature. In the figure, black circles drawn in the liquid 4 indicate a powder having wavelength conversion property or light diffusibility. Since the specific gravity of the liquid 4 changes depending on the temperature, the above-described wavelength-convertible powder or the like can be obtained using a change in the ambient temperature, a change in the temperature of the light-emitting element 1, or a mechanism (heater or cooling device) that actively changes the temperature. Light color and light distribution can be changed by dispersing or precipitating light diffusing powder in a liquid.
[00 31 ]
For example, if the wavelength-converting phosphor from blue to yellow shown in FIG. 10 is dispersed in a liquid, the liquid temperature increases and the specific gravity of the liquid decreases as the ambient temperature increases. The specific gravity is relatively large and tends to settle. As a result, light emission with a cooler blue color than when the ambient temperature is low is obtained. Conversely, when the ambient temperature is low, the amount of yellow light increases and the color becomes warm. As a result, an illumination device whose light color automatically changes depending on the ambient temperature can be obtained.
[00 32 ]
【The invention's effect】
According to the present invention, since the light-emitting element is immersed in an insulating, inert, and translucent liquid, the cooling effect of the light-emitting element is increased, and the efficiency and life are improved. In addition, there was no deterioration due to thermal stress. In addition, there is no deterioration due to resin coloring or the like as in the prior art. Further, a wavelength conversion property in the liquid, light-scattering materials distributed by mixing, various functions can now be applied.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a first embodiment of the present invention at rest.
FIG. 2 is a cross-sectional view of the first embodiment of the present invention during vibration.
FIG. 3 is a cross-sectional view of Example 3 of the present invention when placed vertically.
FIG. 4 is a cross-sectional view of Example 3 of the present invention when placed horizontally.
FIG. 5 is a perspective view of a third embodiment of the present invention viewed from the front side.
FIG. 6 is a perspective view of the third embodiment of the present invention viewed from the back side.
FIG. 7 is a cross-sectional view at a normal temperature of Example 6 of the present invention.
FIG. 8 is a cross-sectional view at a high temperature of Example 6 of the present invention.
FIG. 9 is a cross-sectional view of a configuration which is a premise of the present invention.
It is a characteristic diagram of a wavelength conversion material for use in the present invention; FIG.
11 is a chromaticity diagram showing the design range of the emission color in accordance with the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Board | substrate 3 Frame 4 Liquid 5 Lens 6 Lens plate

Claims (3)

発光素子が絶縁性かつ不活性で透光性を有する液体に浸漬された光源装置であって、波長変換性もしくは光拡散性を有し、液体よりも比重が十分に大きい粉体を液体中に分散され、粉体が沈殿する部分よりも上方に発光素子が配置され、発光素子の前方にレンズが配置されており、レンズと発光素子の間に液体が満たされていることを特徴とする光源装置。  A light source device in which a light-emitting element is immersed in an insulating, inert, and translucent liquid, and has a wavelength converting property or a light diffusing property, and a powder having a specific gravity sufficiently larger than that of the liquid. A light source characterized in that a light emitting element is disposed above a portion where powder is precipitated and a lens is disposed in front of the light emitting element, and a liquid is filled between the lens and the light emitting element. apparatus. 請求項1において、装置本体に振動を与える手段を備えることを特徴とする光源装置。  2. The light source device according to claim 1, further comprising means for applying vibration to the apparatus main body. 発光素子が絶縁性かつ不活性で透光性を有する液体に浸漬された光源装置であって、波長変換性もしくは光拡散性を有し、常温では液体の比重と略等しく、高温では液体の比重よりも相対的に重く沈殿傾向になる粉体を液体中に分散され、粉体が沈殿する部分よりも上方に発光素子が配置され、発光素子の前方にレンズが配置されており、レンズと発光素子の間に液体が満たされていることを特徴とする光源装置。  A light source device in which a light-emitting element is immersed in an insulating, inert and translucent liquid, having wavelength conversion or light diffusibility, approximately equal to the specific gravity of liquid at room temperature, and specific gravity of liquid at high temperature The powder which is relatively heavier and tends to settle is dispersed in the liquid, the light emitting element is arranged above the part where the powder is precipitated, and the lens is arranged in front of the light emitting element. A light source device in which a liquid is filled between elements.
JP20990299A 1999-07-23 1999-07-23 Light source device Expired - Fee Related JP3656715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20990299A JP3656715B2 (en) 1999-07-23 1999-07-23 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20990299A JP3656715B2 (en) 1999-07-23 1999-07-23 Light source device

Publications (2)

Publication Number Publication Date
JP2001036148A JP2001036148A (en) 2001-02-09
JP3656715B2 true JP3656715B2 (en) 2005-06-08

Family

ID=16580550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20990299A Expired - Fee Related JP3656715B2 (en) 1999-07-23 1999-07-23 Light source device

Country Status (1)

Country Link
JP (1) JP3656715B2 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674418B2 (en) * 2001-06-29 2011-04-20 パナソニック株式会社 Lighting equipment
JP2003110146A (en) * 2001-07-26 2003-04-11 Matsushita Electric Works Ltd Light-emitting device
JP4027063B2 (en) 2001-09-17 2007-12-26 松下電器産業株式会社 Lighting device
US7244965B2 (en) 2002-09-04 2007-07-17 Cree Inc, Power surface mount light emitting die package
US7775685B2 (en) 2003-05-27 2010-08-17 Cree, Inc. Power surface mount light emitting die package
KR20040047112A (en) * 2002-11-29 2004-06-05 푸 리 밍 Instant cooling light emitting diode
US20040264192A1 (en) * 2003-05-06 2004-12-30 Seiko Epson Corporation Light source apparatus, method of manufacture therefor, and projection-type display apparatus
JP2005005544A (en) * 2003-06-13 2005-01-06 Sumitomo Electric Ind Ltd White light emitting element
JP4735794B2 (en) * 2003-06-30 2011-07-27 信越半導体株式会社 Light emitting module
JP2005078966A (en) * 2003-09-01 2005-03-24 Seiko Epson Corp Light source device, manufacturing method of light source device, and projection type display device
JP3753137B2 (en) * 2003-09-04 2006-03-08 セイコーエプソン株式会社 Light source device and projector
CN100472823C (en) * 2003-10-15 2009-03-25 日亚化学工业株式会社 Light-emitting device
JP4163641B2 (en) * 2004-02-25 2008-10-08 株式会社東芝 LED element
JP4586396B2 (en) * 2004-04-07 2010-11-24 セイコーエプソン株式会社 Light source device and projector using the same
JP4471356B2 (en) 2004-04-23 2010-06-02 スタンレー電気株式会社 Semiconductor light emitting device
US7329982B2 (en) * 2004-10-29 2008-02-12 3M Innovative Properties Company LED package with non-bonded optical element
KR101142936B1 (en) 2004-12-31 2012-05-10 서울반도체 주식회사 Luminescence apparatus
KR101240999B1 (en) * 2005-04-27 2013-03-08 코닌클리즈케 필립스 일렉트로닉스 엔.브이. A cooling device for a light-emitting semiconductor device and a method of manufacturing such a cooling device
JP2006319103A (en) * 2005-05-12 2006-11-24 Nitto Kogaku Kk Cooler for light emitting diode
US7980743B2 (en) 2005-06-14 2011-07-19 Cree, Inc. LED backlighting for displays
KR100714602B1 (en) 2005-09-29 2007-05-07 삼성전기주식회사 Light emitting diode package
DE102005050947A1 (en) 2005-10-22 2007-04-26 Noctron S.A.R.L. Luminous element with at least one luminescent chip crystal
KR101614415B1 (en) 2005-12-06 2016-04-21 돌비 레버러토리즈 라이쎈싱 코오포레이션 Modular electronic displays
DE102006015377B4 (en) * 2006-04-03 2018-06-14 Ivoclar Vivadent Ag Semiconductor radiation source and light curing device
DE102006015336B4 (en) * 2006-04-03 2015-05-07 Ivoclar Vivadent Ag A semiconductor radiation source, a semiconductor radiation source light curing device, a semiconductor radiation source illumination device, and a semiconductor radiation source illumination device
DE102006015335B4 (en) * 2006-04-03 2013-05-02 Ivoclar Vivadent Ag Semiconductor radiation source and light curing device
JP5073973B2 (en) * 2006-06-21 2012-11-14 株式会社野田スクリーン Light emitting diode package
JP5073972B2 (en) * 2006-06-21 2012-11-14 株式会社野田スクリーン Light emitting diode package
US7922359B2 (en) * 2006-07-17 2011-04-12 Liquidleds Lighting Corp. Liquid-filled LED lamp with heat dissipation means
JP5239151B2 (en) 2006-12-07 2013-07-17 コニカミノルタエムジー株式会社 Inkjet recording device
CN101896766B (en) * 2007-10-24 2014-04-23 开关电灯公司 Diffuser for LED light sources
JP4990119B2 (en) * 2007-12-21 2012-08-01 シャープ株式会社 Lighting device
WO2009099605A2 (en) * 2008-02-06 2009-08-13 Light Prescriptions Innovators, Llc Transparent heat-spreader for optoelectronic applications
JP5691411B2 (en) * 2010-11-04 2015-04-01 セイコーエプソン株式会社 Lighting device and projector
JP4991001B2 (en) * 2009-12-28 2012-08-01 シャープ株式会社 Lighting device
MX2013005202A (en) * 2010-03-30 2013-11-20 Changchn Inst Of Applied Chemistry Chinese Academy Of Sciences Method, system and device for location.
JP2014053157A (en) * 2012-09-06 2014-03-20 Pioneer Electronic Corp Light-emitting device
KR101510456B1 (en) 2014-12-16 2015-04-10 정태규 A light emitting diode module device having a heat radiating structure
JP6798137B2 (en) * 2016-04-28 2020-12-09 岩崎電気株式会社 Light source unit
JP6700161B2 (en) * 2016-12-06 2020-05-27 シーシーエス株式会社 Liquid sealed LED
CN106958753A (en) * 2017-03-21 2017-07-18 超视界激光科技(苏州)有限公司 A kind of Wavelength converter and light source
JP7424175B2 (en) 2020-04-07 2024-01-30 セイコーエプソン株式会社 Electro-optical devices and electronic equipment

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4532071Y1 (en) * 1968-10-21 1970-12-08
JPS5331982U (en) * 1976-08-25 1978-03-18
JPS56142657A (en) * 1980-04-08 1981-11-07 Nec Corp Resin-sealed semiconductor device
DE3117571A1 (en) * 1981-05-04 1982-11-18 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt LUMINESCENCE SEMICONDUCTOR COMPONENT
JPH0721329Y2 (en) * 1986-11-21 1995-05-17 アルプス電気株式会社 LED array head
JPH0339844Y2 (en) * 1987-05-30 1991-08-22
JPH0230863U (en) * 1988-08-23 1990-02-27
JPH0278256A (en) * 1988-09-13 1990-03-19 Fujitsu Ltd Dipping/cooling module
JPH0273686U (en) * 1988-11-25 1990-06-05
JPH0799345A (en) * 1993-09-28 1995-04-11 Nichia Chem Ind Ltd Light emitting diode
JPH07307492A (en) * 1994-05-11 1995-11-21 Mitsubishi Cable Ind Ltd Led aggregate module and its manufacture
JPH0832120A (en) * 1994-07-19 1996-02-02 Rohm Co Ltd Surface emission type display
JPH09307040A (en) * 1996-05-15 1997-11-28 Hitachi Ltd Semiconductor device, inverter, and manufacture of semiconductor device
JPH1032122A (en) * 1996-07-12 1998-02-03 Toyo Electric Mfg Co Ltd Structure for cooling liquid-cooling type self-cooling case
JP4024892B2 (en) * 1996-12-24 2007-12-19 化成オプトニクス株式会社 Luminescent light emitting device

Also Published As

Publication number Publication date
JP2001036148A (en) 2001-02-09

Similar Documents

Publication Publication Date Title
JP3656715B2 (en) Light source device
EP2649484B1 (en) High efficiency total internal reflection optic for solid state lighting luminaires
US8884315B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP4231418B2 (en) Light emitting module and vehicle lamp
US8562161B2 (en) LED based pedestal-type lighting structure
TWI403664B (en) Lighting device
KR100757762B1 (en) Solid state lamp
JP4903199B2 (en) Optical device and lamp
CN208750635U (en) Vehicular illumination device and lamps apparatus for vehicle
US9347624B2 (en) Lighting apparatus having improved light output uniformity and thermal dissipation
JP2009538531A (en) LIGHTING DEVICE AND MANUFACTURING METHOD
JP2008027910A (en) High power led lamp with heat dissipation exhancement
JP2006237264A (en) Light emitting device and lighting apparatus
JP3112794U (en) Radiator for light-emitting diode lamp
US9982847B2 (en) Lighting device having heat dissipation element
JP4592320B2 (en) Light emitting device
KR102137143B1 (en) Lighting device
JP2005183900A (en) Light emitting device and lighting system
KR100670918B1 (en) LED lamp having heat release structure
KR101960033B1 (en) Lighting device
JP2005135983A (en) Light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees