JP2003143711A - Feeder - Google Patents

Feeder

Info

Publication number
JP2003143711A
JP2003143711A JP2001346760A JP2001346760A JP2003143711A JP 2003143711 A JP2003143711 A JP 2003143711A JP 2001346760 A JP2001346760 A JP 2001346760A JP 2001346760 A JP2001346760 A JP 2001346760A JP 2003143711 A JP2003143711 A JP 2003143711A
Authority
JP
Japan
Prior art keywords
power
vehicle
coil
transmission
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001346760A
Other languages
Japanese (ja)
Inventor
Kazumichi Fujioka
一路 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001346760A priority Critical patent/JP2003143711A/en
Publication of JP2003143711A publication Critical patent/JP2003143711A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Platform Screen Doors And Railroad Systems (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a unit capable of inexpensively and safely supplying power from a road surface at times when environmental issues become serious, for solving the conventional most serious issue in supplying power from a road surface which has been electrical shocks and electromagnetic disturbances to pedestrians or other objects which have been not preventive. SOLUTION: This unit includes a receiver 5 for receiving a request signal for power transmission from a vehicle, verifies the validation of a license plate number or the like at 14, and transmits high-frequency power to a receiving coil 12 from a transmission coil 10 for feeding. The transmission coil 10 is small because it has spot like and single-turn (3 to 20 turns) constitution, and transmits the high-frequency power to the receiving coil 12 only when it is covered with the vehicle body, so that accidents caused by the high frequency to pedestrians or the like can be prevented. Preferably, the receiving coil 12 is of a loop or spiral shape (a plurality of circles), and it is desirable that power is received as long as possible even when the vehicle is on travel. An additional core may be provided around or at the center of the transmitting or receiving coil for forming a magnetic path.

Description

【発明の詳細な説明】 【発明の属する技術分野】電車・電気自動車・災害 用
電源 【従来の技術】 【0001】従来、乗物の給電子としては、電車・トロ
リーバスに利用されている架線が典型的な例である。高
い所に張り巡らされているため、人間等生き物は感電す
る心配も少なく、また安くきれいなエネルギー供給方法
として現在も広く使用されている。しかしながら、景観
や保守などからいわゆる市電やトロリーバスでは廃止さ
れているケースも多い。路面内部に長いコイルを埋め、
誘導電力により乗物を動かそうという技術もあるが、敷
設費の膨大さ・他の物体への電磁波による悪影響・効率
の悪さなど問題が多い。 【発明が解決しようとする課題】 【0002】従来、路面より電力供給する場合の最大の
課題は歩行者や他の物体への感電や電磁波障害を防止で
きないことであった。しかしながら環境問題が深刻な現
代、路面からの安価で安全かつ走行中も電力供給可能な
装置を発明する必要がある。この手段によりエネルギー
の半分でも供給するようにすれば、自動車に搭載の燃料
が少なくて済み、自動車の軽量化・低価格化・無公害化
に役立つ。また、スタンド不要等、燃料のみならず供給
コストも削減できる。 【課題を解決するための手段】 【0003】この対策として、乗物の走る区間に長い電
力線により電力供給するのではなく、間欠的に配置され
た電力供給スポットと、自動車の底部に設けられた車長
に等しいほど長い受電機構とを発明する。安全に通電す
る(感電のおそれのない)手段が必要になる。 【図1】、 【図2】は本発明の送電子を3対、路面に埋設した場合
の断面の概要図と平面概要図で、送電子として接触子
を、受電子として架線を使用した例である。同図で1は
バネで押し上げられ路面に頭出しした接触子、2は自動
車の床下に張った架線、3は自動車(特にモータ車輪駆
動のある)、4はスイッチ、5は受(送)信コイル、6
は送(受)信コイル、7は受信処理およびスイッチ4の
オンオフ等の制御装置、9は路面である。 【0004】同図に従って動作を説明すると、まず自動
車3が左に移動し、架線2が最初の接触子1( 【図1】で7の上)に近づいても、全ての接触子1は送
電していない。(感電しない) さらに自動車が左に進んで接触子1を架線2が押し下げ
ても送電しない。ではどう安全に送電させるかの手段を
説明する。 【図2】で、自動車3には架線2に隣接して横長ループ
状(または複数円状)の送信コイル6を2組設け、それ
ぞれから 【図4】に示すような送電要求の信号を繰り返し送信す
る。同 【図4】で例えばAは自動車番号コード、Bは課金引落
し番号コードとしてもよい。 【0005】この送信信号は、車が充分近接した受信コ
イル5にのみ受信される。受信信号は制御装置7に送ら
れ、2組の受信コイル5の信号コードが一致し、かつ自
動車番号がブラックリストにない、と判断された場合の
み該当のスイッチ4をオンにし、接触子1を通して架線
2に電力を送電する。つまり、不確かな送電要求信号や
1つの受信コイルのみの正常信号では送電しない。これ
で十分他の物体が本接触子に触れても感電はありえない
が、念のため、例えば常時には全接触子1を地下に沈め
ておき、前記該当する接触子のみ頭出しする構造にして
も良い。また送受信はコイルによる電波を用いている
が、光や音波を用いてもよい。 【0006】 【図3】は、前記信号の送受信線を電力線と兼用する例
である。同図で、16はパスコン又はトランス、17は
インダクタンス、18は送受信器である。いま、送受信
器18より、例えば100khzなどの高周波に前記自
動車番号コード等を変調して送信する。パスコン16と
インダクタンス17の共振周波数を100khzにして
おくと、架線2と接触子1が接した時、送受信器18か
らの信号は制御装置7に到達する。その後、処理装置7
は信号のコードを調べ、正当であれば電力スイッチ4を
オンにするのは前記と同じである。 【図3】では最右端の接触子にのみパスコン16とイン
ダクタンス17を記載しているが、他の2対の接触子1
にも同様に装着する。 【0007】以上述べた自動車への送電方法は、路面に
頭出しする接触子を使用した例であるが、路面9の下に
誘導コイルを埋め込んで、非接触でスポット的に送電し
ても良い。 【図5】はこの場合の断面概要図であり、前記送電子と
して送電コイル、前記受電子として受電コイルを使用し
ている。10は送電コイル、11はマッチングコンデン
サー、12は受電コイル、13は高周波給電線、14は
自動周波調整を含む制御装置である。同図でも、 【図1】と同じように受信器5を持ち、自動車からの送
電要求信号を受信し、14で自動車番号等正当性を確認
したら、給電用の送電コイル10から受電コイル12に
高周波電力を送電する。 【0008】送電コイル10は、スポット的単巻(3−
20ターンの)で小さく、自動車車体にほとんど覆われ
ている間のみ受電コイル12に高周波送電するので、高
周波による歩行者などへの事故(指,腕輪による火傷、
ペースメーカなど電子機器の破損・爆発)がない。受電
コイル12はループ状あるいはスパイラル〈複数円〉状
で、長さは車体が許すだけ長くして、自動車が動いても
出来るだけ長く受電できるようにするのが望ましい。上
記送電あるいは受電コイルの周辺または中心部には、磁
路を形成するためのコアを別途設けても良い。しかし、
自動車の移動に伴い、電力供給側から見た負荷インピー
ダンスは時々刻々変化するので、制御装置14により周
波数を微調して抵抗性インピーダンスにする。 【0009】 【図1】, 【図5】は、3対の送電子〈接触子1や送電コイル10
を設けた例であるが(1対でも勿論よい)、このように
複数の送電子を設け、かつ送電子間の間隔を自動車の架
線2の長さとほぼ同じにすると連続して電力の供給を受
けることができる。たとえば架線2の長さを8メートル
とすると、24メートルに亘り連続して電力を受け取れ
るので、自動車は走りながら、車内蓄電器(池)への充
電のみならず、加速用エネルギーも得ることができる。 【0010】さて、制御装置7,14は上記送電のほか
受電も制御し、典型的にはAC電力を整流して、各送電
子に振り分けることを行うが、別途電源装置15によ
り、ソーラや風力の電力も貯め込んでで利用するのでも
よい。所で、給電装置を普及させるにはコストが最も大
切で、構成する部品を出来るだけ少なくする必要があ
る。 【0011】 【図6】は電源装置15の構成例を示す。AC受電電力
を全波整流のまま取りこみ、大きな整流用リアクタンス
とコンデンサーを省いた場合の構成概要である。同図で
点線の部分(25,23,24,30)はAC電源が無
いか、節電したい場合に使う、いわゆる自然エネルギー
電源部である。 【図7】は電圧波形である。 【図6】で19は電力会社からのAC電圧を変圧するト
ランス、20は全波整流器、21はダイオード、22は
出力電圧線である。23はソーラパネル、24は風力発
電機、25は分割バッテリ充電制御回路である。 【図7】で26はAC電圧全波整流電圧波形、27は蓄
電器(池)からの電圧、28はレベル1の電圧基準線、
29はレベル2の電圧基準線である。 【0012】図に添って説明すると、まず、商用AC電
圧は変圧器19により、給電子で使う電圧に変換され、
全波整流器19を通った後、合成ダイオード21を通し
て出力電圧となる。従来は20の後にLとCによる平滑
回路を入れるが、ここでは省いている。〈高周波阻止の
チョークコイルのみとした方が安価である〉一方、ソー
ラパネル23の電圧、または風力発電機24からの電圧
は、分割蓄電器(池)30へ制御装置25の指令により
蓄えられる。たとえば、電圧の値が大きい場合は蓄電器
(池)を直列に接続し、電圧が小さいときは並列に接続
して、充電される。 【0013】 【図7】の実線は、このように蓄えられた蓄電器(池)
の出力電圧27と前記のAC電圧26との合成電圧波形
を示している。このような一定で無い電圧を前記 【図1】や 【図5】の送電子に印加しても大丈夫であろうか?給電
子からの電圧を利用する自動車には、 【図6】の25に相当する分割蓄電器(池)制御装置が
普通搭載されているので、自動車側に充電する場合、例
えば 【図7】で28以上の電圧値のときは直列に29以上の
ときは直列・並列に、29以下のときは並列に、それぞ
れ自動車搭載の蓄電器(池)接続を変えて充電すれば良
い。また、同時に自動車を動かしたい場合は、いわゆる
PWM法により電圧の切りだしをしてモータに印加すれ
ば良い。 【本発明による効果】以上、本発明によれば、非接触式
は勿論、路面上に露出した接触子といえども制御により
充分安全に送電できる。例えば、車内に蓄電器〈池〉を
搭載した路面電車・路線電気バスの停留所近くに複数個
設置した場合、直前の送電子を人が踏んでも感電しな
い。また、このよにすると車両搭載の蓄電器(池)量を
大幅に削減でき、車両の軽量化・安価が実現でき、大げ
さに言えば環境を破壊しない新しいクルマ社会の実現が
可能になる。また送電子は震災時電源として別途利用で
きる。
Description: BACKGROUND OF THE INVENTION [0002] Electric trains, electric vehicles, and power supplies for disasters [0002] Conventionally, as a power supply for vehicles, overhead wires used in electric trains and trolley buses are used. This is a typical example. Living things such as humans are less likely to be electrocuted because they are stretched high, and they are still widely used as a cheap and clean energy supply method. However, in many cases, so-called streetcars and trolleybuses have been abolished due to landscape and maintenance. Fill a long coil inside the road surface,
There is a technology to move a vehicle by induction power, but there are many problems such as enormous installation costs, adverse effects of electromagnetic waves on other objects, and poor efficiency. Conventionally, the biggest problem in supplying power from a road surface is that it is impossible to prevent electric shock or electromagnetic interference to pedestrians and other objects. However, at present, when environmental problems are serious, it is necessary to invent a device that is inexpensive, safe, and capable of supplying power while traveling from the road surface. If only half of the energy is supplied by this means, less fuel is required to be mounted on the vehicle, which contributes to reducing the weight, cost, and pollution of the vehicle. In addition, the supply cost as well as the fuel can be reduced, such as the need for a stand. [0003] As a countermeasure for this, as a countermeasure, a power supply spot is provided intermittently instead of a long power line in a section where a vehicle runs, and a vehicle provided at the bottom of the vehicle. Invent a longer power receiving mechanism equal to the length. A means for energizing safely (without fear of electric shock) is required. FIGS. 1 and 2 are a schematic view and a schematic plan view, respectively, showing a cross section when three pairs of power transmission devices according to the present invention are buried on a road surface, in which a contact is used as a power transmission and an overhead wire is used as a power reception device. It is. In the figure, 1 is a contact which is pushed up by a spring and is located on the road surface, 2 is an overhead wire stretched under the floor of the automobile, 3 is an automobile (particularly driven by motor wheels), 4 is a switch, and 5 is reception (transmission) signal. Coil, 6
Is a transmitting (receiving) coil, 7 is a control device for receiving processing and turning on and off the switch 4, and 9 is a road surface. The operation will be described with reference to FIG. 1. First, even if the automobile 3 moves to the left and the overhead line 2 approaches the first contact 1 (above 7 in FIG. 1), all the contacts 1 transmit power. I haven't. (No electric shock) Even if the car advances to the left and the contact wire 1 pushes down the contact wire 2, no electric power is transmitted. Now, how to safely transmit power will be described. FIG. 2 shows that the vehicle 3 is provided with two sets of horizontally long loop-shaped (or multiple circular) transmission coils 6 adjacent to the overhead line 2, and repeats a power transmission request signal as shown in FIG. 4 from each of them. Send. In FIG. 4, for example, A may be a vehicle number code, and B may be a charge withdrawal number code. [0005] This transmission signal is received only by the receiving coil 5 sufficiently close to the vehicle. The received signal is sent to the controller 7 and the corresponding switch 4 is turned on only when it is determined that the signal codes of the two sets of receiving coils 5 match and the car number is not on the blacklist. Power is transmitted to the overhead wire 2. That is, power is not transmitted by an uncertain power transmission request signal or a normal signal of only one receiving coil. With this, there is no possibility of electric shock even if another object touches the contact. However, just in case, for example, all the contacts 1 are always sunk underground and only the corresponding contact is caught. good. Although transmission and reception use radio waves by coils, light and sound waves may be used. FIG. 3 is an example in which the signal transmission / reception line is also used as a power line. In the figure, 16 is a bypass capacitor or a transformer, 17 is an inductance, and 18 is a transceiver. Now, the transmitter / receiver 18 modulates the vehicle number code or the like to a high frequency such as 100 kHz and transmits the modulated signal. If the resonance frequency of the bypass capacitor 16 and the inductance 17 is set to 100 kHz, the signal from the transceiver 18 reaches the control device 7 when the overhead wire 2 and the contact 1 are in contact with each other. After that, the processing device 7
Checks the code of the signal, and turns on the power switch 4 if it is valid, as described above. FIG. 3 shows the decap 16 and the inductance 17 only on the rightmost contact, but the other two pairs of contacts 1
To the same way. The above-described method of transmitting power to an automobile is an example using a contact cueing on a road surface. However, an induction coil may be embedded under the road surface 9 to transmit power in a non-contact and spot manner. . FIG. 5 is a schematic cross-sectional view in this case, in which a power transmission coil is used as the power transmission and a power reception coil is used as the power reception. Reference numeral 10 denotes a power transmission coil, 11 denotes a matching capacitor, 12 denotes a power reception coil, 13 denotes a high-frequency power supply line, and 14 denotes a control device including automatic frequency adjustment. In this figure, as in FIG. 1, the receiver 5 has a receiver, receives a power transmission request signal from a vehicle, and confirms the validity of the vehicle number and the like at 14. Transmit high frequency power. The power transmission coil 10 has a spot-like single winding (3-
(20 turns), small, and high frequency power is transmitted to the power receiving coil 12 only when it is almost covered with the car body.
No damage or explosion of electronic devices such as pacemakers. It is desirable that the power receiving coil 12 has a loop shape or a spiral <a plurality of circles> shape, the length of which is as long as the vehicle body allows, so that the power can be received as long as the vehicle moves. A core for forming a magnetic path may be separately provided around or at the center of the power transmission or power reception coil. But,
With the movement of the automobile, the load impedance viewed from the power supply side changes every moment. Therefore, the frequency is finely adjusted by the control device 14 to make it a resistive impedance. FIGS. 1 and 5 show three pairs of power transmissions (contact 1 and power transmission coil 10).
However, if a plurality of power transmissions are provided and the interval between the power transmissions is set substantially equal to the length of the overhead wire 2 of the automobile, power is supplied continuously. Can receive. For example, assuming that the length of the overhead wire 2 is 8 meters, electric power can be continuously received over 24 meters. Therefore, while the vehicle is running, not only charging of the in-vehicle battery (pond) but also acceleration energy can be obtained. The control devices 7 and 14 control power transmission and reception in addition to the above power transmission. Typically, the control devices 7 and 14 rectify AC power and distribute the power to each power transmission. May be stored and used. In order to spread the power supply device, the cost is the most important, and it is necessary to reduce the number of constituent parts as much as possible. FIG. 6 shows a configuration example of a power supply device 15. This is a configuration outline in a case where AC received power is taken in as full-wave rectification, and a large rectifying reactance and a capacitor are omitted. In the figure, the dotted lines (25, 23, 24, 30) are so-called natural energy power supply units used when there is no AC power supply or when it is desired to save power. FIG. 7 is a voltage waveform. FIG. 6 shows a transformer 19 for transforming an AC voltage from a power company, 20 a full-wave rectifier, 21 a diode, and 22 an output voltage line. 23 is a solar panel, 24 is a wind power generator, and 25 is a divided battery charge control circuit. FIG. 7 shows a waveform 26 of an AC voltage full-wave rectified voltage waveform, a voltage 27 from a capacitor (a pond), a voltage reference line 28 of a level 1,
Reference numeral 29 denotes a level 2 voltage reference line. Referring to FIG. 1, first, a commercial AC voltage is converted by a transformer 19 into a voltage used for power supply.
After passing through the full-wave rectifier 19, the output voltage is output through the combining diode 21. Conventionally, a smoothing circuit by L and C is inserted after 20, but is omitted here. <It is cheaper to use only the high frequency blocking choke coil> On the other hand, the voltage of the solar panel 23 or the voltage from the wind power generator 24 is stored in the divided storage device (pond) 30 by a command of the control device 25. For example, when the value of the voltage is large, a battery (a pond) is connected in series, and when the voltage is small, the battery is connected in parallel and charged. [0013] The solid line in Fig. 7 is the storage battery (pond) stored in this way.
3 shows a composite voltage waveform of the output voltage 27 of FIG. Is it OK to apply such a non-constant voltage to the above-mentioned [Figure 1] and [Figure 5] transmission? Since a vehicle using a voltage from a power supply is usually equipped with a divided storage battery (pond) control device corresponding to 25 in FIG. 6, when charging the vehicle side, for example, 28 in FIG. In the case of the above voltage values, charging may be performed by changing the connection of a battery (pond) mounted on the vehicle, in series, in the case of 29 or more, in series / parallel in the case of 29 or less, and in parallel in the case of 29 or less. If it is desired to move the automobile at the same time, the voltage may be cut out by the so-called PWM method and applied to the motor. As described above, according to the present invention, not only the non-contact type but also the contacts exposed on the road surface can be transmitted sufficiently and safely by the control. For example, when a plurality of trolleys or electric buses equipped with an electric storage device <pond> are installed near a stop in a car, even if a person steps on the last electronic transmission, there is no electric shock. In addition, by doing so, the amount of storage battery (pond) mounted on the vehicle can be significantly reduced, the vehicle can be made lighter and cheaper, and, to put it bluntly, a new car society that does not destroy the environment can be realized. In addition, the transmission line can be used separately as a power source in the event of a disaster.

【図面の簡単な説明】 【図1】:接触式送電子 断面構成概要図 【図2】:接触式送電子 平面構成概要図 【図3】:接触式送電子〈信号兼用〉平面構成概要図 【図4】:受信信号パルス列(概要) 【図5】:非接触式送電子 断面概要図 【図6】:(簡易式)電源装置 構成図(概要) 【図7】:電圧波形図(概要) 1:接触子 16:カップリング 2:架線 〈コンデンサ又は
トランス〉 3:自動車(蓄電器(池)搭載) 17:インダクタン
ス 4:スイッチ〈電力用〉 18:送受信器 5:受信コイル(通信子) 19:変圧器 6:送信コイル(通信子) 20:全波整流器 7:制御装置 21:ダイオード 8:電力線 22:出力線 9:路面 23:ソーラパネル 10:送電コイル 24:風力発電機 11:マッチングコンデンサ 25:分割充電回
路 12:受電コイル 26:出力電圧波
形 13:高周波電力線 27:蓄電器
(池)電圧 14:周波数微調整付き制御装置 28:電圧レベル
1基準線 15:電源装置 29:電圧レベル
2基準線 30:分割蓄電器(池)
BRIEF DESCRIPTION OF THE DRAWINGS [FIG. 1]: Schematic diagram of cross-sectional configuration of contact-type power transmission [FIG. 2]: Schematic diagram of planar configuration of contact-type power transmission [FIG. 3]: Schematic diagram of planar configuration of contact-type power transmission (for both signal use) FIG. 4: Receiving signal pulse train (outline) FIG. 5: Non-contact type power transmission section outline view [FIG. 6]: (simple type) power supply device configuration diagram (outline) [FIG. 7]: Voltage waveform diagram (outline) 1: contact 16: coupling 2: overhead wire <capacitor or transformer> 3: automobile (with battery (pond)) 17: inductance 4: switch <for power> 18: transceiver 5: receiving coil (communicator) 19 : Transformer 6: Transmission coil (communication element) 20: Full-wave rectifier 7: Control device 21: Diode 8: Power line 22: Output line 9: Road surface 23: Solar panel 10: Transmission coil 24: Wind power generator 11: Matching capacitor 25: Split charging times 12: Receiving coil 26: Output voltage waveform 13: High-frequency power line 27: Battery (battery) voltage 14: Control device with fine frequency adjustment 28: Voltage level 1 reference line 15: Power supply 29: Voltage level 2 reference line 30: Divided capacitor (pond)

Claims (1)

【特許請求の範囲】 【請求項1】 路面に設置され、その上に停止または移
動する受電子に送電するスポット送電子と、送電子への
給電をオン・オフするスイッチと、前記受電子側から発
信される送電要求信号を受信する受信器と、受信信号を
解析し前記受電子の要求が正当でかつ前記送電子と受電
子が近接している場合のみ、前記スイッチをオンにする
処理装置と、電源装置からなる給電装置 【請求項2】前記スポット送電子として接触子を、前記
受電子として自動車底部に張られた架線を、それぞれ設
けたことを特徴とする 【請求項1】に記載の給電装置 【請求項3】前記スポット送電子として送電コイルを、
前記受電子として自動車底部に張られた受電コイルを、
それぞれ設けたことを特徴とする 【請求項1】に記載の給電装置 【請求項4】路面に、前記スポット送電子を複数個設置
し、前記受電子の移動に伴い、次々に前記スポット送電
子の前記スイッチを、前記処理装置の指令により切り替
えて送電し、自動車内の充電のみならず、自動車の走行
エネルギーも得ることを特徴とした 【請求項1】に記載の給電装置
Claims: 1. A spot power transmitting device installed on a road surface and transmitting power to a power receiving device stopped or moving thereon, a switch for turning on / off power supply to the power transmitting device, and the power receiving side. And a receiver for receiving a power transmission request signal transmitted from the processor, and a processing device that analyzes the received signal and turns on the switch only when the request for the power reception is valid and the power transmission and the power reception are close to each other. And a power supply device comprising a power supply device. 2. A contact wire as the spot power transmission, and an overhead wire stretched on the bottom of the vehicle as the power reception device are provided, respectively. 3. A power transmission device as claimed in claim 3, wherein a power transmission coil is used as the spot power transmission.
A power receiving coil stretched on the bottom of the automobile as the power receiving device,
A power supply device according to claim 1, wherein a plurality of said spot transmissions are installed on a road surface, and said spot transmissions are successively performed in accordance with movement of said reception reception. The power supply device according to claim 1, wherein the switch is switched by a command of the processing device to transmit power, and not only charging in the vehicle but also driving energy of the vehicle is obtained.
JP2001346760A 2001-08-21 2001-10-08 Feeder Pending JP2003143711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001346760A JP2003143711A (en) 2001-08-21 2001-10-08 Feeder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001292568 2001-08-21
JP2001-292568 2001-08-21
JP2001346760A JP2003143711A (en) 2001-08-21 2001-10-08 Feeder

Publications (1)

Publication Number Publication Date
JP2003143711A true JP2003143711A (en) 2003-05-16

Family

ID=26622854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001346760A Pending JP2003143711A (en) 2001-08-21 2001-10-08 Feeder

Country Status (1)

Country Link
JP (1) JP2003143711A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166570A (en) * 2004-12-06 2006-06-22 Nissan Motor Co Ltd Road-to-vehicle power supply system
JP2010193677A (en) * 2009-02-20 2010-09-02 Toppan Printing Co Ltd Power supply system
KR101040662B1 (en) * 2009-04-06 2011-06-13 한국과학기술원 Ultra slim power supply and collector device for electric vehicle
KR101045585B1 (en) * 2010-09-29 2011-06-30 한국과학기술원 Wireless power transfer device for reducing electromagnetic wave leakage
US8008888B2 (en) 2007-10-25 2011-08-30 Toyota Jidosha Kabushiki Kaisha Electrical powered vehicle and power feeding device for vehicle
WO2012105040A1 (en) 2011-02-04 2012-08-09 トヨタ自動車株式会社 Vehicle and external power-feeding apparatus
WO2012148164A1 (en) * 2011-04-26 2012-11-01 한국과학기술원 Feed apparatus, current collector, and power transfer apparatus of the magnetic induction type, considering lateral deviation
JP2014227025A (en) * 2013-05-22 2014-12-08 国立大学法人豊橋技術科学大学 Electric power transmission path
CN104842808A (en) * 2007-05-10 2015-08-19 奥克兰联合服务有限公司 Multi power sourced electric vehicle
US9197093B2 (en) 2010-12-24 2015-11-24 Toyota Jidosha Kabushiki Kaisha Non-contact charging system, non-contact charging method, non-contact charging type vehicle, and non-contact charging management apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710314B2 (en) * 2004-12-06 2011-06-29 日産自動車株式会社 Road-to-vehicle power supply system
JP2006166570A (en) * 2004-12-06 2006-06-22 Nissan Motor Co Ltd Road-to-vehicle power supply system
CN104842808A (en) * 2007-05-10 2015-08-19 奥克兰联合服务有限公司 Multi power sourced electric vehicle
US8008888B2 (en) 2007-10-25 2011-08-30 Toyota Jidosha Kabushiki Kaisha Electrical powered vehicle and power feeding device for vehicle
US9421868B2 (en) 2007-10-25 2016-08-23 Toyota Jidosha Kabushiki Kaisha Electrical powered vehicle and power feeding device for vehicle
US9180779B2 (en) 2007-10-25 2015-11-10 Toyota Jidosha Kabushiki Kaisha Electrical powered vehicle and power feeding device for vehicle
US9024575B2 (en) 2007-10-25 2015-05-05 Toyota Jidosha Kabushiki Kaisha Electrical powered vehicle and power feeding device for vehicle
JP2010193677A (en) * 2009-02-20 2010-09-02 Toppan Printing Co Ltd Power supply system
KR101040662B1 (en) * 2009-04-06 2011-06-13 한국과학기술원 Ultra slim power supply and collector device for electric vehicle
KR101045585B1 (en) * 2010-09-29 2011-06-30 한국과학기술원 Wireless power transfer device for reducing electromagnetic wave leakage
US9197093B2 (en) 2010-12-24 2015-11-24 Toyota Jidosha Kabushiki Kaisha Non-contact charging system, non-contact charging method, non-contact charging type vehicle, and non-contact charging management apparatus
USRE48659E1 (en) 2010-12-24 2021-07-27 Toyota Jidosha Kabushiki Kaisha Non-contact charging system, non-contact charging method, non-contact charging type vehicle, and non-contact charging management apparatus
US9296349B2 (en) 2011-02-04 2016-03-29 Toyota Jidosha Kabushiki Kaisha Vehicle and external power feeding apparatus
WO2012105040A1 (en) 2011-02-04 2012-08-09 トヨタ自動車株式会社 Vehicle and external power-feeding apparatus
WO2012148164A1 (en) * 2011-04-26 2012-11-01 한국과학기술원 Feed apparatus, current collector, and power transfer apparatus of the magnetic induction type, considering lateral deviation
US9656562B2 (en) 2011-04-26 2017-05-23 Korea Advanced Institute Of Science And Technology Feed apparatus, current collector, and power transfer apparatus of the magnetic induction type, considering lateral deviation
JP2014227025A (en) * 2013-05-22 2014-12-08 国立大学法人豊橋技術科学大学 Electric power transmission path

Similar Documents

Publication Publication Date Title
JP6140220B2 (en) Wireless power transmission in electric vehicles
US10875414B2 (en) System and method for charging or powering devices, including mobile devices, machines or equipment
US9722447B2 (en) System and method for charging or powering devices, such as robots, electric vehicles, or other mobile devices or equipment
US9126490B2 (en) Wireless energy transfer via coupled parasitic resonators
JP5739011B2 (en) Coexistence of wireless energy transfer and continuous radio station signal
JP6420320B2 (en) Systems, methods and apparatus for electric vehicle wired and wireless charging
EP3216105B1 (en) Systems, methods, and apparatus for controlling the amount of charge provided to a charge-receiving element in a series-tuned resonant system
JP3626968B2 (en) Power supply device
US20190337393A1 (en) Passive Flux Bridge for Charging Electric Vehicles
US20140191586A1 (en) Wireless power transmission apparatus, wireless power reception apparatus, and wireless power transmission and reception system
EP3013630A2 (en) Systems, methods, and apparatus related to detecting and identifying electric vehicle and charging station
EP3025405A1 (en) Device alignment in inductive power transfer systems
EP3192141A1 (en) Systems, methods, and apparatus for integrated tuning capacitors in charging coil structure
WO2014014615A1 (en) Device alignment and identification in inductive power transfer systems
KR20160048226A (en) Adaptive wireless energy transfer system
EA020003B1 (en) Resonance type noncontact charging device
CN206086429U (en) A wireless charging system of vehicle for disposing at bus stop
EP2916430A1 (en) Power transmission system
CN110293861A (en) Capacitance coupling type electric car automated wireless charging system and charging method
GB2512864A (en) Inductive power transfer pad and system for inductive power transfer
JP2003143711A (en) Feeder
GB2347801A (en) Electric vehicle battery charger
WO2014166942A2 (en) Inductive power transfer pad and system for inductive power transfer
CN1403316A (en) Power supply device
JP3626967B2 (en) Connected electric vehicle