JP3417494B2 - Method and apparatus for inspecting surface undulation of glass substrate - Google Patents

Method and apparatus for inspecting surface undulation of glass substrate

Info

Publication number
JP3417494B2
JP3417494B2 JP27839693A JP27839693A JP3417494B2 JP 3417494 B2 JP3417494 B2 JP 3417494B2 JP 27839693 A JP27839693 A JP 27839693A JP 27839693 A JP27839693 A JP 27839693A JP 3417494 B2 JP3417494 B2 JP 3417494B2
Authority
JP
Japan
Prior art keywords
glass substrate
ultraviolet light
reflected
fluorescent screen
waviness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27839693A
Other languages
Japanese (ja)
Other versions
JPH07128032A (en
Inventor
秀人 谷
繁実 山口
雅子 佐々木
理 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP27839693A priority Critical patent/JP3417494B2/en
Publication of JPH07128032A publication Critical patent/JPH07128032A/en
Application granted granted Critical
Publication of JP3417494B2 publication Critical patent/JP3417494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Processing Or Creating Images (AREA)
  • Image Processing (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置用基板と
して使用される硝子基板等の板状材の表面うねりを輝度
分布として求める板状材の表面うねり検査方法及び装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for inspecting the surface waviness of a plate-shaped material used as a substrate for a liquid crystal display device to obtain the surface waviness of a plate-shaped material as a luminance distribution.

【0002】[0002]

【従来の技術】液晶表示装置使用される硝子基板は、
表面うねりを規定範囲内に抑える必要があり、出荷検査
工程に於いて表面うねりを検査している。表面うねりの
検査方法は、接触式表面あらさ計を用いて測定される
ものがあるが、触針によるキズの発生が懸念されるこ
と、測定時間が長いことから全数検査は不可能である。
一方、レーザー変位計を使用した非接触式表面あらさ計
を用いれば、キズの発生や測定時間が長いことが解決さ
れそうだが、非接触式表面あらさ計では、測定精度が接
触式表面あらさ計ほど高精度に得られない。
Glass substrates for use in the Related Art A liquid crystal display device,
It is necessary to suppress surface waviness within the specified range, and surface waviness is inspected in the shipping inspection process. The inspection method of the surface waviness is measured by using a contact type surface roughness meter
What it is, the occurrence of scratches due stylus is concerned, total inspection since the measuring time is long is not possible.
On the other hand, if a non-contact surface roughness meter using a laser displacement meter is used, it may be possible to solve the problem of scratches and long measurement time. It cannot be obtained with high precision.

【0003】[0003]

【発明が解決しようとする課題】ところで、点光源から
の放射光又は平行光を硝子基板に斜め方向から照射し
場合、硝子基板の表面から反射された光は、硝子基板
の表面うねりに依存して強度ムラが発生することは知ら
れている。しかしながら、液晶表示装置用硝子基板は可
視光の一部が硝子基板の表面で反射され、その他の可視
光は硝子基板を透過して裏面でも一部反射される。従っ
て、硝子基板からの反射光には表面で反射された可視光
と裏面で反射された可視光とが含まれているので、硝子
基板の表面うねりを正確に検査することが困難であると
いう問題がある。
By the way, radiated light or parallel light from a point light source is applied to a glass substrate from an oblique direction .
Case, the light reflected from the surface of the glass substrate, the intensity unevenness occurs depending on the surface waviness of the glass substrate is known. However, in the glass substrate for a liquid crystal display device , a part of visible light is reflected on the front surface of the glass substrate, and the other visible light is transmitted through the glass substrate and partly reflected on the back surface. Therefore, since the reflected light from the glass substrate includes the visible light reflected on the front surface and the visible light reflected on the back surface, it is difficult to accurately inspect the surface waviness of the glass substrate. There is.

【0004】本発明はこのような事情に鑑みて成された
もので、硝子基板の表面のみのうねりを容易に検査する
ことができる板状材の表面うねり検査方法及び装置を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a surface waviness inspection method and device for a plate-like material, which can easily inspect waviness only on the surface of the glass substrate. And

【0005】[0005]

【課題を解決するための手段】本発明は、硝子基板の表
面で反射されるように、紫外光のうち硝子基板の表面で
反射される波長の紫外光を前記硝子基板に投光し、前記
硝子基板の表面で反射された、前記紫外光のうち硝子基
板の表面で反射される波長の紫外光で蛍光スクリーン部
材の表面を照射して、前記蛍光スクリーン部材の表面又
は裏面上に前記硝子基板の表面うねりに対応する可視光
の輝度分布を表示させ、前記蛍光スクリーン部材の表面
又は裏面上に表示された前記可視光の輝度分布を撮像手
段で撮像して得られた輝度分布信号を画像処理して前記
硝子基板の表面うねりを求めることを特徴とする硝子基
板の表面うねり検査方法、及び、それを実施するための
装置である。
According to the present invention, the surface of a glass substrate is exposed to ultraviolet light so that it is reflected by the surface of the glass substrate.
The reflected ultraviolet light is projected onto the glass substrate ,
Of the ultraviolet light reflected by the surface of the glass substrate, the glass substrate
Irradiate the surface of the fluorescent screen member with ultraviolet light having a wavelength reflected on the surface of the plate, and display the luminance distribution of visible light corresponding to the surface waviness of the glass substrate on the front surface or the back surface of the fluorescent screen member, The brightness distribution signal obtained by imaging the brightness distribution of the visible light displayed on the front surface or the back surface of the fluorescent screen member by the image capturing means is subjected to image processing, and
A glass substrate characterized by determining the surface waviness of the glass substrate
A surface waviness inspection method for a plate and an apparatus for carrying out the method.

【0006】[0006]

【作用】本発明によれば、液晶表示装置に用いられる硝
子素材は一般に、紫外線に対して不透明であるため、硝
子基板に投光された紫外線の一部が硝子基板の表面のみ
で反射され、蛍光スクリーン部材に照射される。従っ
て、蛍光スクリーン部材の表面又は裏面上には、硝子基
板の表面のみのうねりに対応する可視光の輝度分布が表
示される。撮像手段は、蛍光スクリーン部材の表面又は
裏面上に表示された可視光の輝度分布を撮像する。画像
処理部は、撮像手段から得られた輝度分布信号を画像処
理して板状材の表面うねりを求める。
According to the present invention, since the glass material used in the liquid crystal display device is generally opaque to ultraviolet rays, part of the ultraviolet rays projected onto the glass substrate is reflected only on the surface of the glass substrate, The fluorescent screen member is illuminated. Therefore, on the front surface or the back surface of the fluorescent screen member, the brightness distribution of visible light corresponding to the undulation of only the surface of the glass substrate is displayed. The imaging unit images the brightness distribution of visible light displayed on the front surface or the back surface of the fluorescent screen member. The image processing section image-processes the luminance distribution signal obtained from the image pickup means to obtain the surface waviness of the plate-shaped material.

【0007】このように、紫外光を光源に用いること
で、硝子基板の場合では表面のみで反射された紫外光を
得ることができ、さらに、蛍光スクリーン部材を用いる
ことで可視光用の撮像手段で紫外線強度分布を撮像する
ことができる。
As described above, by using the ultraviolet light as the light source, the ultraviolet light reflected only on the surface can be obtained in the case of the glass substrate, and further, by using the fluorescent screen member, the image pickup means for the visible light is obtained. The ultraviolet intensity distribution can be imaged with.

【0008】[0008]

【実施例】以下添付図面に従って本発明に係る板状材の
表面うねり検査方法及び装置の好ましい実施例を詳説す
る。図1は本発明に係る板状材の表面うねり検査装置の
全体図である。図1に示すように板状材の表面うねり検
査装置は紫外光投光手段12、蛍光スクリーン部材1
4、カメラ(撮像手段)16及び画像処理部18を備え
ている。紫外光投光手段12はケース19を有してし
て、ケース19の上端部には紫外線ランプ20が収納さ
れている。紫外線ランプ20の周囲には球面状の反射鏡
22が設けられている。反射鏡22の下方にはピンホー
ル22Aが開口されている。これにより、紫外線ランプ
20から投光された紫外光21Aがピンホール22Aを
介して出射されるので、紫外光21Aは点光源から投光
された放射光の状態になる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a method and apparatus for inspecting surface waviness of a plate-like material according to the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is an overall view of a surface waviness inspection apparatus for plate-like materials according to the present invention. As shown in FIG. 1, the surface waviness inspection device for a plate-shaped material includes an ultraviolet light projecting means 12 and a fluorescent screen member 1.
4, a camera (imaging means) 16 and an image processing unit 18. The ultraviolet light projecting means 12 has a case 19, and an ultraviolet lamp 20 is housed at the upper end of the case 19. A spherical reflecting mirror 22 is provided around the ultraviolet lamp 20. A pinhole 22A is opened below the reflecting mirror 22. As a result, the ultraviolet light 21A projected from the ultraviolet lamp 20 is emitted through the pinhole 22A, so that the ultraviolet light 21A is in a state of radiated light projected from the point light source.

【0009】ピンホール22Aの下方には紫外線波長選
択フィルタ24A、24Bが配設されていて、紫外線波
長選択フィルタ24A、24Bの下方には反射ミラー2
6が傾斜した状態で配設されている。紫外線波長選択フ
ィルタ24A、24Bは、紫外光21Aに含まれている
短波長(約250nm)の紫外光21Bを抽出する。紫
外線波長選択フィルタ24A、24Bで抽出された紫外
光21Bは、反射ミラー26で全反射されてケース19
の開口穴19Aから、ケース19の左方向に射出され
る。そして、開口穴19Aから射出された紫外光21B
は、後述する硝子基板27を斜め方向から照射する。ケ
ース19の左側には硝子受け部32が配設されていて、
検査対象の硝子基板27が水平に載置されている。そし
て、紫外光21Bは硝子基板27に一定の傾斜角度(約
10度)で照射される(図2参照)。
Ultraviolet wavelength selection filters 24A and 24B are provided below the pinhole 22A, and the reflection mirror 2 is provided below the ultraviolet wavelength selection filters 24A and 24B.
6 is arranged in an inclined state. The ultraviolet wavelength selection filters 24A and 24B extract the short wavelength (about 250 nm) ultraviolet light 21B included in the ultraviolet light 21A. The ultraviolet light 21B extracted by the ultraviolet wavelength selection filters 24A and 24B is totally reflected by the reflection mirror 26, and the case 19
It is ejected to the left of the case 19 through the opening hole 19A. Then, the ultraviolet light 21B emitted from the opening hole 19A
Irradiates a glass substrate 27 described later from an oblique direction. On the left side of the case 19, a glass receiving portion 32 is arranged,
The glass substrate 27 to be inspected is placed horizontally. Then, the ultraviolet light 21B is applied to the glass substrate 27 at a constant inclination angle (about 10 degrees) (see FIG. 2).

【0010】硝子受け部32の左側にはガイドレール3
4が矢印A−B方向に延長して配設されている。ガイド
レール34には移動体36が矢印A−B方向に移動自在
に支持されていて、移動体36の右端部には蛍光スクリ
ーン14が垂直状態に設けられている。蛍光スクリーン
14には蛍光性物質が、この例では膜状にコーティング
されていて、硝子基板27の表面で反射された紫外光2
1Bの強度分布が蛍光スクリーン14の表面に照射され
ると、蛍光スクリーン14上に紫外光21Bの強度分布
に対応する可視光の輝度分布が抽出される。尚、蛍光ス
クリーン14は移動体36を介してガイドレール34に
沿って矢印A−B方向に移動するので、硝子基板27の
表面で反射された紫外光21Bが、硝子基板27の表面
うねりの特定波長・うねり高さに対応した強度分布をシ
グナル/ノイズ比(S/N比)良く、蛍光スクリーン1
4上に照射させることができる。
A guide rail 3 is provided on the left side of the glass receiving portion 32.
4 is arranged so as to extend in the direction of arrow AB. A movable body 36 is supported on the guide rail 34 so as to be movable in the directions of arrows AB, and the fluorescent screen 14 is vertically provided at the right end of the movable body 36. The fluorescent screen 14 is coated with a fluorescent substance in the form of a film in this example, and the ultraviolet light 2 reflected by the surface of the glass substrate 27 is used.
When the intensity distribution of 1B is applied to the surface of the fluorescent screen 14, the luminance distribution of visible light corresponding to the intensity distribution of the ultraviolet light 21B is extracted on the fluorescent screen 14. Since the fluorescent screen 14 moves in the direction of arrow AB along the guide rail 34 via the moving body 36, the ultraviolet light 21B reflected on the surface of the glass substrate 27 specifies the surface waviness of the glass substrate 27. Intensity distribution corresponding to wavelength and waviness height with a good signal / noise ratio (S / N ratio), fluorescent screen 1
4 can be illuminated.

【0011】さらに、移動体36の左端部にはカメラ1
6が設けられている。カメラ16は蛍光スクリーン14
上に表示されている可視光の輝度をセンシングし、蛍光
スクリーン14の輝度を光電変換した信号を画像処理部
18に伝達する。このように、蛍光スクリーン14で紫
外光から可視光に変換された輝度分布をセンシングする
ので通常の可視光用のカメラが使用できる。従って、紫
外光用のカメラ及びレンズを使用する場合より低コスト
で表面うねり検査装置を提供することができる。画像処
理部18はカメラ16から伝達された信号に基づいて、
蛍光スクリーン14上の輝度分布に対応する蛍光強度画
像38(図3参照)を求め、蛍光強度画像のデータ列を
測定データとして記憶する。
Further, the camera 1 is provided at the left end of the moving body 36.
6 is provided. The camera 16 has a fluorescent screen 14
The brightness of visible light displayed above is sensed, and the signal obtained by photoelectrically converting the brightness of the fluorescent screen 14 is transmitted to the image processing unit 18. As described above, since the fluorescent screen 14 senses the luminance distribution converted from ultraviolet light to visible light, a normal camera for visible light can be used. Therefore, the surface waviness inspection apparatus can be provided at a lower cost than when using a camera and a lens for ultraviolet light. The image processing unit 18, based on the signal transmitted from the camera 16,
A fluorescence intensity image 38 (see FIG. 3) corresponding to the brightness distribution on the fluorescent screen 14 is obtained, and the data string of the fluorescence intensity image is stored as measurement data.

【0012】ここで、硝子基板27の表面うねりの特性
について説明する。図2に示すように硝子基板27の表
面うねりは、Y軸方向に一定のうねり長さSで直線状の
縞模様に形成される。尚、図2上でHは硝子基板27の
表面うねり高さを示す。このような表面うねりの特性を
備えた硝子基板27の表面を、上述したように紫外光2
1Bで矢印方向から照射して、表面で反射された紫外光
21Bで蛍光スクリーン14の表面を照射する。
The characteristics of the surface waviness of the glass substrate 27 will be described. As shown in FIG. 2, the surface waviness of the glass substrate 27 is formed in a linear striped pattern with a certain waviness length S in the Y-axis direction. In FIG. 2, H represents the height of the surface waviness of the glass substrate 27. As described above, the surface of the glass substrate 27 having such a surface waviness characteristic is exposed to the ultraviolet light 2 as described above.
1B is irradiated from the direction of the arrow, and the surface of the fluorescent screen 14 is irradiated with the ultraviolet light 21B reflected on the surface.

【0013】従って、蛍光スクリーン14の表面上には
硝子基板27の表面うねりに対応する紫外光21Bによ
る強度分布が表示され、蛍光スクリーン14の表面又は
裏面上には硝子基板27の表面うねりに対応する可視光
による輝度分布が表示される(図3参照)。図3上で
「実線」は輝度の高いラインを示し、「破線」は輝度の
低いラインを示していて、輝度の高いラインと低いライ
ンとが、硝子基板27の表面うねりに対応して一定のう
ねり長さSで表示される。すなわち、蛍光スクリーン1
4の表面又は裏面上には、可視光による輝度変化周期及
び輝度変化量が表示されていて、硝子基板27の表面う
ねり長さSと蛍光スクリーン14上の輝度変化周期とに
は強い相関があり、さらに、硝子基板27の表面うねり
高さHと蛍光スクリーン14上の輝度変化量とには強い
相関がある。
Therefore, the intensity distribution of the ultraviolet light 21B corresponding to the surface waviness of the glass substrate 27 is displayed on the surface of the fluorescent screen 14, and the surface waviness of the glass substrate 27 is supported on the front surface or the back surface of the fluorescent screen 14. The brightness distribution of visible light is displayed (see FIG. 3). In FIG. 3, the “solid line” indicates a high-luminance line and the “dashed line” indicates a low-luminance line. The high-luminance line and the low-luminance line are constant in correspondence with the surface waviness of the glass substrate 27. The swell length S is displayed. That is, the fluorescent screen 1
On the front surface or the back surface of No. 4, the luminance change period and the amount of luminance change due to visible light are displayed, and there is a strong correlation between the surface waviness length S of the glass substrate 27 and the luminance change period on the fluorescent screen 14. Further, there is a strong correlation between the surface waviness height H of the glass substrate 27 and the brightness change amount on the fluorescent screen 14.

【0014】ところで、画像処理部18は蛍光強度画像
38のS/N比を上げるために加算処理をおこなう。加
算処理の一例として、画像処理部18は蛍光強度画像3
8を例えば4分割して、分割された画像38A、画像3
8B、画像38C、画像38D(図5参照)の各画像の
データ列を横加算(X方向に加算)する。これにより、
蛍光強度画像38のデータ列のS/N比を上げることが
できる。尚、この加算処理では蛍光強度画像38を4分
割したが、4分割以外に分割することも可能であり、S
/N比を上げることを考慮すると4分割〜8分割の範囲
が最適である。
By the way, the image processing section 18 performs addition processing in order to increase the S / N ratio of the fluorescence intensity image 38. As an example of the addition processing, the image processing unit 18 uses the fluorescence intensity image 3
8 is divided into four, for example, and the divided image 38A and image 3 are divided.
8B, image 38C, and image 38D (see FIG. 5) are horizontally added (added in the X direction) to the data strings of the respective images. This allows
The S / N ratio of the data string of the fluorescence intensity image 38 can be increased. Although the fluorescence intensity image 38 is divided into four in this addition processing, it is possible to divide the fluorescence intensity image 38 into other than four.
Considering increasing the / N ratio, the range of 4 to 8 divisions is optimal.

【0015】また、画像処理部18は、横加算したデー
タ列に対してバンドパスフィルタ処理を行う。そして、
画像処理部18はバンドパスフィルタ処理されたデータ
列に基づいて、輝度変化周期及び輝度変化量を求める。
このように、画像処理部18で輝度変化周期及び輝度変
化量が求められるので、輝度変化周期及び輝度変化量に
基づいて、硝子基板27の表面うねり長さS及び表面う
ねり高さHを推定することができる。
The image processing section 18 also performs bandpass filter processing on the horizontally added data sequence. And
The image processing unit 18 obtains the brightness change period and the brightness change amount based on the data string subjected to the bandpass filter processing.
In this way, the brightness change period and the brightness change amount are obtained by the image processing unit 18, so that the surface waviness length S and the surface waviness height H of the glass substrate 27 are estimated based on the brightness change period and the brightness change amount. be able to.

【0016】前記の如く構成された本発明に係る板状材
の表面うねり検査装置の作用を説明する。先ず、硝子受
け部32に硝子基板27を載置して、次に、紫外線ラン
プ20から投光された紫外光21Aをピンホール22A
を介して射出する。ピンホール22Aから射出された紫
外光21Aは、紫外線波長選択フィルタ24A、24B
で、紫外光21Aに含まれている短波長(約250n
m)の紫外光21Bが抽出される。抽出された紫外光2
1Bは反射ミラー26で全反射されてケース19の開口
穴19Aから、ケース19の左方向に射出される。そし
て、開口穴19Aから射出された紫外光21Bは、硝子
基板27を略10度の傾斜角で照射する。
The operation of the surface waviness inspection apparatus for plate-like materials according to the present invention constructed as described above will be described. First, the glass substrate 27 is placed on the glass receiving portion 32, and then the ultraviolet light 21A emitted from the ultraviolet lamp 20 is applied to the pinhole 22A.
Inject through. The ultraviolet light 21A emitted from the pinhole 22A is the ultraviolet wavelength selection filters 24A and 24B.
Then, the short wavelength (about 250n included in the ultraviolet light 21A
The ultraviolet light 21B of m) is extracted. Extracted UV light 2
1B is totally reflected by the reflection mirror 26 and emitted from the opening hole 19A of the case 19 to the left of the case 19. Then, the ultraviolet light 21B emitted from the opening hole 19A irradiates the glass substrate 27 at an inclination angle of about 10 degrees.

【0017】硝子基板27に照射した紫外光21Bは硝
子基板27の表面で反射されて、蛍光スクリーン14の
表面を照射する。従って、蛍光スクリーン14の表面に
は、紫外光21Bで硝子基板27の表面うねりに対応す
る強度分布が表示され、蛍光スクリーン14の表面又は
裏面には可視光による輝度分布が表示される。この状態
で、蛍光スクリーン14の表面又は裏面をカメラ16で
センシングして、蛍光スクリーン14上の輝度分布に対
応する蛍光強度画像38を求め、蛍光強度画像38から
求められた輝度分布を測定データとして画像処理部18
に記憶する。尚、画像処理部18には、高平坦度な表面
を備えたサンプル用板硝子の輝度分布、上述した工程
で求められてリファレンスデータとして記憶されてい
る。
The ultraviolet light 21B applied to the glass substrate 27 is reflected by the surface of the glass substrate 27 and illuminates the surface of the fluorescent screen 14. Therefore, the intensity distribution corresponding to the surface waviness of the glass substrate 27 by the ultraviolet light 21B is displayed on the surface of the fluorescent screen 14, and the brightness distribution by visible light is displayed on the front surface or the back surface of the fluorescent screen 14. In this state, the front surface or the back surface of the fluorescent screen 14 is sensed by the camera 16 to obtain a fluorescence intensity image 38 corresponding to the luminance distribution on the fluorescent screen 14, and the luminance distribution obtained from the fluorescence intensity image 38 is used as measurement data. Image processing unit 18
Remember. Note that the image processing unit 18, the luminance distribution of the sample for flat glass having a high flatness of the surface are stored as reference data obtained by the above process.

【0018】次に、画像処理部18は測定データからリ
ファレンスデータを減算して修正データを求め、求めら
れた修正データを記憶する。次に、画像処理部18は蛍
光強度画像38を、画像38A、画像38B、画像38
C、画像38Dに4分割して、各々の画像を横加算し
て、S/N比を上げる。次いで、画像処理部18は、横
加算したデータをバンドパスフィルタにかけて輝度変化
周期を求め、さらに、画像処理部18は横加算したデー
タに基づいて輝度変化量を求める。そして、求められた
輝度変化周期及び輝度変化量に基づいて、硝子基板27
の表面うねり長さS及び表面うねり高さHを推定し、検
査した硝子基板27の表面うねりが規定値内に入ってい
るか否かを判定する。
Next, the image processing section 18 subtracts the reference data from the measurement data to obtain the correction data, and stores the obtained correction data. Next, the image processing unit 18 converts the fluorescence intensity image 38 into an image 38A, an image 38B, and an image 38.
C, image 38D is divided into four, and each image is horizontally added to increase the S / N ratio. Next, the image processing unit 18 applies a band-pass filter to the horizontally added data to obtain a luminance change cycle, and further, the image processing unit 18 obtains the amount of luminance change based on the horizontally added data. Then, based on the obtained brightness change period and brightness change amount, the glass substrate 27
The surface waviness length S and the surface waviness height H are estimated and it is determined whether or not the surface waviness of the inspected glass substrate 27 is within the specified values.

【0019】前記実施例では蛍光強度画像38のS/N
比を上げるために加算処理を採用した場合について説明
したが、これに限らず、微分処理等のその他の処理でS
/N比を上げてもよい。尚、微分処理の場合、蛍光強度
画像38をY方向に微分して輝度の変化点が山になるよ
うな輝度分布曲線38A(図3参照)を求め、求められ
た輝度分布曲線38AをX方向に加算して、S/N比を
上げる。
In the above embodiment, the S / N of the fluorescence intensity image 38 is
The case where the addition processing is adopted to increase the ratio has been described, but the present invention is not limited to this, and S may be used in other processing such as differentiation processing.
The / N ratio may be increased. In the case of the differential processing, the fluorescence intensity image 38 is differentiated in the Y direction to obtain a luminance distribution curve 38A (see FIG. 3) such that the change points of the luminance have peaks, and the obtained luminance distribution curve 38A is set in the X direction. To increase the S / N ratio.

【0020】前記実施例では紫外光21Aを点光源から
投光された放射光とする場合について説明したが、これ
に限らず、投光された紫外光を平行光としても同様な効
果を奏する。
In the above-described embodiment, the case where the ultraviolet light 21A is the radiant light projected from the point light source has been described, but the present invention is not limited to this, and the projected ultraviolet light can be parallel light, and the same effect can be obtained.

【0021】[0021]

【発明の効果】以上説明したように本発明に係る板状材
の表面うねり検査方法及び装置によれば、紫外光を板状
材の表面で反射させて、反射光を蛍光スクリーン部材に
照射させることにより、板状材が板硝子の場合でも紫外
光が板硝子の表面のみで反射された紫外光を得ることが
でき、さらに、可視光用の撮像手段で蛍光スクリーン部
材上の輝度分布を撮像することができる。従って、板状
材の表面うねりの検査を容易に行うことができ、さら
に、低コストの表面うねり検査装置を提供することがで
きる。
As described above, according to the method and apparatus for inspecting the surface waviness of a plate-like material according to the present invention, ultraviolet light is reflected on the surface of the plate-like material and the fluorescent screen member is irradiated with the reflected light. Thus, even when the plate-shaped material is plate glass, it is possible to obtain the ultraviolet light in which the ultraviolet light is reflected only on the surface of the plate glass, and further, the brightness distribution on the fluorescent screen member is imaged by the imaging means for visible light. You can Therefore, the surface waviness of the plate-shaped material can be easily inspected, and a low-cost surface waviness inspection device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る板状材の表面うねり検査装置の全
体図
FIG. 1 is an overall view of a surface waviness inspection device for plate-like materials according to the present invention.

【図2】本発明に係る板状材の表面うねり検査装置で検
査される硝子基板の説明図
FIG. 2 is an explanatory diagram of a glass substrate inspected by a surface waviness inspection apparatus for plate-like materials according to the present invention.

【図3】本発明に係る板状材の切断装置の表面うねり検
査装置に使用される蛍光スクリーン上の輝度分布を説明
した説明図
FIG. 3 is an explanatory diagram illustrating a luminance distribution on a fluorescent screen used in a surface waviness inspection device of a plate-shaped material cutting device according to the present invention.

【図4】画像処理部で求められた蛍光強度画像の正面図FIG. 4 is a front view of a fluorescence intensity image obtained by an image processing unit.

【図5】画像処理部で求められた蛍光強度画像を4分割
した状態を説明した図
FIG. 5 is a diagram illustrating a state in which a fluorescence intensity image obtained by an image processing unit is divided into four.

【符号の説明】[Explanation of symbols]

10…板状材の表面うねり検査装置 12…紫外光投光手段 14…蛍光スクリーン(蛍光スクリーン部材) 16…カメラ(撮像手段) 18…画像処理部 21A、21B…紫外光 27…硝子基板(板状材) 10 ... Plate waviness surface waviness inspection device 12 ... Ultraviolet light projecting means 14 ... Fluorescent screen (fluorescent screen member) 16 ... Camera (imaging means) 18 ... Image processing unit 21A, 21B ... UV light 27 ... Glass substrate (plate material)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 理 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社 中央研究所内 (56)参考文献 特開 平5−256630(JP,A) 特開 昭52−82260(JP,A) 特開 昭60−58536(JP,A) 実開 昭57−61549(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 G01N 21/88 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ryo Yoshida 1150 Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Prefecture Asahi Glass Co., Ltd. Central Research Laboratory (56) Reference JP-A-5-256630 (JP, A) JP-A-52 -82260 (JP, A) JP 60-58536 (JP, A) Actual development 57-61549 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) G01B 11/00- 11/30 G01N 21/88

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 硝子基板の表面で反射されるように、紫
外光のうち硝子基板の表面で反射される波長の紫外光を
前記硝子基板に投光し、 前記硝子基板の表面で反射された、前記紫外光のうち硝
子基板の表面で反射される波長の紫外光で蛍光スクリー
ン部材の表面を照射して、前記蛍光スクリーン部材の表
面又は裏面上に前記硝子基板の表面うねりに対応する可
視光の輝度分布を表示させ、 前記蛍光スクリーン部材の表面又は裏面上に表示された
前記可視光の輝度分布を撮像手段で撮像して得られた輝
度分布信号を画像処理して前記硝子基板の表面うねりを
求めることを特徴とする硝子基板の表面うねり検査方
法。
1. A purple color so that it is reflected on the surface of a glass substrate.
And projecting ultraviolet light having a wavelength which is reflected by the surface of the glass substrate of the external light on the glass substrate, the reflected by the surface of the glass substrate, of the ultraviolet light sulfate
Irradiate the surface of the fluorescent screen member with ultraviolet light having a wavelength reflected by the surface of the substrate, and display the brightness distribution of visible light corresponding to the surface waviness of the glass substrate on the front surface or the back surface of the fluorescent screen member. Wherein the brightness distribution signal obtained by imaging the brightness distribution of the visible light displayed on the front surface or the back surface of the fluorescent screen member with an imaging means is image-processed to obtain the surface waviness of the glass substrate. Method for inspecting surface waviness of glass substrate .
【請求項2】 硝子基板の表面で反射されるように、紫
外光のうち硝子基板の表面で反射される波長の紫外光を
前記硝子基板に投光する紫外光投光手段と、 前記硝子基板の表面で反射された、前記紫外光のうち硝
子基板の表面で反射される波長の紫外光で表面が照射さ
れるように配設され、表面又は裏面上に前記硝子基板
表面うねりに対応する可視光の輝度分布が表示される蛍
光スクリーン部材と、 前記蛍光スクリーン部材上に表示された前記可視光の輝
度分布を撮像する撮像手段と、 該撮像手段から得られた輝度分布信号を画像処理して前
硝子基板の表面うねりを求める画像処理部と、 を備えたことを特徴とする硝子基板の表面うねり検査装
置。
2. A violet color so that it is reflected on the surface of the glass substrate.
And ultraviolet light projecting means for projecting ultraviolet light having a wavelength which is reflected by the surface of the glass substrate of the external light on the glass substrate, is reflected by the surface of the glass substrate, nitric among the ultraviolet light
A fluorescent screen member that is arranged so that the surface is irradiated with ultraviolet light having a wavelength reflected by the surface of the sub-substrate , and the luminance distribution of visible light corresponding to the surface waviness of the glass substrate is displayed on the front or back surface. An image pickup unit for picking up the luminance distribution of the visible light displayed on the fluorescent screen member; and an image processing unit for image-processing the luminance distribution signal obtained from the image pickup unit to obtain the surface waviness of the glass substrate. An apparatus for inspecting surface waviness of a glass substrate , comprising:
JP27839693A 1993-11-08 1993-11-08 Method and apparatus for inspecting surface undulation of glass substrate Expired - Fee Related JP3417494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27839693A JP3417494B2 (en) 1993-11-08 1993-11-08 Method and apparatus for inspecting surface undulation of glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27839693A JP3417494B2 (en) 1993-11-08 1993-11-08 Method and apparatus for inspecting surface undulation of glass substrate

Publications (2)

Publication Number Publication Date
JPH07128032A JPH07128032A (en) 1995-05-19
JP3417494B2 true JP3417494B2 (en) 2003-06-16

Family

ID=17596764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27839693A Expired - Fee Related JP3417494B2 (en) 1993-11-08 1993-11-08 Method and apparatus for inspecting surface undulation of glass substrate

Country Status (1)

Country Link
JP (1) JP3417494B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3544323B2 (en) 1998-08-31 2004-07-21 セントラル硝子株式会社 Method and apparatus for inspecting surface roughness of transparent plate
JP2007271410A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Flaw detection method, flaw detector, and flaw detection program
NL1036125A1 (en) * 2007-11-08 2009-05-11 Asml Netherlands Bv Lithographic apparatus and method.
KR100953204B1 (en) * 2008-05-19 2010-04-15 (주)쎄미시스코 Glass waviness inspection device and inspection method thereof
KR101458796B1 (en) * 2008-06-04 2014-11-10 엘지디스플레이 주식회사 Uneri Measurement Device and Measurement Method
KR101458795B1 (en) * 2008-06-04 2014-11-10 엘지디스플레이 주식회사 Uneri Measurement Device and Measurement Method
BR112012031279B1 (en) 2010-06-07 2020-02-11 AGC Inc. APPARATUS AND METHOD OF SHAPE MEASUREMENT, AND METHOD OF PRODUCTION OF A GLASS PLATE
WO2011158869A1 (en) 2010-06-15 2011-12-22 旭硝子株式会社 Shape measuring device, shape measuring method, and glass plate manufacturing method

Also Published As

Publication number Publication date
JPH07128032A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
KR100399507B1 (en) How to recognize and evaluate defects in reflective surface coatings
US5790247A (en) Technique for determining defect positions in three dimensions in a transparent structure
TWI285737B (en) Inspection of transparent substrates for defects
JP3258385B2 (en) Optical board inspection system
JP5472096B2 (en) Imaging optical inspection apparatus and method for inspecting planar reflective surface of sample
JPH03267745A (en) Surface property detecting method
WO2006029536A1 (en) Optical inspection of flat media using direct image technology
WO1997013140A9 (en) Technique for determining defect positions in three dimensions in a transparent structure
JP3653591B2 (en) Schlieren analysis method and apparatus
JPS63261144A (en) Optical web monitor
JP3417494B2 (en) Method and apparatus for inspecting surface undulation of glass substrate
EP0984245A2 (en) Method of and apparatus for inspecting surface irregularities of transparent plate
JP4104924B2 (en) Optical measuring method and apparatus
JP3770294B2 (en) Film evaluation method and film evaluation apparatus
TW200303410A (en) Method and apparatus for measuring a line width
JP2006003168A (en) Measurement method for surface shape and device therefor
JPH07209199A (en) Method and apparatus for detecting flaw of planar plate-shaped material to be inspected
JP4657700B2 (en) Calibration method for measuring equipment
CN116297337B (en) Method for judging number of layers of two-dimensional material by using dark field optical imaging technology
JP3385471B2 (en) Surface analysis method
JPS61217708A (en) Method and apparatus for measuring surface properties
JPH01313743A (en) Method for inspecting colored periodic pattern
JPH10293103A (en) Method and equipment for optical measurement and optical measuring equipment for patterned substrate
JPS61294818A (en) Defect checking method for blank of photomask
JPH0868767A (en) Apparatus for inspecting flaw of body part of bottle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees