JP3536820B2 - Hybrid vehicle control device - Google Patents

Hybrid vehicle control device

Info

Publication number
JP3536820B2
JP3536820B2 JP2001028820A JP2001028820A JP3536820B2 JP 3536820 B2 JP3536820 B2 JP 3536820B2 JP 2001028820 A JP2001028820 A JP 2001028820A JP 2001028820 A JP2001028820 A JP 2001028820A JP 3536820 B2 JP3536820 B2 JP 3536820B2
Authority
JP
Japan
Prior art keywords
torque
engine
target
command value
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001028820A
Other languages
Japanese (ja)
Other versions
JP2002233006A (en
Inventor
三朗 冨川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001028820A priority Critical patent/JP3536820B2/en
Priority to US10/050,139 priority patent/US6741917B2/en
Publication of JP2002233006A publication Critical patent/JP2002233006A/en
Application granted granted Critical
Publication of JP3536820B2 publication Critical patent/JP3536820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/10Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle 
    • B60K28/16Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle  responsive to, or preventing, skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0042Transfer function lag; delays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0604Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0671Engine manifold pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/105Output torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/916Specific drive or transmission adapted for hev with plurality of drive axles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/917Specific drive or transmission adapted for hev with transmission for changing gear ratio

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、第1の車輪を回転
させるエンジンと、該エンジンから機械的に独立した第
2の車輪を回転させる電気モータと、を含んで構成され
るハイブリッド式車両制御装置に関し、特に、第1及び
第2の車輪の総駆動力に対してエンジンが負担すべき駆
動トルクが変化した際における車両走行性の安定化に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid vehicle control system including an engine for rotating a first wheel and an electric motor for rotating a second wheel mechanically independent of the engine. The present invention relates to a device, and more particularly to stabilization of vehicle traveling performance when a driving torque to be borne by an engine changes with respect to a total driving force of first and second wheels.

【0002】[0002]

【従来の技術】第1の車輪(例えば、後輪)及び第2の
車輪(例えば、前輪)の双方を、ともにエンジンによっ
て駆動する4輪駆動式の車両制御装置は、よく知られて
いるところである。このような伝統的な4WDシステム
では、エンジンの駆動トルクが、多板クラッチ機構を含
んで構成されるトランスファによって前後輪に配分され
るので、この駆動トルクの配分率が変化しても、総駆動
トルクは一定に保たれる。
2. Description of the Related Art A four-wheel drive type vehicle control system in which both a first wheel (for example, a rear wheel) and a second wheel (for example, a front wheel) are driven by an engine is well known. is there. In such a traditional 4WD system, the driving torque of the engine is distributed to the front and rear wheels by a transfer including a multi-plate clutch mechanism. The torque is kept constant.

【0003】近年、新たに、一方の車輪をエンジンによ
り回転させ、他方の車輪を電気モータにより回転させる
ハイブリッド式4WDシステムが提案されている(特開
平8−300965号公報参照)。このものにあって
は、前後両輪の間に物理的な結合が存在しないので、各
駆動輪に対して伝達される駆動トルクを、総駆動トルク
が一定となるように調整しなければならないという、走
行上の新たな問題が提起される。
In recent years, a hybrid 4WD system has been proposed in which one wheel is rotated by an engine and the other wheel is rotated by an electric motor (see Japanese Patent Application Laid-Open No. Hei 8-300965). In this case, since there is no physical connection between the front and rear wheels, the drive torque transmitted to each drive wheel must be adjusted so that the total drive torque is constant. New driving problems are raised.

【0004】[0004]

【発明が解決しようとする課題】ここで、エンジンは、
電気モータと比較して、概して出力の面で有利ではある
ものの応答性の面で不利があり、それに起因して次に述
べるような数々の問題が生じる。例えば、スリップの発
生などにより前輪及び後輪に対する駆動力配分が変更さ
れた(後輪に100%の駆動トルクを伝達させていた状
態から、前後両輪に50%ずつの駆動トルクを伝達する
状態に切り換える)場合を考える。ここで、駆動力配分
に応じたそれぞれの目標駆動トルクに対して、エンジン
と電気モータとを無関係に収束させたとすると、電気モ
ータの駆動トルクは速やかに増大する一方で、エンジン
の駆動トルクの減少には相当の時間を要するため、総駆
動トルクが一時的に増大し、加速感が出てしまう。
Here, the engine is:
Compared to electric motors, they are generally advantageous in terms of output, but disadvantageous in terms of responsiveness, resulting in the following problems. For example, the distribution of the driving force to the front wheels and the rear wheels has been changed due to the occurrence of a slip or the like (from a state in which 100% driving torque is transmitted to the rear wheels to a state in which 50% driving torque is transmitted to both the front and rear wheels). Switch). Here, assuming that the engine and the electric motor converge independently of the respective target driving torques corresponding to the driving force distribution, the driving torque of the electric motor increases quickly while the driving torque of the engine decreases. Requires a considerable amount of time, the total driving torque temporarily increases, and a feeling of acceleration is produced.

【0005】また、駆動形態を4WD方式からエンジン
駆動輪のみによる2WD方式に切り換える場合を考える
と、電気モータの駆動トルクは速やかに消滅する一方
で、エンジンの駆動トルクの上昇には相当の時間を要す
るため、総駆動トルクが一時的に減少し、失速感が出て
しまう。このような実状に鑑み、本発明は、エンジンの
応答性に合わせた電気モータのトルク制御により、以上
のような駆動力配分の切換時における車両走行性の悪化
を防止することができるハイブリッド式車両制御装置を
提供することを目的とする。
[0005] Considering the case where the driving mode is switched from the 4WD system to the 2WD system using only the engine driving wheels, while the driving torque of the electric motor disappears quickly, it takes a considerable time to increase the driving torque of the engine. As a result, the total drive torque is temporarily reduced, causing a sense of stall. In view of such circumstances, the present invention provides a hybrid vehicle that can prevent the deterioration of the vehicle traveling performance at the time of switching the driving force distribution as described above by controlling the torque of the electric motor in accordance with the response of the engine. It is an object to provide a control device.

【0006】[0006]

【課題を解決するための手段】このため、請求項1に記
載の発明に係るハイブリッド式車両制御装置は、エンジ
ン駆動輪を駆動するエンジンと、該エンジンから機械的
に独立した非エンジン駆動輪を駆動する電気モータと、
を含んで構成されるハイブリッド式車両制御装置であっ
て、前記エンジン駆動輪及び前記非エンジン駆動輪の目
標総駆動トルクを設定する目標総駆動トルク設定手段
と、設定した目標総駆動トルクのうちエンジン駆動輪に
発生すべき目標駆動トルクである目標エンジントルクを
設定する目標エンジントルク設定手段と、目標エンジン
トルクが変化した場合に、前記目標総駆動トルクのうち
非エンジン駆動輪に発生すべき配分率に応じた前記電気
モータの目標駆動トルクの変化に対して、前記電気モー
タに対するトルク指令値を、遅れを持たせて設定するモ
ータ指令値設定手段と、前記エンジン駆動輪のスリップ
時において、前記電気モータに対するトルク指令値を、
非スリップ時と比べて小さな値に調整するモータ指令値
調整手段と、を備えることを特徴とする。
According to a first aspect of the present invention, there is provided a hybrid vehicle control apparatus comprising: an engine for driving an engine driving wheel; and a non-engine driving wheel mechanically independent of the engine. An electric motor to drive;
And a target total drive torque setting means for setting a target total drive torque of the engine drive wheels and the non-engine drive wheels; and an engine out of the set target total drive torque. A target engine torque setting means for setting a target engine torque which is a target drive torque to be generated in the drive wheels; and a distribution ratio of the target total drive torque to be generated in the non-engine drive wheels when the target engine torque changes. the relative change of the target drive torque of the electric motor, a torque command value for said electric motor, a motor command value setting means for setting to have a delay, the slip of the engine driven wheel in accordance with
At the time, the torque command value for the electric motor,
Motor command value that is adjusted to a smaller value than when no slip
Adjusting means .

【0007】請求項2に記載の発明に係るハイブリッド
式車両制御装置は、前記モータ指令値設定手段が、変化
後の目標エンジントルクに収束する過程におけるエンジ
ン駆動輪の実際の駆動トルクである実エンジントルクを
推定する実エンジントルク推定手段と、推定した実エン
ジントルクを前記目標総駆動トルクから減じる減算手段
と、を含んで構成されることを特徴とする。
According to a second aspect of the present invention, there is provided a hybrid vehicle control apparatus, wherein the motor command value setting means is a real engine which is an actual driving torque of an engine driving wheel in a process of converging to a changed target engine torque. The present invention is characterized by including actual engine torque estimating means for estimating torque and subtracting means for subtracting the estimated actual engine torque from the target total drive torque.

【0008】請求項3に記載の発明に係るハイブリッド
式車両制御装置は、前記実エンジントルク推定手段が、
実エンジントルクを、前記エンジンの回転速度、吸気圧
力及びスロットル開度のうち少なくとも1つに基づく遅
れ時定数に基づいて推定することを特徴とする。請求項
4に記載の発明に係るハイブリッド式車両制御装置は、
前記モータ指令値設定手段が、加速要求時において、非
加速時と比べて前記電気モータに対するトルク指令値を
大きめに設定することを特徴とする。
According to a third aspect of the present invention, in the hybrid vehicle control device, the actual engine torque estimating means includes:
The actual engine torque is estimated based on a delay time constant based on at least one of the rotation speed, intake pressure, and throttle opening of the engine. The hybrid vehicle control device according to the invention described in claim 4 is:
The motor command value setting means sets a torque command value for the electric motor to be larger at the time of an acceleration request than at the time of non-acceleration.

【0009】請求項5に記載の発明に係るハイブリッド
式車両制御装置は、前記モータ指令値設定手段が、前記
実エンジントルク推定手段が加速要求時において実エン
ジントルクを小さめに推定することにより、前記電気モ
ータに対するトルク指令値を大きめに設定することを特
徴とする。
According to a fifth aspect of the present invention, in the hybrid vehicle control device, the motor command value setting means estimates the actual engine torque to be small when the actual engine torque estimating means requests acceleration. It is characterized in that the torque command value for the electric motor is set to be relatively large.

【0010】請求項に記載の発明に係るハイブリッド
式車両制御装置は、前記モータ指令値調整手段が、エン
ジン駆動輪のスリップの発生を、エンジン駆動輪と非エ
ンジン駆動輪との回転速度差に基づいて検出することを
特徴とする。請求項に記載の発明に係るハイブリッド
式車両制御装置は、前記モータ指令値設定手段が、非エ
ンジン駆動輪のスリップ時において、設定した目標総駆
動トルクのうち非エンジン駆動輪に発生すべき配分率に
応じた前記電気モータの目標駆動トルクを、前記電気モ
ータに対するトルク指令値とすることを特徴とする。
According to a sixth aspect of the present invention, in the hybrid vehicle control device, the motor command value adjusting means includes an engine control unit.
The occurrence of slip of the gin drive wheel is detected based on the rotational speed difference between the engine drive wheel and the non-engine drive wheel. According to a seventh aspect of the present invention, in the hybrid vehicle control device, the motor command value setting unit is configured to distribute the non-engine driven wheels of the set target total drive torque to the non-engine driven wheels when the non-engine driven wheels slip. A target drive torque of the electric motor according to the rate is set as a torque command value for the electric motor.

【0011】[0011]

【発明の効果】請求項1に記載の発明によれば、スリッ
プ時や4WD切換時などに駆動力配分を切り換える際
に、電気モータに対するトルク指令値が、その目標駆動
トルクの変化に対して遅れを持たせて設定されるように
構成したので、応答遅れを含んで比較的緩やかに変化す
るエンジンの駆動トルクに合わせて電気モータの駆動ト
ルクが発生されることとなり、加速感や失速感の発生を
緩和ないしは防止することが可能となる。また、エンジ
ン駆動輪のスリップ時には、総駆動トルクが減少し、減
速感が出るので、ドライバーにスリップの発生を認識さ
せることができる。
According to the first aspect of the present invention, when the driving force distribution is switched at the time of slipping or 4WD switching, the torque command value for the electric motor is delayed with respect to the change of the target driving torque. The drive torque of the electric motor is generated in accordance with the drive torque of the engine that changes relatively slowly, including the response delay, so that a feeling of acceleration or a sense of stall is generated. Can be alleviated or prevented. In addition, engine
When the drive wheels slip, the total drive torque decreases,
Since the driver feels quick, the driver is aware of the slip.
Can be made.

【0012】請求項2に記載の発明によれば、電気モー
タのトルク指令値が目標総駆動トルクから実エンジント
ルクを減じることにより算出されるように構成したの
で、総駆動トルクを一定に保つことが可能となる。請求
項3に記載の発明によれば、実エンジントルクを容易に
推定することができる。
According to the second aspect of the present invention, since the torque command value of the electric motor is calculated by subtracting the actual engine torque from the target total drive torque, the total drive torque is kept constant. Becomes possible. According to the third aspect of the invention, the actual engine torque can be easily estimated.

【0013】請求項4、5に記載の発明によれば、加速
要求時において、比較的応答性の良い電気モータの出力
要求が大きめとなるので、エンジンの駆動トルクが低め
にばらついたとしても、減速感を緩和することができ
る。
According to the fourth and fifth aspects of the present invention, at the time of an acceleration request, the output request of the electric motor having relatively high response becomes large, so that even if the driving torque of the engine fluctuates low, The feeling of deceleration can be reduced.

【0014】請求項に記載の発明によれば、エンジン
駆動輪のスリップの発生を容易に検出することができ
る。請求項に記載の発明によれば、非エンジン駆動輪
のスリップ時には、電気モータの駆動トルクが、電気モ
ータ本来の応答性で変化することとなるので、非エンジ
ン駆動輪の駆動トルクを速やかに減少させることがで
き、スリップを早期に収めることができる。
According to the sixth aspect of the present invention, the engine
Occurrence of slip of the drive wheels can be easily detected. According to the invention described in claim 7 , when the non-engine driving wheels slip, the driving torque of the electric motor changes due to the original responsiveness of the electric motor. The slip can be reduced, and the slip can be reduced earlier.

【0015】[0015]

【発明の実施の形態】以下に、図面を参照して、本発明
の実施の形態について説明する。図1は、本発明の一実
施形態に係るハイブリッド式車両制御装置を備える車両
の駆動伝達系構成の概略を示している。なお、進行方向
は、図の左向きであり、向かって左側に前輪が、その逆
の右側に後輪が位置している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 schematically shows a drive transmission system configuration of a vehicle including a hybrid vehicle control device according to one embodiment of the present invention. The traveling direction is leftward in the figure, and the front wheel is located on the left side and the rear wheel is located on the opposite right side.

【0016】本車両では、エンジン1の出力側に、発電
機としての機能を兼ね備える電気モータ(以下「モータ
ジェネレータ」という。)2を直結し、さらに、エンジ
ン1及びモータジェネレータ2に対して、トルクコンバ
ータ3及び変速機4を接続している。そして、変速機4
の出力側に接続された動力伝達軸(プロペラシャフト)
5により、後輪側差動装置6を介してエンジン駆動輪
(ここでは、後輪7,7)の車輪駆動軸8,8が駆動さ
れるようにしている。
In the present vehicle, an electric motor (hereinafter, referred to as a “motor generator”) 2 having a function as a generator is directly connected to the output side of the engine 1, and a torque is applied to the engine 1 and the motor generator 2. The converter 3 and the transmission 4 are connected. And the transmission 4
Power transmission shaft (propeller shaft) connected to the output side of the
5, the wheel drive shafts 8, 8 of the engine drive wheels (here, the rear wheels 7, 7) are driven via the rear wheel differential device 6.

【0017】ここで、モータジェネレータ2は、エンジ
ン1のアシスト装置として機能し、エンジン1の始動時
又は車両の発進時には、エンジン1のクランキングを行
う始動手段として用いられる。また、減速運転時には、
モータジェネレータ2を発電機として機能させ、制動エ
ネルギーを回生して発電を行い、バッテリの充電のため
に使用することが可能である。
Here, the motor generator 2 functions as an assist device for the engine 1 and is used as starting means for cranking the engine 1 when the engine 1 is started or when the vehicle starts. Also, during deceleration operation,
It is possible to make the motor generator 2 function as a generator, generate power by regenerating braking energy, and use it for charging the battery.

【0018】一方、非エンジン駆動輪である前輪9,9
に対しては、モータジェネレータ10が設けられてお
り、その出力側に接続された動力伝達軸(比較的小型の
プロペラシャフト)11及び前輪側差動装置12を介し
て、モータジェネレータ10により発生された駆動トル
クが前輪(「モータ駆動輪」ともいう。)の車輪駆動軸
13,13に伝達され、もって前輪側からも駆動力が得
られるようにしている。
On the other hand, front wheels 9, 9 which are non-engine driven wheels
, A motor generator 10 is provided, and is generated by the motor generator 10 via a power transmission shaft (relatively small propeller shaft) 11 and a front wheel side differential device 12 connected to the output side. The driving torque is transmitted to the wheel driving shafts 13 of the front wheels (also referred to as “motor driving wheels”), so that driving force can be obtained from the front wheels.

【0019】モータジェネレータ10は、その電力源を
構成するバッテリ14に対してインバータ15bを介し
て接続されており、モータジェネレータ10から駆動ト
ルクが得られている状態では、バッテリ14の放電電力
がインバータ15によって三相交流電力に変換され、モ
ータジェネレータ10に供給される。一方、モータジェ
ネレータ2は、バッテリ14に対してインバータ15a
を介して接続されており、モータジェネレータ2から駆
動トルクが得られている状態では、バッテリ14の放電
電力がインバータ15aによって三相交流電力に変換さ
れ、モータジェネレータ2に供給される。
The motor generator 10 is connected to a battery 14 constituting its power source via an inverter 15b. When a driving torque is obtained from the motor generator 10, the discharged power of the battery 14 is The power is converted into three-phase AC power by the power generator 15 and supplied to the motor generator 10. On the other hand, the motor generator 2
When the driving torque is obtained from the motor generator 2, the discharged power of the battery 14 is converted into three-phase AC power by the inverter 15 a and supplied to the motor generator 2.

【0020】ここで、後輪駆動軸8,8と前輪駆動軸1
3,13との間には物理的な結合がなく、すなわち、前
後の駆動軸に対してそれぞれ無関係に駆動トルクを伝達
することが可能であり、後輪駆動軸8,8へは、エンジ
ン1及びモータジェネレータ2により、また、前輪駆動
軸13,13へは、モータジェネレータ10により、そ
れぞれ駆動トルクが伝達される。
Here, the rear wheel drive shafts 8, 8 and the front wheel drive shaft 1
There is no physical connection between the front and rear drive shafts 3 and 13, that is, the drive torque can be transmitted independently to the front and rear drive shafts. Drive torque is transmitted to the front wheel drive shafts 13 and 13 by the motor generator 10 and to the front wheel drive shafts 13 and 13, respectively.

【0021】そして、通常走行モードでは、後輪7,7
のみを駆動輪としてFR方式により車両の駆動力を発生
するが、ドライバーの選択などに基づいて4輪駆動状態
とする場合には、前輪9,9に対してモータジェネレー
タ10の駆動トルクが伝達されることにより前後両方を
駆動輪とし、4WD方式を成立させることが可能であ
る。
In the normal running mode, the rear wheels 7, 7
The driving force of the motor generator 10 is transmitted to the front wheels 9, 9 when only the driving wheels are used as the driving wheels to generate the driving force of the vehicle by the FR method. By doing so, it is possible to use both front and rear drive wheels and establish the 4WD system.

【0022】次に、制御系について大まかに説明する
と、エンジン1、モータジェネレータ2及び10の統合
コントローラとしてのハイブリッドコントロールモジュ
ール(以下「HCM」という。)21には、アクセル開
度センサ41からアクセル開度APOが、車速センサ4
2から車速Vが、前後の各車輪9,9,7,7に対して
それぞれ取り付けられた車輪速センサ43〜46から前
右輪回転数Nfr、前左輪回転数Nfl、後右輪回転数
Nrr及び後左輪回転数Nrlが、エンジン1の回転速
度センサ47からエンジン回転数NEが、エンジン1の
吸気通路内に設置された圧力センサ48から吸気圧力P
iが、エンジン1のスロットル開度センサ49からスロ
ットル開度TVOが、モータジェネレータ10の回転速
度センサ50からモータ回転数NMが入力される。ま
た、車室内に設けられた4WD切換スイッチ61から走
行モード切換信号が入力される。
Next, the control system will be roughly described. A hybrid control module (hereinafter, referred to as "HCM") 21 as an integrated controller of the engine 1, the motor generators 2 and 10 is provided with an accelerator opening sensor 41 from an accelerator opening sensor 41. Degree APO is the vehicle speed sensor 4
2 to the vehicle speed V, the front right wheel rotation speed Nfr, the front left wheel rotation speed Nfl, and the rear right wheel rotation speed Nrr from the wheel speed sensors 43 to 46 attached to the front and rear wheels 9, 9, 7, 7, respectively. And the rear left wheel rotational speed Nrl, the engine rotational speed NE from the rotational speed sensor 47 of the engine 1, and the intake pressure P from the pressure sensor 48 installed in the intake passage of the engine 1.
i, the throttle opening TVO from the throttle opening sensor 49 of the engine 1, and the motor speed NM from the rotation speed sensor 50 of the motor generator 10 are input. In addition, a driving mode switching signal is input from a 4WD switch 61 provided in the passenger compartment.

【0023】HCM21は、これらの情報を含む各種運
転条件に基づいて、エンジンコントロールモジュール
(以下「ECM」という。)31、モータジェネレータ
2及び10の各制御装置(モータコントローラ、以下
「M/C」という。)32及び33に対して、通信ライ
ン71を介して制御指令を発生する。なお、本発明に係
る目標総駆動トルク設定手段、目標エンジントルク設定
手段、モータ指令値設定手段(実エンジントルク推定手
段及び減算手段を含む。)及びモータ指令値調整手段
は、HCM21が備えている。各手段の詳細について
は、後述する。
The HCM 21 controls the engine control module (hereinafter referred to as “ECM”) 31 and each control device (motor controller, hereinafter referred to as “M / C”) of the motor generators 2 and 10 based on various operating conditions including these information. A control command is issued to 32 and 33 via the communication line 71. The HCM 21 includes a target total drive torque setting unit, a target engine torque setting unit, a motor command value setting unit (including an actual engine torque estimation unit and a subtraction unit), and a motor command value adjustment unit according to the present invention. . Details of each means will be described later.

【0024】次に、HCM21が4輪駆動走行時に行う
制御内容について、図2及び3に示すブロック図を参照
して説明する。図2は、本制御の全体的な構成を示した
ものである。同図を参照して説明すると、HCM21
は、まず、アクセル開度APOに基づいて、ドライバー
が意図する車両の駆動力を発生するための目標総駆動ト
ルクtTを算出する。なお、総駆動トルクとは、エンジ
ン1、モータジェネレータ2及び10の全ての動力源か
ら得られる駆動トルクの和に相当する。
Next, the contents of control performed by the HCM 21 during four-wheel drive traveling will be described with reference to the block diagrams shown in FIGS. FIG. 2 shows the overall configuration of this control. Referring to FIG.
First, a target total drive torque tT for generating the drive force of the vehicle intended by the driver is calculated based on the accelerator opening APO. The total drive torque corresponds to the sum of drive torques obtained from all the power sources of the engine 1, the motor generators 2 and 10.

【0025】そして、車速V、平均後輪回転速度Nr及
び平均前輪回転速度Nfに基づいて、ドライバーが意図
する車両の駆動力のうち、後輪7,7、すなわちエンジ
ン駆動輪が負担すべき比率である後輪駆動力配分率を設
定し、算出した目標総駆動トルクtTとの積により、目
標後輪駆動トルク(本発明に係る「目標エンジントル
ク」に相当する。)tTrを算出する。
Then, based on the vehicle speed V, the average rear wheel rotation speed Nr, and the average front wheel rotation speed Nf, the ratio of the driving force of the vehicle intended by the driver to be borne by the rear wheels 7, 7, ie, the engine driving wheels. Then, a target rear wheel drive torque (corresponding to the “target engine torque” according to the present invention) tTr is calculated from the product of the rear wheel drive force distribution ratio and the calculated target total drive torque tT.

【0026】HCM21は、この目標後輪駆動トルクt
Trをギヤ比Rgr及びトルクコンバータ3のトルク比
Rtcで除し、その結果得られるトルク値に基づいて、
トルク指令値設定部101において、エンジン1の制御
指令であるエンジントルク指令値tTeと、モータジェ
ネレータ2の制御指令であるモータトルク指令値tTm
1とを設定するとともに、これらの指令値を、ECM3
1及びM/C32にそれぞれ出力する。
The HCM 21 calculates the target rear wheel drive torque t
Tr is divided by the gear ratio Rgr and the torque ratio Rtc of the torque converter 3, and based on the resulting torque value,
In torque command value setting section 101, engine torque command value tTe as a control command for engine 1 and motor torque command value tTm as a control command for motor generator 2 are provided.
1 and set these command values to ECM3
1 and M / C 32 respectively.

【0027】HCM21は、また、実後輪駆動トルク推
定部102において、エンジントルク指令値tTe及び
モータトルク指令値tTm1に基づいて後輪駆動軸8,
8に実際に伝達される実後輪駆動トルク(本発明に係る
「実エンジントルク」に相当する。)eTrを、目標後
輪駆動トルクtTrに基づいて推定する。そして、前輪
スリップ判定部103により前輪9,9がスリップして
いないと判定されたことを条件として、この推定値eT
rを減算部104に入力し、これを目標総駆動トルクt
Tから減ずることにより、目標前輪駆動トルクtTfを
算出する。一方、前輪9,9がスリップしていると判定
された場合には、減算部104へは、目標後輪駆動トル
クtTrが入力される。
In the actual rear wheel drive torque estimating section 102, the HCM 21 also determines whether the rear wheel drive shaft 8, 8 has been driven based on the engine torque command value tTe and the motor torque command value tTm1.
The actual rear wheel drive torque (corresponding to the “actual engine torque” according to the present invention) eTr actually transmitted to the control unit 8 is estimated based on the target rear wheel drive torque tTr. The estimated value eT is provided on condition that the front wheel slip determining unit 103 determines that the front wheels 9, 9 are not slipping.
r is input to the subtraction unit 104, and this is input to the target total drive torque t
By subtracting from T, the target front wheel drive torque tTf is calculated. On the other hand, when it is determined that the front wheels 9, 9 are slipping, the target rear wheel drive torque tTr is input to the subtraction unit 104.

【0028】目標前輪駆動トルクtTfは、リミット処
理部105に入力され、モータ回転数NMに基づいて推
定されるモータジェネレータ10の出力限界(以下「モ
ータトルク上限値」という。)LTMを超える目標前輪
駆動トルクtTfが入力された場合には、リミット処理
により、その上限値LTMを超える目標前輪駆動トルク
tTfの出力を回避する。
The target front wheel drive torque tTf is input to the limit processing unit 105, and exceeds the output limit (hereinafter referred to as “motor torque upper limit”) LTM of the motor generator 10 estimated based on the motor speed NM. When the driving torque tTf is input, the output of the target front wheel driving torque tTf exceeding the upper limit LTM is avoided by the limit processing.

【0029】リミット処理部105を経た目標前輪駆動
トルクtTfは、モータ出力調整部106に入力され
る。ここで、後輪7,7がスリップしている場合には、
モータ出力調整部106において、目標前輪駆動トルク
tTfにスリップの度合いに応じた所定のゲインGb1
(0<Gb1<1)を乗じることにより、M/C33に
対して、非スリップ時と比べて小さなモータトルク指令
値tTm2が出力されるようにする。
The target front wheel drive torque tTf that has passed through the limit processing unit 105 is input to the motor output adjustment unit 106. Here, when the rear wheels 7, 7 are slipping,
In the motor output adjusting unit 106, a predetermined gain Gb1 corresponding to the degree of slip is added to the target front wheel drive torque tTf.
By multiplying by (0 <Gb1 <1), a smaller motor torque command value tTm2 is output to the M / C 33 than in the non-slip state.

【0030】次に、図3を参照して、実後輪駆動トルク
推定部102の構成を詳細に説明する。実後輪駆動トル
ク推定部102は、目標後輪駆動トルクtTrが入力さ
れると加速判定を行い、その結果、ドライバーから所定
のレベルを超える加速要求が出されていないと判定した
場合には、その目標後輪駆動トルクtTrを、遅れ処理
部201に入力する。
Next, the configuration of the actual rear wheel drive torque estimating unit 102 will be described in detail with reference to FIG. The actual rear wheel drive torque estimating unit 102 performs an acceleration determination when the target rear wheel drive torque tTr is input. As a result, when it is determined that the driver has not issued an acceleration request exceeding a predetermined level, The target rear wheel drive torque tTr is input to the delay processing unit 201.

【0031】一方、この加速判定において、ドライバー
から所定のレベルを超える加速要求が出されていると判
定された場合には、推定値調整部202において目標後
輪駆動トルクtTrに所定のゲインGa1(0<Ga1
<1)を乗じたものを、遅れ処理部201に入力する。
遅れ処理部201には、エンジン回転数NE、吸気圧力
Pi及びスロットル開度TVOが入力され、遅れ処理部
201は、これらの入力情報に基づいて目標後輪駆動ト
ルクtTr又はこれにゲインGa1を乗じて得られたト
ルク値に遅れを持たせることにより、実後輪駆動トルク
eTrを推定する。
On the other hand, when it is determined in this acceleration determination that the driver has issued an acceleration request exceeding a predetermined level, the estimated value adjusting unit 202 adds a predetermined gain Ga1 ( 0 <Ga1
The product of <1) is input to the delay processing unit 201.
The engine speed NE, the intake pressure Pi, and the throttle opening TVO are input to the delay processing unit 201, and the delay processing unit 201 multiplies the target rear wheel drive torque tTr or the gain Ga1 based on the input information. The actual rear wheel drive torque eTr is estimated by giving a delay to the obtained torque value.

【0032】以上の制御内容をより明確に理解するため
に、次に、図4〜7に示すフローチャートに基づいて説
明する。ステップ(以下、単に「S」と表記する。)1
では、運転状態検出パラメータとして、アクセル開度A
PO、車速V、前右輪回転数Nfr、前左輪回転数Nf
l、後右輪回転数Nrr及び後左輪回転数Nrlを読み
込む。
Next, in order to more clearly understand the contents of the above control, a description will be given with reference to flowcharts shown in FIGS. Step (hereinafter simply referred to as “S”) 1
Then, as the operating state detection parameter, the accelerator opening A
PO, vehicle speed V, front right wheel rotation speed Nfr, front left wheel rotation speed Nf
1, the rear right wheel rotation speed Nrr and the rear left wheel rotation speed Nrl are read.

【0033】S2では、アクセル開度APOを基に、マ
ップを参照して目標総駆動トルクtTを算出する。な
お、S2は、目標総駆動トルク設定手段に相当する。S
3では、車速Vに応じた後輪駆動力配分率Aを、図のよ
うに車速Vの増大に伴って増加する傾向を示すマップを
参照して算出する。ここで、後輪駆動力配分率Aは、燃
料消費や、車速Vに応じた最大トラクションを考慮した
ものとし、例えば、車速Vがほぼ0のときに50%とな
り、車速Vの増大とともに駆動力が後輪7,7側に徐々
にシフトされ、最終的に高速運転時において100%ま
で増加するように設定するとよい。
In step S2, a target total drive torque tT is calculated based on the accelerator opening APO with reference to a map. S2 corresponds to a target total drive torque setting means. S
In 3, the rear wheel driving force distribution ratio A according to the vehicle speed V is calculated with reference to a map showing a tendency to increase as the vehicle speed V increases as shown in the figure. Here, the rear wheel driving force distribution ratio A is assumed to take into account fuel consumption and maximum traction according to the vehicle speed V. For example, when the vehicle speed V is almost 0, the rear wheel driving force distribution ratio A becomes 50%. Is preferably gradually shifted toward the rear wheels 7, 7 and finally increased to 100% during high-speed operation.

【0034】S4では、後前輪回転速度差ΔNrに応じ
た後輪駆動力配分率Bを、マップを参照して算出する。
ここでは、後前輪回転速度差ΔNrとして、後輪7,7
の平均回転速度Nr(=(Nrr+Nrl)/2)と、
前輪9,9の平均回転速度Nf(=Nfr+Nfl)/
2)との差Nr−Nfを求め、参照するマップは、後輪
駆動力配分率Bがこの差Nr−Nfの増加に伴って減少
する傾向を有している。
In S4, a rear wheel driving force distribution ratio B according to the rear front wheel rotational speed difference ΔNr is calculated with reference to a map.
Here, the rear wheels 7, 7 are defined as the rear front wheel rotational speed difference ΔNr.
Average rotation speed Nr (= (Nrr + Nrl) / 2) of
Average rotation speed Nf of front wheels 9, 9 (= Nfr + Nfl) /
The difference Nr-Nf from 2) is obtained and the map referred to has a tendency that the rear wheel driving force distribution ratio B decreases as the difference Nr-Nf increases.

【0035】また、後輪駆動力配分率Bは、後輪7,7
のスリップ量が大きくなるほど駆動力が前後両輪からよ
り均一に得られるように、例えば、後前輪回転速度差Δ
Nrがほぼ0のときに100%となり、後前輪回転速度
差ΔNrの増加とともに駆動力が前輪9,9側に徐々に
シフトされ、最終的に50%まで減少するように設定す
るとよい。
The rear wheel driving force distribution ratio B is determined by the rear wheels 7,7.
For example, in order to obtain a more uniform driving force from the front and rear wheels as the slip amount of the rear wheel increases, for example, the rear front wheel rotational speed difference Δ
It is preferable to set the value so that it becomes 100% when Nr is approximately 0, and that the driving force is gradually shifted toward the front wheels 9, 9 as the rear front wheel rotational speed difference ΔNr increases, and finally reduced to 50%.

【0036】S5では、後輪駆動力配分率Aが後輪駆動
力配分率Bより大きいか否かを判定し、AがBより大き
い(A>B)と判定された場合には、S6へ進み、それ
以外の場合には、S7へ進む。S6では、目標後輪駆動
トルクtTrを、目標総駆動トルクtTに後輪駆動力配
分率Bを乗じることにより算出する(tTr=tT×
B)。後輪駆動力配分率Aを下回る後輪駆動力配分率B
の算出は、換言すれば、後前輪回転速度差ΔNrが増加
し、許容しがたいスリップが発生していることを示すの
で、たとえ高速走行中であっても、後輪駆動力配分率を
低く設定することにより駆動力を前後輪に配分し、スリ
ップの抑制に努めるのである。
In S5, it is determined whether or not the rear wheel driving force distribution ratio A is larger than the rear wheel driving force distribution ratio B. If it is determined that A is larger than B (A> B), the process proceeds to S6. Proceed, otherwise proceed to S7. In S6, the target rear wheel drive torque tTr is calculated by multiplying the target total drive torque tT by the rear wheel drive force distribution ratio B (tTr = tT ×
B). Rear wheel drive power distribution ratio B below rear wheel drive power distribution ratio A
In other words, the rear wheel rotational speed difference ΔNr increases, indicating that unacceptable slip has occurred. Therefore, even during high-speed running, the rear wheel driving force distribution ratio is reduced. By setting, the driving force is distributed to the front and rear wheels, and efforts are made to suppress slippage.

【0037】S7では、目標後輪駆動トルクtTrを、
目標総駆動トルクtTに後輪駆動力配分率Aを乗じるこ
とにより算出し(tTr=tT×A)、効率的な燃料消
費を優先させる。なお、S3〜7は、目標エンジントル
ク設定手段を構成する。図5に示すフローチャートに移
り、S11では、運転状態検出パラメータとして、エン
ジン回転数NE、吸気圧力Pi、スロットル開度TVO
及びモータ回転数NMを読み込む。
In S7, the target rear wheel drive torque tTr is
It is calculated by multiplying the target total drive torque tT by the rear wheel drive force distribution ratio A (tTr = tT × A) to give priority to efficient fuel consumption. Steps S3 to S7 constitute a target engine torque setting means. Referring to the flowchart shown in FIG. 5, in S11, the engine speed NE, the intake pressure Pi, and the throttle opening TVO are set as operating state detection parameters.
And the motor speed NM.

【0038】S12では、前輪スリップ判定として、平
均前輪回転速度Nfと平均後輪回転速度Nrとの差Nf
−Nrが所定の許容限界としての閾値SNfより大きい
か否かを判定する。その結果、この差Nf−Nrが閾値
SNfより大きいと判定した場合には、前輪9,9がス
リップしているものと判断して、S13ヘ進む。それ以
外の場合、すなわち、差Nf−Nrが閾値SNf以下で
あると判定した場合には、前輪9,9はスリップしてい
ないものと判断して、S14へ進む。
In S12, the difference Nf between the average front wheel rotation speed Nf and the average rear wheel rotation speed Nr is determined as front wheel slip determination.
It is determined whether or not -Nr is larger than a threshold SNf as a predetermined allowable limit. As a result, when it is determined that the difference Nf-Nr is larger than the threshold value SNf, it is determined that the front wheels 9, 9 are slipping, and the process proceeds to S13. In other cases, that is, when it is determined that the difference Nf−Nr is equal to or smaller than the threshold value SNf, it is determined that the front wheels 9, 9 are not slipping, and the process proceeds to S14.

【0039】S13では、目標後輪駆動トルクtTrを
減算部104への入力値Aに設定する。一方、S14で
は、アクセル開度APOに基づいて、ドライバーから所
定のレベルを超える加速要求が出されているか否かを判
定する。ここで、アクセル開度APOが所定値θより大
きい場合には、この加速要求が出されているものと判断
して、S15ヘ進む。それ以外の場合には、ドライバー
からそのような加速要求は出されていないものと判断し
て、S16へ進む。
In S13, the target rear wheel drive torque tTr is set to the input value A to the subtractor 104. On the other hand, in S14, it is determined based on the accelerator opening APO whether or not the driver has issued an acceleration request exceeding a predetermined level. Here, if the accelerator opening APO is larger than the predetermined value θ, it is determined that this acceleration request has been issued, and the process proceeds to S15. Otherwise, it is determined that the driver has not issued such an acceleration request, and the process proceeds to S16.

【0040】S15では、目標後輪駆動トルクtTrに
所定のゲインGa1を乗じる。かかる処理の結果とし
て、加速要求時において、減算部104へは、実後輪駆
動トルクeTrが比較的小さな値として入力されること
となるので、減算部104から出力される目標前輪駆動
トルクtTfは、比較的大きな値として算出される。従
って、M/C33へは、比較的大きなモータトルク指令
値tTm2が出力されることとなるので、実際のエンジ
ン出力がエンジントルク指令値tTeに応じた出力より
減少方向にばらついたとしても、この誤差による減速感
の発生を緩和することができる。
In S15, the target rear wheel drive torque tTr is multiplied by a predetermined gain Ga1. As a result of this processing, at the time of an acceleration request, the actual rear wheel drive torque eTr is input to the subtraction unit 104 as a relatively small value. Therefore, the target front wheel drive torque tTf output from the subtraction unit 104 is Is calculated as a relatively large value. Accordingly, a relatively large motor torque command value tTm2 is output to the M / C 33, so that even if the actual engine output varies in a decreasing direction from the output corresponding to the engine torque command value tTe, this error is generated. , The occurrence of a feeling of deceleration can be reduced.

【0041】なお、ドライバーから所定のレベルを超え
る加速要求が出されていない場合にそのままS16に進
むことで、定常走行時などにおける飛び出し感の発生を
防いでいる。S16では、エンジン回転数NE、吸気圧
力Pi及びスロットル開度TVOに基づいて、エンジン
1の出力応答の遅れ時定数Tsを算出する。この遅れ時
定数Tsは、エンジン回転数NEが低いほど、吸気圧力
Piが低い(吸気負圧が大きい)ほど、また、スロット
ル開度TVOが小さいほど、大きな値として算出され
る。
It should be noted that if the driver has not issued a request for acceleration exceeding a predetermined level, the process proceeds directly to S16, thereby preventing a feeling of popping out during steady running or the like. In S16, a delay time constant Ts of the output response of the engine 1 is calculated based on the engine speed NE, the intake pressure Pi, and the throttle opening TVO. The delay time constant Ts is calculated as a larger value as the engine speed NE is lower, the intake pressure Pi is lower (the intake negative pressure is larger), and the throttle opening TVO is smaller.

【0042】S17では、算出した遅れ時定数Tsに基
づいて、目標後輪駆動トルクtTrの変化に対して遅れ
を持たせることにより、実後輪駆動トルクeTrを推定
する。なお、かかる推定に際して、エンジン1のスロッ
トル弁の機種や、その作動範囲に応じた遅れも考慮する
とよい。なお、S16及び17は、実エンジントルク推
定手段を構成する。
In S17, the actual rear wheel drive torque eTr is estimated by giving a delay to the change in the target rear wheel drive torque tTr based on the calculated delay time constant Ts. It should be noted that, at the time of such estimation, a delay corresponding to the type of the throttle valve of the engine 1 and the operating range thereof may be considered. S16 and S17 constitute an actual engine torque estimating means.

【0043】S18では、実後輪駆動トルクeTrを減
算部104への入力値Aに設定する。図6に示すフロー
チャートに移り、S21では、入力値A(前輪9,9の
スリップに応じて目標後輪駆動トルクtTr又は実後輪
駆動トルクeTrが選択される。)を目標総駆動トルク
tTから減ずることにより、目標前輪駆動トルクtTf
(=tT−A)を算出する。なお、S21は、減算手段
を構成する。
In S18, the actual rear wheel drive torque eTr is set to the input value A to the subtractor 104. Referring to the flowchart shown in FIG. 6, in S21, the input value A (the target rear wheel drive torque tTr or the actual rear wheel drive torque eTr is selected according to the slip of the front wheels 9, 9) is changed from the target total drive torque tT. The target front wheel drive torque tTf
(= TT-A) is calculated. In addition, S21 constitutes a subtraction unit.

【0044】S22では、モータ回転数NMに基づい
て、現在の運転状態におけるモータトルク上限値LTM
を推定する。モータトルク上限値LTMは、モータジェ
ネレータ10の高回転域において低下する傾向がある。
また、モータトルク上限値LTMを推定するためのパラ
メータとして、モータ回転数NMの他、バッテリ14の
容量やモータジェネレータ10の温度などを考慮すると
よい。
In S22, the motor torque upper limit value LTM in the current operation state is determined based on the motor speed NM.
Is estimated. Motor torque upper limit LTM tends to decrease in a high rotation range of motor generator 10.
Further, as a parameter for estimating the motor torque upper limit LTM, in addition to the motor rotation speed NM, the capacity of the battery 14 and the temperature of the motor generator 10 may be considered.

【0045】S23では、目標前輪駆動トルクtTfが
モータトルク上限値LTMより小さいか否か、すなわ
ち、現段階において設定されているモータジェネレータ
10の目標駆動トルクがモータジェネレータ10の出力
限界に達していないか否かを判定する。この結果、目標
前輪駆動トルクtTfがモータトルク上限値LTMより
小さいと判定された場合には、モータジェネレータ10
はその目標前輪駆動トルクtTfを発生させることが可
能であるので、その目標前輪駆動トルクtTfを出力す
る。それ以外の場合には、S24に進み、モータトルク
上限値LTMを目標前輪駆動トルクtTfとし、モータ
ジェネレータ10の非効率的な運転を回避する。
In S23, it is determined whether the target front wheel drive torque tTf is smaller than the motor torque upper limit LTM, that is, the target drive torque of the motor generator 10 set at the present stage has not reached the output limit of the motor generator 10. It is determined whether or not. As a result, when it is determined that target front wheel drive torque tTf is smaller than motor torque upper limit LTM, motor generator 10
Can generate the target front wheel drive torque tTf, and thus output the target front wheel drive torque tTf. Otherwise, the process proceeds to S24, in which the motor torque upper limit LTM is set as the target front wheel drive torque tTf, and the inefficient operation of the motor generator 10 is avoided.

【0046】なお、図5及び6に示すフローチャート全
体、すなわちS11〜18及びS21〜24がモータ指
令値設定手段を構成する。図7に示すフローチャートに
移り、S31では、後輪スリップ判定として、平均後輪
回転速度Nrと平均前輪回転速度Nfとの差Nr−Nf
が所定の許容限界としての閾値SNrより大きいか否か
を判定する。その結果、この差Nr−Nfが閾値SNr
より大きいと判定された場合には、後輪7,7がスリッ
プしているものと判断して、S32ヘ進む。それ以外の
場合、すなわち、差Nr−Nfが閾値SNr以下である
と判定された場合には、前輪7,7はスリップしていな
いものと判断して、S33ヘ進む。
The entire flow charts shown in FIGS. 5 and 6, ie, S11 to S18 and S21 to S24, constitute the motor command value setting means. Referring to the flowchart shown in FIG. 7, in S31, the difference Nr-Nf between the average rear wheel rotation speed Nr and the average front wheel rotation speed Nf is determined as rear wheel slip determination.
Is larger than a threshold SNr as a predetermined allowable limit. As a result, the difference Nr−Nf becomes the threshold value SNr.
If it is determined that the rear wheel is slipping, it is determined that the rear wheels are slipping, and the process proceeds to S32. In other cases, that is, when it is determined that the difference Nr-Nf is equal to or smaller than the threshold value SNr, it is determined that the front wheels 7, 7 are not slipping, and the process proceeds to S33.

【0047】S32へ進む場合には、S32において、
目標前輪駆動トルクtTfにスリップ量に応じた所定の
ゲインGb1を乗じることによりモータトルク指令値t
Tm2を算出し、本ルーチンをリターンする。一方、S
33へ進む場合には、目標前輪駆動トルクtTfをモー
タトルク指令値tTm2として、本ルーチンをリターン
する。
When proceeding to S32, in S32
By multiplying the target front wheel drive torque tTf by a predetermined gain Gb1 corresponding to the slip amount, the motor torque command value t
Tm2 is calculated, and the routine returns. On the other hand, S
In the case of proceeding to 33, this routine is returned with the target front wheel drive torque tTf as the motor torque command value tTm2.

【0048】かかる処理の結果として、後輪スリップ発
生時において、前輪駆動トルクが減少して、車両の駆動
力が減少するので、ドライバーに対して、失速感を与え
てスリップの発生を認識させることができる。なお、図
7に示すフローチャート全体(S31〜33)が、モー
タ指令値調整手段を構成する。
As a result of this processing, when rear wheel slip occurs, the front wheel drive torque decreases and the driving force of the vehicle decreases, so that the driver is provided with a sense of stall to recognize the occurrence of slip. Can be. The entire flowchart (S31 to S33) shown in FIG. 7 constitutes a motor command value adjusting unit.

【0049】次に、本発明の効果について、図8を参照
して説明する。同図は、後輪駆動力配分率が100%で
ある2輪駆動状態から時刻t0において前後輪駆動力配
分が切り換えられて、4輪駆動状態に移行する際におけ
る総駆動トルク、後輪駆動トルク及び前輪駆動トルクの
変化を簡単に示したものである。
Next, the effect of the present invention will be described with reference to FIG. The figure shows the total driving torque and the rear wheel driving torque when the front and rear wheel driving force distribution is switched at time t0 from the two-wheel driving state where the rear wheel driving force distribution ratio is 100% and the state shifts to the four-wheel driving state. And a change in the front wheel drive torque.

【0050】この図により、まず、スリップ発生時につ
いて説明する。例えば、後輪駆動力配分率を100%と
しての走行中に、スリップが発生したため時刻t0にお
いて駆動力配分切換指令が出て、後輪駆動力配分率が5
0%に切り換えられたとする。ここで、前輪駆動トルク
及び後輪駆動トルクを、各目標駆動トルクに向けてそれ
ぞれ無関係に制御したとすると、モータジェネレータ1
0の駆動トルクは速やかに上昇する(図の曲線C参照)
一方で、後輪駆動トルクの減少にはエンジン1の応答性
により相当の時間が必要であるので、エンジン1の駆動
トルクがその目標値に収束するまでの間、総駆動トルク
として図の斜線部Ar1に示す駆動トルクが過剰に発生
し、ドライバーに対して、意図しない加速感を与えるこ
ととなる。
First, the case where a slip occurs will be described with reference to FIG. For example, during traveling with the rear wheel driving force distribution ratio set to 100%, a slip occurs, and at time t0, a driving force distribution switching command is issued, and the rear wheel driving force distribution ratio becomes 5%.
Suppose that it is switched to 0%. Here, assuming that the front wheel drive torque and the rear wheel drive torque are independently controlled toward the respective target drive torques, the motor generator 1
0 drive torque rises quickly (see curve C in the figure)
On the other hand, a considerable amount of time is required for the reduction of the rear wheel drive torque due to the response of the engine 1. Therefore, until the drive torque of the engine 1 converges to its target value, the total drive torque is represented by a hatched portion in the figure. The drive torque indicated by Ar1 is excessively generated, and gives the driver an unintended feeling of acceleration.

【0051】また、スリップの解除により再び2輪駆動
状態に戻るべく、後輪駆動力配分率を100%に切り換
える場合も同様であり、この場合には、モータジェネレ
ータ10の駆動トルクが速やかに消滅する(図の曲線C
参照)一方で、エンジン1の駆動トルクの上昇には相当
の時間が必要であるので、総駆動トルクとして図の斜線
部Ar2に示す駆動トルクが不足し、ドライバーに対し
て、一時的な失速感を与えることとなる。
The same applies to the case where the rear wheel driving force distribution ratio is switched to 100% in order to return to the two-wheel drive state again by releasing the slip. In this case, the driving torque of the motor generator 10 quickly disappears. (Curve C in the figure
On the other hand, since a considerable time is required to increase the driving torque of the engine 1, the driving torque indicated by the hatched portion Ar2 in the figure is insufficient as the total driving torque, and the driver feels a temporary stall. Will be given.

【0052】本発明によれば、モータジェネレータ10
の駆動トルクの目標値への収束が、エンジン1の応答性
に合わせてなされるので、前輪駆動トルクを後輪駆動ト
ルクの変化に合わせて変化させ、上記の総駆動トルクの
一時的な過不足を防ぐことができる。このことは、2W
D走行から4WD切換スイッチ61をオンすることによ
り4WD走行に以降する際においても全く同様である。
According to the present invention, motor generator 10
The convergence of the drive torque to the target value is performed in accordance with the response of the engine 1. Therefore, the drive torque of the front wheels is changed in accordance with the change of the drive torque of the rear wheels, so that the total drive torque is temporarily exceeded or insufficient. Can be prevented. This is 2W
This is exactly the same when the 4WD traveling is performed by turning on the 4WD switch 61 from the D traveling.

【0053】例えば、後輪駆動力配分率を100%とし
ての走行中に、時刻t0において4WD切換スイッチ6
1がオンされ、後輪駆動力配分率が50%に切り換えら
れた場合に、エンジン1の応答性に合わせてモータジェ
ネレータ10の駆動トルクが上昇するので、総駆動トル
クを一定に保つことができる。従って、本発明によれ
ば、エンジン1とモータジェネレータ10とにより夫々
別々の車輪を駆動する形態の4輪駆動車において、スリ
ップ発生時や4WD切換時に、ドライバーの意図しない
総駆動力の過不足を可及的に排除し、車両の走行安定性
を向上することができる。
For example, during running with the rear wheel driving force distribution ratio being 100%, at time t0, the 4WD switch 6
1 is turned on and the rear wheel driving force distribution ratio is switched to 50%, the driving torque of the motor generator 10 increases in accordance with the response of the engine 1, so that the total driving torque can be kept constant. . Therefore, according to the present invention, in a four-wheel drive vehicle in which separate wheels are driven by the engine 1 and the motor generator 10, when the slip occurs or when the 4WD is switched, the total driving force unintended by the driver is not excessively or insufficiently. It can be eliminated as much as possible, and the running stability of the vehicle can be improved.

【0054】また、前輪スリップ発生時には、前輪スリ
ップ判定部103(フローチャートでは、S12及び1
3)の機能により、モータジェネレータ10の駆動トル
クがその本来の応答性で変化するので、スリップを早期
に収めることができる。なお、以上の説明では、加速要
求時においてモータジェネレータ10に対するトルク指
令値を大きめに設定するため、実後輪駆動トルクeTr
を小さめに推定する例を示したが、この方法に限らず、
図9に示すように減算部104の出力側にモータ出力調
整部301を設け、加速要求時に目標前輪駆動トルクt
Tfに所定のゲインGa2(1<Ga2)を乗じること
によっても、モータトルク指令値tTm2を大きめに設
定することができる。
When a front wheel slip occurs, the front wheel slip determination unit 103 (S12 and S1 in the flowchart).
According to the function 3), the driving torque of the motor generator 10 changes with its original response, so that the slip can be reduced at an early stage. In the above description, the actual rear wheel driving torque eTr
Although an example of estimating is made smaller, this is not limited to this method.
As shown in FIG. 9, a motor output adjusting unit 301 is provided on the output side of the subtracting unit 104, and a target front wheel drive torque t
By multiplying Tf by a predetermined gain Ga2 (1 <Ga2), the motor torque command value tTm2 can be set larger.

【0055】また、後輪7,7のスリップ時においてモ
ータジェネレータ10に対するトルク指令値を小さめに
設定するための制御は、モータ出力調整部106による
ばかりでなく、図10に示す推定値調整部401におい
て、実後輪駆動トルク推定部102の出力に、スリップ
の度合いに応じたゲインGb2(1<Gb2)を乗じる
ことによっても可能である。これにより、減算部104
に大きめの実後輪駆動トルクeTrが入力されるので、
目標前輪駆動トルクtTfが比較的小さな値として算出
され、ドライバーに対して減速感を与えることができ
る。
The control for setting the torque command value for the motor generator 10 to be small when the rear wheels 7, 7 are slipping is performed not only by the motor output adjusting unit 106 but also by the estimated value adjusting unit 401 shown in FIG. In the above, it is also possible to multiply the output of the actual rear wheel drive torque estimation unit 102 by a gain Gb2 (1 <Gb2) according to the degree of slip. Thereby, the subtraction unit 104
Is input with a larger actual rear wheel drive torque eTr,
The target front wheel drive torque tTf is calculated as a relatively small value, and a sense of deceleration can be given to the driver.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るハイブリッド式車両
制御装置を備える車両の駆動伝達系構成の概略図
FIG. 1 is a schematic diagram of a drive transmission system configuration of a vehicle including a hybrid vehicle control device according to an embodiment of the present invention.

【図2】同上制御装置の機能ブロック図FIG. 2 is a functional block diagram of the control device;

【図3】同上制御装置の実後輪駆動トルク推定部の詳細
を示すブロック図
FIG. 3 is a block diagram showing details of an actual rear wheel drive torque estimating unit of the control device;

【図4】目標後輪駆動トルク算出ルーチンのフローチャ
ート
FIG. 4 is a flowchart of a target rear wheel drive torque calculation routine.

【図5】実後輪駆動トルク算出ルーチンのフローチャー
FIG. 5 is a flowchart of an actual rear wheel drive torque calculation routine.

【図6】目標前輪駆動トルク算出ルーチンのフローチャ
ート
FIG. 6 is a flowchart of a target front wheel drive torque calculation routine.

【図7】モータトルク指令値調整ルーチンのフローチャ
ート
FIG. 7 is a flowchart of a motor torque command value adjustment routine.

【図8】本発明による総駆動トルク、後輪駆動トルク及
び前輪駆動トルクの変化の一例を示す図
FIG. 8 is a diagram showing an example of changes in total drive torque, rear wheel drive torque, and front wheel drive torque according to the present invention.

【図9】本発明の別の実施形態に係るハイブリッド式車
両制御装置の機能ブロック図
FIG. 9 is a functional block diagram of a hybrid vehicle control device according to another embodiment of the present invention.

【図10】本発明のさらに別の実施形態に係るハイブリ
ッド式車両制御装置の機能ブロック図
FIG. 10 is a functional block diagram of a hybrid vehicle control device according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…エンジン 2…モータジェネレータ(電気モータ) 3…トルクコンバータ 4…変速機 5…動力伝達軸 6…後輪側差動装置 7…後輪 8…後輪駆動軸 9…前輪 10…モータジェネレータ 11…動力伝達軸 12…前輪側差動装置 13…前輪駆動軸 21…ハイブリッドコントロールモジュール 31…エンジンコントロールモジュール 32…モータコントローラ 33…モータコントローラ 61…4WD切換スイッチ 71…通信ライン 1. Engine 2 ... Motor generator (electric motor) 3. Torque converter 4 ... Transmission 5 Power transmission shaft 6. Rear wheel differential 7 ... rear wheel 8. Rear wheel drive shaft 9 ... front wheel 10 ... Motor generator 11 Power transmission shaft 12 Front wheel differential 13. Front wheel drive shaft 21 ... Hybrid control module 31 ... Engine control module 32 ... Motor controller 33 ... Motor controller 61 ... 4WD changeover switch 71 ... Communication line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B60K 6/04 710 B60K 6/04 710 B60L 11/14 ZHV B60L 11/14 ZHV F02D 29/02 F02D 29/02 D 311 311A 45/00 364 45/00 364A (56)参考文献 特開 平10−98804(JP,A) 特開 平10−23609(JP,A) 特開 平6−233411(JP,A) 特開 平9−84211(JP,A) 特開 平7−231506(JP,A) 特開2000−79828(JP,A) 特開2000−13922(JP,A) 特開2000−94979(JP,A) 特開2000−350307(JP,A) (58)調査した分野(Int.Cl.7,DB名) B60L 15/20 B60K 6/04 B60L 11/14 ZHV F02D 29/02 F02D 45/00 364 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI B60K 6/04 710 B60K 6/04 710 B60L 11/14 ZHV B60L 11/14 ZHV F02D 29/02 F02D 29/02 D 311 311A 45 / 00 364 45/00 364A (56) References JP-A-10-98804 (JP, A) JP-A-10-23609 (JP, A) JP-A-6-233411 (JP, A) JP-A-9-98 84211 (JP, A) JP-A-7-231506 (JP, A) JP-A-2000-79828 (JP, A) JP-A-2000-13922 (JP, A) JP-A-2000-94979 (JP, A) JP-A-2000 −350307 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B60L 15/20 B60K 6/04 B60L 11/14 ZHV F02D 29/02 F02D 45/00 364

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エンジン駆動輪を駆動するエンジンと、該
エンジンから機械的に独立した非エンジン駆動輪を駆動
する電気モータと、を含んで構成されるハイブリッド式
車両制御装置であって、 前記エンジン駆動輪及び前記非エンジン駆動輪の目標総
駆動トルクを設定する目標総駆動トルク設定手段と、 設定した目標総駆動トルクのうちエンジン駆動輪に発生
すべき目標駆動トルクである目標エンジントルクを設定
する目標エンジントルク設定手段と、 目標エンジントルクが変化した場合に、前記目標総駆動
トルクのうち非エンジン駆動輪に発生すべき配分率に応
じた前記電気モータの目標駆動トルクの変化に対して、
前記電気モータに対するトルク指令値を、遅れを持たせ
て設定するモータ指令値設定手段と、前記エンジン駆動輪のスリップ時において、前記電気モ
ータに対するトルク指令値を、非スリップ時と比べて小
さな値に調整するモータ指令値調整手段と、 を備えることを特徴とするハイブリッド式車両制御装
置。
1. A hybrid vehicle control device comprising: an engine that drives an engine driving wheel; and an electric motor that drives a non-engine driving wheel that is mechanically independent of the engine. Target total drive torque setting means for setting a target total drive torque for the drive wheels and the non-engine drive wheels; and a target engine torque which is a target drive torque to be generated for the engine drive wheels among the set target total drive torques. Target engine torque setting means, when the target engine torque changes, a change in the target drive torque of the electric motor according to a distribution ratio to be generated to non-engine drive wheels of the target total drive torque,
A torque command value for said electric motor, a motor command value setting means for setting to have a delay, at the time of the slip of the engine driven wheels, the electric motor
The torque command value for the motor
And a motor command value adjusting means for adjusting to a small value .
【請求項2】前記モータ指令値設定手段は、変化後の目
標エンジントルクに収束する過程におけるエンジン駆動
輪の実際の駆動トルクである実エンジントルクを推定す
る実エンジントルク推定手段と、推定した実エンジント
ルクを前記目標総駆動トルクから減じる減算手段と、を
含んで構成されることを特徴とする請求項1に記載のハ
イブリッド式車両制御装置。
2. The motor command value setting means includes: an actual engine torque estimating means for estimating an actual engine torque which is an actual driving torque of an engine driving wheel in a process of converging to a changed target engine torque; The hybrid vehicle control device according to claim 1, further comprising: subtraction means for subtracting engine torque from the target total drive torque.
【請求項3】前記実エンジントルク推定手段は、実エン
ジントルクを、前記エンジンの回転速度、吸気圧力及び
スロットル開度のうち少なくとも1つに基づく遅れ時定
数に基づいて推定することを特徴とする請求項2に記載
のハイブリッド式車両制御装置。
3. An actual engine torque estimating means for estimating an actual engine torque based on a delay time constant based on at least one of a rotational speed, an intake pressure and a throttle opening of the engine. The hybrid vehicle control device according to claim 2.
【請求項4】前記モータ指令値設定手段は、加速要求時
において、非加速時と比べて前記電気モータに対するト
ルク指令値を大きめに設定することを特徴とする請求項
1〜3のいずれか1つに記載のハイブリッド式車両制御
装置。
4. The motor command value setting means according to claim 1, wherein a torque command value for said electric motor is set to be larger at the time of acceleration request than at the time of non-acceleration. 6. A hybrid vehicle control device according to any one of the preceding claims.
【請求項5】前記モータ指令値設定手段は、前記実エン
ジントルク推定手段が加速要求時において実エンジント
ルクを小さめに推定することにより、前記電気モータに
対するトルク指令値を大きめに設定することを特徴とす
る請求項4に記載のハイブリッド式車両制御装置。
5. The motor command value setting means sets the torque command value for the electric motor to be relatively large by the actual engine torque estimating means estimating a small actual engine torque at the time of an acceleration request. The hybrid vehicle control device according to claim 4, wherein
【請求項6】 前記モータ指令値調整手段は、エンジン駆
動輪のスリップの発生を、エンジン駆動輪と非エンジン
駆動輪との回転速度差に基づいて検出することを特徴と
する請求項1〜5のいずれかに記載のハイブリッド式車
両制御装置。
Wherein said motor command value adjustment means, driving the engine
The hybrid vehicle control device according to any one of claims 1 to 5 , wherein occurrence of slip of a driving wheel is detected based on a rotation speed difference between an engine driving wheel and a non-engine driving wheel.
【請求項7】 前記モータ指令値設定手段は、非エンジン
駆動輪のスリップ時において、設定した目標総駆動トル
クのうち非エンジン駆動輪に発生すべき配分率に応じた
前記電気モータの目標駆動トルクを、前記電気モータに
対するトルク指令値とすることを特徴とする請求項1〜
のいずれか1つに記載のハイブリッド式車両制御装
置。
7. The electric motor according to claim 1, wherein said motor command value setting means sets a target driving torque of said electric motor in accordance with a distribution ratio to be generated for said non-engine driving wheels when said non-engine driving wheels slip. Is a torque command value for the electric motor.
7. The hybrid vehicle control device according to any one of 6 .
JP2001028820A 2001-02-05 2001-02-05 Hybrid vehicle control device Expired - Fee Related JP3536820B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001028820A JP3536820B2 (en) 2001-02-05 2001-02-05 Hybrid vehicle control device
US10/050,139 US6741917B2 (en) 2001-02-05 2002-01-18 Hybrid vehicle control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001028820A JP3536820B2 (en) 2001-02-05 2001-02-05 Hybrid vehicle control device

Publications (2)

Publication Number Publication Date
JP2002233006A JP2002233006A (en) 2002-08-16
JP3536820B2 true JP3536820B2 (en) 2004-06-14

Family

ID=18893255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001028820A Expired - Fee Related JP3536820B2 (en) 2001-02-05 2001-02-05 Hybrid vehicle control device

Country Status (2)

Country Link
US (1) US6741917B2 (en)
JP (1) JP3536820B2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1502805B1 (en) * 2002-05-07 2018-09-19 Kabushiki Kaisha Bridgestone Method and device for controlling vehicle
JP4089359B2 (en) * 2002-09-03 2008-05-28 株式会社日立製作所 Control device for hybrid vehicle
JP3879650B2 (en) * 2002-10-15 2007-02-14 日産自動車株式会社 Vehicle control device
US6932738B2 (en) * 2002-12-26 2005-08-23 Honda Motor Co., Ltd. Drive control apparatus for hybrid vehicle
JP2004222413A (en) * 2003-01-15 2004-08-05 Honda Motor Co Ltd Controller of hybrid vehicle
JP3777165B2 (en) * 2003-02-25 2006-05-24 日野自動車株式会社 Hybrid car
KR100588500B1 (en) * 2003-09-24 2006-06-13 현대자동차주식회사 Four wheel drive apparatus utilizing motor and controlling method thereof
US7131740B2 (en) 2004-03-17 2006-11-07 Olympus Corporation Optical system and optical apparatus provided with the same
US7295902B2 (en) * 2004-04-30 2007-11-13 General Motors Corporation Torque management algorithm for hybrid electric vehicles
JP4086018B2 (en) * 2004-07-15 2008-05-14 トヨタ自動車株式会社 HYBRID VEHICLE, ITS CONTROL METHOD, AND POWER OUTPUT DEVICE
US7313470B2 (en) * 2004-08-19 2007-12-25 Ford Global Technologies, Llc Vehicle torque monitoring system
JP4385296B2 (en) * 2004-08-27 2009-12-16 富士重工業株式会社 Traction control device
DE102005040783A1 (en) * 2005-08-29 2007-03-08 Robert Bosch Gmbh Method for controlling a vehicle drive unit
GB0603849D0 (en) * 2006-02-25 2006-04-05 Ford Global Tech Llc Vehicle drivelines
DE102007006167A1 (en) * 2007-02-07 2008-08-14 Ktm Sportmotorcycle Ag vehicle
US7953539B2 (en) * 2007-04-04 2011-05-31 GM Global Technology Operations LLC Torque split strategy for a belt alternator starter (BAS) hybrid
CN101878142B (en) * 2007-11-30 2014-03-12 博世株式会社 Hybrid system control method
US8521384B2 (en) 2008-01-28 2013-08-27 Textron Innovations Inc. Turf maintenance vehicle all-wheel drive system
FR2927849B1 (en) * 2008-02-26 2010-05-07 Peugeot Citroen Automobiles Sa METHOD FOR COUPLING AN ELECTRIC TRACTION MACHINE ON A HYBRID VEHICLE AND A HYBRID VEHICLE FOR CARRYING OUT THE METHOD
WO2009114154A1 (en) * 2008-03-11 2009-09-17 Xr3 Motors, Llc Hybrid vehicle
JP4930457B2 (en) * 2008-05-26 2012-05-16 トヨタ自動車株式会社 Vehicle control device
DE102008041693A1 (en) * 2008-08-29 2010-03-04 Robert Bosch Gmbh Method for driving a hybrid vehicle during a load change
US20100230192A1 (en) * 2009-03-12 2010-09-16 Riley Robert Q Hybrid vehicle
CN102427979B (en) * 2009-03-19 2014-11-05 丰田自动车株式会社 Controller for power transmission device for vehicle
JP5471075B2 (en) * 2009-06-29 2014-04-16 トヨタ自動車株式会社 VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
DE102009054466A1 (en) * 2009-12-10 2011-06-16 Zf Friedrichshafen Ag Method for handling drive torques and / or braking torques
JP5250540B2 (en) * 2009-12-21 2013-07-31 三菱自動車工業株式会社 Hybrid vehicle differential limit control device
GB2484938B (en) * 2010-10-26 2012-11-07 Protean Electric Ltd A vehicle having drive provided by an engine and electric motor
JP2012166682A (en) * 2011-02-14 2012-09-06 Toyota Motor Corp Control device of hybrid vehicle
CN102756669B (en) * 2011-04-29 2014-09-03 财团法人工业技术研究院 Multiplex control system, transport device with multiplex control system and control method
DE102012204849A1 (en) * 2012-03-27 2013-10-02 Robert Bosch Gmbh Method and control device for controlling a hybrid drive of a hybrid electric motor vehicle
JP5768770B2 (en) * 2012-06-29 2015-08-26 株式会社デンソー Rotating machine control device
JP5979247B2 (en) * 2012-12-11 2016-08-24 日産自動車株式会社 Driving force distribution control device for four-wheel drive vehicle
JP6071954B2 (en) * 2014-07-24 2017-02-01 本田技研工業株式会社 Control device for hybrid vehicle
CN104834246B (en) * 2014-12-17 2017-09-29 北汽福田汽车股份有限公司 Automobile controller and the state synchronization method applied to automobile controller
US9440640B1 (en) * 2015-10-16 2016-09-13 Borgwarner Inc. Gear change torque fill strategy
US10279799B2 (en) * 2016-12-13 2019-05-07 Ford Global Technologies, Llc Dynamic torque profiles based on drive mode selection
KR102371248B1 (en) * 2017-09-08 2022-03-04 현대자동차 주식회사 Method for controlling e-4wd hybrid vehicle
KR20210018653A (en) * 2019-08-08 2021-02-18 현대자동차주식회사 Wheel slip control method for vehicle
JP7440377B2 (en) 2020-08-24 2024-02-28 株式会社Subaru vehicle control system
CN113665559B (en) * 2021-08-31 2023-10-27 中国第一汽车股份有限公司 Dual-motor hybrid power vehicle starting rotation speed control method and device and vehicle

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176213A (en) * 1987-12-09 1993-01-05 Aisin Aw Co., Ltd. Driving force distribution system for hybrid vehicles
JP3285638B2 (en) 1993-02-01 2002-05-27 マツダ株式会社 Control device for hybrid vehicle
JP3287940B2 (en) 1994-02-21 2002-06-04 マツダ株式会社 Control device for hybrid vehicle
JP3652403B2 (en) 1995-05-01 2005-05-25 本田技研工業株式会社 Front and rear wheel drive vehicle
JP3609491B2 (en) * 1995-06-19 2005-01-12 本田技研工業株式会社 Front and rear wheel drive vehicle
JPH0984211A (en) 1995-09-11 1997-03-28 Toyota Motor Corp Output torque controller of vehicle
JPH1023609A (en) 1996-07-04 1998-01-23 Nissan Motor Co Ltd Controller for hybrid automobile
JP3624575B2 (en) 1996-09-24 2005-03-02 トヨタ自動車株式会社 Drive control apparatus for hybrid vehicle
JP3783415B2 (en) 1998-06-25 2006-06-07 トヨタ自動車株式会社 Power transmission device and four-wheel drive vehicle using the same
JP3809732B2 (en) 1998-09-04 2006-08-16 トヨタ自動車株式会社 Control device for front and rear wheel drive vehicle
JP3577966B2 (en) 1998-09-07 2004-10-20 日産自動車株式会社 Vehicle driving force control device
JP2000094979A (en) 1998-09-28 2000-04-04 Hitachi Ltd Driving method of hybrid vehicle
JP3409249B2 (en) * 1998-11-30 2003-05-26 株式会社日立製作所 Hybrid vehicle
CA2261984A1 (en) * 1999-02-02 2000-08-02 Joe Carmen Danese Electrical motor front wheel drive with internal combustion motor rear wheel drive vehicle technology
JP3956536B2 (en) 1999-05-31 2007-08-08 トヨタ自動車株式会社 Hybrid vehicle drive control device
JP3578019B2 (en) * 1999-11-11 2004-10-20 日産自動車株式会社 Hybrid vehicle
JP3991538B2 (en) * 1999-12-02 2007-10-17 トヨタ自動車株式会社 Vehicle control device
JP3585798B2 (en) * 1999-12-24 2004-11-04 本田技研工業株式会社 Driving force control device for four-wheel drive vehicle
US6528959B2 (en) * 2000-07-19 2003-03-04 Honda Giken Kogyo Kabushiki Kaisha Driving force control system for front-and-rear wheel drive vehicles
JP2002154343A (en) * 2000-11-20 2002-05-28 Honda Motor Co Ltd Power transmission mechanism for front and rear wheel drive vehicle
US6378638B1 (en) * 2001-03-14 2002-04-30 New Venture Gear, Inc. Drive axle for hybrid vehicle

Also Published As

Publication number Publication date
US20020107617A1 (en) 2002-08-08
US6741917B2 (en) 2004-05-25
JP2002233006A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
JP3536820B2 (en) Hybrid vehicle control device
JP3807232B2 (en) Hybrid vehicle control system
JP3585798B2 (en) Driving force control device for four-wheel drive vehicle
US7114589B2 (en) Control device for hybrid four-wheel-drive vehicle and hybrid four-wheel-drive vehicle
JP4554997B2 (en) Vehicle driving force control device
KR100695854B1 (en) Vehicle drive force control apparatus
KR100618505B1 (en) Vehicle driving force control apparatus
JP3976225B2 (en) Control device for front and rear wheel drive vehicle
JP2009220712A (en) Clutch transmission torque controller for hybrid car
KR100623126B1 (en) Vehicle driving force control apparatus
JP2004254375A (en) Driving force controller of vehicle
JP2000219062A (en) Hybrid type vehicle
JP3891166B2 (en) Vehicle driving force control device
JP3951649B2 (en) Electric vehicle motor control device
JP3711927B2 (en) Control device for hybrid vehicle
JP3536836B2 (en) Vehicle driving force control device
JP3614127B2 (en) Control device for hybrid vehicle drive device
JP2005006395A (en) Start driving force controller of hybrid vehicle
JP3183121B2 (en) Electric car
JP3627664B2 (en) 4 wheel drive
JP3473545B2 (en) Control device for parallel hybrid vehicle
JP3707258B2 (en) Control device for front and rear wheel drive vehicle
JP2004052625A (en) Hybrid vehicle
JP2008001185A (en) Driving force controller for vehicles
JP3899701B2 (en) Control device for front and rear wheel drive vehicle

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees