JP3414811B2 - Recovery method of residual alloy components in slag after refining when smelting low alloy steel - Google Patents

Recovery method of residual alloy components in slag after refining when smelting low alloy steel

Info

Publication number
JP3414811B2
JP3414811B2 JP33522193A JP33522193A JP3414811B2 JP 3414811 B2 JP3414811 B2 JP 3414811B2 JP 33522193 A JP33522193 A JP 33522193A JP 33522193 A JP33522193 A JP 33522193A JP 3414811 B2 JP3414811 B2 JP 3414811B2
Authority
JP
Japan
Prior art keywords
slag
refining
alloy steel
low alloy
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33522193A
Other languages
Japanese (ja)
Other versions
JPH07188724A (en
Inventor
洋一 船岡
英行 平橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33522193A priority Critical patent/JP3414811B2/en
Publication of JPH07188724A publication Critical patent/JPH07188724A/en
Application granted granted Critical
Publication of JP3414811B2 publication Critical patent/JP3414811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、底吹ガス吹込み設備を
用いた酸素精錬装置において、低合金鋼溶製時の精錬後
スラグ中に残留する合金成分を回収する方法に関する。 【0002】 【従来の技術】転炉等の酸素精錬設備を使用して低合金
鋼(Cr含有量1.0%程度)を製造する場合、Cr源
としてCr鉱石や半還元Cr鉱石が用いられている。し
かしながら、これらの酸化物系原料を用いる場合には、
溶銑中のCによるCr2O3 等のCr酸化物の還元速度が遅い
ために、精錬中に原料内に含まれているCrを完全に回収
することが出来ない。 【0003】一方、スラグ中に残留したCr分を回収す
る方法として、ステンレス鋼等の高Cr鋼においては、
スラグ中にFeSiやAl等の還元材を添加し、底吹き
ガスでスラグと溶鋼とを撹拌する方法が一般的に用いら
れている。 【0004】 【発明が解決しようとする課題】前記の方法を低合金鋼
を溶製したスラグに適用する場合には次のような問題が
生じる。即ち、低合金鋼を溶製する場合、溶鋼中のCr
濃度が高々1%程度であり、精錬中に溶鋼中のPをスラ
グ内へ取り除くことが出来るため、低合金鋼を溶製する
際には原材料の低P化といった処理は不用である。しか
しながら、FeSiやAl等の還元材によりスラグを強制的
に還元すると、Cr以外にもPも還元されて溶鋼中に再
溶解・富化されるため、原材料の特別な低P化処理が必
要となる。 【0005】ステンレス鋼等の高Cr鋼の場合には、ス
ラグ中に残留しているCr分が溶鋼換算で2〜4%相当
と大量に存在するために、大量のFeSiやAl等の還
元材を添加する必要がある。 【0006】一方、本発明の適用対象である低合金鋼を
脱炭精錬する場合、脱炭精錬後のスラグ中には10%以
上の酸化鉄を含有しているために、脱炭精錬スラグは十
分な脱P能力を有しており、脱炭精錬中に脱P反応が進
行する。低合金鋼脱炭精錬後スラグにFeSiやAl等
の還元材を添加すると、添加された還元材はスラグ中の
Cr系酸化物を還元するが、同時にスラグ中の酸化鉄も
還元するため、添加されたFeSiやAl等によるCr
還元効率は極端に低下し、製造コストが増加する。 【0007】また、脱炭精錬後スラグに残留するCr系
酸化物を完全に還元するほどの強還元を実施すると、ス
ラグ中の酸化鉄が完全に還元され、スラグの脱P能力が
ほとんどなくなり、精錬中にスラグに移動したPが再び
溶鋼中に移動してしまう。 【0008】本発明は、前記従来技術の問題点を解消
し、低合金鋼溶製時の精錬後スラグ中に残留する合金成
分を回収する方法を提供することを目的としている。 【0009】 【課題を解決するための手段】上記目的を達成するた
め、本発明者等は、鋭意研究を重ねた結果、脱炭精錬後
スラグ中の酸化鉄濃度、スラグ中のCr2O3 濃度の制御、
還元材添加時における底吹きガス量ならびに還元後のス
ラグの塩基度の間に密接な関連のあることを知見し、本
発明を完成するに至った。 【0010】即ち、上記知見に基づいた本発明は、酸素
精錬設備を使用し、Cr含有量が0.5〜2.0 %低合金鋼
を溶製するにあたり、Cr系原料としてCr鉱石や半還元Cr
鉱石を使用する低合金鋼溶製方法において、脱炭精錬終
了直前あるいは終了後に、酸素精錬設備内に炭素系の還
元材を添加して、脱炭精錬後スラグ中の酸化鉄濃度
(T.Fe)10%以下の状態まで事前還元し、つい
で前記炭素系の還元材による予備還元終了後、スラグ中
のCr2O3 濃度を3%まで低減するために必要な量のFeSi
やAl等の金属系還元材を添加し、該還元材の添加と同時
に底吹きガスを0.05〜0.3 Nm3 /min・tの範囲と
なるように調整すると共に、還元後のスラグの塩基度
(CaO /SiO2)が2.5 〜3.5 の範囲になるよう組成を
制御することを特徴とする低合金鋼溶製時の精錬後スラ
グ中の残留合金成分回収方法を要旨としている。 【0011】 【作用】本発明の構成と作用を説明する。本発明におい
て、精錬後スラグ中の残留合金成分回収を行なうための
予備精錬は次のように作用する。即ち、脱炭精錬終了直
前あるいは終了後に、酸素精錬設備内に炭素系の還元材
を添加することにより、添加された炭素材と脱炭精錬後
スラグとの接触界面では、酸化鉄の還元反応により生じ
たCOガスにより、スラグがフォーミングする。 【0012】このスラグフォーミングにより見掛け上の
スラグ表面積が増加し、引き続いて添加される金属系還
元材との反応境界面積が増大し、底吹きガスによる撹拌
が少ない状態においてもスラグ内Cr分の還元反応が進
行しやすくなる。 【0013】炭素材を使用した予備還元により、脱炭精
錬後スラグ中の酸化鉄濃度(T.Fe)が10%以下ま
で低下しているので、引き続いて添加される金属系還元
材の還元効率は向上する。 【0014】また、還元材を添加する場合には、底吹き
ガスを0.05から0.3Nm3 /min・tの範囲に
なるように調整する必要がある。0.05Nm3 /mi
n・t未満のガス流量ではスラグ−メタルの還元反応が
ほとんど進行しないが、逆に0.3Nm3 /min・t
をこえるガス流量では、Crの還元率は向上するものの
還元後スラグ中の酸化鉄濃度(T.Fe)が3%以下ま
で低下し、スラグからの復P反応が生じてしまう。 【0015】また、還元後スラグの塩基度(CaO /Si
O2)が2.5〜3.5の範囲になるようにCaO等で組
成を制御しなければならない。もしこの処理を怠った場
合は還元後スラグの融点が低下し、溶鋼を精錬炉から取
鍋等の移動容器に移し替える場合に還元後スラグが大量
に流出し、後工程に重大な悪影響を与える。 【0016】本発明では前記の諸条件が満たされるよう
に制御することにより、還元中の復Pや取鍋へのスラグ
流出を防止しつつ、スラグ中のCrを90%程度還元回
収することが出来る。 【0017】 【実施例】本発明の実施例を図面を参照しながら説明す
るが、これによって本発明は何ら限定されるものではな
い。 実施例 図1は底吹機能を有する転炉タイプの精錬装置の側断面
図である。精錬容器内に主原料として、溶銑予備処理を
施した溶銑を95tと、スクラップを5t添加する。副原
料として焼石灰を1500kg、半還元Cr鉱石を3000kg
添加する。 【0018】吹止めC=0.06%、吹止め温度=17
00℃になるように脱炭精錬を実施する。吹錬が終了す
る直前に、炉内に土壌黒鉛 100kgと焼石灰 500kgを
添加すると、酸素精錬により鋼中C濃度を0.06%まで低
下させたために、T.Feが18%近くまで高まってい
たスラグの酸化鉄濃度が8%まで低下している。一方、
スラグは黒鉛による酸化鉄の還元反応により生じたCO
ガスで、フォーミングした状態となる。 【0019】脱炭精錬終了後、炉内にFeSiを400 k
g添加し、底吹きガスを流量0.1Nm3 /min・t
の条件で約6分間撹拌した。その結果、表1に示すよう
にほとんど復Pが生じる事無くCrを還元回収してい
る。 【0020】一方、還元後スラグの塩基度も3.3に確
保されているために、還元後のスラグ性状は比較的液相
率が少ないスラグとなり、精錬容器から移動用の取鍋へ
溶鋼を移し替える際にもほとんどスラグの流出は認めら
れなかった。 【0021】比較例として、土壌黒鉛による予備還元を
実施しない状態で、脱炭精錬終了後炉内にFeSiを40
0 kg添加し、底吹きガスを流量0.1Nm3 /min
・tの条件で約6分間撹拌した結果を表2に示す。 【0022】比較例では、スラグフォーミングが無い状
態でFeSiを添加しているために反応面積が少なく、
底吹きガス流量0.1Nm3 /min・t程度の撹拌で
はスラグと還元材が十分に反応しないために、スラグ中
の酸化鉄を還元しただけでCrはほとんど還元されていな
い。 【0023】他の比較例として、土壌黒鉛による予備還
元を実施しない状態で、脱炭精錬終了後、炉内にFeSiを
400 kg添加し、底吹きガスを流量0.5Nm3 /mi
n・tの条件で約6分間撹拌した結果を表3に示す。 【0024】 【表1】 【0025】 【表2】 【0026】 【表3】 【0027】底吹きガスの流量が0.5Nm3 /min
・tという強い撹拌の条件下では、スラグと還元材とが
十分に反応するために、スラグ中のCrがほとんど還元
されている。また、スラグ中の酸化鉄も完全に還元さ
れ、結果として脱炭精錬時に脱PされたPも完全に溶鋼
に戻ってしまった。 【0028】 【発明の効果】本発明は以上説明したように構成されて
いるから、事前に原材料の特別な低P化処理をすること
なく、しかもほとんど復Pが生じない状態で、低合金鋼
溶製時の精錬後スラグ中に残留するCr分を還元回収す
ることが出来るので、産業上極めて有用である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen refining apparatus using a bottom-blowing gas injection facility, and an alloy remaining in slag after refining during melting of low alloy steel. A method for recovering components. [0002] In the case of producing low-alloy steel (Cr content: about 1.0%) using an oxygen refining facility such as a converter, Cr ore or semi-reduced Cr ore is used as a Cr source. ing. However, when using these oxide-based materials,
Since the rate of reduction of Cr oxides such as Cr 2 O 3 by C in the hot metal is slow, it is impossible to completely recover Cr contained in the raw material during refining. [0003] On the other hand, as a method of recovering the Cr content remaining in the slag, high Cr steel such as stainless steel is used.
A method is generally used in which a reducing agent such as FeSi or Al is added to slag, and the slag and molten steel are stirred by a bottom blown gas. [0004] When the above-mentioned method is applied to slag produced by melting low-alloy steel, the following problems occur. That is, when smelting low alloy steel,
Since the concentration is at most about 1% and P in the molten steel can be removed into the slag during refining, the process of reducing the raw material P is unnecessary when the low alloy steel is melted. However, when slag is forcibly reduced with a reducing agent such as FeSi or Al, P is also reduced in addition to Cr and re-dissolved and enriched in molten steel. Become. [0005] In the case of high Cr steel such as stainless steel, a large amount of Cr remaining in the slag is equivalent to 2 to 4% in terms of molten steel, so that a large amount of reducing material such as FeSi or Al is used. Need to be added. On the other hand, when decarburizing and refining low alloy steel to which the present invention is applied, the slag after decarburizing refining contains 10% or more of iron oxide. It has a sufficient P removal capacity, and the P removal reaction proceeds during the decarburization refining. When a reducing agent such as FeSi or Al is added to slag after decarburizing and refining of low alloy steel, the added reducing agent reduces Cr-based oxides in the slag, but at the same time reduces iron oxide in the slag. Cr by FeSi or Al etc.
The reduction efficiency is extremely reduced and the production cost is increased. Further, if a strong reduction is performed to completely reduce the Cr-based oxide remaining in the slag after the decarburization refining, the iron oxide in the slag is completely reduced, and the slag has almost no ability to remove P. P that has moved to the slag during refining moves again into the molten steel. [0008] It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide a method for recovering alloy components remaining in slag after refining during low alloy steel smelting. Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies, and as a result, have found that the concentration of iron oxide in the slag after the decarburization refining and the Cr 2 O 3 in the slag Concentration control,
The present inventors have found that there is a close relationship between the amount of bottom blown gas at the time of adding a reducing agent and the basicity of slag after reduction, and have completed the present invention. [0010] Namely, the present invention based on the above findings, using oxygen refining facilities, when Cr content is melted 0.5 to 2.0% low alloy steels, Cr ore as Cr-based raw materials or semi-reduced Cr
In the low alloy steel smelting method using ore, immediately before or after the end of decarburization refining, a carbon-based reducing agent is added into the oxygen refining facility, and the iron oxide concentration (T.Fe) in the slag after decarburization refining is added. ) Is reduced in advance to a state of 10% or less, and after the completion of the preliminary reduction by the carbon-based reducing agent, the amount of FeSi necessary to reduce the Cr 2 O 3 concentration in the slag to 3%
And a metal-based reducing agent such as Al or the like, the bottom blowing gas is adjusted to be in the range of 0.05 to 0.3 Nm 3 / min · t simultaneously with the addition of the reducing agent, and the basicity of the slag after reduction ( The gist of the present invention is a method for recovering residual alloy components in slag after refining during smelting of a low alloy steel , wherein the composition is controlled so that CaO / SiO 2 ) is in the range of 2.5 to 3.5. The structure and operation of the present invention will be described. In the present invention, the pre-refining for recovering the remaining alloy components in the slag after the refining works as follows. In other words, immediately before or after the end of the decarburization refining, by adding a carbon-based reducing agent into the oxygen refining facility, at the contact interface between the added carbon material and the decarburized refining slag, a reduction reaction of iron oxide is performed. The slag is formed by the generated CO gas. The slag forming increases the apparent slag surface area, increases the reaction boundary area with the subsequently added metal-based reducing agent, and reduces the Cr content in the slag even when the stirring by the bottom blow gas is small. The reaction proceeds easily. Since the iron oxide concentration (T.Fe) in the slag after the decarburization refining is reduced to 10% or less by the preliminary reduction using the carbon material, the reduction efficiency of the metal-based reducing material added subsequently is reduced. Improves. When a reducing agent is added, it is necessary to adjust the bottom blown gas so as to be in the range of 0.05 to 0.3 Nm 3 / min · t. 0.05Nm 3 / mi
At a gas flow rate less than n · t, the reduction reaction of the slag-metal hardly proceeds, but conversely, 0.3 Nm 3 / min · t
At a gas flow rate exceeding the above, although the reduction rate of Cr is improved, the iron oxide concentration (T.Fe) in the slag after the reduction is reduced to 3% or less, and a P-reaction from the slag occurs. The basicity of the slag after reduction (CaO / Si
The composition must be controlled by CaO or the like so that O 2 ) is in the range of 2.5 to 3.5. If this treatment is neglected, the melting point of the slag decreases after reduction, and when the molten steel is transferred from the smelting furnace to a moving container such as a ladle, a large amount of the slag flows out after the reduction and has a serious adverse effect on the subsequent processes. . In the present invention, it is possible to reduce and recover about 90% of Cr in the slag while controlling the recovery P and the slag outflow to the ladle by controlling such that the above conditions are satisfied. I can do it. Embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. Embodiment FIG. 1 is a side sectional view of a converter type refining apparatus having a bottom blowing function. In a smelting vessel, 95t of hot metal subjected to hot metal pretreatment and 5t of scrap are added as main raw materials. 1500 kg of calcined lime and 3000 kg of semi-reduced Cr ore as auxiliary materials
Added. Blow stop C = 0.06%, blow stop temperature = 17
Decarburization refining is performed so as to reach 00 ° C. When 100 kg of soil graphite and 500 kg of calcined lime were added to the furnace immediately before the end of blowing, the C concentration in steel was reduced to 0.06% by oxygen refining. The iron oxide concentration of the slag, whose Fe has increased to nearly 18%, has decreased to 8%. on the other hand,
The slag is produced by the reduction reaction of iron oxide by graphite.
The gas is formed by the gas. After the decarburization refining is completed, 400 k FeSi is introduced into the furnace.
g and the bottom blown gas is supplied at a flow rate of 0.1 Nm 3 / min · t.
Was stirred for about 6 minutes. As a result, as shown in Table 1, Cr was reduced and recovered with almost no recovery P. On the other hand, since the basicity of the reduced slag is also maintained at 3.3, the reduced slag has a relatively low liquid phase ratio, and the molten steel is transferred from the refining vessel to the ladle for transfer. Almost no slag flow was observed during the transfer. As a comparative example, after the decarburization refining was completed, FeSi was added to the furnace in a state where the preliminary reduction with soil graphite was not performed.
0 kg is added, and the bottom blown gas is supplied at a flow rate of 0.1 Nm 3 / min.
Table 2 shows the results of stirring for about 6 minutes under the condition of t. In the comparative example, the reaction area was small because FeSi was added without slag forming.
Since the slag and the reducing agent do not sufficiently react with the stirring at the bottom blown gas flow rate of about 0.1 Nm 3 / min · t, Cr is hardly reduced only by reducing the iron oxide in the slag. As another comparative example, FeSi was introduced into the furnace after the decarburization refining without pre-reduction with soil graphite.
400 kg is added, and the bottom blown gas is flowed at a flow rate of 0.5 Nm 3 / mi.
Table 3 shows the results of stirring for about 6 minutes under the condition of n · t. [Table 1] [Table 2] [Table 3] The flow rate of the bottom blow gas is 0.5 Nm 3 / min.
・ Under the strong stirring condition of t, the slag and the reducing material react sufficiently, so that Cr in the slag is almost reduced. Further, the iron oxide in the slag was completely reduced, and as a result, P removed from P during the decarburization refining completely returned to molten steel. As described above, the present invention is constructed as described above. Therefore, a low alloy steel is produced without a special low P treatment of raw materials in advance, and with little P recovery. Since the Cr content remaining in the slag after refining at the time of smelting can be reduced and recovered, it is extremely useful in industry.

【図面の簡単な説明】 【図1】本発明に使用する底吹機能を有する転炉タイプ
の精錬装置の側断面図である。 【符号の説明】 1--溶鋼、2--Cr含有スラグ、3--酸素ランス、4--炉
体、5--ホッパー、6--酸素ジェット、7--底吹羽口、
8--底吹ガス。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side sectional view of a converter type refining apparatus having a bottom blowing function used in the present invention. [Description of Signs] 1-molten steel, 2-Cr containing slag, 3-oxygen lance, 4-furnace body, 5-hopper, 6-oxygen jet, 7-bottom tuyere,
8-bottom blowing gas.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21C 5/28 C21C 5/36 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C21C 5/28 C21C 5/36

Claims (1)

(57)【特許請求の範囲】 【請求項1】 酸素精錬設備を使用し、Cr含有量が0.5
〜2.0 %低合金鋼を溶製するにあたり、Cr系原料とし
てCr鉱石や半還元Cr鉱石を使用する低合金鋼溶製方法に
おいて、脱炭精錬終了直前あるいは終了後に、酸素精錬
設備内に炭素系の還元材を添加して、脱炭精錬後スラグ
中の酸化鉄濃度(T.Fe)10%以下の状態まで事
前還元し、ついで前記炭素系の還元材による予備還元終
了後、スラグ中のCr2O3 濃度を3%まで低減するために
必要な量のFeSiやAl等の金属系還元材を添加し、該還元
材の添加と同時に底吹きガスを0.05〜0.3 Nm3 /mi
n・tの範囲となるように調整するとともに、還元後の
スラグの塩基度(CaO /SiO2)が2.5 〜3.5 の範囲にな
るよう組成を制御することを特徴とする低合金鋼溶製
時の精錬後スラグ中の残留合金成分回収方法。
(57) [Claims] [Claim 1] Using an oxygen refining facility, and having a Cr content of 0.5
In the low alloy steel smelting method that uses Cr ore or semi-reduced Cr ore as a Cr-based raw material when melting low alloy steel of up to 2.0%, the carbon After the decarburization and refining, the iron oxide concentration (T.Fe) in the slag is preliminarily reduced to a state of 10% or less, and after the preliminary reduction by the carbon-based reducing material is completed, Of a metal-based reducing agent such as FeSi or Al necessary for reducing the Cr 2 O 3 concentration of the alloy to 3% , and simultaneously with the addition of the reducing agent, the bottom-blown gas is supplied at 0.05 to 0.3 Nm 3 / mi.
while it adjusted in the range of n · t, low alloy steel smelting, which comprises controlling the composition as the slag basicity after reduction (CaO / SiO 2) is in the range of 2.5 to 3.5 Method of recovering residual alloy components in slag after refining.
JP33522193A 1993-12-28 1993-12-28 Recovery method of residual alloy components in slag after refining when smelting low alloy steel Expired - Fee Related JP3414811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33522193A JP3414811B2 (en) 1993-12-28 1993-12-28 Recovery method of residual alloy components in slag after refining when smelting low alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33522193A JP3414811B2 (en) 1993-12-28 1993-12-28 Recovery method of residual alloy components in slag after refining when smelting low alloy steel

Publications (2)

Publication Number Publication Date
JPH07188724A JPH07188724A (en) 1995-07-25
JP3414811B2 true JP3414811B2 (en) 2003-06-09

Family

ID=18286118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33522193A Expired - Fee Related JP3414811B2 (en) 1993-12-28 1993-12-28 Recovery method of residual alloy components in slag after refining when smelting low alloy steel

Country Status (1)

Country Link
JP (1) JP3414811B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109022665B (en) * 2018-08-21 2020-05-01 宝钢德盛不锈钢有限公司 Application of ladle bottom low-nickel-chromium residual iron in common carbon steel smelting process

Also Published As

Publication number Publication date
JPH07188724A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
AU2652201A (en) Method for treating slags or slag mixtures on an iron bath
JP3414811B2 (en) Recovery method of residual alloy components in slag after refining when smelting low alloy steel
JP3220233B2 (en) Refining method of ultra-low carbon / ultra low sulfur chromium-containing molten steel
JP2912963B2 (en) Slag reforming method as desulfurization pretreatment
JP3158912B2 (en) Stainless steel refining method
JPH07316618A (en) Method for pre-refining smelting reduction molten iron
JP2964861B2 (en) Stainless steel manufacturing method
JP3063537B2 (en) Stainless steel manufacturing method
KR100411288B1 (en) Method for recovering chromium from electric furnace slag
JP3233304B2 (en) Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore
JP3393668B2 (en) Production of low Si, low P, and high Mn hot metal with smelting reduction of Mn ore
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JPH01215917A (en) Method for melting stainless steel
JPH0841516A (en) Pre-refining method
JP2002069520A (en) Method for recovering chromium in slag
JP3765092B2 (en) Ladle stirring method for electric arc furnace hot metal
JPH0849007A (en) Treatment of stainless steel slag
SU1092187A1 (en) Method for decarbonizing high-carbon ferrochrome or ferromanganese
JP2764339B2 (en) Method of treating hot metal for high chromium low P low S steel
JPH01168806A (en) Production of chromium-contained molten iron
JPS61223117A (en) Method for reducing and recovering metallic oxide in molten slag
JPS61253311A (en) Method for melting and reducing chrome ore
JPH06145767A (en) Method for removing manganese in molten iron and production of pure iron for industrial purpose
JPH0841519A (en) Steelmaking method
JPH07138628A (en) Method for refining steel enabling addition of large quantity of cold material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees