JP3626967B2 - Connected electric vehicle - Google Patents

Connected electric vehicle Download PDF

Info

Publication number
JP3626967B2
JP3626967B2 JP19217099A JP19217099A JP3626967B2 JP 3626967 B2 JP3626967 B2 JP 3626967B2 JP 19217099 A JP19217099 A JP 19217099A JP 19217099 A JP19217099 A JP 19217099A JP 3626967 B2 JP3626967 B2 JP 3626967B2
Authority
JP
Japan
Prior art keywords
power
electric vehicle
vehicle
car
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19217099A
Other languages
Japanese (ja)
Other versions
JP2000350311A (en
Inventor
一路 藤岡
Original Assignee
一路 藤岡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一路 藤岡 filed Critical 一路 藤岡
Priority to JP19217099A priority Critical patent/JP3626967B2/en
Publication of JP2000350311A publication Critical patent/JP2000350311A/en
Application granted granted Critical
Publication of JP3626967B2 publication Critical patent/JP3626967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【産業上の利用分野】
遊園地,観光地でのカート,駐車場・公道での自動車,電車
【従来の技術】
走りながら電気の供給を受ける乗物として、典型的なものとして電車があるが、長い架線が必要、車両は単独行動が出来ない、車両音が大きい、などの欠点がある。
最近、ハイブリッド車と称する、ガソリンエンジンと電気モータを併用する自動車があるが、排気ガス0とは言えず、かつコストが高い。
燃料電池も年々改良されているが、燃料を作る施設が要る、重いなどの欠点がある。
一方、バッテリ,モータだけの電気自動車〈EV車〉は環境に良いが、内蔵エネルギーが小さく、充電を何回もしないと遠距離走行には耐えられない。
路面に誘導コイルを埋設し、自動車の走行中、(あるいは交差点やお店で停止中)エネルギーの補給を受ける技術もあるが、埋設場所が多く必要で、走りながらでの補給量はすくない、などの欠点があった。
【発明が解決しようとする課題】
エネルギーを全て搭載する乗物〈自動車、飛行機等〉は、公害、燃費重量、で問題がある。(内部エネルギー型)
エネルギーを全て外部から供給するのは(電車等)設備がおおがかりになる。〈外部エネルギー型〉
従来の電気自動車(EV車)を基本とし、走行中でも大きなエネルギーを補給でき、かつ、(エネルギー補給用の)設備費が小さくて済む方法を考案する。(内部・外部エネルギー併用型)
【課題を解決するための手段】
図1は、本発明による電気自動車(以下EV車という)の道路面での運用概要図の1例である。
同図で、1は給電盤、2は接触子又は誘導子、3はEV車、4は連結棒(板)、5は通信子である。給電盤1は、商用電源、ソーラ電源、バッテリ、などを基にして直流電圧(または高周波電圧)を接触子(または誘導子)2を通して連結棒4、又はEV車内蔵のバッテリに供給する。
同図で、EV車3が単独に運転されている時は、連結棒4は車体底部に折りたたまれていて、従来のEV車として利用できる。(この場合でも、給電盤1よりエネルギーはもらえるが、その値は連結の場合の数十分の一である。)
EV車3間の連結・離脱は自動的におこなわれる。
すなわち、運転者は自動運転の希望の時は、車内のキーボードにより行き先を指定して“自動走行”スイッチをONにする。
この情報は、1ないし2個の通信子5を通して他のEV車に伝達される。
もし、該他のEV車が、つながってほしいEV車(以下EV1とする)であった時は、伝達された情報より、つながりたいEV車(以下EV2とする)の位置・方向を基に、誘導して連結可能かどうか計算し、可能な場合のみ自動運転のためのデータをEV2に逆送する。(EV2に電子カメラを搭載して、EV1の接続部をパターン認識して連結してもよい)
自動運転により、車間がある近さまで近づくと、車底の連結棒を伸ばす。
車間がさらに近づくと、連結作業は終了とみなされ、以後はEV1の動きに追従するようEV2は自動運転される。(ただし、ブレーキは手動可)
図2は、連結終了後の状態の1例を示している。
同図、左部のEV1より伸びた連結棒6,7は、同図、右部のEV2の連結部に接触している。(電気的に連結)
図3に、連結時の処理フローチャート例を示す。
一方、離脱はEV1またはEV2のどちらかの“自動走行”から“手動運転”へのスイッチ情報でおこなわれる。
EV1からこの情報が出されると、後続車EV2はブレーキがかかり、車間距離を広げ、連結棒を縮めて完了する。
EV2からこの情報が出されると、まず、EV1に知らされ、上記と同様に離脱がおこなわれる。
本発明の第一は、以上のように、EV車に連結棒4(電力線)を設けたことにある。
このように連結すると、給電盤側の接触子2の長さが例え短くても、連結棒を伝わり、全てのEV車に電力が送られる。(図1では、全連結棒およびEV車の底部の受電棒は常に接触子2と接し、走行中でも長時間受電できる)
さて、連結棒4は、電力を各EVに共通に供給するだけでなく、自動運転を可能にするセンサーを兼用できることを図2によって説明しよう。
先行車EV1の右連結棒6、左連結棒7は、後続車EV2のバネ8,9をそれぞれ押すが、そのときの縮み量をそれぞれL1,L2とし、また最大最小の縮み量をそれぞれLmax,Lminとすると、自動運転は基本的には
Lmin<L1およびL2<Lmax
になるよう、後続車EV2の左右のモータ、ハンドルを自動制御すれば、よい。(先行車EV1に自動追尾)
L1およびL2>LmaxのときはEV2は停止すればよい。
L1およびL2<Lminのときは、連結がはずれたか、EV2が先行車とみなされる。
つぎに、自動ハンドリングの制御について述べる。
直角方向のバネ10,11の縮み量をL3,L4とすると、L1>Lminでかつ、L3>Lminの場合は右折、L2>LminでかつL4>Lminの場合は左折の、それぞれ自動ハンドリング信号をEV2内の制御装置に与えればよい。(ただし、L3,L4が急激に変化したときは、異常とみなし、緊急停止の制御をおこなう。)
さて、今まで述べた例は、接触法により給電盤よりEV車に電力を供給し、また、連結は棒又は板のような硬い物で行っていた。
図3は、非接触法で給電し、柔らかくリール状に巻かれた連結帯で連結しながら走行するEV車の状態を示す、他の例である。
同図で、1は給電盤で(本図には記載していないが)、バッテリと発振機が内蔵され、入力線としては、商用電源線、ソーラパネルからの線などからなり、出力としては、高周波コイル13がつながっている。
高周波コイル13は、本図では前後の2つのコイルからなり、その間隔は車間距離がのぞましいが、4−5mぐらいでも良い。
また、このコイルはゴムシートや樹脂シートの内部に埋め込んでもよい。(また、給電盤1の設置間隔は数百メートルごとでよい。)
コイル14は、給電盤1よりの高周波電力を誘導で受電するためのもので、EV車3の底部いっぱいに張り巡らされている。(進行方向に長く)
4は連結のための電力線またはフレキシブルな銅帯等であり、バネの力で、単独で走行中はEV車の後部に巻き取られているが、連結時には図のように、後続車に引き出されて、車間距離を保ちながら運行されている。
この図にしたがって、まず動作を説明する。
EV車3の連結・離脱は、ほぼ前回説明した通りでも良い。
まず、給電気側の通信子12とEV車側の通信子5とが通信し、丁度コイル13の上を通過するよう、EV車に運転のための制御信号を送り、更に近づいたら、給電盤1はコイル13に給電を開始する。
この高周波電力はEV車3側のコイル13により受電後、DC電圧(直流電圧)に変えられ、受電棒20に送られる。
受電棒20上の電力は、自分のモータ駆動やバッテリ貯蓄に利用されるが、同時に他のEV車にも同じように利用される。
EV車が更に進むと、コイル14が給電盤1の左のコイル13から離れ、電力受電が途絶えるようにみえるが、このとき、右のコイル13が次のEV車のコイル14にさしかかるので、電力受電が最後尾のEV車まで途絶えない。
さて、今回の方式の連結は、より具体的に、どうなっているのか述べる。
図4は、リール式の連結方式の原理を示す1例で、上部は連結前を、下部は連結終了後の状態を示す。
同図で、EV車3が単独で運転されているときは、連結板4はバネ16の力により、中心棒15に巻き取られている。
受電棒20と連結板4とは電気的に接続されていて、この15,16,17,20はこの図では1組であるが、プラス・マイナス用に2組、設けても良いし、連結板を2枚に分割したものを1組、設けてもよい。
前述したように、2台のEV車3が連結する条件が整った時、図4の右上のEV車3は自動的に運転され、同図の左上のEV車に静かに近づき、接触棒17がソケット18,19のなかに収まってから、今度は逆に静かに離れ車間距離になると、連結は終了となる。
図5は、連結板が蛇腹状の場合である。
単独運転のときは、連結板4は折りたたまれてEV車3内部に収納されているが、連結のときは、同図下図のように後続車に引き出される。
以上説明したように、EV車は連結され、少なくても後続車は自動運転されるが、自動運転のためのデータは、前述した連結棒自身のほか、通信子5同士や、給電盤の通信子12と通信子5、または人工衛星と通信子5との送受信、で取得される。
自動運転のメリットは、電力の自動供給のほか、寝ていても遠隔地まで行けるとか、無人で呼び出すことも可能とかがあるが、このシステムを公道で実施するには、安全性の検証、道路交通法の改正などの大きな問題がある。当初は、遊園地、工場内敷地、ゴルフ場、観光地などで運用するのがよい。安全性の確保の1つに、EV車にカメラ・マイクを設け、進路妨害の車などの映像・音声を撮り、給電盤や公衆回線への伝送(通信子5による)を設けるのが望ましい。
つぎに、各部分での電力分布を検討する。
EV車1台は、3.3kVA消費するとする。20台の連結でのトータル電力は66kVA。1台の車長+車間が6.5mとすると、全体で130mになる。また、300mごとに1台、給電盤1があるとする。
100Km/時で走行すると、給電時間は4秒、非給電時間は約5秒で(この区間は、EV車の慣性エネルギーまたは内部バッテリで走行)つぎの給電盤に到達する。
EV車の電圧は、危険性、電気素子の耐圧性から200Vとする。電流は、1台あたり16.5Aであり、全体では330Aとなる。
(充電も同じ量おこなうと、走行+充電=660A)
従って、給電盤の電力は、66kVA(4秒);0kVA(5秒)なので、66*4/(4+5)=29.3kVAあればよい。(4/9だけ補助の時)
ところで、連結しないで単独で受電した場合はどうであろうか。
20分の1になるので16.5Aを20倍にすれば理論的には連結の場合と同じ電力となり、連結の必要がないようにみえる。
しかし、電流が非常に大きいと配線、半導体、の損失が大きく、また、バッテリ充電も難しいので、実際上は、つかえない。
くどいようだが、給電盤は、公道に均等に設置する必要も無い(あればなお良いと言う程度)し、ドライブインや駐車場に設置しても良い。
【図面の簡単な説明】
【図1】:連結棒により走行の電気自動車 概要図
【図2】:連結部〈後続車先頭部〉とバネセンサー 概要図
【図3】:連結処理時のフローチャート例
【図4】:連結板〈又は線〉により走行の電気自動車 概要図
【図5】:連結板による連結部〈リール式〉概要図
【図6】:連結板による連結部〈蛇腹式〉概要図
【符号の説明】
1:給電盤
2:接触子
3:電気自動車(EV車 またはソーラーカー)
4:連結〈棒 または板 または線〉
5:通信子〈電波、又は超音波、又は光 送受信機〉
6:左連結棒
7:右連結棒
8:進行方向左バネ
9:進行方向右バネ
10:左直角方向バネ
11:右直角方向バネ
12:給電盤の通信子(電波、又は超音波、又は光 送受信機)
13:高周波コイル
14:受電コイル
15:中心棒
16:巻き戻しバネ
17:接触棒
18:ソケット左 19:ソケット右
20:共通電力線
[Industrial application fields]
Amusement parks, carts at sightseeing spots, parking lots, cars on public roads, trains [conventional technology]
A typical example of a vehicle that is supplied with electricity while running is a train. However, there are drawbacks such as a long overhead line, a vehicle that cannot operate independently, and a loud vehicle sound.
Recently, there is an automobile called a hybrid car that uses both a gasoline engine and an electric motor. However, it cannot be said that exhaust gas is 0, and the cost is high.
Fuel cells have also been improved year by year, but they have drawbacks such as the need for a facility for producing fuel and heavy fuel cells.
On the other hand, an electric vehicle <EV car> with only a battery and a motor is good for the environment, but its built-in energy is small, and it cannot withstand long-distance running unless it is charged many times.
There are technologies to embed induction coils on the road surface and receive energy supply while the car is running (or stopped at intersections or shops), but it requires a lot of burial space and the amount of replenishment while running is not enough. There were drawbacks.
[Problems to be solved by the invention]
Vehicles (cars, airplanes, etc.) that carry all their energy have problems with pollution and fuel consumption weight. (Internal energy type)
The supply of all energy from the outside (trains, etc.) is important. <External energy type>
Based on a conventional electric vehicle (EV vehicle), a method is devised that can replenish a large amount of energy even while traveling and that the equipment cost (for energy replenishment) can be reduced. (Internal / external energy combined type)
[Means for Solving the Problems]
FIG. 1 is an example of an operation outline diagram on the road surface of an electric vehicle (hereinafter referred to as an EV vehicle) according to the present invention.
In the figure, 1 is a feeder panel, 2 is a contactor or inductor, 3 is an EV car, 4 is a connecting rod (plate), and 5 is a communicator. The power supply panel 1 supplies a DC voltage (or high-frequency voltage) to a connecting rod 4 or a battery built in an EV vehicle through a contactor (or inductor) 2 based on a commercial power supply, a solar power supply, a battery, and the like.
In the figure, when the EV car 3 is operated independently, the connecting rod 4 is folded at the bottom of the vehicle body and can be used as a conventional EV car. (Even in this case, energy can be obtained from the power supply panel 1, but the value is a few tenths of the case of connection.)
The connection / disconnection between the EV cars 3 is automatically performed.
That is, when the driver desires automatic driving, the driver designates the destination by using the keyboard in the vehicle and turns on the “automatic driving” switch.
This information is transmitted to other EV vehicles through one or two communicators 5.
If the other EV car is the EV car you want to connect (hereinafter referred to as EV1), based on the position and direction of the EV car you want to connect (hereinafter referred to as EV2) based on the transmitted information, It is calculated whether it can be connected by guidance, and data for automatic operation is sent back to EV2 only when possible. (An electronic camera may be mounted on EV2, and the connection part of EV1 may be recognized by pattern recognition and connected)
When driving close to a certain distance by automatic driving, the connecting rod on the bottom of the vehicle is extended.
When the distance between the vehicles is further approached, the connecting operation is considered to be finished, and thereafter EV2 is automatically driven so as to follow the movement of EV1. (Brake can be manually operated)
FIG. 2 shows an example of a state after the end of connection.
In the figure, the connecting rods 6 and 7 extending from the left EV1 are in contact with the connecting part of the right EV2. (Electrically connected)
FIG. 3 shows a processing flowchart example at the time of connection.
On the other hand, the separation is performed by switch information from “automatic travel” to “manual operation” of either EV1 or EV2.
When this information is output from EV1, the subsequent vehicle EV2 is braked, the distance between the vehicles is increased, and the connecting rod is shortened to complete.
When this information is output from EV2, EV1 is informed first, and separation is performed in the same manner as described above.
The first of the present invention is that the connecting rod 4 (power line) is provided in the EV vehicle as described above.
When connected in this way, even if the length of the contact 2 on the power supply panel side is short, power is transmitted to all EV cars through the connecting rod. (In FIG. 1, all the connecting rods and the power receiving rods at the bottom of the EV car are always in contact with the contact 2 and can receive power for a long time even while traveling)
Now, it will be described with reference to FIG. 2 that the connecting rod 4 not only supplies power to each EV in common but can also be used as a sensor that enables automatic operation.
The right connecting rod 6 and the left connecting rod 7 of the preceding vehicle EV1 push the springs 8 and 9 of the succeeding vehicle EV2, respectively. The contraction amounts at that time are L1 and L2, respectively, and the maximum and minimum contraction amounts are Lmax, Assuming Lmin, automatic driving is basically Lmin <L1 and L2 <Lmax.
The left and right motors and handles of the following vehicle EV2 may be automatically controlled so that (Automatic tracking to the preceding car EV1)
EV2 may be stopped when L1 and L2> Lmax.
When L1 and L2 <Lmin, the connection is lost or EV2 is regarded as the preceding vehicle.
Next, automatic handling control will be described.
Assuming that the amount of contraction of the springs 10 and 11 in the right-angle direction is L3 and L4, an automatic handling signal is generated when L1> Lmin and L3> Lmin, and when L2> Lmin and L4> Lmin, left turn. What is necessary is just to give to the control apparatus in EV2. (However, when L3 and L4 change suddenly, it is regarded as abnormal and the emergency stop is controlled.)
In the examples described so far, electric power is supplied from the power supply panel to the EV car by the contact method, and the connection is performed by a hard object such as a rod or a plate.
FIG. 3 is another example showing a state of an EV vehicle that is powered by a non-contact method and travels while being connected by a softly reeled connection band.
In the figure, reference numeral 1 denotes a power supply panel (not shown in the figure), which has a built-in battery and an oscillator. The input line includes a commercial power line, a line from a solar panel, etc. The high frequency coil 13 is connected.
The high-frequency coil 13 is composed of two coils on the front and rear sides in this figure, and the distance between them is preferably an inter-vehicle distance, but may be about 4-5 m.
The coil may be embedded in a rubber sheet or a resin sheet. (In addition, the installation interval of the power supply panel 1 may be every several hundred meters.)
The coil 14 is for receiving high-frequency power from the power supply panel 1 by induction, and is stretched all over the bottom of the EV vehicle 3. (Longer in the direction of travel)
4 is a power line for connection or a flexible copper band, etc., which is wound by the rear part of the EV car while traveling alone, but is pulled out to the succeeding car as shown in the figure. It is operated while keeping the distance between cars.
First, the operation will be described with reference to FIG.
The connection / disconnection of the EV car 3 may be substantially the same as described previously.
First, the communicator 12 on the electric power supply side and the communicator 5 on the EV car side communicate with each other, and a control signal for driving is sent to the EV car so as to pass just above the coil 13. 1 starts feeding the coil 13.
This high frequency power is received by the coil 13 on the EV vehicle 3 side, then changed to a DC voltage (direct current voltage), and sent to the power receiving rod 20.
The electric power on the power receiving rod 20 is used for own motor drive and battery saving, but at the same time is used in the same manner for other EV vehicles.
When the EV car further advances, the coil 14 is separated from the left coil 13 of the power supply panel 1 and power reception seems to be interrupted. At this time, the right coil 13 approaches the coil 14 of the next EV car. Receiving power does not stop until the last EV car.
Now, I will explain more specifically how this system is connected.
FIG. 4 shows an example of the principle of the reel type connection method, in which the upper part shows the state before the connection and the lower part shows the state after the end of the connection.
In the figure, when the EV vehicle 3 is operated alone, the connecting plate 4 is wound around the center rod 15 by the force of the spring 16.
The power receiving rod 20 and the connecting plate 4 are electrically connected, and these 15, 16, 17, and 20 are one set in this figure, but two sets for plus and minus may be provided or connected. You may provide one set which divided | segmented the board into 2 sheets.
As described above, when the condition for connecting the two EV cars 3 is established, the EV car 3 at the upper right in FIG. 4 is automatically driven, and gently approaches the EV car at the upper left in FIG. The connection is terminated when the distance between the sockets 18 and 19 is quietly separated and the distance between the vehicles is turned away.
FIG. 5 shows a case where the connecting plate has a bellows shape.
At the time of independent operation, the connecting plate 4 is folded and stored in the EV car 3, but at the time of connection, the connecting plate 4 is pulled out to the succeeding car as shown in the lower diagram of the figure.
As described above, EV cars are connected, and at least the following cars are automatically driven. However, the data for automatic driving includes the communication between the communicators 5 and the communication of the power supply panel in addition to the connecting rod itself. It is acquired by transmission / reception between the child 12 and the communication element 5 or between the artificial satellite and the communication element 5.
The advantages of automatic driving include automatic power supply, and even if you are sleeping you can go to a remote location or call it unattended, but in order to implement this system on public roads, safety verification, road There are major problems such as amendments to traffic laws. Initially, it should be used at amusement parks, factory grounds, golf courses, and sightseeing spots. As one way of ensuring safety, it is desirable to provide a camera / microphone for an EV car, take a video / audio of a car obstructing the route, and provide transmission to a power supply panel or a public line (via the communicator 5).
Next, the power distribution in each part is examined.
Assume that one EV car consumes 3.3kVA. The total power of 20 units connected is 66kVA. If the length of one car + the distance between cars is 6.5m, the total is 130m. Further, it is assumed that there is one power supply panel 1 for every 300 m.
When traveling at 100 km / hour, the power feeding time is 4 seconds and the non-power feeding time is about 5 seconds (this section travels with the inertia energy of an EV vehicle or an internal battery), and reaches the next power feeding panel.
The voltage of the EV vehicle is set to 200 V because of the danger and the pressure resistance of the electric element. The current is 16.5 A per unit and 330 A as a whole.
(Running + charging = 660A if charging is done in the same amount)
Accordingly, since the power of the power supply panel is 66 kVA (4 seconds); 0 kVA (5 seconds), 66 * 4 / (4 + 5) = 29.3 kVA is sufficient. (When only 4/9 is supported)
By the way, what if the power is received without being connected?
Since it becomes 1/20, if 16.5A is increased by 20 times, it will theoretically become the same power as in the case of connection, and it seems that connection is not necessary.
However, if the current is very large, the loss of wiring and semiconductors is large, and the battery is difficult to charge.
It seems awkward, but the power supply panel does not need to be installed evenly on public roads (it is better if it is better), and may be installed in a drive-in or parking lot.
[Brief description of the drawings]
[Fig. 1]: Outline diagram of an electric vehicle driven by a connecting rod [Fig. 2]: Overview diagram of a connecting portion <head of the following vehicle> and a spring sensor [Fig. Schematic diagram of electric vehicle traveling by <or line> [Fig. 5]: Connection part by connecting plate <reel type> Overview diagram [Fig. 6]: Connection part by connecting plate <conduit type> schematic diagram
1: Power supply board 2: Contactor 3: Electric car (EV car or solar car)
4: Connected <Bar or plate or wire>
5: Communication element <Radio wave, ultrasonic wave, or optical transceiver>
6: Left connecting rod 7: Right connecting rod 8: Advancing direction left spring 9: Advancing direction right spring 10: Left right angle spring 11: Right right angle spring 12: Communication element (radio wave, ultrasonic wave, or light) Transceiver)
13: High-frequency coil 14: Power receiving coil 15: Center bar 16: Rewinding spring 17: Contact bar 18: Socket left 19: Socket right 20: Common power line

Claims (4)

長距離走行用の電気車輌システムにおいて、蓄電体を搭載の電気車輌と、前記電気車輌の底部に車輌の長さ一杯に設けられた受電体と、前記電気車輌と先行車輌あるいは後続車輌とを電力的に連結する連結体と、路面に間欠的に設けられたスポット状の給電体と、給電盤とからなり
前記受電体が前記給電体上に停止あるいは移動している間は、前記給電盤からの電力が前記給電体および前記受電体を経由して前記電気車輌および前記連結体により前記先行車輌あるいは後続車輌に供給され、前記受電体が前記給電体上を離れた間は前記電気車輌は前記蓄電体の電力により走行することにより、給電設備および前記蓄電体の大幅削減化を特徴とした連結型電気車輌システム
In an electric vehicle system for long-distance traveling, electric power is supplied to an electric vehicle equipped with a power storage unit, a power receiving member provided at the bottom of the electric vehicle to the full length of the vehicle, and the electric vehicle and a preceding vehicle or a succeeding vehicle. A connected body, a spot-like power supply provided intermittently on the road surface, and a power supply panel. While the power receiver is stopped or moved on the power supply body, Is supplied to the preceding vehicle or the succeeding vehicle by the electric vehicle and the connecting body via the power feeding body and the power receiving body, and while the power receiving body leaves the power feeding body, the electric vehicle is A connected electric vehicle system characterized by a significant reduction in power storage equipment and the power storage unit by running on the power of the power storage unit
前記給電体として1〜2組のスポット状接触子または同心円コイルを設けたことを特徴とした(請求項1)に記載の前記連結型電気車輌システムThe connected electric vehicle system according to claim 1, wherein one or two pairs of spot contacts or concentric coils are provided as the power feeding body. 前記受電体として前記電気車輌の底面(床下)に長さがほぼ車長ほどのループ状コイル、または2組の棒状の受電棒を設けたことを特徴とする(請求項1)に記載の連結型電気車輌システムThe connection according to claim 1, wherein a loop-shaped coil having a length of about the vehicle length or two sets of rod-shaped power reception rods are provided as the power reception body on the bottom surface (under the floor) of the electric vehicle. Type electric vehicle system 前記連結体が剛体からなり、前記電気車輌がたがいに前後左右に動きうるいわゆる自由連結とし、前記電気車輌の先端部に変位センサーを設けて、前記連結体の変位により先行車輌の前進・後退・左折・右折の値を検出し、この値を基に前記電気車輌の走行管理をすることを特徴とした(請求項1)に記載の前記連結型電気車輌システムThe connecting body is a rigid body, and the electric vehicle is a so-called free connection that can move back and forth and right and left. The connected electric vehicle system according to claim 1, wherein a left turn / right turn value is detected and travel management of the electric vehicle is performed based on the value.
JP19217099A 1999-06-03 1999-06-03 Connected electric vehicle Expired - Fee Related JP3626967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19217099A JP3626967B2 (en) 1999-06-03 1999-06-03 Connected electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19217099A JP3626967B2 (en) 1999-06-03 1999-06-03 Connected electric vehicle

Publications (2)

Publication Number Publication Date
JP2000350311A JP2000350311A (en) 2000-12-15
JP3626967B2 true JP3626967B2 (en) 2005-03-09

Family

ID=16286856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19217099A Expired - Fee Related JP3626967B2 (en) 1999-06-03 1999-06-03 Connected electric vehicle

Country Status (1)

Country Link
JP (1) JP3626967B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359093B2 (en) * 2008-07-29 2013-12-04 富士通株式会社 Mobile charging device and mobile charging method
CN108621828A (en) * 2018-04-03 2018-10-09 徐东云 A kind of electric vehicle autonomous wireless synchronization charging unit between advancing

Also Published As

Publication number Publication date
JP2000350311A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
US10618411B2 (en) Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
CN102350953B (en) Electrical powered vehicle and power feeding device for vehicle
CN109715433B (en) Method for charging a battery-driven vehicle
US11641128B2 (en) Mobile charging stations with fuel-cell generators for electric-drive vehicles
US9260029B2 (en) Vehicle electric power supply system
JP5263391B2 (en) Non-contact power receiving apparatus and vehicle equipped with the same
JP2000013924A (en) Connected electric automobile
US20110031047A1 (en) In-motion inductive charging system having a wheel-mounted secondary coil
US20070131505A1 (en) Magnetic Induction Charging System for Vehicles
CN110492622B (en) Electric automobile non-stop wireless charging system and control method thereof
JP3626968B2 (en) Power supply device
JP5287115B2 (en) Vehicle power reception control device and vehicle including the same
JP3768982B2 (en) Intermittent power supply type electric vehicle system and electric vehicle
JP3626967B2 (en) Connected electric vehicle
JP2003143711A (en) Feeder
CN212708983U (en) Hybrid energy storage device for wireless charging of vehicle and non-network power supply system
CN103552478B (en) Vehicle electric power system, electric vehicle and vehicle emergency electric supply unit
CN1240178A (en) Connection type electricity driven vehicle
JP2004104979A (en) Electric vehicle driving apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041014

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041221

LAPS Cancellation because of no payment of annual fees