JP3454265B2 - Thermal flow sensor - Google Patents

Thermal flow sensor

Info

Publication number
JP3454265B2
JP3454265B2 JP2002029583A JP2002029583A JP3454265B2 JP 3454265 B2 JP3454265 B2 JP 3454265B2 JP 2002029583 A JP2002029583 A JP 2002029583A JP 2002029583 A JP2002029583 A JP 2002029583A JP 3454265 B2 JP3454265 B2 JP 3454265B2
Authority
JP
Japan
Prior art keywords
temperature
flow velocity
upstream
resistor
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002029583A
Other languages
Japanese (ja)
Other versions
JP2002277483A (en
Inventor
雄二 有吉
考司 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002029583A priority Critical patent/JP3454265B2/en
Publication of JP2002277483A publication Critical patent/JP2002277483A/en
Application granted granted Critical
Publication of JP3454265B2 publication Critical patent/JP3454265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車のエ
ンジン制御や空調機器など、空気等流体の流速計測が必
要な場所に使用される流速センサに関し、特にその検出
感度向上および測定可能流速範囲の拡大に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow velocity sensor used in a place where a flow velocity measurement of a fluid such as air is required, such as an engine control of an automobile and an air conditioner. It is about expansion.

【0002】[0002]

【従来の技術】図34は例えば特開昭60−14226
8号公報に示された従来の熱式流速センサ(従来例1)
の要部断面図であり、図35はその上面図である。図に
おいて、1はシリコン基板、2はこのシリコン基板1に
エッチングにより形成された空気スペース、3,4はこ
の空気スペース2上に架橋された薄膜部材すなわち薄肉
部、5は発熱抵抗体、6,7はそれぞれ上流側および下
流側薄膜感温抵抗体、8は周囲の空気の温度をモニタす
る比較抵抗である。上流側および下流側薄膜感温抵抗体
6,7は発熱抵抗体5を挟んで対称な位置に配されてい
る。発熱抵抗体5および薄膜感温抵抗体6,7は、例え
ば窒化シリコンからなる薄膜の絶縁層9,10により包
まれて薄肉部3,4を形成している。
2. Description of the Related Art FIG. 34 shows, for example, JP-A-60-14226.
Conventional thermal type flow velocity sensor disclosed in Japanese Patent Publication No. 8 (conventional example 1)
FIG. 35 is a cross-sectional view of an essential part of FIG. In the figure, 1 is a silicon substrate, 2 is an air space formed on the silicon substrate 1 by etching, 3 and 4 are thin film members, that is, thin-walled portions bridged on the air space 2, 5 is a heating resistor, 6, Reference numeral 7 is an upstream side and downstream side thin film temperature sensitive resistor, respectively, and 8 is a comparative resistance for monitoring the temperature of the surrounding air. The upstream and downstream thin-film temperature sensitive resistors 6 and 7 are arranged symmetrically with the heating resistor 5 in between. The heating resistor 5 and the thin film temperature sensitive resistors 6 and 7 are surrounded by thin insulating layers 9 and 10 made of, for example, silicon nitride to form thin portions 3 and 4.

【0003】この従来の熱式流速センサの基本的な動作
について説明する。図35において、発熱抵抗体5はシ
リコン基板1の温度より200℃高くなる温度に加熱さ
れている。シリコン基板1の温度は周囲の空気の温度と
ほとんど同じであり、比較抵抗8により測定される。空
気の流れがないときには、薄膜感温抵抗体6,7は、発
熱抵抗体5の熱により、平均で約140℃に熱せられ
る。すなわち、薄膜感温抵抗体6,7は発熱抵抗体5に
対して正確に対称に配置されているので、空気の流速が
0のときにはこの2つのセンサの温度は同一になり、薄
膜感温抵抗体6,7の抵抗値に差は生じない。従って、
この2つの感温抵抗体6,7に微小測定電流を流しても
電圧の差は発生しない。
The basic operation of this conventional thermal type flow velocity sensor will be described. In FIG. 35, the heating resistor 5 is heated to a temperature higher by 200 ° C. than the temperature of the silicon substrate 1. The temperature of the silicon substrate 1 is almost the same as the temperature of the surrounding air and is measured by the comparative resistor 8. When there is no air flow, the thin film temperature sensitive resistors 6 and 7 are heated to an average of about 140 ° C. by the heat of the heat generating resistor 5. That is, since the thin film temperature sensitive resistors 6 and 7 are arranged symmetrically with respect to the heat generating resistor 5, the temperatures of these two sensors become the same when the flow velocity of air is 0, and the thin film temperature sensitive resistors are There is no difference in the resistance values of the bodies 6 and 7. Therefore,
Even if a minute measurement current is passed through the two temperature sensitive resistors 6 and 7, no voltage difference occurs.

【0004】空気の流れがあるときには、上流側に位置
する感温抵抗体6はヒーター5へ向かう空気の流れによ
り熱が運び去られるため冷やされ、一方、下流側に位置
する感温抵抗体7はヒーター5からの空気の流れによっ
て熱せられることになる。図36に感温抵抗体6,7の
温度の流速依存性を示す。流速が速くなるにつれて、上
流側の感温抵抗体6の温度は低下し、下流側の感温抵抗
体7の温度は上昇している。これによって生ずる感温抵
抗体6,7の間の抵抗値の差が電圧値の差をもたらし、
この電位差から流速が測定される。この2つの感温抵抗
体の温度差を縦軸にとったグラフを図37に示す。流速
(横軸)と温度差(縦軸)が一対一に対応しており、流
速センサとして利用できることが判る。
When there is a flow of air, the temperature-sensitive resistor 6 located on the upstream side is cooled because heat is carried away by the flow of air toward the heater 5, while the temperature-sensitive resistor 7 located on the downstream side is cooled. Will be heated by the air flow from the heater 5. FIG. 36 shows the flow velocity dependence of the temperature of the temperature sensitive resistors 6 and 7. As the flow velocity increases, the temperature of the temperature-sensitive resistor 6 on the upstream side decreases and the temperature of the temperature-sensitive resistor 7 on the downstream side increases. The difference in resistance value between the temperature sensitive resistors 6 and 7 caused by this causes a difference in voltage value,
The flow velocity is measured from this potential difference. FIG. 37 is a graph in which the vertical axis represents the temperature difference between the two temperature sensitive resistors. It can be seen that the flow velocity (horizontal axis) and the temperature difference (vertical axis) have a one-to-one correspondence and can be used as a flow velocity sensor.

【0005】図38および図39にこれらの機能を実現
するための回路例を示す。図38に示された回路はヒー
ター5の温度を制御するためのものであり、図39に示
された回路は感温抵抗体6,7の間の抵抗値の差に比例
する電圧信号を得るためのものである。
38 and 39 show examples of circuits for implementing these functions. The circuit shown in FIG. 38 is for controlling the temperature of the heater 5, and the circuit shown in FIG. 39 obtains a voltage signal proportional to the difference in resistance value between the temperature sensitive resistors 6 and 7. It is for.

【0006】図38に示される温度制御回路は、ヒータ
ー5の温度を、比較抵抗8によって検出される周囲温度
よりも一定温度高く保つためのホイストンブリッジ回路
46により構成される。ホイストンブリッジ回路46は
ヒーター5と抵抗45により一辺を、比較抵抗8と抵抗
47,48により他辺を構成している。アンプ49,5
0からなる積分回路は出力の電位を変化させることでブ
リッジ回路46がバランスするように動作し、ヒーター
5によって消費される電力を一定に保つようにする。
The temperature control circuit shown in FIG. 38 is composed of a Whiston bridge circuit 46 for keeping the temperature of the heater 5 higher than the ambient temperature detected by the comparison resistor 8 by a constant temperature. The Hoiston bridge circuit 46 constitutes one side by the heater 5 and the resistor 45, and the other side by the comparison resistor 8 and the resistors 47 and 48. Amplifier 49,5
The integrating circuit consisting of 0 operates so that the bridge circuit 46 is balanced by changing the potential of the output, and keeps the electric power consumed by the heater 5 constant.

【0007】図39に示す回路はヒーター5の上流側に
位置する感温抵抗体6と下流側に位置する感温抵抗体7
との間の差を検出するためのものである。この回路は、
アンプ72からなる定電流電源部52と、アンプ66,
68,70からなる差動増幅部54から構成される。定
電流電源部52は、一辺に高インピーダンス抵抗56,
58と、他辺に零調用可変抵抗60および感温抵抗体
6,7を有するホイストンブリッジ回路を駆動する。差
動増幅部54の利得は可変抵抗62により調整される。
出力端64は感温抵抗体6,7の間の抵抗値の差に比例
する出力電圧を出力する。
The circuit shown in FIG. 39 has a temperature sensitive resistor 6 located upstream of the heater 5 and a temperature sensitive resistor 7 located downstream thereof.
To detect the difference between and. This circuit
A constant current power supply unit 52 including an amplifier 72, an amplifier 66,
The differential amplifier 54 is composed of 68 and 70. The constant current power supply unit 52 has a high impedance resistor 56,
58, and a Hoiston bridge circuit having a variable resistor 60 for zero adjustment and temperature sensitive resistors 6 and 7 on the other side. The gain of the differential amplifier 54 is adjusted by the variable resistor 62.
The output terminal 64 outputs an output voltage proportional to the difference in resistance value between the temperature sensitive resistors 6 and 7.

【0008】[0008]

【発明が解決しようとする課題】このタイプの熱式流速
センサを、測定可能流速範囲が広く感度の良いものにす
るためには、感温抵抗体6,7の温度が、広い流速範囲
にわたって大きく変化することが望ましい。しかし、従
来の熱式流速センサでは、流速が0の時に下流側の感温
抵抗体7がすでにヒーター5の温度の6〜7割近くまで
熱せられているため、ヒーター5から空気を介して伝達
される熱量は少なく、しかも比較的低い流速で飽和温度
に達する。図36を見ると、実際に下流側感温抵抗体7
の温度変化は小さく、10m/s以上ではすでに飽和傾
向にあることが判る。
In order to make the thermal flow velocity sensor of this type have a wide measurable flow velocity range and high sensitivity, the temperature of the temperature sensitive resistors 6 and 7 is large over a wide flow velocity range. It is desirable to change. However, in the conventional thermal type flow velocity sensor, when the flow velocity is 0, the temperature-sensitive resistor 7 on the downstream side has already been heated up to about 60 to 70% of the temperature of the heater 5, so that the heat is transmitted from the heater 5 via air. The amount of heat generated is small, and the saturation temperature is reached at a relatively low flow rate. Referring to FIG. 36, the downstream temperature-sensitive resistor 7 is actually
It can be seen that the temperature change is small, and that it is already saturated at 10 m / s or more.

【0009】図40にヒーター5および感温抵抗体6,
7における熱の移動を表した模式図を示す。図におい
て、Q1はヒーター5から空気への熱伝達量、Q2はヒ
ーター5から薄膜部材を介して上流側感温抵抗体6へ伝
わる熱伝導量、Q3はヒーター5から薄膜部材を介して
下流側感温抵抗体7へ伝わる熱伝導量、Q4は上流側感
温抵抗体6から空気への熱伝達量、Q5は空気から下流
側感温抵抗体7への熱伝達量である。
FIG. 40 shows a heater 5 and a temperature sensitive resistor 6,
7 is a schematic diagram showing heat transfer in FIG. In the figure, Q1 is the heat transfer amount from the heater 5 to the air, Q2 is the heat transfer amount transferred from the heater 5 to the upstream temperature-sensitive resistor 6 through the thin film member, and Q3 is the downstream side from the heater 5 through the thin film member. The heat conduction amount transmitted to the temperature-sensitive resistor 7, Q4 is the heat transfer amount from the upstream temperature-sensitive resistor 6 to the air, and Q5 is the heat transfer amount from the air to the downstream temperature-sensitive resistor 7.

【0010】下流側感温抵抗体7について見ると、Q3
とQ5の2つの熱流入が起こっている。このうちQ3は
流速には依存せず、流速依存性を持つのはQ5のみであ
る。Q5は感温抵抗体7の上を通過する空気と感温抵抗
体7自身との温度差に比例する。流速0のときの熱流入
の大半はQ3によると考えてよいが、図36に示したよ
うに、この時すでに感温抵抗体7は140℃まで加熱さ
れている。このため、感温抵抗体7と空気との温度差が
小さくなり、この温度差に比例するQ5も大きくできな
い。よって、流れが存在する状態でも感温抵抗体7の温
度上昇は小さい。しかも、多少なりとも温度上昇が起こ
れば、空気との温度差はさらに縮小され、飽和状態によ
り近づくことになる。その結果、図37に示したよう
に、流速が増大するとともに上流と下流の感温抵抗体
6,7の温度差の変化は小さくなり、感度は低下して行
く。
Looking at the downstream temperature-sensitive resistor 7, Q3
And two heat inflows of Q5 are occurring. Of these, Q3 does not depend on the flow velocity, and only Q5 has flow velocity dependency. Q5 is proportional to the temperature difference between the air passing over the temperature sensitive resistor 7 and the temperature sensitive resistor 7 itself. It can be considered that most of the heat inflow when the flow velocity is 0 is due to Q3, but as shown in FIG. 36, the temperature sensitive resistor 7 is already heated to 140 ° C. at this time. For this reason, the temperature difference between the temperature sensitive resistor 7 and the air becomes small, and Q5 proportional to this temperature difference cannot be increased. Therefore, the temperature rise of the temperature sensitive resistor 7 is small even in the presence of the flow. Moreover, if the temperature rises to some extent, the temperature difference from the air will be further reduced, and will approach the saturation state. As a result, as shown in FIG. 37, the change in the temperature difference between the upstream and downstream temperature-sensitive resistors 6 and 7 becomes smaller as the flow velocity increases, and the sensitivity decreases.

【0011】また、上流側感温抵抗体6について言え
ば、ヒーター5から伝わった熱量Q2の一部がQ4とな
って空気に伝わる。Q2は空気の流速には依存しない
が、Q4は流速が速くなるにつれて増大するので、感温
抵抗体6の温度は流速の増大とともに降下する。この場
合、Q2の値が大きいほどQ4の変化幅が広くとれ、感
度の向上、および測定可能流速範囲の拡大には有利であ
る。図36を見ても、上流側感温抵抗体6の温度は大き
な傾きを持って変化している。しかし、例えば自動車の
エンジン制御などに使用する場合は、図36に示されて
いる流速範囲(0〜2000cm/sec)では不十分
で、少なくとも0〜10000cm/secの測定範囲
は必要である。図36の上流側感温抵抗体6の温度変化
の勾配を(−40℃)/(2000cm/sec)と考
えれば、流速が10000cm/secに達するまで
に、この温度変化の勾配が徐々に減少していくことは明
らかである。その結果、流速が増大するとともに上流側
と下流側の感温抵抗体6,7の温度差の変化は小さくな
り、感度は低下して行く。
As for the upstream temperature-sensitive resistor 6, a part of the heat quantity Q2 transferred from the heater 5 becomes Q4 and is transferred to the air. Although Q2 does not depend on the flow velocity of air, Q4 increases as the flow velocity increases, so the temperature of the temperature sensitive resistor 6 drops as the flow velocity increases. In this case, the larger the value of Q2, the wider the variation range of Q4, which is advantageous for improving the sensitivity and expanding the measurable flow velocity range. As shown in FIG. 36, the temperature of the upstream temperature-sensitive resistor 6 changes with a large inclination. However, when it is used for engine control of an automobile, for example, the flow velocity range (0 to 2000 cm / sec) shown in FIG. 36 is insufficient, and a measurement range of at least 0 to 10000 cm / sec is necessary. Assuming that the temperature change gradient of the upstream temperature-sensitive resistor 6 in FIG. 36 is (−40 ° C.) / (2000 cm / sec), this temperature change gradient gradually decreases until the flow velocity reaches 10000 cm / sec. It is clear that we will do it. As a result, as the flow velocity increases, the change in temperature difference between the temperature sensitive resistors 6 and 7 on the upstream side and the downstream side becomes small, and the sensitivity decreases.

【0012】さらに、F.Mayerらの研究(F.Maye
r et al : Transducers'95 Eurosensors IX 132-C2 pp.
528-531)によれば、流速が速くなると下流側の感温抵
抗体7の温度が低下することが報告されている。この現
象は本願発明者の行った実験によっても確認されている
(図41)。また、Li Quiらの研究(Li Qui et
al : Transducers'95 Eurosensors IX 130-C2 pp.520-5
23)によれば、ある流速以上で上下流の感温抵抗体の温
度差6,7が低下することが報告されている。これらの
報告は、流速が増大すると、出力の2値化(一つの出力
に対応する流速ポイントが2つ存在すること)が起こり
得ることを示している。これにより、測定可能流速範囲
の拡大が制限される。
Further, F. Research by Mayer et al. (F. Maye
r et al: Transducers'95 Eurosensors IX 132-C2 pp.
528-531), it is reported that the temperature of the temperature-sensitive resistor 7 on the downstream side decreases as the flow velocity increases. This phenomenon has also been confirmed by an experiment conducted by the inventor of the present application (FIG. 41). In addition, research by Li Qui et al. (Li Qui et
al: Transducers'95 Eurosensors IX 130-C2 pp.520-5
23), it has been reported that the temperature difference 6, 7 between the temperature sensitive resistors in the upstream and the downstream decreases at a certain flow rate or higher. These reports show that binarization of the output (there are two flow velocity points corresponding to one output) can occur when the flow velocity increases. This limits the expansion of the measurable flow velocity range.

【0013】このように、従来の温度差を用いた熱式流
速センサにおいては、流速が増大するとともに感度が低
下し、測定可能流速範囲も大きく取れないという問題点
があった。
As described above, the conventional thermal type flow velocity sensor using the temperature difference has a problem in that the flow velocity increases, the sensitivity decreases, and the measurable flow velocity range cannot be widened.

【0014】さらに、別の従来例(従来例2)として、
特開平4−230808号公報には、ヒーター5と上流
側感温部6との間、およびヒーター5と下流側感温部7
との間にそれぞれスリットを設け、感度の向上を図る例
が記載されている。このようにヒーター5の両側にスリ
ットを設けることにより、ヒーター5から薄肉部を介し
て上流側および下流側感温部6,7に伝わる熱量が低減
され、各感温部6,7の温度上昇はスリットを設けない
場合に比べて低くなる。流速が0の時には、ほぼ自然対
流と空気の熱伝導によってのみ感温部6,7に熱が伝わ
る。この状態で風が吹くと、下流側感温部7は強制対流
により熱が伝わるため温度が急激に上昇し、センサの感
度向上をもたらす。しかしながら、上流側感温部6の温
度は元々低くなっているため、強制対流により奪われる
熱量は僅かであり温度変化は小さく、これはセンサの感
度低下を招く。このように、下流側感温部7で感度向上
した反面、上流側感温部6で感度低下するため、トータ
ルとしての感度はあまり向上しない。このように、ヒー
ター5の両側にスリットを設けたのでは感度向上効果は
あまり期待できない。
Further, as another conventional example (conventional example 2),
In Japanese Patent Laid-Open No. 4-230808, there is a space between the heater 5 and the upstream temperature-sensing section 6, and between the heater 5 and the downstream temperature-sensing section 7.
There is described an example in which slits are respectively provided between and to improve the sensitivity. By providing the slits on both sides of the heater 5 in this way, the amount of heat transferred from the heater 5 to the upstream and downstream temperature-sensitive parts 6, 7 via the thin portion is reduced, and the temperature of each temperature-sensitive part 6, 7 rises. Is lower than that without slits. When the flow velocity is 0, heat is transferred to the temperature sensing parts 6 and 7 only by natural convection and heat conduction of air. When the wind blows in this state, heat is transferred to the downstream temperature-sensitive portion 7 by forced convection, so that the temperature rises sharply and the sensitivity of the sensor is improved. However, since the temperature of the upstream temperature-sensitive portion 6 is originally low, the amount of heat taken away by the forced convection is small and the temperature change is small, which causes a decrease in the sensitivity of the sensor. As described above, the sensitivity is improved in the downstream temperature-sensitive portion 7, but the sensitivity is decreased in the upstream temperature-sensitive portion 6, so that the total sensitivity is not improved so much. Thus, if the slits are provided on both sides of the heater 5, the effect of improving the sensitivity cannot be expected so much.

【0015】本発明は上記のような問題点を解決するた
めになされたもので、感度を向上できるとともに測定可
能流速範囲を拡大できる熱式流速センサを得ることを目
的としている。
The present invention has been made to solve the above problems, and an object thereof is to obtain a thermal type flow velocity sensor which can improve the sensitivity and can expand the measurable flow velocity range.

【0016】[0016]

【課題を解決するための手段】第1の発明に係わる熱式
流速センサは、発熱部と、前記発熱部の上流側および下
流側にそれぞれ配置された上流側および下流側温度検出
部とを半導体基板の薄肉部に備えると共に、前記上流側
温度検出部より上流側に流体温度検出部を備え、前記発
熱部を前記流体温度検出部により検出された流体温度に
対して定温度差駆動した時に、前記発熱部に供給される
加熱電流から得られる流速信号と、前記上流側と下流側
温度検出部の温度差から得られる流速信号とを加算して
流速を検出するようにしたものである。
A thermal type flow velocity sensor according to a first aspect of the present invention is a semiconductor device comprising a heat generating portion and upstream and downstream temperature detecting portions respectively arranged upstream and downstream of the heat generating portion. Along with the thin-walled portion of the substrate, a fluid temperature detecting portion is provided on the upstream side of the upstream temperature detecting portion, and when the heat generating portion is driven by a constant temperature difference with respect to the fluid temperature detected by the fluid temperature detecting portion, The flow velocity signal obtained from the heating current supplied to the heat generating portion and the flow velocity signal obtained from the temperature difference between the upstream and downstream temperature detecting portions are added to detect the flow velocity.

【0017】第2の発明に係わる熱式流速センサは、前
記第1の発明に記載の2つの流速信号を加算するのに、
それぞれの流速信号に流速に応じた重み付けを行うよう
にしたものである。
The thermal type flow velocity sensor according to the second aspect of the present invention adds the two flow velocity signals described in the first aspect of the invention.
Each flow velocity signal is weighted according to the flow velocity.

【0018】第3の発明に係わる熱式流速センサは、発
熱部と、前記発熱部の上流側に配置された上流側温度検
出部と、前記発熱部と同等温度となるように発熱部近傍
に配置された発熱温度検出部とを半導体基板の薄肉部に
備えると共に、前記上流側温度検出部より上流側に流体
温度検出部を備え、前記発熱部を前記流体温度検出部に
より検出された流体温度に対して定温度差駆動した時
に、前記発熱部に供給される加熱電流から得られる流速
信号と、前記上流側温度検出部と前記発熱温度検出部の
温度差から得られる流速信号とを加算して流速を検出す
るようにしたものである。
In the thermal type flow velocity sensor according to the third aspect of the present invention, the heat generating portion, the upstream side temperature detecting portion disposed upstream of the heat generating portion, and the heat generating portion are provided in the vicinity of the heat generating portion so that the temperature becomes equivalent to that of the heat generating portion. The thin-walled portion of the semiconductor substrate is provided with the disposed heat generation temperature detection unit, and the fluid temperature detection unit is provided upstream of the upstream temperature detection unit, and the heat generation unit detects the fluid temperature detected by the fluid temperature detection unit. On the other hand, when driven by a constant temperature difference, the flow velocity signal obtained from the heating current supplied to the heat generating unit and the flow velocity signal obtained from the temperature difference between the upstream temperature detecting unit and the heat generating temperature detecting unit are added. The flow velocity is detected.

【0019】[0019]

【発明の実施の形態】参考例1.以下、本発明の参考例
を図について説明する。図1は本発明の参考例1による
熱式流速センサの要部を示す上面図、図2は図1のA−
A´線断面図である。ただし、図2の断面図は図1の上
面図を多少拡大して示しており、これは、以降の同様の
A−A´線断面図においても同じである。図において、
1はシリコン基板、2はシリコン基板1を裏からエッチ
ングして形成した空気スペース、3は空気スペース2上
に設けられたダイヤフラム型薄肉部である。5は発熱部
すなわち発熱抵抗体、6,7は発熱抵抗体5の上流側お
よび下流側にそれぞれ配置された上流側および下流側温
度検出部すなわち上流側および下流側感温抵抗体、8は
上流側感温抵抗体6より上流側に配置され流体の温度を
測定する流体温度検出部すなわち流体温度検出用感温抵
抗体、9,10は絶縁層、11は発熱抵抗体5と下流側
感温抵抗体7との間に設けられたスリット、12は発熱
抵抗体5、上流側および下流側感温抵抗体6,7、並び
に流体温度検出用感温抵抗体8の両端をそれぞれボンデ
ィングパッド13に接続する配線である。薄肉部3は絶
縁層9,10、並びに絶縁層9,10に挟まれた発熱抵
抗体5、および感温抵抗体6,7から構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Reference Example 1. Hereinafter, reference examples of the present invention will be described with reference to the drawings. FIG. 1 is a top view showing a main part of a thermal type flow sensor according to a first embodiment of the present invention, and FIG. 2 is A- of FIG.
It is an A'line sectional view. However, the cross-sectional view of FIG. 2 shows the top view of FIG. 1 in a somewhat enlarged manner, and this is the same in the following similar cross-sectional views along the line AA ′. In the figure,
Reference numeral 1 is a silicon substrate, 2 is an air space formed by etching the silicon substrate 1 from the back, and 3 is a diaphragm-type thin portion provided on the air space 2. Reference numeral 5 is a heat generating portion, that is, a heat generating resistor, 6 and 7 are upstream and downstream temperature detecting portions, that is, upstream and downstream temperature-sensitive resistors, which are respectively arranged on the upstream side and the downstream side of the heat generating resistor 5, and 8 is upstream. A fluid temperature detecting portion arranged upstream of the side temperature-sensitive resistor 6 to measure the temperature of the fluid, that is, a temperature-sensitive resistor for detecting fluid temperature, 9 and 10 are insulating layers, 11 is a heating resistor 5 and a downstream temperature-sensitive resistor. Slits 12 provided between the resistor 7 and the heating resistor 5, the upstream and downstream temperature-sensitive resistors 6 and 7, and both ends of the fluid temperature detecting temperature-sensitive resistor 8 are bonded to the bonding pads 13, respectively. Wiring to connect. The thin portion 3 is composed of insulating layers 9 and 10, a heating resistor 5 sandwiched between the insulating layers 9 and 10, and temperature sensitive resistors 6 and 7.

【0020】発熱抵抗体5、上流側および下流側感温抵
抗体6,7、並びに流体温度検出用感温抵抗体8は例え
ば、スパッタあるいは蒸着などの成膜技術により薄膜形
成した後、エッチングにより所望の抵抗値になるように
パターニングして形成される。抵抗材料としては、信頼
性の高い白金などを使用することが望ましい。
The heating resistor 5, the upstream and downstream temperature sensitive resistors 6 and 7, and the fluid temperature detecting temperature sensitive resistor 8 are formed into a thin film by a film forming technique such as sputtering or vapor deposition, and then etched. It is formed by patterning so as to have a desired resistance value. It is desirable to use highly reliable platinum or the like as the resistance material.

【0021】発熱抵抗体5は、流体温度検出用感温抵抗
体8によって測定される空気の温度よりも常に一定温度
だけ高くなるように定温度差駆動されている。図3にそ
の駆動回路を簡略化した回路図を示す。発熱抵抗体5、
流体温度検出用感温抵抗体8、および固定抵抗14,1
5によりブリッジ回路を構成している。空気の流速の変
動により発熱抵抗体5の温度が変化したり、空気の温度
が変化して流体温度検出用感温抵抗体8の温度が変化し
たりして、ブリッジ回路のバランスが崩れると、差動増
幅器16およびトランジスタ17が発熱抵抗体5に流れ
る加熱電流を制御し、元のバランス状態に戻すように働
く。この結果、発熱抵抗体5と流体温度検出用感温抵抗
体8との温度差が常に一定に保たれる。18は電源であ
る。
The heating resistor 5 is driven by a constant temperature difference so that it is always higher than the temperature of the air measured by the fluid temperature detecting temperature sensitive resistor 8 by a constant temperature. FIG. 3 shows a simplified circuit diagram of the drive circuit. Heating resistor 5,
Temperature-sensitive resistor 8 for detecting fluid temperature, and fixed resistors 14 and 1
5 forms a bridge circuit. When the temperature of the heating resistor 5 changes due to the fluctuation of the flow velocity of the air, or the temperature of the air changes and the temperature of the temperature-sensitive resistor 8 for detecting the fluid temperature changes, and the balance of the bridge circuit is lost, The differential amplifier 16 and the transistor 17 work to control the heating current flowing through the heating resistor 5 and restore the original balanced state. As a result, the temperature difference between the heating resistor 5 and the fluid temperature detecting temperature sensitive resistor 8 is always kept constant. 18 is a power supply.

【0022】このようなヒーター5の上下流側に位置す
る一対の感温抵抗体6,7の温度差を検出して流速を測
定するタイプの流速センサにおいて、測定可能流速範囲
を広くし、感度を向上させるためには、この感温抵抗体
6,7の温度差が広い流速範囲にわたって大きく変化す
ることが望ましい。このためには、各感温抵抗体6,7
の温度が広い流速範囲にわたって大きく変化することが
必要である。
In such a flow velocity sensor of the type in which the temperature difference between the pair of temperature sensitive resistors 6 and 7 located on the upstream and downstream sides of the heater 5 is detected to measure the flow velocity, the measurable flow velocity range is widened and the sensitivity is increased. In order to improve the temperature difference, it is desirable that the temperature difference between the temperature sensitive resistors 6 and 7 greatly changes over a wide flow velocity range. To do this, each temperature sensitive resistor 6,7
It is necessary for the temperature of the to vary significantly over a wide flow rate range.

【0023】本参考例では、発熱抵抗体5と下流側感温
抵抗体7との間にスリット11を設けているため、発熱
抵抗体5から薄肉部3を介して下流側感温抵抗体7へ熱
伝導により伝わる熱量を大幅に低減できる。つまり、図
40におけるQ3が小さくなる。従って、流速が0のと
きの下流側感温抵抗体7の温度は、スリット11が無い
場合に比べて非常に低くなる。発熱抵抗体5から空気へ
伝わる熱伝達量(Q1)はスリット11の影響を受けな
いため、発熱抵抗体5より下流側の空気の温度は変わら
ないと考えてよい。この結果、流速が0の時の下流側感
温抵抗体7とその上を流れる空気との温度差は、スリッ
ト11を設けない場合に比べて非常に大きなものとな
る。空気から感温抵抗体7へ伝わる熱量はこの温度差に
比例するため、空気の流れが発生すると、大量の熱が感
温抵抗体7に伝わり、その温度変化はとても大きなもの
となる。
In this reference example, since the slit 11 is provided between the heating resistor 5 and the downstream temperature-sensitive resistor 7, the downstream temperature-sensitive resistor 7 is formed from the heating resistor 5 via the thin portion 3. The amount of heat transferred to the heat conduction can be greatly reduced. That is, Q3 in FIG. 40 becomes small. Therefore, the temperature of the downstream temperature-sensitive resistor 7 when the flow velocity is 0 is much lower than when the slit 11 is not provided. Since the heat transfer amount (Q1) transmitted from the heating resistor 5 to the air is not affected by the slit 11, it may be considered that the temperature of the air downstream of the heating resistor 5 does not change. As a result, the temperature difference between the downstream temperature-sensitive resistor 7 and the air flowing above it when the flow velocity is 0 is much larger than when the slit 11 is not provided. Since the amount of heat transferred from the air to the temperature sensitive resistor 7 is proportional to this temperature difference, when a flow of air occurs, a large amount of heat is transferred to the temperature sensitive resistor 7, and the temperature change becomes very large.

【0024】図4に薄肉部3の温度分布の一例を示す。
点線19は流速0の時の温度分布、実線20は空気の流
れが存在するときの温度分布であり、実線20の形は空
気の流速に依存して変化する。空気の流れが存在する
と、上流側感温抵抗体6の温度は△Tuだけ降下し、下
流側感温抵抗体7の温度は△Tdだけ上昇する。前述の
ように、スリット11の効果により、△Tdは従来に比
べ非常に大きな値をとる。よって、上流側感温抵抗体6
と下流側感温抵抗体7との温度差の変化量(△Tu+△
Td)も大きくなり、流速センサとしての感度が向上す
る。また、下流側感温抵抗体7は元の温度が低いため、
飽和温度に達するまでにより多くの熱流入を許容でき、
測定可能流速範囲も拡大できる。
FIG. 4 shows an example of the temperature distribution of the thin portion 3.
The dotted line 19 is the temperature distribution when the flow velocity is 0, the solid line 20 is the temperature distribution when the air flow is present, and the shape of the solid line 20 changes depending on the flow velocity of the air. When the air flow exists, the temperature of the upstream temperature-sensitive resistor 6 drops by ΔTu, and the temperature of the downstream temperature-sensitive resistor 7 rises by ΔTd. As described above, due to the effect of the slit 11, ΔTd takes a much larger value than in the conventional case. Therefore, the upstream temperature-sensitive resistor 6
Of the temperature difference between the temperature sensitive resistor 7 and the downstream temperature-sensitive resistor 7 (ΔTu + Δ
Td) also increases, and the sensitivity of the flow velocity sensor improves. Further, since the downstream temperature-sensitive resistor 7 has a low original temperature,
Allows more heat inflow until reaching saturation temperature,
The measurable flow velocity range can be expanded.

【0025】また、発熱抵抗体5と上流側感温抵抗体6
との間にはスリットを設けていないため、発熱抵抗体5
から薄肉部3を介して上流側感温抵抗体6へ熱量Q2が
熱伝導により伝わり、流速が0のときの上流側感温抵抗
体6の温度は図4の点線19で示すように下流側感温抵
抗体7に比べて高くなっている。そのため空気の流れが
存在するときの温度降下△Tuが大きく、従来例2のよ
うに感度が低下することはない。
Further, the heating resistor 5 and the upstream temperature-sensitive resistor 6
Since there is no slit between the heating resistor 5 and
The heat quantity Q2 is transferred by heat conduction from the to the upstream temperature-sensitive resistor 6 through the thin portion 3 and the temperature of the upstream temperature-sensitive resistor 6 when the flow velocity is 0 is the downstream side as shown by the dotted line 19 in FIG. It is higher than that of the temperature sensitive resistor 7. Therefore, the temperature drop ΔTu in the presence of the air flow is large, and the sensitivity is not lowered unlike the conventional example 2.

【0026】図5に上記の温度差を検出するための簡単
な回路図を示す。感温抵抗体6,7を一辺に、固定抵抗
21,22を他辺に用いたブリッジ回路である。23は
電源である。固定抵抗21,22に適当な値のものを選
ぶことにより、流速0の時の出力電圧24を0にするこ
とができる。この回路の場合の出力電圧24(Vout)
は次式(1)で表される。
FIG. 5 shows a simple circuit diagram for detecting the above temperature difference. This is a bridge circuit using the temperature sensitive resistors 6 and 7 on one side and the fixed resistors 21 and 22 on the other side. 23 is a power supply. The output voltage 24 can be set to 0 when the flow velocity is 0 by selecting appropriate values for the fixed resistors 21 and 22. Output voltage 24 (Vout) for this circuit
Is expressed by the following equation (1).

【0027】[0027]

【数1】 [Equation 1]

【0028】ここでVcは電源23の電圧、Ru,Rdは
それぞれ感温抵抗体6,7の抵抗値、Ru0,Rd0はそれ
ぞれ流速が0の時の感温抵抗体6,7の抵抗値、ΔRu
は感温抵抗体6の温度がΔTuだけ低下したときの抵抗
値減少量、ΔRdは感温抵抗体7の温度がΔTdだけ上昇
したときの抵抗値増加量である。
Here, Vc is the voltage of the power supply 23, Ru and Rd are the resistance values of the temperature sensitive resistors 6 and 7, Ru0 and Rd0 are the resistance values of the temperature sensitive resistors 6 and 7 when the flow velocity is 0, respectively. ΔRu
Is the resistance value decrease amount when the temperature of the temperature sensitive resistor 6 is decreased by ΔTu, and ΔRd is the resistance value increase amount when the temperature of the temperature sensitive resistor 7 is increased by ΔTd.

【0029】また、図6の回路図のように、感温抵抗体
7と直列に調整抵抗25を挿入してRu0=Rd0となるよ
うにすれば、出力電圧24(Vout)は次式(2)で表
される。
Further, as shown in the circuit diagram of FIG. 6, if the adjusting resistor 25 is inserted in series with the temperature sensitive resistor 7 so that Ru0 = Rd0, the output voltage 24 (Vout) becomes ).

【0030】[0030]

【数2】 [Equation 2]

【0031】どちらの場合も、温度差の変化量(△Tu
+△Td)が大きいほど出力電圧の変化も大きくなり、
流速感度が向上することが判る。
In both cases, the amount of change in temperature difference (ΔTu
The larger ++ Td), the larger the change in output voltage,
It can be seen that the flow velocity sensitivity is improved.

【0032】参考例2.図7は本発明の参考例2による
熱式流速センサの要部を示す上面図、図8は図7のA−
A´線断面図である。図において、1はシリコン基板、
2はシリコン基板1を表からエッチングして形成した空
気スペースである。3は空気スペース2上に設けられた
マイクロブリッジ型薄肉部であり、絶縁層9,10、お
よび絶縁層9,10に挟まれた発熱抵抗体5、感温抵抗
体6,7から構成されている。
Reference Example 2. 7 is a top view showing a main part of a thermal type flow velocity sensor according to a second embodiment of the present invention, and FIG. 8 is A- of FIG.
It is an A'line sectional view. In the figure, 1 is a silicon substrate,
Reference numeral 2 is an air space formed by etching the silicon substrate 1 from the front side. Reference numeral 3 denotes a micro-bridge type thin portion provided on the air space 2, which is composed of insulating layers 9 and 10 and a heating resistor 5 and temperature sensitive resistors 6 and 7 sandwiched between the insulating layers 9 and 10. There is.

【0033】この参考例においても、スリット11が存
在するため、参考例1と同様の作用により、上流側感温
抵抗体6と下流側感温抵抗体7の温度差の変化量が増大
する。よって、感度の向上と測定可能流速範囲の拡大が
実現される。
Also in this reference example, since the slit 11 is present, the same operation as in the reference example 1 increases the amount of change in the temperature difference between the upstream temperature-sensitive resistor 6 and the downstream temperature-sensitive resistor 7. Therefore, it is possible to improve the sensitivity and expand the measurable flow velocity range.

【0034】参考例3.図9は本発明の参考例3による
熱式流速センサの要部を示す上面図である。図におい
て、シリコン基板1の薄肉部3に、発熱抵抗体5と発熱
抵抗体5の上流側に感温抵抗体6a,6b、および下流
側に感温抵抗体7a,7bがそれぞれ形成されている。
2個の上流側感温抵抗体6a,6bおよび2個の下流側
感温抵抗体7a,7bはともにそれぞれで同じ温度にな
るように形成している。
Reference Example 3. FIG. 9 is a top view showing a main part of the thermal type flow sensor according to the third reference example of the present invention. In the figure, the thin-walled portion 3 of the silicon substrate 1 is provided with a heat-generating resistor 5, a temperature-sensitive resistor 6a, 6b on the upstream side of the heat-generating resistor 5, and a temperature-sensitive resistor 7a, 7b on the downstream side. .
The two upstream temperature-sensitive resistors 6a and 6b and the two downstream temperature-sensitive resistors 7a and 7b are both formed to have the same temperature.

【0035】図10は温度差検出用の回路図である。図
において、抵抗体の番号は発熱抵抗体5および感温抵抗
体6a,6b、7a,7b、8の各々の番号に相当す
る。差動増幅器37c、37dおよび発熱抵抗体5と流
体温度検出用感温抵抗体8により構成されたブリッジ回
路により定温度差駆動回路を構成している。上流側感温
抵抗体6a,6bと下流側感温抵抗体7b,7aにより
フルブリッジ回路を構成している。ブリッジ回路は定電
圧源42に接続し、ブリッジ出力は差動増幅器37aの
入力に接続している。図11に流速と出力電圧の関係を
示す。流速ゼロの時ブリッジ回路が平衡になるように調
整した場合、差動増幅器37aの出力電圧39(V39
は、以下の式(3)で表される。 V39=K(△R6−△R7)VD/(2R+△R6+△R7) (3) ここで、Kは差動増幅器37aの増幅率、△Rは流速ゼ
ロの抵抗値変動分、Rは感温抵抗体6、7の流速ゼロで
の抵抗値、 VDは定電圧電源42の電圧を示す。
FIG. 10 is a circuit diagram for detecting a temperature difference. In the figure, the numbers of the resistors correspond to the numbers of the heating resistor 5 and the temperature sensitive resistors 6a, 6b, 7a, 7b, 8 respectively. A constant temperature difference drive circuit is configured by a bridge circuit configured by the differential amplifiers 37c and 37d, the heating resistor 5, and the temperature sensitive resistor 8 for detecting fluid temperature. The upstream temperature-sensitive resistors 6a and 6b and the downstream temperature-sensitive resistors 7b and 7a form a full bridge circuit. The bridge circuit is connected to the constant voltage source 42, and the bridge output is connected to the input of the differential amplifier 37a. FIG. 11 shows the relationship between the flow velocity and the output voltage. When the bridge circuit is adjusted to be balanced when the flow velocity is zero, the output voltage 39 (V 39 ) of the differential amplifier 37a
Is expressed by the following equation (3). V 39 = K (ΔR 6 −ΔR 7 ) V D / (2R + ΔR 6 + ΔR 7 ) (3) where K is the amplification factor of the differential amplifier 37 a and ΔR is the resistance value at zero flow velocity. A variation, R is the resistance value of the temperature sensitive resistors 6 and 7 at zero flow velocity, and V D is the voltage of the constant voltage power supply 42.

【0036】なお図示していないが、従来の熱式流速セ
ンサの温度差検出回路はブリッジ一辺を固定抵抗で構成
したハーフブリッジ回路であり、固定抵抗値をRとした
時の出力電圧39Cは、 V39C=K(△R6−△R7)VD/2(2R+△R6+△R7) (4) で表され、本発明の方が2倍感度が高くなる。
Although not shown, the temperature difference detecting circuit of the conventional thermal type flow velocity sensor is a half bridge circuit in which one side of the bridge is a fixed resistor, and the output voltage 39C when the fixed resistance value is R is V 39C = K (ΔR 6 −ΔR 7 ) V D / 2 (2R + ΔR 6 + ΔR 7 ) (4), and the present invention is twice as sensitive.

【0037】なお、この参考例では、シリコン基板1を
裏からエッチングして空気スペースを形成したダイヤフ
ラム型構造について述べたが、シリコン基板1を表から
エッチングして空気スペースを形成したマイクロブリッ
ジ型構造においても、全く同様の効果が得られることは
言うまでもない。
In this reference example, the diaphragm type structure in which the silicon substrate 1 is etched from the back side to form the air space is described. However, the micro bridge type structure in which the silicon substrate 1 is etched from the front side to form the air space. It goes without saying that the same effect can be obtained in the above.

【0038】参考例4.図12は本発明の参考例4にる
熱式流速センサの要部を示す上面図である。シリコン基
板1の薄肉部3に、発熱抵抗体5と同等温度となるよう
に発熱抵抗体5の近傍に発熱温度検出部すなわち発熱温
度検出用感温抵抗体35を形成する。発熱抵抗体5の上
流側と下流側には、ほぼ等距離で感温抵抗体6と7が形
成されている。流れ方向(FLOW)からの流体流動に
より、上流側感温抵抗体6および下流側感温抵抗体7
は、冷却効果により抵抗値が変動するが、図13に示す
ような定温度差駆動回路に構成された発熱抵抗体5の温
度は流速によって殆ど変化しない特性を示す。
Reference Example 4. FIG. 12 is a top view showing a main part of the thermal type flow velocity sensor according to the fourth reference example of the present invention. In the thin portion 3 of the silicon substrate 1, a heat generation temperature detecting portion, that is, a heat generation temperature detecting temperature sensitive resistor 35 is formed in the vicinity of the heat generation resistor 5 so as to have the same temperature as that of the heat generation resistor 5. Temperature-sensitive resistors 6 and 7 are formed on the upstream side and the downstream side of the heating resistor 5 at substantially equal distances. Due to the fluid flow from the flow direction (FLOW), the upstream temperature-sensitive resistor 6 and the downstream temperature-sensitive resistor 7
Indicates that the resistance value fluctuates due to the cooling effect, but the temperature of the heating resistor 5 configured in the constant temperature difference drive circuit as shown in FIG. 13 hardly changes depending on the flow velocity.

【0039】図13において、抵抗体の番号は発熱抵抗
体5および感温抵抗体6,7,8,35の各々の番号に
相当する。差動増幅器37c,37dおよび発熱抵抗体
5と流体温度検出用感温抵抗体8により構成されたブリ
ッジ回路により定温度差駆動回路を構成している。38
a,38b,38cは定電流源であり、3つの感温抵抗
体6,7,35に一定電流を供給している。感温抵抗体
6,7,35はいずれも温度変化に対して抵抗値が直線
的に変動する白金、ニッケルにより形成されている。差
動増幅器37aは、発熱温度検出用感温抵抗体35と上
流側感温抵抗体6における電圧差を出力とし、差動増幅
器37bは、発熱温度検出用感温抵抗体35と下流側感
温抵抗体7における電圧差を出力とする構成となってい
る。コンパレータ36は差動増幅器37aの出力電圧3
9と、差動増幅器37bの出力電圧40を入力とし、双
方の大小関係により出力41が反転する。
In FIG. 13, the numbers of the resistors correspond to the numbers of the heating resistor 5 and the temperature sensitive resistors 6, 7, 8, 35. A constant temperature difference drive circuit is constituted by a bridge circuit constituted by the differential amplifiers 37c, 37d, the heating resistor 5, and the temperature sensitive resistor 8 for detecting the fluid temperature. 38
Reference numerals a, 38b and 38c denote constant current sources, which supply constant currents to the three temperature sensitive resistors 6, 7, and 35. Each of the temperature sensitive resistors 6, 7, and 35 is formed of platinum or nickel whose resistance value linearly changes with respect to a temperature change. The differential amplifier 37a outputs the voltage difference between the heat-generating temperature detecting temperature sensitive resistor 35 and the upstream temperature-sensitive resistor 6, and the differential amplifier 37b outputs the heat-generating temperature detecting temperature-sensitive resistor 35 and the downstream temperature-sensitive resistor. The voltage difference in the resistor 7 is output. The comparator 36 uses the output voltage 3 of the differential amplifier 37a.
9 and the output voltage 40 of the differential amplifier 37b are input, and the output 41 is inverted depending on the magnitude relationship between the two.

【0040】図14は流速と感温抵抗体形成部の温度と
の関係を示す。図中、35tは発熱温度検出用感温抵抗
体35の温度、7tは下流側感温抵抗体7の温度、6tは
上流側感温抵抗体6の温度を示す。一般に層流熱伝達で
は境界層の形成により、下流側ほど熱伝達率は小さくな
るため上流側の感温抵抗体に比べて下流側の感温抵抗体
の温度は高くなる。さらに発熱抵抗体5における発熱流
は、薄肉部3の中を伝導するとともに気流を通して下流
側にも伝播するため下流側の感温抵抗体の温度は上昇す
る。したがって図14のようにそれぞれの感温抵抗体温
度6t,7tは流速に応じて変動する。
FIG. 14 shows the relationship between the flow velocity and the temperature of the temperature sensitive resistor forming portion. In the figure, 35t indicates the temperature of the temperature-sensitive resistor 35 for detecting heat generation temperature, 7t indicates the temperature of the downstream temperature-sensitive resistor 7, and 6t indicates the temperature of the upstream temperature-sensitive resistor 6. Generally, in the laminar flow heat transfer, due to the formation of the boundary layer, the heat transfer coefficient becomes smaller toward the downstream side, so that the temperature of the temperature sensitive resistor on the downstream side becomes higher than that of the temperature sensitive resistor on the upstream side. Further, the heat generation flow in the heat generating resistor 5 is conducted through the thin portion 3 and also propagates to the downstream side through the air flow, so that the temperature of the temperature sensitive resistor on the downstream side rises. Therefore, as shown in FIG. 14, the temperature of the temperature sensitive resistor 6t, 7t changes depending on the flow velocity.

【0041】図15は流速と感温抵抗体の温度に応じた
出力信号の関係を示す。図中、順方向は図12における
流れ方向(FLOW)の流速であり、出力軸を挟んで反
対側は逆流方向の流速を表す。39,40は図13の電
子回路における信号39,40に対応する。したがって
信号39は発熱温度検出用感温抵抗体35と上流側感温
抵抗体6との温度差に比例し、信号40は発熱温度検出
用感温抵抗体35と下流側感温抵抗体7との温度差に比
例する関係を示す。また44は上流側感温抵抗体6の温
度と下流側感温抵抗体7の温度の差に比例した従来の流
速信号を示す。39,40の信号は、流速ゼロとなる軸
を挟んで対象とはならない反面、高い流速感度を示して
いる。流れ方向の判別を流速信号39と流速信号40の
大小比較により行い、流速の検出は、例えば順方向の場
合は信号39、逆流方向の場合は信号40というように
出力の大きい方を用いて行うすることにより、従来に比
べて精度良く流速検出が可能になる。また、図示してい
ないが、信号39と40の差信号を用いて流速を検出し
てもよい。
FIG. 15 shows the relationship between the output signal corresponding to the flow velocity and the temperature of the temperature sensitive resistor. In the figure, the forward direction is the flow velocity in the flow direction (FLOW) in FIG. 12, and the opposite side across the output shaft represents the flow velocity in the reverse flow direction. Reference numerals 39 and 40 correspond to the signals 39 and 40 in the electronic circuit of FIG. Therefore, the signal 39 is proportional to the temperature difference between the heat-generating temperature detecting temperature-sensitive resistor 35 and the upstream temperature-sensitive resistor 6, and the signal 40 is between the heat-generating temperature detecting temperature-sensitive resistor 35 and the downstream temperature-sensitive resistor 7. The relationship is proportional to the temperature difference. Reference numeral 44 indicates a conventional flow velocity signal proportional to the difference between the temperature of the upstream temperature-sensitive resistor 6 and the temperature of the downstream temperature-sensitive resistor 7. The signals of 39 and 40 are not targets across the axis where the flow velocity is zero, but show high flow velocity sensitivity. The flow direction is determined by comparing the magnitudes of the flow velocity signal 39 and the flow velocity signal 40, and the flow velocity is detected using the larger output such as the signal 39 in the forward direction and the signal 40 in the reverse direction. By doing so, the flow velocity can be detected more accurately than in the conventional case. Although not shown, the flow velocity may be detected using the difference signal between the signals 39 and 40.

【0042】なお、この参考例では、シリコン基板1を
裏からエッチングして空気スペースを形成したダイヤフ
ラム型構造について述べたが、これまでの参考例と同
様、シリコン基板1を表からエッチングして空気スペー
スを形成したマイクロブリッジ型構造においても、全く
同様の効果が得られることは言うまでもない。
In this reference example, the diaphragm type structure in which the silicon substrate 1 is etched from the back side to form the air space is described. However, like the reference examples up to now, the silicon substrate 1 is etched from the front side and the air is removed. It goes without saying that the same effect can be obtained even in the microbridge structure having the space.

【0043】実施の形態1.図16は本発明の実施の形
態1による熱式流速センサの要部を示す上面図、図17
は図16のA−A´線断面図である。この図では、空気
スペース2はシリコン基板1を裏からエッチングして形
成されており、空気スペース2上にダイヤフラム型薄肉
部3が設けられている。
Embodiment 1. 16 is a top view showing a main part of the thermal type flow sensor according to the first embodiment of the present invention, and FIG.
FIG. 17 is a sectional view taken along the line AA ′ of FIG. 16. In this figure, the air space 2 is formed by etching the silicon substrate 1 from the back side, and the thin diaphragm portion 3 is provided on the air space 2.

【0044】本実施の形態では、以下に述べるような2
つの流速検出手段を有している。まず1つは、図18に
示すように、発熱抵抗体5と流体温度検出用感温抵抗体
8および固定抵抗14,15によりブリッジ回路を構成
し、発熱抵抗体5に供給される加熱電流を出力電圧26
として検出し、この電圧から流速を測定する方法であ
る。この方法を加熱電流検出タイプと呼ぶ。もう1つ
は、図19に示すように、感温抵抗体6,7と固定抵抗
21,22により構成されたブリッジ回路により、感温
抵抗体6,7の温度差を出力電圧24として検出し、こ
の電圧から流速を測定する方法である。この方法を温度
差検出タイプと呼ぶ。この温度差検出タイプは図5に示
したものと全く同じである。
In the present embodiment, the following 2
It has two flow velocity detecting means. First, as shown in FIG. 18, a heating resistor 5 and a fluid temperature detecting temperature-sensitive resistor 8 and fixed resistors 14 and 15 form a bridge circuit, and a heating current supplied to the heating resistor 5 is supplied to the bridge circuit. Output voltage 26
Is detected and the flow velocity is measured from this voltage. This method is called a heating current detection type. The other is to detect the temperature difference between the temperature sensitive resistors 6 and 7 as an output voltage 24 by a bridge circuit constituted by the temperature sensitive resistors 6 and 7 and the fixed resistors 21 and 22, as shown in FIG. A method of measuring the flow velocity from this voltage. This method is called a temperature difference detection type. This temperature difference detection type is exactly the same as that shown in FIG.

【0045】図20に本願発明者が測定した加熱電流検
出タイプの流速センサの流速と出力の関係を示す。ま
た、図21には図20を元にして算出した流速感度([%
/%]:流速が1%変化したときの出力の変化率)を示
す。図21に示されるとおり、加熱電流タイプの流速セ
ンサは低流速域の感度が低く、流速の増大とともに感度
も上昇し、ある流速以上でほぼ安定する。比較のため、
全く同じ形状のサンプルを温度差検出タイプの流速セン
サとして使用した場合の、流速と出力の関係と、流速と
感度の関係をそれぞれ図22,図23に示す。従来例の
説明でも述べたように、温度差検出タイプは、低流速域
の感度は非常に優れているが、高流速になるにつれて感
度は低下してくる。この傾向は図23からも見て取れ
る。この実験では50m/secまでしか測定していな
いが、これ以上の流速域では感度はさらに低下すること
はまず間違いない。
FIG. 20 shows the relationship between the flow velocity and the output of the heating current detecting type flow velocity sensor measured by the inventor of the present application. In addition, in FIG. 21, the flow velocity sensitivity ([%
/%]: Indicates the rate of change in output when the flow velocity changes by 1%). As shown in FIG. 21, the heating current type flow velocity sensor has low sensitivity in the low flow velocity region, the sensitivity increases as the flow velocity increases, and is substantially stable at a certain flow velocity or higher. For comparison,
22 and 23 show the relationship between the flow rate and the output, and the relationship between the flow rate and the sensitivity when the samples having exactly the same shape are used as the temperature difference detection type flow rate sensor. As described in the description of the conventional example, the temperature difference detection type has very excellent sensitivity in the low flow velocity region, but the sensitivity decreases as the flow velocity increases. This tendency can be seen from FIG. In this experiment, measurement was performed only up to 50 m / sec, but there is no doubt that the sensitivity will further decrease in the flow velocity range higher than this.

【0046】つまり、加熱電流タイプは低流速域の感度
が低く、温度差検出タイプは高流速域の感度が低い。よ
って、図24に示すような足し算回路を用いて両者の出
力を加算してやれば、お互いの短所を補うことができ
る。図24において、27,28,29は重み付けのた
めの抵抗で、これらの値を適当に選ぶことにより、加算
するときの比率、および加算出力電圧32の値を調節す
ることができる。具体的には、加算出力電圧32(Vou
t)は次式(5)によって表される。
That is, the heating current type has low sensitivity in the low flow velocity region, and the temperature difference detection type has low sensitivity in the high flow velocity region. Therefore, by adding the outputs of both using the addition circuit as shown in FIG. 24, the disadvantages of each other can be compensated. In FIG. 24, 27, 28, and 29 are resistors for weighting, and by appropriately selecting these values, the ratio at the time of addition and the value of the addition output voltage 32 can be adjusted. Specifically, the added output voltage 32 (Vou
t) is expressed by the following equation (5).

【0047】[0047]

【数3】 [Equation 3]

【0048】なお、この加算回路では出力電圧32は反
転して現れるので、この後にもう一つ反転回路が必要と
なるが、図24では省略している。Vo1,Vo2がほぼ同
程度の電圧値が得られている場合、R27,R28,R29
して例えば、10kΩ,20kΩ,20kΩを選ぶと、
Vo1,Vo2のそれぞれ1/2ずつが加算され、出力電圧
Voutの値もVo1,Vo2とほぼ同程度の電圧値が得られ
る。以上のように加熱電流検出タイプの出力と温度差検
出タイプの出力を加算することにより、全流速域にわた
って感度の優れた流速センサを得ることができる。
Since the output voltage 32 appears inverted in this adding circuit, another inverting circuit is required after this, but it is omitted in FIG. When Vo1 and Vo2 have almost the same voltage values, for example, if 10 kΩ, 20 kΩ, and 20 kΩ are selected as R 27 , R 28 , and R 29 ,
Each of 1/2 of Vo1 and Vo2 is added, and the value of the output voltage Vout is almost the same as Vo1 and Vo2. By adding the heating current detection type output and the temperature difference detection type output as described above, it is possible to obtain a flow velocity sensor having excellent sensitivity over the entire flow velocity region.

【0049】実施の形態2.図25は本発明の実施の形
態2による熱式流速センサの要部を示す上面図、図26
は図25のA−A´線断面図である。この図では、空気
スペース2はシリコン基板1を表からエッチングして形
成されており、空気スペース2上にマイクロブリッジ型
薄肉部3が設けられている。
Embodiment 2. 25 is a top view showing a main part of a thermal type flow velocity sensor according to a second embodiment of the present invention, and FIG.
FIG. 26 is a sectional view taken along the line AA ′ of FIG. 25. In this figure, the air space 2 is formed by etching the silicon substrate 1 from the front side, and the microbridge thin portion 3 is provided on the air space 2.

【0050】この例においても、発熱抵抗体5と流体温
度検出用感温抵抗体8を用いた加熱電流検出タイプの出
力信号と、感温抵抗体6,7を用いた温度差検出タイプ
の出力信号とを加算することにより、実施の形態1と全
く同様な効果が得られる。すなわち、低流速域で感度が
低く高流速域で感度の高い加熱電流検出タイプの出力信
号と、低流速域で感度が高く高流速域で感度の低い温度
差検出タイプの出力信号とを加算した信号を最終的な出
力信号とすることにより、全流速域で感度の優れた流速
センサを得ることができる。
Also in this example, a heating current detection type output signal using the heating resistor 5 and the fluid temperature detecting temperature sensitive resistor 8 and a temperature difference detection type output signal using the temperature sensitive resistors 6 and 7 are used. By adding the signal, the same effect as in the first embodiment can be obtained. That is, a heating current detection type output signal having low sensitivity in the low flow velocity region and high sensitivity in the high flow velocity region and a temperature difference detection type output signal having high sensitivity in the low flow velocity region and low sensitivity in the high flow velocity region are added. By using the signal as the final output signal, it is possible to obtain a flow velocity sensor having excellent sensitivity in the entire flow velocity region.

【0051】実施の形態3.図27は本発明の実施の形
態3による熱式流速センサの要部を示す上面図、図28
は図27のA−A´線断面図である。この図では、空気
スペース2はシリコン基板1を裏からエッチングして形
成されており、空気スペース2上にダイヤフラム型薄肉
部3が設けられている。また、参考例3の場合と同様
に、2個の上流側感温抵抗体6a,6bおよび2個の下
流側感温抵抗体7a,7bは例えば図9のようにS字状
に形成され、ともにそれぞれで同じ温度になるように形
成されていてもよい。
Embodiment 3. FIG. 27 is a top view showing a main part of a thermal type flow velocity sensor according to a third embodiment of the present invention, and FIG.
FIG. 28 is a sectional view taken along the line AA ′ of FIG. 27. In this figure, the air space 2 is formed by etching the silicon substrate 1 from the back side, and the thin diaphragm portion 3 is provided on the air space 2. Further, as in the case of Reference Example 3, the two upstream temperature-sensitive resistors 6a and 6b and the two downstream temperature-sensitive resistors 7a and 7b are formed in an S shape as shown in FIG. 9, for example. Both may be formed to have the same temperature.

【0052】この実施の形態においても、実施の形態1
と同様、発熱抵抗体5と流体温度検出用感温抵抗体8を
用いた加熱電流検出タイプの出力信号26と、感温抵抗
体6a,7aを用いた温度差検出タイプの出力信号24
とを加算して感度の優れた流速センサを得るのである
が、このとき、図29に示すように、加算回路の重み付
け抵抗に前記上流側および下流側感温抵抗体6b,7b
を使用する。薄肉部3にスリット11を設けているた
め、流速が0の時は感温抵抗体6bは感温抵抗体7bよ
り温度の高い状態にある。感温抵抗体6b,7bを正の
抵抗温度係数を持つ同じ材質で同じ形状に作っておけ
ば、感温抵抗体6bの抵抗値は感温抵抗体7bの抵抗値
より大きくなる。流速が増大するにつれ、感温抵抗体6
bの温度は下がり、感温抵抗体7bの温度は上がる。よ
って、感温抵抗体6bの抵抗値は低下し、感温抵抗体7
bの抵抗値は上昇する。その様子を図30に示す。曲線
33が感温抵抗体6bの抵抗値の流速依存性、曲線34
が感温抵抗体7bの抵抗値の流速依存性である。
Also in this embodiment, the first embodiment
Similarly to the above, the heating current detection type output signal 26 using the heating resistor 5 and the fluid temperature detecting temperature sensitive resistor 8 and the temperature difference detection type output signal 24 using the temperature sensitive resistors 6a and 7a are used.
And is added to obtain a flow velocity sensor having excellent sensitivity. At this time, as shown in FIG. 29, the upstream and downstream temperature-sensitive resistors 6b and 7b are added to the weighting resistors of the adding circuit.
To use. Since the slits 11 are provided in the thin portion 3, the temperature-sensitive resistor 6b has a higher temperature than the temperature-sensitive resistor 7b when the flow velocity is 0. If the temperature-sensitive resistors 6b and 7b are made of the same material having the positive temperature coefficient of resistance and have the same shape, the resistance value of the temperature-sensitive resistor 6b becomes larger than the resistance value of the temperature-sensitive resistor 7b. As the flow velocity increases, the temperature sensitive resistor 6
The temperature of b is decreased and the temperature of the temperature sensitive resistor 7b is increased. Therefore, the resistance value of the temperature sensitive resistor 6b decreases, and the temperature sensitive resistor 7b
The resistance value of b increases. The situation is shown in FIG. The curve 33 is the flow velocity dependence of the resistance value of the temperature sensitive resistor 6b, and the curve 34
Is the flow velocity dependence of the resistance value of the temperature sensitive resistor 7b.

【0053】図29に示す加算回路において加算出力3
2は次式(6)で表される。
The addition output 3 in the addition circuit shown in FIG.
2 is represented by the following equation (6).

【0054】[0054]

【数4】 [Equation 4]

【0055】ここで、R6bは感温抵抗体6bの抵抗値、
7bは感温抵抗体7bの抵抗値を表す。この式におい
て、R6b,R7bが図30に示すように変化すれば、流速
の低いところでは温度差検出タイプの出力信号Vo2が支
配的となり、流速の高いところでは加熱電流検出タイプ
の出力信号Vo1が支配的となる。例えば、感温抵抗体6
b,7bの温度0℃の時の抵抗値を500Ω、抵抗温度
係数を3000ppm、流速が0の時の温度をそれぞれ
160℃,80℃とすると、流速が0の時の感温抵抗体
6b,7bの抵抗値はそれぞれ740Ω,620Ωとな
る。例えば、R27を1kΩとすると、加熱電流検出タイ
プの出力信号Vo1、および温度差検出タイプの出力信号
Vo2の加算係数はそれぞれ1.35および1.61とな
り、流速0の時には温度差検出タイプの出力信号Vo2の
方が約20%大きな重み付けを課されることになる。逆
に、流速が増大し、感温抵抗体6b,7bの温度が逆転
してそれぞれ80℃,160℃となったとすると、今度
は加熱電流検出タイプの出力信号Vo1の方が約20%大
きな重み付けを課される。
Here, R 6b is the resistance value of the temperature sensitive resistor 6b,
R 7b represents the resistance value of the temperature sensitive resistor 7b. In this equation, if R 6b and R 7b change as shown in FIG. 30, the temperature difference detection type output signal Vo2 becomes dominant at a low flow velocity, and the heating current detection type output signal at a high flow velocity. Vo1 becomes dominant. For example, the temperature sensitive resistor 6
b and 7b, the resistance value when the temperature is 0 ° C. is 500Ω, the temperature coefficient of resistance is 3000 ppm, and the temperatures when the flow velocity is 0 are 160 ° C. and 80 ° C., respectively, the temperature-sensitive resistor 6b when the flow velocity is 0, The resistance values of 7b are 740Ω and 620Ω, respectively. For example, when R 27 is 1 kΩ, the addition coefficients of the heating current detection type output signal Vo1 and the temperature difference detection type output signal Vo2 are 1.35 and 1.61, respectively, and when the flow velocity is 0, the temperature difference detection type The output signal Vo2 will be weighted about 20% more. On the contrary, if the flow velocity increases and the temperatures of the temperature sensitive resistors 6b and 7b reverse to 80 ° C. and 160 ° C., respectively, this time the heating current detection type output signal Vo1 is weighted by about 20%. Is charged.

【0056】このように、この実施の形態によれば、流
速の低いところでは低流速域の感度に優れた温度差検出
タイプの特徴がより顕著に現れ、流速の高いところでは
高流速域の感度に優れた加熱電流検出タイプの特徴がよ
り顕著に現れることになる。また、温度差検出タイプの
みでは精度良く検出できなかった高流速域においても加
熱電流検出タイプに大きな重み付けをすることにより精
度良く検出でき、測定可能流速範囲が拡大する。その結
果、広範囲な流速域において感度に優れた流速センサを
得ることができる。
As described above, according to this embodiment, the characteristic of the temperature difference detection type, which is excellent in the sensitivity in the low flow velocity region, appears more prominently in the low flow velocity region, and the sensitivity in the high flow velocity region is higher in the high flow velocity region. The characteristic of the excellent heating current detection type will be more prominent. Further, even in the high flow velocity region which could not be detected accurately only by the temperature difference detection type, by highly weighting the heating current detection type, it is possible to detect with high precision, and the measurable flow velocity range is expanded. As a result, it is possible to obtain a flow velocity sensor having excellent sensitivity in a wide range of flow velocity.

【0057】なお、この実施の形態では、発熱抵抗体5
により遠い位置にある感温抵抗体6a,7aを流速検知
用に、より近い位置にある感温抵抗体6b,7bを重み
付け抵抗用に使用ているが、全く逆の用い方をしても同
様の効果が得られる。またこの実施の形態では、シリコ
ン基板1を裏からエッチングして空気スペースを形成し
たダイヤフラム型構造について述べたが、これまでの実
施の形態および参考例と同様、シリコン基板1を表から
エッチングして空気スペースを形成したマイクロブリッ
ジ型構造においても、全く同様の効果が得られることは
言うまでもない。
In this embodiment, the heating resistor 5
Although the temperature-sensitive resistors 6a and 7a located farther away from each other are used for flow velocity detection and the temperature-sensitive resistors 6b and 7b located closer to each other are used for weighting resistors, the same applies even if they are used in reverse. The effect of is obtained. Further, in this embodiment, the diaphragm type structure in which the silicon substrate 1 is etched from the back side to form the air space is described. However, the silicon substrate 1 is etched from the front side as in the previous embodiments and reference examples. Needless to say, the same effect can be obtained even in the microbridge structure having the air space.

【0058】実施の形態4.図31は本発明の実施の形
態4による熱式流速センサの要部を示す上面図、図32
は図31のA−A´線断面図である。この図では、空気
スペース2はシリコン基板1を裏からエッチングして形
成されており、空気スペース2上にダイヤフラム型薄肉
部3が設けられている。
Fourth Embodiment 31 is a top view showing a main part of a thermal type flow sensor according to a fourth embodiment of the present invention, and FIG.
FIG. 32 is a sectional view taken along the line AA ′ of FIG. 31. In this figure, the air space 2 is formed by etching the silicon substrate 1 from the back side, and the thin diaphragm portion 3 is provided on the air space 2.

【0059】本実施の形態では、以下に述べるような2
つの流速検出手段を有している。まず1つは、発熱抵抗
体5と流体温度検出用感温抵抗体8と固定抵抗によりブ
リッジ回路を構成し、発熱抵抗体5を流れる加熱電流を
検出して流速を測定する方法である。この方法は図18
に示した加熱電流検出タイプと全く同じである。もう1
つは、感温抵抗体6とヒーター温度センサ35と固定抵
抗により構成されたブリッジ回路により、感温抵抗体6
と発熱温度検出用感温抵抗体35との温度差を検出して
流速を測定する方法である。この方法は参考例4に示し
た発熱体温度5との温度差検出タイプと全く同じであ
る。
In the present embodiment, the following 2
It has two flow velocity detecting means. First, there is a method in which a bridge circuit is constituted by the heating resistor 5, the fluid temperature detecting temperature sensitive resistor 8 and a fixed resistor, and the heating current flowing through the heating resistor 5 is detected to measure the flow velocity. This method is shown in FIG.
This is exactly the same as the heating current detection type shown in. Another one
One is the temperature-sensitive resistor 6 by the bridge circuit composed of the temperature-sensitive resistor 6, the heater temperature sensor 35 and the fixed resistor.
This is a method of measuring the flow velocity by detecting the temperature difference between the temperature sensing resistor 35 for detecting heat generation temperature and the temperature sensing resistor 35. This method is exactly the same as the temperature difference detection type with the heating element temperature 5 shown in Reference Example 4.

【0060】前にも述べたように、加熱電流タイプは低
流速域の感度が低く、温度差検出タイプは高流速域の感
度が低い。よって、図33に示すような足し算回路を用
いて、加熱電流タイプの出力電圧26(Vo1)と、定温
度点との温度差検出タイプの出力電圧31(Vo3)とを
加算してやれば、お互いの短所を補うことができる。図
33において、27,28,29は重み付けのための抵
抗で、これらの値を適当に選ぶことにより、加算すると
きの比率および加算出力電圧32の値を調節することが
できる。具体的には、加算出力電圧32(Vout)は次
式(7)によって表される。
As described above, the heating current type has low sensitivity in the low flow velocity region, and the temperature difference detection type has low sensitivity in the high flow velocity region. Therefore, if the heating current type output voltage 26 (Vo1) and the temperature difference detection type output voltage 31 (Vo3) from the constant temperature point are added using the addition circuit as shown in FIG. You can make up for the disadvantages. In FIG. 33, 27, 28, and 29 are resistors for weighting, and by appropriately selecting these values, the ratio at the time of addition and the value of the addition output voltage 32 can be adjusted. Specifically, the added output voltage 32 (Vout) is expressed by the following equation (7).

【0061】[0061]

【数5】 [Equation 5]

【0062】以上のように加熱電流検出タイプの出力と
発熱体温度との温度差検出タイプの出力を加算すること
により、全流速域にわたって感度の優れた流速センサを
得ることができる。
As described above, by adding the output of the heating current detection type and the output of the temperature difference detection type of the heating element temperature, it is possible to obtain a flow velocity sensor having excellent sensitivity over the entire flow velocity region.

【0063】なお、この実施の形態では、シリコン基板
1を裏からエッチングして空気スペースを形成したダイ
ヤフラム型構造について述べたが、これまでの実施の形
態および参考例と同様、シリコン基板1を表からエッチ
ングして空気スペースを形成したマイクロブリッジ型構
造においても、全く同様の効果が得られることは言うま
でもない。
In this embodiment, the diaphragm type structure in which the silicon substrate 1 is etched from the back side to form the air space has been described. However, the silicon substrate 1 is exposed in the same manner as in the above embodiments and reference examples. It goes without saying that the same effect can be obtained even in the microbridge type structure in which the air space is formed by etching.

【0064】[0064]

【発明の効果】以上のように、第1の発明によれば、発
熱部と、前記発熱部の上流側および下流側にそれぞれ配
置された上流側および下流側温度検出部とを半導体基板
の薄肉部に備えると共に、前記上流側温度検出部より上
流側に流体温度検出部を備え、前記発熱部を前記流体温
度検出部により検出された流体温度に対して定温度差駆
動した時に、前記発熱部に供給される加熱電流から得ら
れる流速信号と、前記上流側と下流側温度検出部の温度
差から得られる流速信号とを加算して流速を検出するよ
うにしたので、お互いに感度の悪い部分を補い合い、広
範囲な流速域にわたって感度の向上した流速センサを得
ることができる。
As described above, according to the first aspect of the invention, the heat generating portion and the upstream and downstream temperature detecting portions respectively arranged on the upstream side and the downstream side of the heat generating portion are provided with a thin semiconductor substrate. And a fluid temperature detecting section upstream of the upstream temperature detecting section, and the heat generating section is driven by a constant temperature difference with respect to the fluid temperature detected by the fluid temperature detecting section. Since the flow velocity signal obtained from the heating current supplied to the flow velocity signal and the flow velocity signal obtained from the temperature difference between the upstream side and the downstream side temperature detecting portion are added to detect the flow velocity, the portions having low sensitivity to each other are detected. Complementing each other, it is possible to obtain a flow velocity sensor with improved sensitivity over a wide range of flow velocity.

【0065】また、第2の発明によれば、前記第1の発
明に記載の2つの流速信号を加算するのに、それぞれの
流速信号に流速に応じた重み付けを行うようにしたの
で、お互いに感度の悪い部分をより効果的に補い合い、
広範囲な流速域にわたって感度の向上した流速センサを
得ることができる。
Further, according to the second invention, in order to add the two flow velocity signals described in the first invention, the respective flow velocity signals are weighted according to the flow velocity. Compensate for the less sensitive parts more effectively,
A flow velocity sensor with improved sensitivity can be obtained over a wide range of flow velocity.

【0066】また、第3の発明によれば、発熱部と、前
記発熱部の上流側に配置された上流側温度検出部と、前
記発熱部と同等温度となるように発熱部近傍に配置され
た発熱温度検出部とを半導体基板の薄肉部に備えると共
に、前記上流側温度検出部より上流側に流体温度検出部
を備え、前記発熱部を前記流体温度検出部により検出さ
れた流体温度に対して定温度差駆動した時に、前記発熱
部に供給される加熱電流から得られる流速信号と、前記
上流側温度検出部と前記発熱温度検出部の温度差から得
られる流速信号とを加算して流速を検出するようにした
ので、お互いに感度の悪い部分を補い合い、広範囲な流
速域にわたって感度の向上した流速センサを得ることが
できる。
Further, according to the third invention, the heat generating portion, the upstream temperature detecting portion disposed upstream of the heat generating portion, and the heat generating portion are disposed in the vicinity of the heat generating portion so as to have the same temperature. A heat generation temperature detection unit is provided in the thin portion of the semiconductor substrate, and a fluid temperature detection unit is provided on the upstream side of the upstream temperature detection unit, and the heat generation unit is provided for the fluid temperature detected by the fluid temperature detection unit. Flow rate signal obtained from the heating current supplied to the heat generating section and the flow rate signal obtained from the temperature difference between the upstream temperature detecting section and the heat generating temperature detecting section when the constant temperature difference drive is performed. Therefore, it is possible to obtain a flow velocity sensor having an improved sensitivity over a wide range of flow velocity by complementing each other in insensitive portions.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の参考例1による熱式流速センサの要
部を示す上面図である。
FIG. 1 is a top view showing a main part of a thermal type flow sensor according to a first reference example of the present invention.

【図2】 図1のA−A´線断面図である。FIG. 2 is a sectional view taken along the line AA ′ of FIG.

【図3】 本発明の参考例1に係わる定温度差駆動回路
を簡略化して示す回路図である。
FIG. 3 is a circuit diagram schematically showing a constant temperature difference drive circuit according to a first reference example of the present invention.

【図4】 本発明の参考例1に係わる温度分布図であ
る。
FIG. 4 is a temperature distribution diagram according to Reference Example 1 of the present invention.

【図5】 本発明の参考例1に係わる温度差検出用回路
を簡略化して示す回路図である。
FIG. 5 is a circuit diagram schematically showing a temperature difference detection circuit according to a first reference example of the present invention.

【図6】 本発明の参考例1に係わる別の温度差検出用
回路を簡略化して示す回路図である。
FIG. 6 is a circuit diagram schematically showing another temperature difference detection circuit according to the first embodiment of the present invention.

【図7】 本発明の参考例2による熱式流速センサの要
部を示す上面図である。
FIG. 7 is a top view showing a main part of a thermal type flow sensor according to a second reference example of the present invention.

【図8】 図7のA−A´線断面図である。8 is a cross-sectional view taken along the line AA ′ of FIG.

【図9】 本発明の参考例3による熱式流速センサの要
部を示す上面図である。
FIG. 9 is a top view showing a main part of a thermal type flow sensor according to a third reference example of the present invention.

【図10】 本発明の参考例3に係わる温度差検出用回
路を示す回路図である。
FIG. 10 is a circuit diagram showing a temperature difference detection circuit according to a third reference example of the present invention.

【図11】 本発明の参考例3に係わる流速と出力電圧
の関係を示す特性図である。
FIG. 11 is a characteristic diagram showing a relationship between a flow velocity and an output voltage according to Reference Example 3 of the present invention.

【図12】 本発明の参考例4による熱式流速センサの
要部を示す上面図である。
FIG. 12 is a top view showing a main part of a thermal type flow sensor according to a fourth embodiment of the present invention.

【図13】 本発明の参考例4に係わる温度差検出用回
路を示す回路図である。
FIG. 13 is a circuit diagram showing a temperature difference detection circuit according to Reference Example 4 of the present invention.

【図14】 本発明の参考例4に係わる抵抗体温度の流
速依存性を示す特性図である。
FIG. 14 is a characteristic diagram showing flow velocity dependence of resistor temperature according to Reference Example 4 of the present invention.

【図15】 本発明の参考例4に係わる流速と感温抵抗
体の温度に応じた出力信号の関係を示す特性図である。
FIG. 15 is a characteristic diagram showing the relationship between the flow rate and the output signal according to the temperature of the temperature sensitive resistor according to the fourth embodiment of the present invention.

【図16】 本発明の実施の形態1による熱式流速セン
サの要部を示す上面図である。
FIG. 16 is a top view showing a main part of the thermal type flow sensor according to the first embodiment of the present invention.

【図17】 図16のA−A´線断面図である。17 is a cross-sectional view taken along the line AA ′ of FIG.

【図18】 本発明の実施の形態1に係わる加熱電流検
出回路を簡略化して示す回路図である。
FIG. 18 is a circuit diagram schematically showing a heating current detection circuit according to the first embodiment of the present invention.

【図19】 本発明の実施の形態1に係わる温度差検出
回路を簡略化して示す回路図である。
FIG. 19 is a circuit diagram schematically showing a temperature difference detection circuit according to the first embodiment of the present invention.

【図20】 本発明の実施の形態1に係わる加熱電流検
出回路の出力信号の流速依存性を示す特性図である。
FIG. 20 is a characteristic diagram showing the flow velocity dependence of the output signal of the heating current detection circuit according to the first embodiment of the present invention.

【図21】 本発明の実施の形態1に係わる加熱電流検
出タイプの感度の流速依存性を示す特性図である。
FIG. 21 is a characteristic diagram showing flow velocity dependence of sensitivity of the heating current detection type according to the first embodiment of the present invention.

【図22】 本発明の実施の形態1に係わる温度差検出
回路の出力信号の流速依存性を示す特性図である。
FIG. 22 is a characteristic diagram showing the flow velocity dependence of the output signal of the temperature difference detection circuit according to the first embodiment of the present invention.

【図23】 本発明の実施の形態1に係わる温度差検出
タイプの感度の流速依存性を示す特性図である。
FIG. 23 is a characteristic diagram showing flow velocity dependence of sensitivity of the temperature difference detection type according to the first embodiment of the present invention.

【図24】 本発明の実施の形態1に係わる加算回路を
簡略化して示す回路図である。
FIG. 24 is a circuit diagram showing a simplified addition circuit according to the first embodiment of the present invention.

【図25】 本発明の実施の形態2による熱式流速セン
サの要部を示す上面図である。
FIG. 25 is a top view showing a main part of a thermal type flow sensor according to a second embodiment of the present invention.

【図26】 図25のA−A´線断面図である。FIG. 26 is a cross-sectional view taken along the line AA ′ of FIG.

【図27】 本発明の実施の形態3による熱式流速セン
サの要部を示す上面図である。
FIG. 27 is a top view showing a main part of a thermal type flow velocity sensor according to a third embodiment of the present invention.

【図28】 図27のA−A´線断面図である。28 is a cross-sectional view taken along the line AA ′ of FIG.

【図29】 本発明の実施の形態3に係わる加算回路を
簡略化して示す回路図である。
FIG. 29 is a circuit diagram showing a simplified addition circuit according to the third embodiment of the present invention.

【図30】 本発明の実施の形態3に係わる加算回路の
重み付け抵抗の流速依存性を示す特性図である。
FIG. 30 is a characteristic diagram showing the flow velocity dependence of the weighting resistance of the adder circuit according to the third embodiment of the present invention.

【図31】 本発明の実施の形態4による熱式流速セン
サの要部を示す上面図である。
FIG. 31 is a top view showing a main part of a thermal type flow sensor according to a fourth embodiment of the present invention.

【図32】 図31のA−A´線断面図である。32 is a cross-sectional view taken along the line AA ′ of FIG.

【図33】 本発明の実施の形態4に係わる加算回路を
簡略化して示す回路図である。
FIG. 33 is a circuit diagram showing a simplified addition circuit according to the fourth embodiment of the present invention.

【図34】 従来例の熱式流速センサの要部を示す断面
図である。
FIG. 34 is a cross-sectional view showing a main part of a conventional thermal type flow velocity sensor.

【図35】 図34の上面図である。FIG. 35 is a top view of FIG. 34.

【図36】 従来例に係わる感温抵抗体温度の流速依存
性を示す特性図である。
FIG. 36 is a characteristic diagram showing the flow velocity dependence of the temperature of the temperature sensitive resistor according to the conventional example.

【図37】 従来例に係わる感温抵抗体の温度差の流速
依存性を示す特性図である。
FIG. 37 is a characteristic diagram showing the flow velocity dependence of the temperature difference of the temperature sensitive resistor according to the conventional example.

【図38】 従来例に係わるヒーター温度制御回路を示
す図である。
FIG. 38 is a diagram showing a heater temperature control circuit according to a conventional example.

【図39】 従来例に係わる温度差検出回路を示す図で
ある。
FIG. 39 is a diagram showing a temperature difference detection circuit according to a conventional example.

【図40】 従来例に係わる薄肉部での熱伝達の様子を
説明する模式図である。
FIG. 40 is a schematic diagram for explaining how heat is transferred in a thin portion according to a conventional example.

【図41】 従来例に係わる感温抵抗体温度の流速依存
性を示す特性図である。
FIG. 41 is a characteristic diagram showing the flow velocity dependence of the temperature of the temperature sensitive resistor according to the conventional example.

【符号の説明】[Explanation of symbols]

1 シリコン基板、 2 空気スペース、 3 薄肉
部、 5 発熱抵抗体、6,6a,6b 上流側感温抵
抗体、 77a,7b 下流側感温抵抗体、 8流体温
度検出用感温抵抗体、 11 スリット、 35 発熱
温度検出用感温抵抗体。
DESCRIPTION OF SYMBOLS 1 Silicon substrate, 2 Air space, 3 Thin part, 5 Heating resistor, 6,6a, 6b Upstream temperature-sensitive resistor, 77a, 7b Downstream temperature-sensitive resistor, 8 Fluid temperature detection temperature-sensitive resistor, 11 Slit, 35 Thermosensitive resistor for detecting heat generation temperature.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−142268(JP,A) 特開 平8−68677(JP,A) 特開 平8−54270(JP,A) 特開 平4−27825(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01F 1/68 - 1/699 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-60-142268 (JP, A) JP-A-8-68677 (JP, A) JP-A-8-54270 (JP, A) JP-A-4-54 27825 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01F 1/68-1/699

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 発熱部と、前記発熱部の上流側および下
流側にそれぞれ配置された上流側および下流側温度検出
部とを半導体基板の薄肉部に備えると共に、前記上流側
温度検出部より上流側に流体温度検出部を備え、前記発
熱部を前記流体温度検出部により検出された流体温度に
対して定温度差駆動した時に、前記発熱部に供給される
加熱電流から得られる流速信号と、前記上流側と下流側
温度検出部の温度差から得られる流速信号とを加算して
流速を検出するようにした熱式流速センサ。
1. A thin-walled portion of a semiconductor substrate is provided with a heat generating portion and upstream and downstream temperature detecting portions arranged on the upstream side and the downstream side of the heat generating portion, respectively, and upstream from the upstream temperature detecting portion. A fluid temperature detection unit on the side, when the heat generation unit is driven by a constant temperature difference with respect to the fluid temperature detected by the fluid temperature detection unit, a flow velocity signal obtained from a heating current supplied to the heat generation unit, A thermal type flow velocity sensor configured to detect a flow velocity by adding a flow velocity signal obtained from a temperature difference between the upstream side and the downstream side temperature detecting portions.
【請求項2】 前記請求項1記載の2つの流速信号を加
算するのに、それぞれの流速信号に流速に応じた重み付
けを行うようにした請求項1記載の熱式流速センサ。
2. The thermal flow velocity sensor according to claim 1, wherein in adding the two flow velocity signals according to claim 1, each flow velocity signal is weighted according to the flow velocity.
【請求項3】 発熱部と、前記発熱部の上流側に配置さ
れた上流側温度検出部と、前記発熱部と同等温度となる
ように発熱部近傍に配置された発熱温度検出部とを半導
体基板の薄肉部に備えると共に、前記上流側温度検出部
より上流側に流体温度検出部を備え、前記発熱部を前記
流体温度検出部により検出された流体温度に対して定温
度差駆動した時に、前記発熱部に供給される加熱電流か
ら得られる流速信号と、前記上流側温度検出部と前記発
熱温度検出部の温度差から得られる流速信号とを加算し
て流速を検出するようにした熱式流速センサ。
3. A semiconductor device comprising: a heat generating section, an upstream temperature detecting section arranged upstream of the heat generating section, and a heat generating temperature detecting section arranged in the vicinity of the heat generating section so as to have the same temperature as the heat generating section. Along with the thin-walled portion of the substrate, a fluid temperature detecting portion is provided on the upstream side of the upstream temperature detecting portion, and when the heat generating portion is driven by a constant temperature difference with respect to the fluid temperature detected by the fluid temperature detecting portion, A thermal formula for detecting a flow velocity by adding a flow velocity signal obtained from a heating current supplied to the heat generation unit and a flow velocity signal obtained from a temperature difference between the upstream temperature detection unit and the heat generation temperature detection unit. Flow sensor.
JP2002029583A 2002-02-06 2002-02-06 Thermal flow sensor Expired - Fee Related JP3454265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002029583A JP3454265B2 (en) 2002-02-06 2002-02-06 Thermal flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002029583A JP3454265B2 (en) 2002-02-06 2002-02-06 Thermal flow sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13377096A Division JP3293469B2 (en) 1996-05-28 1996-05-28 Thermal flow sensor

Publications (2)

Publication Number Publication Date
JP2002277483A JP2002277483A (en) 2002-09-25
JP3454265B2 true JP3454265B2 (en) 2003-10-06

Family

ID=19192465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002029583A Expired - Fee Related JP3454265B2 (en) 2002-02-06 2002-02-06 Thermal flow sensor

Country Status (1)

Country Link
JP (1) JP3454265B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361271A (en) * 2003-06-05 2004-12-24 Hitachi Ltd Thermal type air flowmeter
JP2008170382A (en) 2007-01-15 2008-07-24 Hitachi Ltd Thermal fluid flow sensor, and manufacturing method therefor
JP5185645B2 (en) * 2008-02-06 2013-04-17 矢崎総業株式会社 Flowmeter
JP5152292B2 (en) 2010-10-06 2013-02-27 株式会社デンソー Flow measuring device
JP7487501B2 (en) 2020-03-13 2024-05-21 オムロン株式会社 Flow Measuring Device

Also Published As

Publication number Publication date
JP2002277483A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
US7287424B2 (en) Thermal type flow measurement apparatus having asymmetrical passage for flow rate measurement
EP1541974B1 (en) Heating resistor type flow-measuring device
US20100223991A1 (en) Thermal flow meter
JP4157034B2 (en) Thermal flow meter
JP3758081B2 (en) Thermal flow detector
JP4470743B2 (en) Flow sensor
JP3802443B2 (en) Flow rate sensor
JP3293469B2 (en) Thermal flow sensor
JP3454265B2 (en) Thermal flow sensor
US6279394B1 (en) Mass air flow meter
JP5029509B2 (en) Flow sensor
JP3577902B2 (en) Thermal flow sensor
JP2002005717A (en) Thermal flow sensor
JPH11148944A (en) Flow velocity sensor and flow velocity-measuring apparatus
JPH11148945A (en) Flow velocity sensor and flow velocity-measuring apparatus
JPH11118567A (en) Flow sensor
JP3373981B2 (en) Thermal flow meter
JP4089657B2 (en) Air flow sensor
JPH11351936A (en) Thermal flow-rate sensor and thermal flow-rate detection circuit
JP3332280B2 (en) Heat wire type acceleration detector
JPH1062222A (en) Flow sensor
JP2000275075A (en) Thermal flow sensor
JP2001235355A (en) Thermal type flowmeter and its adjustment method
JPH07198439A (en) Thermal flow velocity sensor
JPH11271120A (en) Heat-sensitive flow velocity sensor and heat-sensitive flow velocity detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees