JP3532102B2 - 間接ローテータグラフネットワーク及び間接ローテータグラフネットワークにおける伝送経路の設定方法 - Google Patents

間接ローテータグラフネットワーク及び間接ローテータグラフネットワークにおける伝送経路の設定方法

Info

Publication number
JP3532102B2
JP3532102B2 JP22266598A JP22266598A JP3532102B2 JP 3532102 B2 JP3532102 B2 JP 3532102B2 JP 22266598 A JP22266598 A JP 22266598A JP 22266598 A JP22266598 A JP 22266598A JP 3532102 B2 JP3532102 B2 JP 3532102B2
Authority
JP
Japan
Prior art keywords
identifier
symbols
node
indirect
nodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22266598A
Other languages
English (en)
Other versions
JPH11163863A (ja
Inventor
聲東 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH11163863A publication Critical patent/JPH11163863A/ja
Application granted granted Critical
Publication of JP3532102B2 publication Critical patent/JP3532102B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
    • G06F15/163Interprocessor communication
    • G06F15/173Interprocessor communication using an interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake
    • G06F15/17356Indirect interconnection networks
    • G06F15/17368Indirect interconnection networks non hierarchical topologies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Small-Scale Networks (AREA)
  • Multi Processors (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は,多重処理システム
(multiprocessor system)で使
用される相互連結網に係り,特にローテータグラフ(r
otator graph:RG)を間接(indir
ect)方式で変更した相互連結網に関する。
【0002】
【従来の技術】多重処理システムは,二つ以上のプロセ
ッサとこれらのプロセッサ間にデータが伝送できる通信
通路とを持つコンピュータ構造である。多重処理システ
ムを設計するに際して,メモリ管理と相互連結網(in
terconnectionnetwork)とは最も
大切な項目となっている。中でも,相互連結網は,多数
のプロセッサによる並列処理のオーバヘッドが最小化す
るように設計されなくてはならない。
【0003】多重処理システムにおいて,相互連結網と
は,任意のあるプロセッサと他のプロセッサとの間にメ
ッセージの伝送通路を提供したり,任意のあるプロセッ
サが共有メモリもしくは共有I/O装置に接続するため
の手段を提供する技術をいう。かかるネットワークを構
成するに際して,一番最初に考慮すべきことは,直接
(Direct)方式による静的(Static)ネッ
トワークと,間接(Indirect)方式による動的
(Dynamic)ネットワークとの中からいずれか一
の方式を選択することである。
【0004】静的ネットワークとは,多重処理システム
の任意のあるプロセッサと他のプロセッサとを直接結ぶ
方式であって,多重処理システムを構成するプロセッサ
間の連結は一定の形態に固定され,プログラムが行われ
る間には変化することがない。かかる方式のネットワー
クとしては,線形配列(Linear Array),
円形(Ring),弦歯円形(Chordal Rin
g),木(Tree),ファット木(Fat Tre
e),スター(Star),網(Mesh),トーラス
(Torus),シストリク配列(Systolic
Array),ハイパーキューブ(Hypercub
e)などが挙げられる。
【0005】動的ネットワークは,使用者プログラムで
他のプロセッサとの通信を要求する場合,その連結構造
を動的に切換えることが可能な多数のスイッチチャンネ
ル(switch channel)を具備する。かか
る方式のネットワークとしては,バス(bus),多重
バス(multiple bus),クロスバー(cr
ossbar),多段階相互連結網(Multista
ge Interconnection Networ
k)などが挙げられる。
【0006】相互連結網は,多重処理システムの性能,
拡張性及び欠陥許容度(Faulttoleranc
e)などの特性を決める。初期には,システム設計者が
多重処理システムを構成するに際して,線形配列,円
形,2次元配列など簡略な相互連結網にだけ関心を持っ
たものの,VLSI(Very Large−Scal
e Integrated circuit)技術が進
歩するにつれて,かなり多数のプロセッサから構成され
た多重処理システムを設計するために,特性に鑑みた複
雑な相互連結網を導入するに至った。中でも,静的ネッ
トワークであるハイパーキューブに多くの関心が寄せら
れたが,これは,ノード数が指数的に増加する拡張性,
短いネットワーク直径(network diamet
er),対称性(Symmetry),高い欠陥許容度
などの特性によるものと考えられる。
【0007】並列処理のための相互連結網には,静的ネ
ットワークであるスターグラフがある。スターグラフは
ケイリー(cayley)グラフの一種であって,ハイ
パーキューブに代えることが可能な非方向性(Undi
rected)グラフである。スターグラフは,ハイパ
ーキューブ方式よりネットワークサイズに比例し,各ノ
ードの持つリンク数(Vertex degree)と
ネットワーク直径(ネットワーク内において任意の二つ
のノード間に設定された経路の中で最大のリンクを経る
べき場合のリンク数を言う)とが徐々に増加する。スタ
ーグラフは以上のような長所を有しながら,かつ,ハイ
パーキューブ方式のごとき高い欠陥許容度や対称性をも
有している。
【0008】静的ネットワークであるローテータグラフ
は,方向性(Directed)グラフの集合からな
り,スターグラフの代替方式として使用可能である。ロ
ーテータグラフはノード数が等しい場合,スターグラフ
よりネットワーク直径が短いながらもスターグラフやハ
イパーキューブが持つ規則性,対称性及び拡張性などの
特性を有している。
【0009】
【発明が解決しようとする課題】しかしながら,スター
グラフやローテータグラフは,直接方式による静的ネッ
トワークであるがゆえに,接続構造が固定され,全ての
通信パターンに対し通信時間を適切な範囲内に保つため
に通信経路を自由に変更できないという欠点があった。
【0010】本発明は,従来のグラフネットワークが有
する上記問題点に鑑みてなされたものであり,本発明の
目的は,直接方式による静的ネットワークのローテータ
グラフの特性を有しながら間接方式の利点を有する,新
規かつ改良された動的ネットワークである間接ローテー
タグラフネットワーク(Indirect Rotat
or Graph Network:以下,IRGNと
称する)を提供することである。
【0011】さらに,本発明の他の目的は,IRGNを
使用するに当って,送信ノードと受信ノード間の伝送経
路を設定する,新規かつ改良されたIRGNの伝送経路
の設定方法を提供することである。
【0012】
【課題を解決するための手段】上記課題を解決するた
め,請求項1によれば,n!種のr…r(r
はn個の相異なる記号,1≦i≦n)の中でいずれか一
つを識別子とするn!個のノードを具備した多重処理シ
ステム内の任意のノード間伝送通路を提供する間接n次
元ローテータグラフネットワークにおいて,ノードに一
対一に接続されるn!個の入力ポートと,ノードに一対
一に接続されるn!個の出力ポートと,入力ポートを介
してノードに接続され,それぞれ接続されたノードと等
しい識別子を持つn!個のデマルチプレクサを具備した
第1段階のスイッチモジュールと,各段階ごとにn!種
のr…rの中でいずれか一つを識別子とするn
!個のn×nクロスバースイッチを具備した第2段階か
ら第(n−1)段階のスイッチモジュールと,出力ポー
トを介してノードに接続され,それぞれ接続されたノー
ドと等しい識別子を持つn!個のマルチプレクサを具備
した第n段階のスイッチモジュールを含み,更に,第1
段階から第(n−1)段階のスイッチモジュールを構成
するスイッチまたはデマルチプレクサはそれぞれn個の
ゼネレータ(g ,g,…,g)を具備し,かつ,
は自分の属するスイッチまたはデマルチプレクサの
識別子と等しい識別子を持つ次の段階のスイッチまたは
マルチプレクサに接続され,g(2≦i≦n)は自分
の属するスイッチまたはデマルチプレクサの識別子の最
初(n−i+2)個の記号を左側に向って一間ずつロー
テーションさせて得た識別子と等しい識別子を持つ次の
段階のスイッチまたはマルチプレクサに接続されること
を特徴とする間接ローテータグラフネットワークが提供
される。
【0013】かかる構成によれば,ノード数が等しい場
合,間接方式の他のネットワークより更に短い段階を有
したネットワークが具現可能であるために,経路指示の
際に必要であるタグが更に短くなり,よって,効率良い
メッセージ伝送が可能となる。
【0014】また,上記他の課題を解決するために,請
求項2によれば,n!種のr…r(rはn個
の相異なる記号,1≦i≦n)の中でいずれか一つを識
別子とするn!個のノードに接続される間接n次元ロー
テータグラフネットワークにおける伝送経路を設定する
方法において,受信ノードの識別子を構成する記号に対
しそれぞれ昇べき順のコード値を持つn種の新しい記号
を一対一にマッピングさせる第1段階と,送信ノードの
識別子を構成するそれぞれの記号を受信ノードの識別子
のマッピング段階と同様にしてマッピングした新しい記
号に名付け直す第2段階と,名付け直された送信ノード
の識別子の最初(n−1)個の記号を左側に向って一間
ずつローテーションさせる第3段階と,ローテーション
された送信ノードの識別子の最後2つの記号を昇べき順
に整列する第4段階と,整列された送信ノードの識別子
を構成する新しい記号に対しそれぞれ第1段階と反対に
マッピングを行い,伝送経路を決める第5段階と,整列
された送信ノードを構成する新しい記号がいずれも昇べ
き順となるまで,第3段階でローテーションする記号数
を一つ減じ,第4段階で整列する記号数を一つ増やしつ
つ,第3段階から第5段階を繰り返す第6段階を含むこ
とを特徴とする間接n次元ローテータグラフネットワー
クにおける伝送経路の設定方法が提供される。
【0015】かかる方法によれば,上述の効率良いメッ
セージ伝送が可能なローテータグラフネットワークにお
いて,伝送経路の設定を容易かつ効率的に行うことが可
能である。
【0016】
【発明の実施の形態】以下に添付図面を参照しながら,
本発明にかかる間接ローテータグラフネットワーク及び
間接ローテータグラフネットワークにおける伝送経路の
設定方法の好適な実施の形態について詳細に説明する。
【0017】図1はスターグラフを示す説明図であり,
図1(A)は2次元スターグラフを示しており,図1
(B)は3次元スターグラフを示しており,図1(C)
は4次元スターグラフを示している。スターグラフはケ
イリーグラフの一種であって,ハイパーキューブに代え
ることが可能な非方向性相互連結網である。n次元スタ
ーグラフ(以下,Snと表記する)は,n!個のノード
を具備し,かつ,それぞれのノードはs…s
i−1i+1…s(ここで,sはn個の相異
なる記号,1≦i≦n)と表示される識別子によって識
別されるとともに,s …si−1i+1
(2≦i≦n)と表示される識別子を持つノードに
直接結ばれる。従って,全てのノードは,該ノードの持
つ識別子の最初の記号と残りの(n−1)個の記号とが
相互位置を移し替えることによって決められる識別子を
持つ(n−1)個のノードに直接結ばれるリンクを有
す。
【0018】Sはn個のSn−1よりなるために,S
n−1はSの副グラフ(Subgraph)である。
例えば,Sのノード数は3!=6個で,3個のS
らなり,かつ各ノードの識別子はABC,ACB,BA
C,BCA,CAB,CBAである。
【0019】ローテータグラフは方向性グラフであっ
て,n次元のローテータグラフ(以下,Rと表記す
る)はn!個のノードを具備し,かつそれぞれのノード
はr …ri−1i+1…r(ここで,r
はn個の相異なる記号,1≦i≦n)と表示される識
別子によって識別されるとともに,r…r
i+ …r(2≦i≦n)と表示される識別子を持つ
ノードに向かう方向性リンクを有す。すなわち,全ての
ノードは,該ノードの持つ識別子を構成する最初i(2
≦i≦n)個の記号を左側に向って一ずつローテーショ
ンさせることにより決まった識別子を持つ(n−1)個
のノードに向かう方向性リンクを有する。従って,最初
2文字の位置のみ異なっている両ノード間には両方向性
リンクが含まれる。
【0020】図2は,3次元ローテータグラフを示す図
面であって,太線で表示されたリンクは両方向性リンク
を,細線で表示されたリンクは方向性リンクをそれぞれ
指している。
【0021】図3は,本発明に係るIRGNの一実施の
形態である間接3次元ローテータグラフネットワークの
構成を示している。
【0022】間接n次元ローテータグラフネットワーク
には,N個の入力ポートとN個の出力ポートとが含まれ
ている。ここで,Nはノードの総数,すなわちn!であ
る。
【0023】ローテータグラフのネットワーク直径をK
とする時,Kは(n−1)で,また,IRGNは
(K+1)のスイッチ段階からなる。第1段階のスイ
ッチモジュールは入力ポートを介してノードに接続さ
れ,かつ,それぞれ接続されたノードと等しい識別子を
持つn!個のデマルチプレクサを具備する。第n段階の
スイッチモジュールは,出力ポートを介してノードに接
続され,かつそれぞれ接続されたノードと等しい識別子
を持つn!個のマルチプレクサを具備する。
【0024】IRGNが3次元以上の場合,第1段階の
スイッチモジュールと第n段階のスイッチモジュールと
の間にn×nのクロスバースイッチからなる別の段階の
スイッチモジュールが要求される。
【0025】第1段階から第(n−1)段階のスイッチ
モジュールを構成するn×nのクロスバースイッチまた
はデマルチプレクサは,それぞれn個の出力リンクを有
す。各リンクは,上から順番にg,g,…,g
名付けられたゼネレータである。gは,自分の属する
クロスバースイッチまたはデマルチプレクサの識別子と
等しい識別子を持つ次の段階のクロスバースイッチまた
はマルチプレクサに接続される。さらに,g(2≦i
≦n)は自分の属するクロスバースイッチまたはデマル
チプレクサの識別子の最初(n−i+2)個の記号を左
側に向って一ずつローテーションさせて得た識別子と等
しい識別子を持つ次の段階のクロスバースイッチまたは
マルチプレクサに接続される。
【0026】図4は,本発明に係る間接n次元ローテー
タグラフネックワークにおける送信ノードから受信ノー
ドまでの伝送経路を設定する過程を示す流れ図である。
【0027】以下,具体例を挙げて本発明の実施の形態
につきさらに詳細に説明する。IRGNの次元を4次元
と仮定したもとで,送信ノードの識別子を(BCDA)
と,かつ受信ノードの識別子を(CABD)とする。
【0028】まず,受信ノードの識別子を構成する記号
に対しそれぞれ昇べき順のコード値を持つn種の新しい
記号を一対一にマッピングさせる(ステップS40
0)。この際,新しい記号を(1234)とすれば,C
は1に,Aは2に,Bは3に,そしてDは4にそれぞれ
マッピングされる。
【0029】送信ノードの識別子を構成するそれぞれの
記号を受信ノードの識別子のマッピングと同様にしてマ
ッピングを行い,新しい記号に名付け直す(ステップS
410)。すなわち,(BCDA)は(3142)にマ
ッピングされる。
【0030】続いて,名付け直された送信ノードの識別
子において,最初(n−1)個の記号を左側に向って一
間ずつローテーションさせる(ステップS420)。す
なわち,3文字を左側に向って一間ずつローテーション
させる。結局,(1432)となる。
【0031】次に,ローテーションされた送信ノードの
識別子の最後2個の記号を昇べき順に従って整列する
(ステップS430)。本例では,(1432)のうち
32が昇べき順に整列され,結局(1423)となる。
【0032】整列された送信ノードの識別子を構成する
新しい記号に対しそれぞれ第1段階と反対にマッピング
を行い,伝送経路を決める(ステップS440)。本例
では,(1423)を構成する文字の1はCに,4はD
に,2はAに,また3はBにそれぞれ逆マッピングされ
る。従って,次の経路はCDABとなる。
【0033】引き続き,整列された送信ノードを構成す
る新しい記号がいずれも昇べき順となっているか否かを
確めた上で,もしそうでない場合には,ステップS42
0においてローテーションする記号数を一つ減じ,ステ
ップS430において整列する記号数を一つ増やしつ
つ,ステップS420からステップS450を繰り返す
(ステップS460)。
【0034】本例を適用して繰り返し続けると,(14
23)から最初の2文字を左側に向って一ずつローテー
ションしても(4123)となり,最後の3文字を整列
しても同様に(4123)となる。よって,次の経路は
(DCAB)となる。
【0035】次いで,(4123)の最初の1文字を左
側に向って一ずつローテーションして同様に(412
3)を得る。最後の4文字を整列して(1234)を得
ることにより,最後の目的地である(CABD)に達す
る。要するに,送信ノード(BCDA)から受信ノード
(CABD)までの伝送経路は(BCDA)→(CDA
B)→(DCAB)→(CABD)となる。
【0036】IRGNは,各段階別にn個のゼネレータ
(g,g,…,g)の中からいずれか一つを選択
するためには,制御タグ(Control Tag)を
必要とする。各ゼネレータを選択するにはlognビ
ットが必要であるから,制御タグの長さは(n−1)l
ognビットとなる。ところが,両ノードを結ぶため
の伝送経路がn個より少ない場合にも,IRGNではn
個のスイッチ段階をいずれも求めるために,伝送経路の
残り部分に対してはgを加えなければならない。この
時,元のタグ順が変わらない限り,gをタグ内のいか
なる位置に加えても関係ない。
【0037】例えば,本発明に係る間接4次元ローテー
タグラフネットワークにおいて,両ノードを結ぶための
制御タグをgとする。この時,IRGNの次元数
は4であるから,3個のシンボル制御タグが必要とな
る。したがって,元の制御タグに1個のgを付け加
え,制御タグを構成する。g,g
,gはいずれも制御タグに適してい
る。
【0038】以上,添付図面を参照しながら本発明にか
かる間接ローテータグラフネットワーク及び間接ローテ
ータグラフネットワークにおける伝送経路の設定方法の
好適な実施形態について説明したが,本発明はかかる例
に限定されない。当業者であれば,特許請求の範囲に記
載された技術的思想の範疇内において各種の変更例また
は修正例に想到し得ることは明らかであり,それらにつ
いても当然に本発明の技術的範囲に属するものと了解さ
れる。
【0039】
【発明の効果】本発明によれば,ノード数が等しい場
合,間接方式の他のネットワークより更に短い段階を有
したネットワークが具現可能であるために,経路指示の
際に必要であるタグが更に短くなり,よって,効率良い
メッセージ伝送が可能となる。以下,間接スターグラフ
ネットワーク(ISGN)と間接ローテータグラフネッ
トワーク(IRGN)とを求められる段階数や制御タグ
のビット数により比較する。
【0040】
【表1】
【図面の簡単な説明】
【図1】スターグラフを示す説明図であり,図1(A)
は2次元スターグラフを示しており,図1(B)は3次
元スターグラフを示しており,図1(C)は4次元スタ
ーグラフを示している。
【図2】3次元ローテータグラフを示す説明図である。
【図3】間接3次元ローテータグラフネットワークを示
す説明図である。
【図4】間接ローテータグラフネットワークでの伝送経
路の設定過程を示す流れ図である。
フロントページの続き (56)参考文献 特表 平3−500104(JP,A) 米国特許4434463(US,A) 米国特許3794983(US,A) 村田淳 他,MDX(MultiDI mensional Crossba r) −大規模並列計算機用結合網クラ ス−,電子情報通信学会技術研究報告, 日本,1995年 4月28日,Vol.95 No.21,p.79−86(CPSY95− 21) (58)調査した分野(Int.Cl.7,DB名) G06F 15/80 G06F 15/16 - 15/177 H04L 12/00 - 12/66

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 n!種の識別子r…r(r
    n個の相異なる記号,1≦i≦n)の中のいずれか一を
    識別子とするn!個のノードを具備した多重処理システ
    ム内の任意のノード間伝送経路を提供する間接ローテー
    タグラフネットワークにおいて:前記ノードに一対一に
    接続されるn!個の入力ポートと;前記ノードに一対一
    に接続されるn!個の出力ポートと;前記入力ポートを
    介して前記ノードに接続され,それぞれ接続された前記
    ノードと等しい識別子を持つn!個のデマルチプレクサ
    を具備した第1段階のスイッチモジュールと;各段階ご
    とに前記n!種の識別子r…rの中のいずれか
    一を識別子とするn!個のn×nクロスバースイッチを
    具備した第2段階から第(n−1)段階のスイッチモジ
    ュールと;前記出力ポートを介して前記ノードに接続さ
    れ,それぞれ接続された前記ノードと等しい識別子を持
    つn!個のマルチプレクサを具備した第n段階のスイッ
    チモジュールと;を含み,前記第1段階から第(n−
    1)段階のスイッチモジュールを構成するクロスバース
    イッチまたはデマルチプレクサは,それぞれn個のゼネ
    レータ(g,g,…,g)を具備し,前記ゼネレ
    ータgは,該ゼネレータgの属する前記クロスバー
    スイッチまたは前記デマルチプレクサの識別子と等しい
    識別子を持つ次の段階の前記クロスバースイッチまたは
    前記マルチプレクサに接続され,前記ゼネレータg
    (2≦i≦n)は,該ゼネレータgの属する前記ク
    ロスバースイッチまたは前記デマルチプレクサの識別子
    の最初(n−i+2)個の記号を左側に向って一ずつロ
    ーテーションさせて得た識別子と等しい識別子を持つ次
    の段階の前記クロスバースイッチまたは前記マルチプレ
    クサに接続されることを特徴とする,間接ローテータグ
    ラフネットワーク。
  2. 【請求項2】 n!種の識別子r…r(r
    n個の相異なる記号,1≦i≦n)の中のいずれか一を
    識別子とするn!個のノードに接続される間接ローテー
    タグラフネットワークにおける伝送経路の設定方法にお
    いて:受信ノードの識別子を構成する記号に対しそれぞ
    れ昇べき順のコード値を持つn種の新しい記号を一対一
    にマッピングさせる第1工程と;送信ノードの識別子を
    構成するそれぞれの記号を前記受信ノードの識別子のマ
    ッピング工程と同様にしてマッピングした新しい記号に
    名付け直す第2工程と;前記名付け直された送信ノード
    の識別子の最初(n−1)個の記号を左側に向って一ず
    つローテーションさせる第3工程と;前記ローテーショ
    ンされた送信ノードの識別子の最後2つの記号を昇べき
    順に整列する第4工程と;前記整列された送信ノードの
    識別子を構成する新しい記号に対しそれぞれ第1工程と
    反対にマッピングを行い,伝送経路を決める第5工程
    と;前記整列された送信ノードを構成する新しい記号が
    いずれも昇べき順となるまで,前記第3工程でローテー
    ションする記号数を一減じ,前記第4工程で整列する記
    号数を一増やしつつ,前記第3工程から第5工程を繰り
    返す第6工程と;を含むことを特徴とする,間接ローテ
    ータグラフネットワークにおける伝送経路の設定方法。
JP22266598A 1997-09-19 1998-08-06 間接ローテータグラフネットワーク及び間接ローテータグラフネットワークにおける伝送経路の設定方法 Expired - Fee Related JP3532102B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1997P47794 1997-09-19
KR1019970047794A KR100269174B1 (ko) 1997-09-19 1997-09-19 인다이렉트 로테이터 그래프 네트워크

Publications (2)

Publication Number Publication Date
JPH11163863A JPH11163863A (ja) 1999-06-18
JP3532102B2 true JP3532102B2 (ja) 2004-05-31

Family

ID=19521430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22266598A Expired - Fee Related JP3532102B2 (ja) 1997-09-19 1998-08-06 間接ローテータグラフネットワーク及び間接ローテータグラフネットワークにおける伝送経路の設定方法

Country Status (3)

Country Link
US (1) US6128719A (ja)
JP (1) JP3532102B2 (ja)
KR (1) KR100269174B1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356902B1 (en) * 1998-07-28 2002-03-12 Matsushita Electric Industrial Co., Ltd. Method and system for storage and retrieval of multimedia objects
US7158512B1 (en) 2002-04-01 2007-01-02 P-Cube Ltd. System and method for scheduling a cross-bar
KR100671490B1 (ko) * 2005-04-26 2007-01-19 삼성전자주식회사 패널과 인쇄회로기판의 장착구조

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794983A (en) 1973-04-17 1974-02-26 K Sahin Communication method and network system
US4434463A (en) 1979-11-30 1984-02-28 Quinquis Jean Paul Multiprocessor topology with plural bases for directly and indirectly coupling addresses and relay stations

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212773A (en) * 1983-05-31 1993-05-18 Thinking Machines Corporation Wormhole communications arrangement for massively parallel processor
US4858147A (en) * 1987-06-15 1989-08-15 Unisys Corporation Special purpose neurocomputer system for solving optimization problems
US5170482A (en) * 1987-08-14 1992-12-08 Regents Of The University Of Minnesota Improved hypercube topology for multiprocessor computer systems
EP0379557A4 (en) * 1988-06-20 1992-09-09 United States Department Of Energy Interconnection networks
US5133073A (en) * 1990-05-29 1992-07-21 Wavetracer, Inc. Processor array of N-dimensions which is physically reconfigurable into N-1
US5715391A (en) * 1991-11-15 1998-02-03 International Business Machines Corporation Modular and infinitely extendable three dimensional torus packaging scheme for parallel processing
JP2572522B2 (ja) * 1992-05-12 1997-01-16 インターナショナル・ビジネス・マシーンズ・コーポレイション コンピューティング装置
JPH06290158A (ja) * 1993-03-31 1994-10-18 Fujitsu Ltd 再構成可能なトーラス・ネットワーク方式
FR2710993B1 (fr) * 1993-10-04 1995-11-24 Commissariat Energie Atomique Procédé et système d'interconnexion pour la gestion de messages dans un réseau de processeurs à structure parallèle.
US5583990A (en) * 1993-12-10 1996-12-10 Cray Research, Inc. System for allocating messages between virtual channels to avoid deadlock and to optimize the amount of message traffic on each type of virtual channel
US5669008A (en) * 1995-05-05 1997-09-16 Silicon Graphics, Inc. Hierarchical fat hypercube architecture for parallel processing systems
US5859981A (en) * 1995-07-12 1999-01-12 Super P.C., L.L.C. Method for deadlock-free message passing in MIMD systems using routers and buffers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794983A (en) 1973-04-17 1974-02-26 K Sahin Communication method and network system
US4434463A (en) 1979-11-30 1984-02-28 Quinquis Jean Paul Multiprocessor topology with plural bases for directly and indirectly coupling addresses and relay stations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
村田淳 他,MDX(MultiDImensional Crossbar) −大規模並列計算機用結合網クラス−,電子情報通信学会技術研究報告,日本,1995年 4月28日,Vol.95 No.21,p.79−86(CPSY95−21)

Also Published As

Publication number Publication date
KR19990025929A (ko) 1999-04-06
KR100269174B1 (ko) 2000-11-01
US6128719A (en) 2000-10-03
JPH11163863A (ja) 1999-06-18

Similar Documents

Publication Publication Date Title
US7673118B2 (en) System and method for vector-parallel multiprocessor communication
US5187801A (en) Massively-parallel computer system for generating paths in a binomial lattice
US9514092B2 (en) Network topology for a scalable multiprocessor system
US8443169B2 (en) Interconnection network connecting operation-configurable nodes according to one or more levels of adjacency in multiple dimensions of communication in a multi-processor and a neural processor
JP4676463B2 (ja) 並列計算機システム
JP2512661B2 (ja) 非バイナリ・ハイパ―キュ―ブ形式のコンピュ―タ・システムおよびネットワ―クにおける複数ノ―ドの接続方法
EP0726532A2 (en) Array processor communication architecture with broadcast instuctions
US7454593B2 (en) Row and column enable signal activation of processing array elements with interconnection logic to simulate bus effect
JPH04232561A (ja) 多重並列コンピュータ・システム
KR20010014381A (ko) 메니폴드 어레이 프로세서
US8006067B2 (en) Flexible results pipeline for processing element
JP3789302B2 (ja) ディジタル処理装置
JP3532102B2 (ja) 間接ローテータグラフネットワーク及び間接ローテータグラフネットワークにおける伝送経路の設定方法
KR100255728B1 (ko) 퍼뮤테이션 네트워크를 위한 노드식별자 할당방법
JP2525117B2 (ja) アレイ・プロセッサ
US20100031004A1 (en) Arithmetic device
KR19990025820A (ko) 작은 용량의 스위치를 사용한 인다이렉트 로테이터 그래프 네트워크
JPH0727515B2 (ja) 2次元メッシュ・アレイの処理要素
Masuyara et al. A realization of an arbitrary BPC permutation in hypercube connected computer networks
Nagamoto et al. New Area Management Method Based on “Pressure” for Plastic Cell Architecture
Nicole et al. Transputer link reconfiguration: switching networks for 4-valent graphs
JPH0855093A (ja) 複合化ベクトル並列計算機
Taillon The hypermesh multiprocessor network: architectural properties and algorithms.
JPH0478950A (ja) 並列データ処理装置
Peyravi Study of interconnection networks (rearrangeable, combinatorial power, blocking, non-blocking)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees