JP3580128B2 - Manufacturing method of metal foil laminated film - Google Patents

Manufacturing method of metal foil laminated film Download PDF

Info

Publication number
JP3580128B2
JP3580128B2 JP10772998A JP10772998A JP3580128B2 JP 3580128 B2 JP3580128 B2 JP 3580128B2 JP 10772998 A JP10772998 A JP 10772998A JP 10772998 A JP10772998 A JP 10772998A JP 3580128 B2 JP3580128 B2 JP 3580128B2
Authority
JP
Japan
Prior art keywords
polyimide
heat
metal foil
film
dianhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10772998A
Other languages
Japanese (ja)
Other versions
JPH11300887A (en
Inventor
智彦 山本
敏徳 細馬
和彦 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP10772998A priority Critical patent/JP3580128B2/en
Publication of JPH11300887A publication Critical patent/JPH11300887A/en
Application granted granted Critical
Publication of JP3580128B2 publication Critical patent/JP3580128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、金属箔積層フィルムの製法に関するものであり、特に耐熱性ポリイミド層の両面に熱融着性ポリイミド層を有する多層ポリイミドフィルムと金属箔とを、その表面ビッカ−ス硬度が特定範囲にある少なくとも一対の加圧部材で連続的に熱圧着することを特徴とする金属箔積層フィルムの製法に関するものである。
この発明によれば、生産性良く連続的に、物性の良好な金属箔積層フィルムを得ることができる。
【0002】
【従来の技術】
カメラ、パソコン、液晶ディスプレイなどの電子機器類への用途として芳香族ポリイミドフィルムは広く使用されている。
芳香族ポリイミドフィルムをフレキシブルプリント板(FPC)やテ−プ・オ−トメイティッド・ボンディング(TAB)などの基板材料として使用するためには、エポキシ樹脂などの接着剤を用いて銅箔を張り合わせる方法が採用されている。
【0003】
芳香族ポリイミドフィルムは耐熱性、機械的強度、電気的特性などが優れているが、接着剤の耐熱性等が劣るため、本来のポリイミドの特性を損なうことが指摘されている。
このような問題を解決するために、接着剤を使用しないでポリイミドフィルムに銅を電気メッキしたり、銅箔にポリアミック酸溶液を塗布し、乾燥、イミド化したり、熱可塑性のポリイミドを熱圧着させたオ−ルポリイミド基材も開発されている。
【0004】
また、ポリイミドフィルムと金属箔との間にポリイミド接着剤をサンドイッチ状に接合させたポリイミドラミネ−トおよびその製法が知られている(米国特許第4543295号)。
しかし、このポリイミドラミネ−トおよびその製法は、連続的に行うことが困難であり、しかもある種のポリイミドフィルムについては剥離強度が小さく使用できないという問題がある。
【0005】
さらに、金属箔積層ポリイミドフィルムおよびその製法が知られている(特開平4−33847号、特開平4−33848号)。
しかし、これらの方法では、金属箔と多層ポリイミドフィルムとを積層する際の金属箔積層フィルムの引き取り速度が1m/分以下であり生産性が低く、また得られた金属箔積層フィルムに皺が発生する場合があるなどの問題点を有している。
【0006】
【発明が解決しようとする課題】
この発明の目的は、基体層としての耐熱性ポリイミと薄層としての熱融着性ポリイミドとのポリイミドおよび金属箔を使用し、生産性良く連続的に、物性の良好な金属箔積層フィルムを製造する方法を提供することである。
【0007】
【課題を解決するための手段】
この発明は、多層ポリイミドフィルムの厚みの30%以上で5−150μmの厚みを有する耐熱性ポリイミド層の両面に1,3−ビス(4−アミノフェノキシベンゼン)と2,3,3 ' ,4 ' −ビフェニルテトラカルボン酸二無水物とから、1,3−ビス(4−アミノフェノキシ)−2,2−ジメチルプロパンと4,4 ' −オキシジフタル酸二無水物と2,3,3 ' ,4 ' −ビフェニルテトラカルボン酸二無水物とから、1,3−ビス(4−アミノフェノキシベンゼン)と4,4 ' −オキシジフタル酸二無水物とピロメリット酸二無水物とから、あるいは前記のテトラカルボン酸成分の一部を3,3 ' ,4,4 ' −ビフェニルテトラカルボン酸二無水物で置き換えて得られるガラス転移温度が200−250℃で厚みが1−8μmの熱融着性ポリイミド層を有し全体としての線膨張係数(50−200℃)が10 x 10 -6 −25 x 10 -6 cm/cm/℃である多層ポリイミドフィルムと金属箔とを、その表面ビッカ−ス硬度が100−1300である一対の圧着金属ロ−ルまたはダブルベルトプレスからなる加圧部材で連続的に熱融着性ポリイミドのガラス転移温度より30℃以上で400℃以下の温度で加熱下に圧着して得られる金属箔積層フィルムを、ロ−ル巻き、エッチング、および場合によりカ−ル戻しの各処理を行った後、所定の大きさに切断することからなる金属箔積層フィルムの製法に関する。また、この発明は、前記の製法によって得られる金属箔積層フィルムを、ロ−ル巻き、エッチング、および場合によりカ−ル戻しの各処理を行った後、所定の大きさに切断することからなる金属箔積層フィルムの製法に関する。
【0008】
【発明の実施の形態】
以下にこの発明の好ましい態様を列記ずる。
1)多層ポリイミドフィルムが、基体層としての耐熱性ポリイミド前駆体溶液と薄層としての熱融着性ポリイミド前駆体溶液とから共押出し−流延製膜法によって得られる共押出しポリイミドフィルムである上記の金属箔積層フィルムの製法。
2)多層ポリイミドフィルムおよび金属箔が、ロ−ル巻きの状態で加圧部材にそれぞれ供給され、金属箔積層フィルムがロ−ル巻きの状態で得られる上記の金属箔積層フィルムの製法。
3)加圧部材の表面ビッカ−ス硬度が200−1000である上記の金属箔積層フィルムの製法。
【0009】
この発明においては、耐熱性ポリイミド層の両面に熱融着性ポリイミド層を有する多層ポリイミドフィルムを使用する。
この多層ポリイミドフィルムは、好適には共押出し−流延製膜法によって耐熱性ポリイミドの前駆体溶液と熱融着性ポリイミド前駆体溶液とを積層し、乾燥、イミド化して多層ポリイミドフィルムを得る方法、あるいは前記の耐熱性ポリイミドの前駆体溶液を支持体上に流延塗布し、乾燥したゲルフィルムの両面に熱融着性ポリイミド前駆体溶液を塗布し、乾燥、イミド化して多層ポリイミドフィルムを得る方法によって得ることができる。
上記のいずれの方法においても、熱融着性ポリイミドの前駆体層を250−400℃の最高加熱温度で乾燥、イミド化することが好ましい。
特に、共押出し−流延法によって得られる自己支持性フィルムを250−400℃の最高加熱温度で乾燥、イミド化したものが好ましい。
【0010】
前記の多層ポリイミドフィルムの基体層としての耐熱性ポリイミドは、好適には3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下単にs−BPDAと略記することもある。)とパラフェニレンジアミン(以下単にPPDと略記することもある。)と場合によりさらに4,4’−ジアミノジフェニルエ−テル(以下単にDADEと略記することもある。)とから製造される。この場合PPD/DADE(モル比)は100/0〜85/15であることが好ましい。また、基体層としての耐熱性ポリイミドは、ピロメリット酸二無水物とパラフェニレンジアミンおよび4,4’−ジアミノジフェニルエ−テルとから製造される。この場合DADE/PPD(モル比)は90/10−10/90であることが好ましい。
さらに、基体層としての耐熱性ポリイミドは、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)およびピロメリット酸二無水物(PMDA)とパラフェニレンジアミン(PPD)および4,4’−ジアミノジフェニルエ−テル(DADE)とから製造される。この場合、酸二無水物中BTDAが20−90モル%、PMDAが10−80モル%、ジアミン中PPDが30−90モル%、DADEが10−70モル%であることが好ましい。
【0011】
上記の基体層としての耐熱性ポリイミドとしては、単独のポリイミドフィルムの場合にガラス転移温度が350℃以上−450℃まで確認不可能の範囲内であるものが好ましく、特に線膨張係数(50−200℃)(MD、TDおよびこれらの平均のいずれも)が5×10−6−20×10−6cm/cm/℃であるものが好ましい。
この基体層ポリイミドの合成は、最終的に各成分の割合が前記範囲内であればランダム重合、ブロック重合、あるいはあらかじめ2種類のポリアミック酸を合成しておき両ポリアミック酸溶液を混合後反応条件下で混合する、いずれの方法によっても達成される。
【0012】
前記各成分を使用し、ジアミン成分とテトラカルボン酸二無水物の略等モル量を、有機溶媒中で反応させてポリアミック酸の溶液(均一な溶液状態が保たれていれば一部がイミド化されていてもよい)とする。
前記基体層ポリイミドの物性を損なわない種類と量の他の芳香族テトラカルボン酸二無水物や芳香族ジアミン、例えば4,4’−ジアミノジフェニルメタン等を使用してもよい。
【0013】
この発明における薄層としての熱融着性ポリイミドとしては、好適には1,3−ビス(4−アミノフェノキシベンゼン)(以下、TPERと略記することもある。)と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(以下、a−BPDAと略記することもある。)とから製造される。
また、前記の薄層としての熱融着性ポリイミドとしては、1,3−ビス(4−アミノフェノキシ)−2,2−ジメチルプロパン(DANPG)と4,4’−オキシジフタル酸二無水物(ODPA)およびa−BPDAとから製造される。
あるいは、4,4’−オキシジフタル酸二無水物(ODPA)およびピロメリット酸二無水物と1,3−ビス(4−アミノフェノキシベンゼン)とから製造される。
【0014】
前記の熱融着性ポリイミドは、前記各成分と、さらに場合により他のテトラカルボン酸二無水物および他のジアミンとを、有機溶媒中、約100℃以下、特に20〜60℃の温度で反応させてポリアミック酸の溶液とし、このポリアミック酸の溶液をド−プ液として使用し、そのド−プ液の薄膜を形成し、その薄膜から溶媒を蒸発させ除去すると共にポリアミック酸をイミド環化することにより製造することができる。
【0015】
また、前述のようにして製造したポリアミック酸の溶液を150〜250℃に加熱するか、またはイミド化剤を添加して150℃以下、特に15〜50℃の温度で反応させて、イミド環化した後溶媒を蒸発させる、もしくは貧溶媒中に析出させて粉末とした後、該粉末を有機溶液に溶解して熱融着性ポリイミドの有機溶媒溶液を得ることができる。
【0016】
この発明で熱融着性ポリイミドの物性を損なわない範囲で他のテトラカルボン酸二無水物、例えば3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3、4−ジカルボキシフェニル)プロパン二無水物あるいは2,3,6,7−ナフタレンテトラカルボン酸二無水物など、好適には3,3’,4,4’−ビフェニルテトラカルボン酸二無水物で置き換えられてもよい。
また、熱融着性ポリイミドの物性を損なわない範囲で他のジアミン、例えば4,4’−ジアミノジフェニルエ−テル、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルメタン、2,2−ビス(4−アミノフェニル)プロパン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェニル)ジフェニルエ−テル、4,4’−ビス(4−アミノフェニル)ジフェニルメタン、4,4’−ビス(4−アミノフェノキシ)ジフェニルエ−テル、4,4’−ビス(4−アミノフェノキシ)ジフェニルメタン、2,2−ビス〔4−(アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕ヘキサフルオロプロパンなどの複数のベンゼン環を有する柔軟な芳香族ジアミン、1,4−ジアミノブタン、1,6−ジアミノヘキサン、1,8−ジアミノオクタン、1,10−ジアミノデカン、1,12−ジアミノドデカンなどの脂肪族ジアミン、ビス(3−アミノプロピル)テトラメチルジシロキサンなどのジアミノジシロキサンによって置き換えられてもよい。他の芳香族ジアミンの使用割合は全ジアミンに対して20モル%以下、特に10モル%以下であることが好ましい。また、脂肪族ジアミンおよびジアミノジシロキサンの使用割合は全ジアミンに対して20モル%以下であることが好ましい。この割合を越すと熱融着性ポリイミドの耐熱性が低下する。
前記の熱融着性ポリイミドのアミン末端を封止するためにジカルボン酸無水物、例えば、無水フタル酸およびその置換体、ヘキサヒドロ無水フタル酸およびその置換体、無水コハク酸およびその置換体など、特に、無水フタル酸を使用してもよい。
【0017】
この発明における熱融着性ポリイミドを得るためには、前記の有機溶媒中、ジアミン(アミノ基のモル数として)の使用量が酸無水物の全モル数(テトラ酸二無水物とジカルボン酸無水物の酸無水物基としての総モルとして)に対する比として、好ましくは0.92〜1.1、特に0.98〜1.1、そのなかでも特に0.99〜1.1であり、ジカルボン酸無水物の使用量がテトラカルボン酸二無水物の酸無水物基モル量に対する比として、好ましくは0.05以下、特に0.0001〜0.02であるような割合の各成分を反応させることが好ましい。
【0018】
前記のジアミンおよびジカルボン酸無水物の使用割合が前記の範囲外であると、得られるポリアミック酸、従って熱融着性ポリイミドの分子量が小さく、金属箔積層フィルムの剥離強度の低下をもたらす。
また、ポリアミック酸の これらのゲル化を制限する目的でリン系安定剤、例えば亜リン酸トリフェニル、リン酸トリフェニル等をポリアミック酸重合時に固形分(ポリマ−)濃度に対して0.01〜1%の範囲で添加することができる。
また、イミド化促進の目的で、ド−プ液中に塩基性有機化合物を添加することができる。例えば、イミダゾ−ル、2−イミダゾ−ル、1,2−ジメチルイミダゾ−ル、2−フェニルイミダゾ−ルなどをポリアミック酸に対して0.05−10重量%、特に0.1−2重量%の割合で使用することができる。これらは比較的低温でポリイミドフィルムを形成するため、イミド化が不十分となることを避けるために使用する。
また、熱圧着強度の安定化の目的で、熱融着性ポリイミド原料ド−プに有機アルミニウム化合物、無機アルミニウム化合物または有機錫化合物を添加してもよい。例えば水酸化アルミニウム、アルミニウムトリアセチルアセトナ−トなどをポリアミック酸に対してアルミニウム金属として1ppm以上、特に1−1000ppmの割合で添加することができる。
【0019】
前記のポリアミック酸製造に使用する有機溶媒は、耐熱性ポリイミドおよび熱融着性ポリイミドのいずれに対しても、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、クレゾ−ル類などが挙げられる。これらの有機溶媒は単独で用いてもよく、2種以上を併用してもよい。
【0020】
この発明における多層ポリイミドフィルムの製造においては、例えば上記の基体層の耐熱性ポリイミドのポリアミック酸溶液と薄層用の熱融着性ポリイミドまたはその前駆体の溶液を共押出して、これをステンレス鏡面、ベルト面等の支持体面上に流延塗布し、100〜200℃で半硬化状態またはそれ以前の乾燥状態とすることが好ましい。
200℃を越えた高い温度で流延フィルムを処理すると、多層ポリイミドフィルムの製造において、接着性の低下などの欠陥を来す傾向にある。
この半硬化状態またはそれ以前の状態とは、加熱および/または化学イミド化によって自己支持性の状態にあることを意味する。
【0021】
前記の基体層ポリイミドを与えるポリアミック酸の溶液と、熱融着性ポリイミドを与えるポリアミック酸の溶液あるいはポリイミドの溶液との共押出しは、例えば特開平3−180343号公報(特公平7−102661号公報)に記載の共押出法によって三層の押出し成形用ダイスに供給し、支持体上にキャストしておこなうことができる。
前記の基体層ポリイミドを与える押出し物層の両面に、熱融着性ポリイミドを与えるポリアミック酸の溶液あるいはポリイミド溶液を積層して多層フィルム状物を形成して乾燥後、熱融着性ポリイミドのガラス転移温度(Tg)以上で劣化が生じる温度以下の温度、好適には250−400℃の温度(表面温度計で測定した表面温度)まで加熱して(好適にはこの温度で1〜60分間加熱して)乾燥およびイミド化して、基体層ポリイミドの両面に熱融着性ポリイミドを有する多層押出しポリイミドフィルムを製造することができる。
【0022】
この発明における熱融着性ポリイミドは、前記の酸成分とジアミン成分とを使用することによって、ガラス転移温度が200−250℃であって、好適には前記の条件で乾燥・イミド化して熱融着性ポリイミドのゲル化を実質的に起こさせないことによって達成される、ガラス転移温度以上で約300℃以下の範囲内の温度では溶融せず、かつ弾性率(通常、275℃での弾性率が室温での弾性率の0.001−0.5倍程度)を有しているものが好ましい。
【0023】
この発明において、基体層ポリイミドのフィルム(層)の厚さは5〜150μmであることが好ましい。5μm未満では作成した多層ポリイミドフィルムの機械的強度、寸法安定性に問題が生じる。また150μmより厚くなると溶媒の除去、イミド化に難点が生じるので好ましくない。また、この発明において、熱融着性ポリイミド(Y)層の厚さは0.4−10μm、特に1〜8μmが好ましい。0.4μm未満では接着性能が低下し、10μmを超えても使用可能であるがとくに効果はなく、むしろ金属箔積層フィルムの耐熱性および生産性が低下するので好ましくない。前記基体層ポリイミドのフィルム(層)の厚さは全体の多層フィルムの30%以上であることが好ましい。この割合より小さいと作成した多層フィルムの熱線膨張係数が大きくなり、機械的強度、寸法安定性などの問題が発生する。
【0024】
前記の共押出し−流延製膜法によって、基体層ポリイミドとその両面の熱融着性ポリイミドとを比較的低温度でキュアを行うことができるため、熱融着性ポリイミドの劣化を来すことなく、多層ポリイミドフィルムのイミド化、乾燥を完了させることがでる。
この発明における多層ポリイミドフィルムは、好適には熱線膨張係数(50−200℃)(MD、TD、平均のいずれも)が10×10−6−25×10−6cm/cm/℃である。
【0025】
この発明において使用される金属箔としては、銅、アルミニウム、金、合金の箔など各種金属箔が挙げられるが、好適には圧延銅、電解銅などがあげられる。金属箔として、表面粗度の小さい、好適にはRzが7μm以下、特にRzが5μm以下であるものが好ましい。このような金属箔、例えば銅箔はVLP、LP(またはHTE)として知られている。
金属箔の厚さは特に制限はないが、5〜60μm、特に10−20μmであることが好ましい。
【0026】
この発明においては、前記の耐熱性ポリイミド層の両面に熱融着性ポリイミド層を有する多層ポリイミドフィルムと金属箔とを、その表面ビッカ−ス硬度が100−1300、好ましくは200−1000である少なくとも一対の加圧部材で連続的に、ロ−ル部の温度が熱融着性ポリイミドのガラス転移温度より30℃以上で400℃以下の温度で加熱下に圧着して金属箔積層フィルムを製造する。
このような加圧部材としては、一対の圧着金属ロ−ルまたはダブルベルトプレスを挙げられる(圧着部は金属製、セラミック溶射金属製のいずれでもよい)。
前記のビッカ−ス硬度は、金属あるいはセラミック溶射金属の場合、HV100、HV1300と表示される。
この発明においては、前記の表面硬度を有する加圧部材、好適には金属ロ−ルまたはダブルベルトプレスを使用し、前記の多層ポリイミドフィルムと金属箔とを組み合わせることによって、連続的に加熱下に圧着して、引き取り速度2m/分以上、特に3m/分以上で物性の良好な金属箔積層フィルムを製造することができる。
【0027】
この発明の方法は、特に多層ポリイミドフィルムおよび金属箔が、ロ−ル巻きの状態で加圧部材にそれぞれ供給され、金属箔積層フィルムがロ−ル巻きの状態で得られる場合に特に好適である。
【0028】
この発明の方法は、例えば、前記のようにして得られる金属箔積層フィルムをロ−ル巻き、エッチング、および場合によりカ−ル戻しの各処理を行った後、所定の大きさに切断して、適用される。
【0029】
【実施例】
以下、この発明を実施例および比較例によりさらに詳細に説明する。
以下の各例において、部は重量部を意味する。
以下の各例において、物性評価および銅箔積層フィルムの剥離強度は以下の方法に従って測定した。
ビッカ−ス硬度:
熱線膨張係数:20−200℃、5℃/分で測定(TD、MD、平均値)、cm/cm/℃
銅箔積層フィルムの剥離強度:90°剥離強度を測定した。
半田耐熱性:280℃で1分間浸漬した後の外観を観察し評価
外観:銅箔積層フィルムの銅箔表面について皺発生有無を含め外観を観察し評価 ○は良好、△はやや不良、×は不良
【0030】
基体層ポリイミド製造用ド−プの合成例1
攪拌機、窒素導入管を備えた反応容器に、N−メチル−2−ピロリドンを加え、さらに、パラフェニレンジアミン(PPD)と3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)とを1000:998のモル比でモノマ−濃度が18%(重量%、以下同じ)になるように加えた。添加終了後50℃を保ったまま3時間反応を続けた。得られたポリアミック酸溶液は褐色粘調液体であり、25℃における溶液粘度は約1500ポイズであった。この溶液をド−プとして使用した。
【0031】
薄層用ポリイミド製造用ド−プの合成−1
攪拌機、、窒素導入管を備えた反応容器に、N−メチル−2−ピロリドンを加え、さらに、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)とを1000:1000のモル比でモノマ−濃度が22%になるように、またトリフェニルホスフェ−トをモノマ−重量に対して0.1%加えた。添加終了後25℃を保ったまま1時間反応を続けた。このポリアミック酸溶液にトルエンをN−メチル−2−ピロリドンに対して10%加えるとともに、反応温度を190℃に昇温し、生成する水をトルエンと共に留去しながら5時間反応し、黄赤色粘調ポリイミド溶液を得た。25℃における溶液粘度は約2000ポイズであった。この溶液(ド−プ)をY−1と称する。
【0032】
薄層用ポリイミド製造用ド−プの合成−2
攪拌機、、窒素導入管を備えた反応容器に、N,N−ジメチルアセトアミド(DMAC)を加え、さらに、1,3−ビス(4−アミノフェノキシ)−2,2−ジメチルプロパンを加え、最後に4,4’−オキシジフタル酸二無水物を1000:1000のモル比でモノマ−濃度が22%になるように、またトリフェニルホスフェ−トおよび2−イミダゾ−ルをモノマ−重量に対して各々0.1%加えた。添加終了後25℃にて5時間反応を続け、淡黄褐色粘調なポリアミック酸溶液を得た。25℃における溶液粘度は約2000ポイズであった。この溶液(ド−プ)をY−2と称する。
【0033】
比較例1−2
合成例1の基体層用ド−プと薄層用ポリイミド製造用ド−プ(ド−プY−1)とを三層押出し成形用ダイス(マルチマニホ−ルド型ダイス)を設けた製膜装置を使用し、前記ポリアミック酸溶液を三層押出ダイスから金属製支持体上に流延し、140℃の熱風で連続的に乾燥し、固化フィルムを形成した。この固化フィルムを支持体から剥離した後加熱炉で200℃から320℃まで徐々に昇温して溶媒の除去、イミド化を行い長尺状の三層押出しポリイミドフィルムを巻き取りロ−ルに巻き取った。
得られた三層押出しポリイミドフィルムは、各層の厚みが4μm/17μm/4μmであり、線膨張係数(50−200℃)が、MD:23ppm/℃、TD:19ppm/℃、平均:21ppm/℃であり、基体層ポリイミドのガラス転移温度は450℃以下の温度で確認されず、薄層ポリイミドはガラス転移温度が250℃であり、ゲル化が実質的に生じていなかった。
この三層押出しポリイミドフィルムと、2つのロ−ル巻きした電解銅箔(福田金属箔粉工業株式会社製、CF−T9、VLP、Rz約4μm、厚さ18μm)とを、表1に示すロ−ル材質の圧着ロ−ルを使用し表1に示す条件で連続的に加熱下に圧着して、銅箔積層フィルムを巻き取りロ−ルに巻き取った。なお、操作はすべて空気中で行い、冷却は自然冷却で行った。
得られた銅箔積層フィルムについての評価結果を表2に示す。
【0034】
実施例1−3
圧着ロ−ルの種類および圧着条件を表1に示すように変えた他は比較例1と同様に実施した。
得られた銅箔積層フィルムについての評価結果を表2に示す。
【0035】
実施例4
合成例1の基体層用ド−プと薄層用ポリイミド製造用ド−プ(ド−プY−2)とを三層押出し成形用ダイス(マルチマニホ−ルド型ダイス)を設けた製膜装置を使用し、前記ポリアミック酸溶液を三層押出ダイスから金属製支持体上に流延し、140℃の熱風で連続的に乾燥し、固化フィルムを形成した。この固化フィルムを支持体から剥離した後加熱炉で180℃から350℃まで徐々に昇温して溶媒の除去、イミド化を行い長尺状の三層押出しポリイミドフィルムを巻き取りロ−ルに巻き取った。
得られた三層押出しポリイミドフィルムは、各層の厚みが4μm/17μm/4μmであり、線膨張係数(50−200℃)が、MD:14ppm/℃、TD:13ppm/℃、平均:14ppm/℃であり、基体層ポリイミド層のガラス転移温度は450℃以下では確認されず、薄層ポリイミドはガラス転移温度が219℃であり、ゲル化が実質的に生じていなかった。
この三層押出しポリイミドフィルムを使用した他は実施例2と同様に実施して金属箔積層フィルムを巻き取りロ−ルに巻き取った。
得られた銅箔積層フィルムについての評価結果を表2に示す。
【0036】
実施例5
成形用ダイス(マルチマニホ−ルド型ダイス)を変え、最高加熱温度および加熱時間を320℃、3分に変えた他は比較例1と同様にして、厚みが58μmの長尺状の三層押出しポリイミドフィルムを巻き取りロ−ルに巻き取った。
得られた三層押出しポリイミドフィルムは、各層の厚みが8μm/42μm/8μmであり、線膨張係数(50−200℃)が、MD:25ppm/℃、TD:21ppm/℃、平均:23ppm/℃であり、基体層ポリイミドのガラス転移温度は確認されず、薄層ポリイミドのガラス転移温度は250℃であった。
この三層押出しポリイミドフィルムを使用した他は実施例2と同様に実施して銅箔積層フィルムを巻き取りロ−ルに巻き取った。
得られた銅箔積層フィルムについての評価結果を表2に示す。
【0037】
【表1】

Figure 0003580128
【0038】
【表2】
Figure 0003580128
【0039】
実施例6
圧着ロ−ルに代えて、2組の加熱ロ−ル(材質:金属、HV約600)2組とそのまわりを回転するエンドレス金属ベルトからなるダブルベルトプレスを用い、ロ−ル部温度350℃、巻き取り速度5m/分で連続的に圧着し、銅箔積層フィルムを巻き取りロ−ルに巻き取る。
得られる銅箔積層フィルムは実施例1で得られた銅箔積層フィルムと同等である。
【0040】
実施例7
実施例1−5で得られた銅箔積層フィルムを、常法によってエッチング処理を行った後、金型を用いて所定の大きさに切断して、500mm×500mmの均一厚みの銅箔回路板を得た。
これらの銅箔回路板は、いずれも半田耐熱性(280℃、1分間)は良好で、反りも生じていなかった。
【0041】
【発明の効果】
この発明によれば、以上のような構成を有しているため、次のような効果を奏する。
【0042】
この発明によれば、生産性良く連続的に、物性の良好な金属箔積層フィルムを得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a metal foil laminated film, in particular, a multilayer polyimide film having a heat-fusible polyimide layer on both sides of a heat-resistant polyimide layer and a metal foil, the surface Vickers hardness is in a specific range. The present invention relates to a method for producing a metal foil laminated film, which comprises continuously performing thermocompression bonding with at least one pair of pressing members.
According to the present invention, a metal foil laminated film having good physical properties can be continuously obtained with good productivity.
[0002]
[Prior art]
Aromatic polyimide films are widely used for electronic devices such as cameras, personal computers, and liquid crystal displays.
In order to use an aromatic polyimide film as a substrate material for a flexible printed board (FPC) or a tape-automated bonding (TAB), a copper foil is laminated using an adhesive such as an epoxy resin. The method has been adopted.
[0003]
It has been pointed out that aromatic polyimide films are excellent in heat resistance, mechanical strength, electrical properties, and the like, but are inferior in properties of polyimide due to poor heat resistance of adhesives.
In order to solve such problems, copper is electroplated on a polyimide film without using an adhesive, or a polyamic acid solution is applied to a copper foil, dried, imidized, or thermoplastic polyimide is thermocompressed. All-polyimide substrates have also been developed.
[0004]
Also, a polyimide laminate in which a polyimide adhesive is sandwiched between a polyimide film and a metal foil and a method for producing the same are known (US Pat. No. 4,543,295).
However, there is a problem that it is difficult to perform this polyimide laminate and its manufacturing method continuously, and that a certain kind of polyimide film has low peel strength and cannot be used.
[0005]
Further, a metal foil laminated polyimide film and a method for producing the same are known (JP-A-4-33847, JP-A-4-33848).
However, according to these methods, the take-up speed of the metal foil laminated film when laminating the metal foil and the multilayer polyimide film is 1 m / min or less, so that productivity is low and wrinkles are generated in the obtained metal foil laminated film. There is a problem that there is a case that the
[0006]
[Problems to be solved by the invention]
An object of the present invention is to produce a metal foil laminated film having good physical properties continuously using polyimide and a metal foil of a heat-resistant polyimide as a base layer and a heat-fusible polyimide as a thin layer. Is to provide a way to
[0007]
[Means for Solving the Problems]
The present invention30% or more of the thickness of the multilayer polyimide film and has a thickness of 5-150 μmOn both sides of heat-resistant polyimide layer1,3-bis (4-aminophenoxybenzene) and 2,3,3 ' , 4 ' -Biphenyltetracarboxylic dianhydride from 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane and 4,4 ' Oxydiphthalic dianhydride and 2,3,3 ' , 4 ' -Biphenyltetracarboxylic dianhydride from 1,3-bis (4-aminophenoxybenzene) and 4,4 ' -A part of the tetracarboxylic acid component formed from oxydiphthalic dianhydride and pyromellitic dianhydride or 3,3 ' , 4,4 ' A glass transition temperature of 200-250 ° C. and a thickness of 1-8 μm obtained by replacing with biphenyltetracarboxylic dianhydrideWith heat-fusible polyimide layerThe overall coefficient of linear expansion (50-200 ° C) is 10 x 10 -6 -25 x 10 -6 cm / cm / ° CThe surface Vickers hardness of the multilayer polyimide film and the metal foil is 100-1300.Consists of a pair of crimped metal rolls or a double belt pressContinuously with pressure memberAt a temperature of 30 ° C or more and 400 ° C or less from the glass transition temperature of the heat-fusible polyimideA metal foil laminated film obtained by subjecting a metal foil laminated film obtained by pressure bonding under heating to roll treatment, etching, and, if necessary, curl return, and then cutting it to a predetermined size. Related to the production method. Further, the present invention comprises cutting a metal foil laminated film obtained by the above-mentioned production method into rolls, etching, and, if necessary, curling back, and then to a predetermined size. The present invention relates to a method for producing a metal foil laminated film.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the present invention will be listed below.
1) The multilayer polyimide film is a co-extruded polyimide film obtained by a co-extrusion-cast film forming method from a heat-resistant polyimide precursor solution as a base layer and a heat-fusible polyimide precursor solution as a thin layer. Production method of metal foil laminated film.
2) The method for producing a metal foil laminated film as described above, wherein the multilayer polyimide film and the metal foil are supplied to the pressing member in a rolled state, respectively, and the metal foil laminated film is obtained in a rolled state.
3) The method for producing a metal foil laminated film described above, wherein the surface Vickers hardness of the pressing member is 200 to 1000.
[0009]
In the present invention, a multilayer polyimide film having a heat-fusible polyimide layer on both sides of a heat-resistant polyimide layer is used.
This multilayer polyimide film is preferably obtained by laminating a heat-resistant polyimide precursor solution and a heat-fusible polyimide precursor solution by co-extrusion-casting film forming method, drying and imidizing to obtain a multilayer polyimide film. Alternatively, a precursor solution of the heat-resistant polyimide is applied by casting onto a support, and a heat-fusible polyimide precursor solution is applied to both sides of a dried gel film, dried, and imidized to obtain a multilayer polyimide film. Can be obtained by any method.
In any of the above methods, it is preferable to dry and imidize the heat-fusible polyimide precursor layer at a maximum heating temperature of 250 to 400 ° C.
In particular, a self-supporting film obtained by co-extrusion-casting is preferably dried and imidized at a maximum heating temperature of 250 to 400 ° C.
[0010]
The heat-resistant polyimide as the base layer of the multilayer polyimide film is preferably 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter may be simply abbreviated as s-BPDA). It is produced from paraphenylenediamine (hereinafter sometimes abbreviated simply as PPD) and optionally 4,4′-diaminodiphenyl ether (hereinafter sometimes simply abbreviated as DADE). In this case, the PPD / DADE (molar ratio) is preferably from 100/0 to 85/15. The heat-resistant polyimide as the base layer is produced from pyromellitic dianhydride, paraphenylenediamine and 4,4'-diaminodiphenyl ether. In this case, DADE / PPD (molar ratio) is preferably 90 / 10-10 / 90.
Further, the heat-resistant polyimide as the base layer includes 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and pyromellitic dianhydride (PMDA) and paraphenylenediamine (PPD) and , 4'-diaminodiphenyl ether (DADE). In this case, it is preferable that BTDA in the acid dianhydride is 20-90 mol%, PMDA is 10-80 mol%, PPD in the diamine is 30-90 mol%, and DADE is 10-70 mol%.
[0011]
As the heat-resistant polyimide as the base layer, those having a glass transition temperature of 350 ° C. or more and −450 ° C. which cannot be confirmed in the case of a single polyimide film are preferable, and particularly a coefficient of linear expansion (50-200). ° C) (MD, TD and their averages) is 5 x 10-6-20 × 10-6Those having a cm / cm / ° C are preferred.
In the synthesis of the base layer polyimide, the final reaction conditions are as follows: if the proportion of each component is within the above range, random polymerization, block polymerization, or two kinds of polyamic acids are synthesized in advance, and both polyamic acid solutions are mixed. , And can be achieved by either method.
[0012]
Using each of the above components, a substantially equimolar amount of a diamine component and a tetracarboxylic dianhydride are reacted in an organic solvent to form a polyamic acid solution (partially imidized if a uniform solution state is maintained). May be performed).
Other aromatic tetracarboxylic dianhydrides and aromatic diamines, such as 4,4'-diaminodiphenylmethane, may be used which do not impair the physical properties of the base layer polyimide.
[0013]
The heat-fusible polyimide as a thin layer in the present invention is preferably 1,3-bis (4-aminophenoxybenzene) (hereinafter sometimes abbreviated as TPER) and 2,3,3 ′, 4'-biphenyltetracarboxylic dianhydride (hereinafter may be abbreviated as a-BPDA).
The heat-fusible polyimide as the thin layer includes 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane (DANPG) and 4,4′-oxydiphthalic dianhydride (ODPA). )) And a-BPDA.
Alternatively, it is produced from 4,4'-oxydiphthalic dianhydride (ODPA) and pyromellitic dianhydride and 1,3-bis (4-aminophenoxybenzene).
[0014]
The heat-fusible polyimide reacts each of the above-mentioned components with, as the case may be, another tetracarboxylic dianhydride and another diamine in an organic solvent at a temperature of about 100 ° C. or lower, particularly 20 to 60 ° C. Then, a solution of the polyamic acid is used, and the solution of the polyamic acid is used as a dope solution, a thin film of the dope solution is formed, the solvent is evaporated from the thin film and removed, and the polyamic acid is imide-cyclized. It can be manufactured by
[0015]
Further, the solution of the polyamic acid produced as described above is heated to 150 to 250 ° C., or an imidizing agent is added thereto and reacted at a temperature of 150 ° C. or less, particularly 15 to 50 ° C., to give an imide cyclization. Thereafter, the solvent is evaporated or precipitated in a poor solvent to form a powder, and the powder is dissolved in an organic solution to obtain a heat-fusible polyimide organic solvent solution.
[0016]
In the present invention, other tetracarboxylic dianhydrides such as 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,2-bis (3 , 4-dicarboxyphenyl) propane dianhydride or 2,3,6,7-naphthalenetetracarboxylic dianhydride, preferably 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride It may be replaced.
In addition, other diamines such as 4,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylmethane, and 2,2- Bis (4-aminophenyl) propane, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenyl) diphenyl ether, 4,4′-bis (4-aminophenyl ) Diphenylmethane, 4,4'-bis (4-aminophenoxy) diphenyl ether, 4,4'-bis (4-aminophenoxy) diphenylmethane, 2,2-bis [4- (aminophenoxy) phenyl] propane, Flexible aromatic diamines having a plurality of benzene rings such as 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane Aliphatic diamines such as min, 1,4-diaminobutane, 1,6-diaminohexane, 1,8-diaminooctane, 1,10-diaminodecane, and 1,12-diaminododecane; bis (3-aminopropyl) tetra It may be replaced by a diaminodisiloxane such as methyldisiloxane. The proportion of the other aromatic diamine used is preferably 20 mol% or less, particularly preferably 10 mol% or less based on the total diamine. Further, the proportion of the aliphatic diamine and diaminodisiloxane used is preferably 20 mol% or less based on the total diamine. Exceeding this ratio lowers the heat resistance of the heat-fusible polyimide.
Dicarboxylic anhydrides, such as phthalic anhydride and its substitution, hexahydrophthalic anhydride and its substitution, succinic anhydride and its substitution, etc., in order to block the amine terminal of the heat-fusible polyimide. Phthalic anhydride may be used.
[0017]
In order to obtain the heat-fusible polyimide according to the present invention, the amount of the diamine (as the number of moles of amino group) used in the organic solvent is the total number of moles of the acid anhydride (tetraacid dianhydride and dicarboxylic acid anhydride). Of the compound (total moles of anhydrides as acid anhydride groups) is preferably from 0.92 to 1.1, especially from 0.98 to 1.1, more preferably from 0.99 to 1.1. The components used are reacted in such a ratio that the amount of the acid anhydride is preferably 0.05 or less, particularly 0.0001 to 0.02, as a ratio to the molar amount of the acid anhydride group of the tetracarboxylic dianhydride. Is preferred.
[0018]
If the proportion of the diamine and dicarboxylic anhydride is outside the above range, the molecular weight of the resulting polyamic acid, that is, the heat-fusible polyimide, is small, and the peel strength of the metal foil laminated film is reduced.
For the purpose of restricting the gelling of the polyamic acid, a phosphorus-based stabilizer such as triphenyl phosphite, triphenyl phosphate or the like is used in an amount of 0.01 to 0.01% based on the solid content (polymer) concentration at the time of polyamic acid polymerization. It can be added in the range of 1%.
Further, a basic organic compound can be added to the dope solution for the purpose of accelerating imidization. For example, imidazole, 2-imidazole, 1,2-dimethylimidazole, 2-phenylimidazole, etc. are used in an amount of 0.05 to 10% by weight, especially 0.1 to 2% by weight based on the polyamic acid. Can be used in proportions. These are used to form a polyimide film at a relatively low temperature and to prevent imidization from becoming insufficient.
For the purpose of stabilizing the thermocompression bonding strength, an organic aluminum compound, an inorganic aluminum compound or an organic tin compound may be added to the heat-fusible polyimide raw material dope. For example, aluminum hydroxide, aluminum triacetylacetonate and the like can be added to the polyamic acid at a ratio of 1 ppm or more, particularly 1-1000 ppm, as aluminum metal.
[0019]
The organic solvent used for the production of the polyamic acid is N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, for both heat-resistant polyimide and heat-fusible polyimide. N, N-diethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, N-methylcaprolactam, cresols and the like can be mentioned. These organic solvents may be used alone or in combination of two or more.
[0020]
In the production of the multilayer polyimide film of the present invention, for example, a polyamic acid solution of the heat-resistant polyimide of the above-described base layer and a solution of a heat-fusible polyimide or a precursor thereof for a thin layer are co-extruded, and this is a stainless steel mirror surface, It is preferable that the composition is cast and applied on a support surface such as a belt surface and is in a semi-cured state at 100 to 200 ° C. or a dried state before that.
When the cast film is processed at a high temperature exceeding 200 ° C., there is a tendency that defects such as a decrease in adhesiveness are caused in the production of the multilayer polyimide film.
The semi-cured state or a state before that means that it is in a self-supporting state by heating and / or chemical imidization.
[0021]
Co-extrusion of the polyamic acid solution for providing the substrate layer polyimide with the polyamic acid solution or the polyimide solution for providing the heat-fusible polyimide is described in, for example, Japanese Patent Application Laid-Open No. 3-180343 (JP-B-7-102661). The above-mentioned method can be applied to a three-layer extrusion die by the coextrusion method described in (1) and cast on a support.
On both sides of the extruded material layer providing the base layer polyimide, a polyamic acid solution or a polyimide solution providing a heat-fusible polyimide is laminated to form a multilayer film-like material, dried, and then heat-fused polyimide glass is formed. Heat to a temperature below the temperature at which degradation occurs above the transition temperature (Tg), preferably to a temperature of 250 to 400 ° C. (surface temperature measured by a surface thermometer) (preferably heating at this temperature for 1 to 60 minutes) D) drying and imidizing to produce a multilayer extruded polyimide film having a heat-sealable polyimide on both sides of the substrate layer polyimide.
[0022]
The heat-fusible polyimide according to the present invention has a glass transition temperature of 200 to 250 ° C. by using the acid component and the diamine component, and is preferably dried and imidized under the above-described conditions to obtain a heat-fusible polyimide. It does not melt at a temperature in the range of not less than the glass transition temperature and about 300 ° C. or less, which is achieved by substantially not causing gelling of the adhesive polyimide, and has an elastic modulus (usually an elastic modulus at 275 ° C.). Those having a modulus of elasticity at room temperature of about 0.001 to 0.5 times) are preferable.
[0023]
In the present invention, the thickness of the polyimide film (layer) of the base layer is preferably 5 to 150 μm. If the thickness is less than 5 μm, problems arise in mechanical strength and dimensional stability of the formed multilayer polyimide film. On the other hand, when the thickness is more than 150 μm, it is not preferable because there are difficulties in removing the solvent and imidizing. In the present invention, the thickness of the heat-fusible polyimide (Y) layer is preferably 0.4 to 10 μm, particularly preferably 1 to 8 μm. If it is less than 0.4 μm, the adhesive performance is reduced, and if it exceeds 10 μm, it can be used, but there is no particular effect, but rather the heat resistance and productivity of the metal foil laminated film are undesirably reduced. The thickness of the polyimide film (layer) of the base layer is preferably 30% or more of the entire multilayer film. If the ratio is smaller than this, the coefficient of linear thermal expansion of the formed multilayer film becomes large, and problems such as mechanical strength and dimensional stability occur.
[0024]
By the co-extrusion-casting film forming method, the polyimide of the base layer and the heat-fusible polyimide on both surfaces thereof can be cured at a relatively low temperature. In addition, imidization and drying of the multilayer polyimide film can be completed.
The multilayer polyimide film according to the present invention preferably has a coefficient of linear thermal expansion (50-200 ° C.) (MD, TD, average) of 10 × 10-6-25 × 10-6cm / cm / ° C.
[0025]
Examples of the metal foil used in the present invention include various metal foils such as copper, aluminum, gold, and alloy foils, preferably rolled copper and electrolytic copper. A metal foil having a small surface roughness, preferably having an Rz of 7 μm or less, particularly preferably having a Rz of 5 μm or less, is preferred. Such a metal foil, for example, a copper foil, is known as VLP, LP (or HTE).
The thickness of the metal foil is not particularly limited, but is preferably 5 to 60 μm, particularly preferably 10 to 20 μm.
[0026]
In the present invention, a multilayer polyimide film having a heat-fusible polyimide layer on both sides of the heat-resistant polyimide layer and a metal foil, the surface Vickers hardness is at least 100-1300, preferably at least 200-1000. A metal foil laminated film is manufactured by continuously pressing a pair of pressure members under heating at a temperature of 30 ° C. or more and 400 ° C. or less from the glass transition temperature of the heat-fusible polyimide with a roll portion. .
Examples of such a pressing member include a pair of pressure-bonded metal rolls or a double belt press (the pressure-bonded portion may be made of metal or ceramic sprayed metal).
The Vickers hardness is indicated as HV100 or HV1300 in the case of metal or ceramic sprayed metal.
In the present invention, a pressing member having the above-mentioned surface hardness, preferably a metal roll or a double belt press is used, and the multilayer polyimide film and the metal foil are combined to continuously heat them. By pressing, a metal foil laminated film having good physical properties can be produced at a take-up speed of 2 m / min or more, particularly 3 m / min or more.
[0027]
The method of the present invention is particularly suitable when the multi-layer polyimide film and the metal foil are supplied to the pressing member in a rolled state, respectively, and the metal foil laminated film is obtained in a rolled state. .
[0028]
In the method of the present invention, for example, the metal foil laminated film obtained as described above is subjected to roll winding, etching, and, if necessary, curling back, and then cut into a predetermined size. , Apply.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
In each of the following examples, parts means parts by weight.
In each of the following examples, the physical property evaluation and the peel strength of the copper foil laminated film were measured according to the following methods.
Vickers hardness:
Coefficient of linear thermal expansion: 20-200 ° C, measured at 5 ° C / min (TD, MD, average), cm / cm / ° C
Peel strength of copper foil laminated film: 90 ° peel strength was measured.
Solder heat resistance: Observation and evaluation after immersion at 280 ° C for 1 minute
Appearance: Observe and evaluate the appearance of the copper foil surface of the copper foil laminated film, including the presence or absence of wrinkles. ○: good, Δ: slightly poor, ×: poor
[0030]
Synthetic example 1 of dope for polyimide production of base layer
N-methyl-2-pyrrolidone was added to a reaction vessel equipped with a stirrer and a nitrogen inlet tube, and paraphenylenediamine (PPD) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s) were further added. -BPDA) at a molar ratio of 1000: 998 to give a monomer concentration of 18% (% by weight, the same applies hereinafter). After completion of the addition, the reaction was continued for 3 hours while maintaining the temperature at 50 ° C. The obtained polyamic acid solution was a brown viscous liquid, and the solution viscosity at 25 ° C. was about 1500 poise. This solution was used as a dope.
[0031]
Synthesis of Dope for Polyimide Production for Thin Layer-1
N-Methyl-2-pyrrolidone was added to a reaction vessel equipped with a stirrer and a nitrogen inlet tube, and 1,3-bis (4-aminophenoxy) benzene (TPE-R) and 2,3,3 ′, 4'-biphenyltetracarboxylic dianhydride (a-BPDA) was added at a molar ratio of 1000: 1000 so that the monomer concentration became 22%, and triphenyl phosphate was added at 0% to the monomer weight. .1%. After completion of the addition, the reaction was continued for 1 hour while maintaining the temperature at 25 ° C. To this polyamic acid solution, toluene was added at 10% with respect to N-methyl-2-pyrrolidone, and the reaction temperature was raised to 190 ° C., and the reaction was carried out for 5 hours while distilling off the generated water together with the toluene. A prepared polyimide solution was obtained. The solution viscosity at 25 ° C. was about 2000 poise. This solution (dope) is referred to as Y-1.
[0032]
Synthesis of Dope for Thin Layer Polyimide Production-2
N, N-dimethylacetamide (DMAC) was added to a reaction vessel equipped with a stirrer and a nitrogen inlet tube, and further, 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane was added. 4,4'-oxydiphthalic dianhydride was added in a molar ratio of 1000: 1000 to give a monomer concentration of 22%, and triphenyl phosphate and 2-imidazole were added to the monomer weight. 0.1% was added. After completion of the addition, the reaction was continued at 25 ° C. for 5 hours to obtain a light yellow-brown viscous polyamic acid solution. The solution viscosity at 25 ° C. was about 2000 poise. This solution (dope) is referred to as Y-2.
[0033]
Comparative Example 1-2
A film forming apparatus provided with a three-layer extrusion molding die (multi-manifold type die) of the base layer dope of Synthesis Example 1 and the thin layer polyimide dope (Dop Y-1). The used polyamic acid solution was cast on a metal support from a three-layer extrusion die and dried continuously with hot air at 140 ° C. to form a solidified film. After the solidified film is peeled off from the support, the temperature is gradually raised from 200 ° C. to 320 ° C. in a heating furnace to remove the solvent and imidize, and a long three-layer extruded polyimide film is wound up and wound on a roll. I took it.
The obtained three-layer extruded polyimide film has a thickness of each layer of 4 μm / 17 μm / 4 μm and a linear expansion coefficient (50-200 ° C.) of MD: 23 ppm / ° C., TD: 19 ppm / ° C., and average: 21 ppm / ° C. The glass transition temperature of the substrate layer polyimide was not confirmed at a temperature of 450 ° C. or lower, and the glass transition temperature of the thin layer polyimide was 250 ° C., and substantially no gelation occurred.
The three-layer extruded polyimide film and two rolled electrolytic copper foils (CF-T9, VLP, Rz about 4 μm, thickness 18 μm, manufactured by Fukuda Metal Foil & Powder Co., Ltd.) are shown in Table 1. Using a compression roll made of a roll material, the laminate was continuously pressed under heating under the conditions shown in Table 1 while heating, and the copper foil laminated film was wound on a take-up roll. All operations were performed in air, and cooling was performed by natural cooling.
Table 2 shows the results of the evaluation of the obtained copper foil laminated film.
[0034]
Example 1-3
Comparative Example 1 was carried out in the same manner as in Comparative Example 1, except that the type of the compression roll and the compression conditions were changed as shown in Table 1.
Table 2 shows the results of the evaluation of the obtained copper foil laminated film.
[0035]
Example 4
A film forming apparatus provided with a three-layer extrusion molding die (multi-manifold type die) of the substrate layer dope of Synthesis Example 1 and the thin layer polyimide dope (Dop Y-2). The used polyamic acid solution was cast from a three-layer extrusion die onto a metal support and dried continuously with hot air at 140 ° C. to form a solidified film. After the solidified film is peeled off from the support, the temperature is gradually raised from 180 ° C. to 350 ° C. in a heating furnace to remove the solvent and imidize, and a long three-layer extruded polyimide film is wound up and rolled up. I took it.
The obtained three-layer extruded polyimide film has a thickness of each layer of 4 μm / 17 μm / 4 μm, and a linear expansion coefficient (50-200 ° C.) of MD: 14 ppm / ° C., TD: 13 ppm / ° C., and average: 14 ppm / ° C. The glass transition temperature of the substrate layer polyimide layer was not confirmed at 450 ° C. or lower, and the thin-layer polyimide had a glass transition temperature of 219 ° C., and substantially no gelation occurred.
Except that this three-layer extruded polyimide film was used, the procedure was the same as in Example 2, and the metal foil laminated film was taken up on a take-up roll.
Table 2 shows the results of the evaluation of the obtained copper foil laminated film.
[0036]
Example 5
A long three-layer extruded polyimide having a thickness of 58 μm in the same manner as in Comparative Example 1 except that the forming die (multi-manifold type die) was changed, and the maximum heating temperature and the heating time were changed to 320 ° C. and 3 minutes. The film was taken up on a take-up roll.
The obtained three-layer extruded polyimide film has a thickness of each layer of 8 μm / 42 μm / 8 μm and a linear expansion coefficient (50-200 ° C.) of MD: 25 ppm / ° C., TD: 21 ppm / ° C., and average: 23 ppm / ° C. The glass transition temperature of the substrate layer polyimide was not confirmed, and the glass transition temperature of the thin layer polyimide was 250 ° C.
The same procedure as in Example 2 was carried out except that this three-layer extruded polyimide film was used, and the copper foil laminated film was wound on a take-up roll.
Table 2 shows the results of the evaluation of the obtained copper foil laminated film.
[0037]
[Table 1]
Figure 0003580128
[0038]
[Table 2]
Figure 0003580128
[0039]
Example 6
Instead of the crimping roll, a double belt press consisting of two sets of heating rolls (material: metal, HV about 600) and an endless metal belt rotating therearound is used, and the roll part temperature is 350 ° C. Then, the copper foil laminated film is continuously pressure-bonded at a winding speed of 5 m / min, and wound on a winding roll.
The obtained copper foil laminated film is equivalent to the copper foil laminated film obtained in Example 1.
[0040]
Example 7
After the copper foil laminated film obtained in Example 1-5 is subjected to an etching treatment by a conventional method, it is cut into a predetermined size using a mold, and a copper foil circuit board having a uniform thickness of 500 mm × 500 mm. Got.
All of these copper foil circuit boards had good soldering heat resistance (280 ° C., 1 minute) and did not warp.
[0041]
【The invention's effect】
According to the present invention, the following effects are achieved because of the configuration described above.
[0042]
According to the present invention, a metal foil laminated film having good physical properties can be continuously obtained with good productivity.

Claims (5)

多層ポリイミドフィルムの厚みの30%以上で5−150μmの厚みを有する耐熱性ポリイミド層の両面に1,3−ビス(4−アミノフェノキシベンゼン)と2,3,3 ' ,4 ' −ビフェニルテトラカルボン酸二無水物とから、1,3−ビス(4−アミノフェノキシ)−2,2−ジメチルプロパンと4,4 ' −オキシジフタル酸二無水物と2,3,3 ' ,4 ' −ビフェニルテトラカルボン酸二無水物とから、1,3−ビス(4−アミノフェノキシベンゼン)と4,4 ' −オキシジフタル酸二無水物とピロメリット酸二無水物とから、あるいは前記のテトラカルボン酸成分の一部を3,3 ' ,4,4 ' −ビフェニルテトラカルボン酸二無水物で置き換えて得られるガラス転移温度が200−250℃で厚みが1−8μmの熱融着性ポリイミド層を有し全体としての線膨張係数(50−200℃)が10 x 10 -6 −25 x 10 -6 cm/cm/℃である多層ポリイミドフィルムと金属箔とを、その表面ビッカ−ス硬度が100−1300である一対の圧着金属ロ−ルまたはダブルベルトプレスからなる加圧部材で連続的に熱融着性ポリイミドのガラス転移温度より30℃以上で400℃以下の温度で加熱下に圧着することを特徴とする金属箔積層フィルムの製法。 1,3-bis (4-aminophenoxybenzene) and 2,3,3 ' , 4' -biphenyltetracarboxylic acid on both surfaces of a heat-resistant polyimide layer having a thickness of 5 to 150 m with a thickness of 30% or more of the multilayer polyimide film. and a dianhydride, 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane and 4,4 '- oxydiphthalic acid dianhydride and 2,3,3', 4 '- biphenyltetracarboxylic and a dianhydride, 1,3-bis (4-aminophenoxy benzene) and 4,4 '- and a oxydiphthalic acid dianhydride and pyromellitic dianhydride, or a part of the tetracarboxylic acid component 3,3 ', 4,4' - glass transition temperature obtained by replacing biphenyl tetracarboxylic acid dianhydride and a thickness 200-250 ° C. the heat-welding polyimide layer of 1-8μm Yes and the linear expansion coefficient of the entire (50-200 ° C.) is a multi-layer polyimide film and the metal foil is 10 x 10 -6 -25 x 10 -6 cm / cm / ℃, its surface Vickers - scan hardness 100 A pair of pressure-bonded metal rolls of -1300 or a pressure member consisting of a double belt press to continuously press -bond under heat at a temperature of 30 ° C or more and 400 ° C or less from the glass transition temperature of the heat-fusible polyimide. A method for producing a metal foil laminated film, characterized by the following. 多層ポリイミドフィルムが、基体層としての耐熱性ポリイミド前駆体溶液と薄層としての熱融着性ポリイミドまたはその前駆体溶液とから共押出し−流延製膜法によって得られる共押出しポリイミドフィルムである請求項1に記載の金属箔積層フィルムの製法。The multilayer polyimide film is a co-extruded polyimide film obtained by co-extrusion from a heat-resistant polyimide precursor solution as a substrate layer and a heat-fusible polyimide or a precursor solution thereof as a thin layer by a casting film forming method. Item 2. The method for producing a metal foil laminated film according to Item 1. 多層ポリイミドフィルムおよび金属箔が、ロ−ル巻きの状態で加圧部材にそれぞれ供給され、金属箔積層フィルムがロ−ル巻きの状態で得られる請求項1に記載の金属箔積層フィルムの製法。2. The method for producing a metal foil laminated film according to claim 1, wherein the multilayer polyimide film and the metal foil are supplied to the pressing member in a roll-wound state, and the metal foil laminated film is obtained in a roll-wound state. 加圧部材の表面ビッカ−ス硬度が200−1000である請求項1に記載の金属箔積層フィルムの製法。The method according to claim 1, wherein the pressing member has a surface Vickers hardness of 200 to 1000. 多層ポリイミドフィルムの厚みの30%以上で5−150μmの厚みを有する耐熱性ポリイミド層の両面に1,3−ビス(4−アミノフェノキシベンゼン)と2,3,3 ' ,4 ' −ビフェニルテトラカルボン酸二無水物とから、1,3−ビス(4−アミノフェノキシ)−2,2−ジメチルプロパンと4,4 ' −オキシジフタル酸二無水物と2,3,3 ' ,4 ' −ビフェニルテトラカルボン酸二無水物とから、1,3−ビス(4−アミノフェノキシベンゼン)と4,4 ' −オキシジフタル酸二無水物とピロメリット酸二無水物とから、あるいは前記のテトラカルボン酸成分の一部を3,3 ' ,4,4 ' −ビフェニルテトラカルボン酸二無水物で置き換えて得られるガラス転移温度が200−250℃で厚みが1−8μmの熱融着性ポリイミド層を有し全体としての線膨張係数(50−200℃)が10 x 10 -6 −25 x 10 -6 cm/cm/℃である多層ポリイミドフィルムと金属箔とを、その表面ビッカ−ス硬度が100−1300である一対の圧着金属ロ−ルまたはダブルベルトプレスからなる加圧部材で連続的に熱融着性ポリイミドのガラス転移温度より30℃以上で400℃以下の温度で加熱下に圧着して得られる金属箔積層フィルムを、ロ−ル巻き、エッチング、および場合によりカ−ル戻しの各処理を行った後、所定の大きさに切断することからなる金属箔積層フィルムの製法。 1,3-bis (4-aminophenoxybenzene) and 2,3,3 ' , 4' -biphenyltetracarboxylic acid on both surfaces of a heat-resistant polyimide layer having a thickness of 5 to 150 m with a thickness of 30% or more of the multilayer polyimide film. and a dianhydride, 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane and 4,4 '- oxydiphthalic acid dianhydride and 2,3,3', 4 '- biphenyltetracarboxylic and a dianhydride, 1,3-bis (4-aminophenoxy benzene) and 4,4 '- and a oxydiphthalic acid dianhydride and pyromellitic dianhydride, or a part of the tetracarboxylic acid component 3,3 ', 4,4' - glass transition temperature obtained by replacing biphenyl tetracarboxylic acid dianhydride and a thickness 200-250 ° C. the heat-welding polyimide layer of 1-8μm Yes and the linear expansion coefficient of the entire (50-200 ° C.) is a multi-layer polyimide film and the metal foil is 10 x 10 -6 -25 x 10 -6 cm / cm / ℃, its surface Vickers - scan hardness 100 A pair of pressure-bonded metal rolls of -1300 or a pressure member composed of a double belt press is continuously pressed under heating at a temperature of 30 ° C. or more and 400 ° C. or less from the glass transition temperature of the heat-fusible polyimide. A method for producing a metal foil laminated film, which comprises subjecting the obtained metal foil laminated film to roll winding, etching, and, if necessary, curling back, and then cutting the film to a predetermined size.
JP10772998A 1998-04-17 1998-04-17 Manufacturing method of metal foil laminated film Expired - Lifetime JP3580128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10772998A JP3580128B2 (en) 1998-04-17 1998-04-17 Manufacturing method of metal foil laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10772998A JP3580128B2 (en) 1998-04-17 1998-04-17 Manufacturing method of metal foil laminated film

Publications (2)

Publication Number Publication Date
JPH11300887A JPH11300887A (en) 1999-11-02
JP3580128B2 true JP3580128B2 (en) 2004-10-20

Family

ID=14466481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10772998A Expired - Lifetime JP3580128B2 (en) 1998-04-17 1998-04-17 Manufacturing method of metal foil laminated film

Country Status (1)

Country Link
JP (1) JP3580128B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270035A (en) * 2000-03-28 2001-10-02 Ube Ind Ltd Flexible metal foil laminate
JP4665298B2 (en) * 2000-08-25 2011-04-06 東レ株式会社 TAPE WITH ADHESIVE FOR SEMICONDUCTOR DEVICE, COPPER-CLAD LAMINATE USING SAME, SEMICONDUCTOR CONNECTION BOARD AND SEMICONDUCTOR DEVICE
JP2004130748A (en) * 2002-10-15 2004-04-30 Mitsui Chemicals Inc Laminated body
US20060021699A1 (en) 2002-11-07 2006-02-02 Naoki Hase Heat-resistant flexible laminated board manufacturing method
JP3952196B2 (en) * 2003-06-25 2007-08-01 信越化学工業株式会社 Method for producing flexible metal foil polyimide laminate
JP3790250B2 (en) * 2004-01-16 2006-06-28 新日鐵化学株式会社 Continuous production method of double-sided conductor polyimide laminate
JP3675805B1 (en) * 2004-01-16 2005-07-27 新日鐵化学株式会社 Continuous production method of double-sided conductor polyimide laminate
US8426548B2 (en) * 2004-09-24 2013-04-23 Kaneka Corporation Polyimide film and adhesive film and flexible metal-clad laminate both obtained with the same
TWI276533B (en) 2006-04-13 2007-03-21 Thinflex Corp Method of fabricating a polyimide-metal laminate
JPWO2008004496A1 (en) * 2006-07-06 2009-12-03 東レ株式会社 Thermoplastic polyimide, laminated polyimide film using the same, and metal foil laminated polyimide film
JP2008162290A (en) * 2008-02-15 2008-07-17 Ube Ind Ltd Manufacturing method of flexible metal foil laminate
JP2011084637A (en) * 2009-10-15 2011-04-28 Asahi Kasei E-Materials Corp Polyimide resin composition and polyimide-metal laminated sheet
JP6040081B2 (en) * 2013-03-28 2016-12-07 日東電工株式会社 Method for producing transparent conductive laminate

Also Published As

Publication number Publication date
JPH11300887A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP4147639B2 (en) Flexible metal foil laminate
US6379784B1 (en) Aromatic polyimide laminate
JP4362917B2 (en) Metal foil laminate and its manufacturing method
JP5035220B2 (en) Copper-clad laminate and manufacturing method thereof
JP2004098659A (en) Copper-clad laminate and its manufacturing process
JP3580128B2 (en) Manufacturing method of metal foil laminated film
JP4356184B2 (en) Flexible metal foil laminate
JPH10138318A (en) Production of multilayered extrusion polyimide film
JPH0999518A (en) Laminate and production thereof
JP3938058B2 (en) POLYIMIDE FILM HAVING HEAT FUSION, LAMINATE USING SAME, AND METHOD FOR PRODUCING THEM
JP4345188B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP2001270036A (en) Flexible metal foil laminate
JP4389338B2 (en) Manufacturing method of flexible metal foil laminate
JP2002240195A (en) Polyimide/copper-clad panel
JPH11157026A (en) Laminate and manufacture thereof
JP4257587B2 (en) Flexible metal foil laminate
JP4123665B2 (en) Heat resistant resin board and manufacturing method thereof
JP2007216688A (en) Copper clad laminated sheet and its manufacturing method
JP4360025B2 (en) Polyimide piece area layer with reinforcing material and method for producing the same
JP2001270035A (en) Flexible metal foil laminate
JP4345187B2 (en) Method for producing flexible metal foil laminate
JP4389337B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP4415950B2 (en) Method for producing flexible metal foil laminate
JP2004042579A (en) Copper-clad laminated sheet and its manufacturing method
JP4501851B2 (en) Low roughness metal foil with polyimide and method for treating metal foil surface

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term