JP3158912B2 - Stainless steel refining method - Google Patents

Stainless steel refining method

Info

Publication number
JP3158912B2
JP3158912B2 JP31962494A JP31962494A JP3158912B2 JP 3158912 B2 JP3158912 B2 JP 3158912B2 JP 31962494 A JP31962494 A JP 31962494A JP 31962494 A JP31962494 A JP 31962494A JP 3158912 B2 JP3158912 B2 JP 3158912B2
Authority
JP
Japan
Prior art keywords
slag
decarburization
coke
reduction
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31962494A
Other languages
Japanese (ja)
Other versions
JPH08176638A (en
Inventor
政樹 宮田
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP31962494A priority Critical patent/JP3158912B2/en
Publication of JPH08176638A publication Critical patent/JPH08176638A/en
Application granted granted Critical
Publication of JP3158912B2 publication Critical patent/JP3158912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルゴン−酸素脱炭(A
OD) 炉、転炉等の製鋼炉において、溶銑、スクラップ、
合金鉄、リサイクルスラグおよび炭材等を用いてステン
レス鋼を溶製する方法に関する。
The present invention relates to an argon-oxygen decarburization (A
OD) In steelmaking furnaces such as furnaces and converters, hot metal, scrap,
The present invention relates to a method for melting stainless steel using alloyed iron, recycled slag, carbon material, and the like.

【0002】[0002]

【従来の技術】ステンレス鋼の溶製方法として最も典型
的なプロセスは、スクラップや Fe-Cr、Fe-Ni 等の合金
鉄を主原料とし、原材料を電気炉で溶解して粗溶湯と
し、その後AOD 炉またはVOD 炉等で脱炭と還元精錬を行
い、出鋼後受鋼鍋でAr吹き込みを行って溶鋼の清浄化お
よび温度コントロールを行い、次いで連続鋳造機にかけ
るものである。
2. Description of the Related Art The most typical process for smelting stainless steel is to use scrap or alloyed iron such as Fe-Cr or Fe-Ni as a main raw material, and melt the raw material in an electric furnace to form a coarse molten metal. Decarburization and reduction smelting are performed in an AOD furnace or a VOD furnace, etc., and after tapping, Ar is blown in a steel receiving pan to clean the molten steel and control the temperature, and then to a continuous casting machine.

【0003】鉄と鋼,1985,vol.71,180に報告されている
ように、電気炉を用いずに底吹転炉内に溶銑を装入し、
ステンレス鋼の成分となるように脱炭吹錬中または吹錬
前にスクラップや合金鉄を添加して所定の成分とし、脱
炭工程終了後Fe−Si等の合金鉄を投入して還元工程に移
行し、その後出鋼して連続鋳造するプロセスもある。
[0003] As reported in Iron and Steel, 1985, vol. 71, 180, hot metal is charged into a bottom-blowing converter without using an electric furnace,
Scrap or ferroalloys are added during or before decarburization so as to become a component of stainless steel to make predetermined components, and after the decarburization process, ferroalloys such as Fe-Si are put into the reduction process. There is also a process of shifting, then tapping and continuous casting.

【0004】他にクロム鉱石を用いるステンレス鋼溶製
プロセスが存在する。例えば、鉄と鋼,1985,vol.71,107
2 に報告される方法は、AOD 炉に溶銑を装入し、クロム
鉱石とコークスを投入して、いわゆる溶融還元を行い、
その後スラグを除去して通常の脱炭精錬を行うものであ
る。
[0004] There are other stainless steel smelting processes using chromium ore. For example, Iron and Steel, 1985, vol. 71, 107
In the method reported in 2, the molten iron is charged into an AOD furnace, chromium ore and coke are charged, and so-called smelting reduction is performed.
Thereafter, slag is removed and ordinary decarburization refining is performed.

【0005】しかし上記方法では、以下の問題点があ
る。
However, the above method has the following problems.

【0006】(1)酸化クロムを還元するために大量のSi
(多くの場合Fe−Si)を添加する必要があり、コストが
高くなる。
(1) To reduce chromium oxide, a large amount of Si
(Often Fe-Si) must be added, which increases costs.

【0007】(2)還元反応生成物としてSiO2が発生する
ため、それを中和するためのCaO を大量に必要とする。
その結果、大量のスラグが発生する。
(2) Since SiO 2 is generated as a reduction reaction product, a large amount of CaO is required to neutralize it.
As a result, a large amount of slag is generated.

【0008】(3)酸化クロムのSiによる還元反応は発熱
反応であるため温度が上昇すること、および上記スラグ
は流動性に富むことにより、耐火物が侵食される。
(3) Since the reduction reaction of chromium oxide with Si is an exothermic reaction, the temperature rises and the slag is rich in fluidity, so that refractories are eroded.

【0009】これらの問題を解決しようとする方法とし
て、例えば特公平4−38806 号公報には、ステンレス鋼
粗溶湯の脱炭末期の含クロムスラグを溶融還元炉に戻し
て、クロム分を還元回収するプロセスが提案されてい
る。この方法によればFe−Siを用いる還元工程を省略す
ることができるため、上記の問題点は解決される。特公
平2−232312号公報のステンレス鋼の溶製方法では、脱
炭炉に残留した含クロムスラグを次チャージのステンレ
ス鋼粗溶湯中の〔C〕で還元回収可能な条件は、溶湯中
の〔C〕が〜5%、温度が1500℃以上であるとしてい
る。
As a method for solving these problems, for example, Japanese Patent Publication No. 4-38806 discloses that chromium-containing slag at the final stage of decarburization of a molten stainless steel is returned to a smelting reduction furnace to reduce and recover chromium. A process has been proposed. According to this method, the above problem can be solved because the reduction step using Fe—Si can be omitted. In the method for smelting stainless steel disclosed in Japanese Patent Publication No. 2-232312, the conditions under which the chromium-containing slag remaining in the decarburization furnace can be reduced and recovered by [C] in the next charge of the stainless steel crude melt are as follows: C] is 5% and the temperature is 1500 ° C. or higher.

【0010】本発明者らは特願平5−336863号公報にお
いて、脱炭末期スラグを同一炉にリサイクルして次チャ
ージの粗溶湯の脱炭昇温時にスラグ中酸化クロムを
〔C〕で還元回収し、還元末期にSi含有合金を添加して
クロムの還元率を向上させるプロセスを提案した。
The inventors of the present invention disclosed in Japanese Patent Application No. 5-336863 that the last stage of decarburization slag was recycled to the same furnace, and the chromium oxide in the slag was reduced with [C] at the time of decarburization of the next charge of the molten metal. A process to improve the chromium reduction rate by adding Si-containing alloy at the end of reduction was proposed.

【0011】[0011]

【発明が解決しようとする課題】特公平4-38806 号公報
の方法は、溶融還元炉と脱炭炉の2炉を持たなければ実
現することができない。特公平2−232312号公報の方法
は、脱炭吹錬中に溶湯中の〔C〕でスラグ中の酸化クロ
ムを還元するものであるが、脱炭吹錬末期には〔C〕が
低くなり、溶湯中の〔C〕は脱炭炉に残留した前チャー
ジの酸化クロム含有スラグを還元してクロムを回収する
能力が低く、所望の高いクロム還元率を達成することが
できない。
The method disclosed in Japanese Patent Publication No. 4-38806 cannot be realized without two smelting reduction furnaces and decarburization furnaces. In the method disclosed in Japanese Patent Publication No. 2332312, the chromium oxide in the slag is reduced by [C] in the molten metal during decarburization blowing, but at the end of decarburization blowing, [C] decreases. [C] in the molten metal has a low ability to recover chromium by reducing the pre-charged chromium oxide-containing slag remaining in the decarburization furnace, and cannot achieve a desired high chromium reduction rate.

【0012】特願平5−336863号公報の方法においても
コークスを初装で添加するが、同様に単に脱炭末期スラ
グを炉内に添加して溶湯中の〔C〕により添加スラグ中
の酸化クロムを還元するだけであり、その還元速度が遅
く、やはりクロム還元率が十分ではない。すなわち、ス
ラグが滓化する還元温度(1500〜1600℃)にまで、脱炭
吹錬開始後早急に昇熱する必要があるにもかかわらず、
注銑時の溶銑温度は高々1300℃程度であり、吹錬開始前
あるいは吹錬開始直後に酸化クロム含有スラグおよびコ
ークスを添加する場合、これらの添加起因の抜熱により
上記還元温度までの昇熱時間が長くなる。更に粗脱炭末
期にはスラグ中にコークスが存在しないため、スラグ中
の酸化クロム(以下、 Cr2O3とも記す)の〔C〕による
還元はメタル−スラグ界面でのみ生じるが、メタル(溶
湯)中〔C〕が2%以下の低濃度まで脱炭が進行した状
態では還元速度が低下してしまうことにより、Cr2O3
〔C〕による還元率は不十分となってしまう。しかも、
粗脱炭中期から末期にかけてはスラグの滓化が進行して
スラグ中に未溶解のCr2O3 固体粒子が存在するために、
スロッピングが発生し易い条件となっており、クロム源
となるCr2O3 からのクロム還元率向上の点からも、この
スロッピングを抑制する必要がある。
In the method disclosed in Japanese Patent Application No. 5-336863, coke is initially added, but similarly, slag at the end of decarburization is simply added to the furnace, and oxidation in the added slag is performed by [C] in the molten metal. It only reduces chromium, the rate of reduction is slow, and again the chromium reduction rate is not sufficient. In other words, although it is necessary to raise the temperature immediately after the decarburization blowing to the reduction temperature (1500 to 1600 ° C) at which the slag turns into slag,
The hot metal temperature at the time of pouring is at most about 1300 ° C. When slag and coke containing chromium oxide are added before or immediately after blowing, the temperature rises to the above-mentioned reduction temperature due to the heat removal caused by these additions. The time gets longer. Furthermore, since coke does not exist in the slag at the end of the crude decarburization, the reduction of chromium oxide (hereinafter also referred to as Cr 2 O 3 ) in the slag by [C] occurs only at the metal-slag interface. In the state where decarburization has progressed to a low concentration of 2% or less in [C], the reduction rate decreases, and the reduction rate of Cr 2 O 3 by [C] becomes insufficient. Moreover,
During the middle to late stages of coarse decarburization, slagification of slag progresses and undissolved Cr 2 O 3 solid particles are present in slag,
The conditions are such that slopping is likely to occur, and it is necessary to suppress the slopping also from the viewpoint of improving the chromium reduction rate from Cr 2 O 3 as a chromium source.

【0013】本発明の目的は、1基の炉を用い、粗脱炭
末期においてCr2O3 含有リサイクルスラグからのクロム
還元率を向上させることができるステンレス鋼の精錬方
法を提供することにある。
An object of the present invention is to provide a method for refining stainless steel that can improve the chromium reduction rate from Cr 2 O 3 -containing recycled slag in the final stage of crude decarburization using one furnace. .

【0014】[0014]

【課題を解決するための手段】本発明の要旨は、次のス
テンレス鋼の精錬方法にある。
The gist of the present invention resides in the following method for refining stainless steel.

【0015】ステンレス鋼溶製の際の脱炭期で発生した
酸化クロム含有リサイクルスラグと含炭素材とを炉内に
添加した後、溶銑の粗脱炭昇温吹錬と酸化クロムの還元
とを行い、その後仕上還元、脱硫、流滓、成分調整およ
び仕上脱炭を施すステンレス鋼の精錬方法において、さ
らに粗脱炭昇温吹錬工程の末期に含炭素材をスラグ中に
添加してスロッピングを抑制しながら、酸化クロム含有
リサイクルスラグからのクロム還元率を向上させること
を特徴とするステンレス鋼の精錬方法。
After adding the chromium oxide-containing recycled slag generated during the decarburization period and the carbonaceous material during the melting of stainless steel to the furnace, the hot metal is subjected to rough decarburization heating blowing and reduction of the chromium oxide. In the refining method of stainless steel, which performs finish reduction, desulfurization, slag, component adjustment, and finish decarburization, carbon-containing material is further added to slag at the end of the rough decarburization heating and blowing step, and slopping is performed. A method for refining stainless steel, characterized by improving the chromium reduction rate from chromium oxide-containing recycled slag while suppressing chromium oxide.

【0016】上記の「粗脱炭昇温吹錬工程の末期」と
は、溶湯中の〔C〕が 1.0〜0.3 重量%の範囲に、溶湯
温度が1600〜1750℃の範囲に、それぞれ到達した時点を
いう。
The term "late stage of the rough decarburization heating and blowing step" means that [C] in the molten metal has reached the range of 1.0 to 0.3% by weight and the temperature of the molten metal has reached the range of 1600 to 1750 ° C. Time point.

【0017】上記の「含炭素材」は、コークス、チャー
または無煙炭などの含炭素材を意味し、粒径範囲が 0.1
〜50mmのコークスを用いるのが望ましい。
The above-mentioned "carbon-containing material" means a carbon-containing material such as coke, char or anthracite, and has a particle size range of 0.1.
It is desirable to use ~ 50 mm of coke.

【0018】上記の含炭素材の添加量の望ましい範囲
は、炭素純分換算で9〜180 kg/スラグトンである。
The preferable range of the amount of the carbon-containing material is 9 to 180 kg / slag ton in terms of pure carbon.

【0019】[0019]

【作用】本発明方法を実現するための装置は1基の通常
のAOD 炉、転炉等の製鋼炉であればよい。通常の方法で
製造された溶銑をこれらの炉に装入し、粗脱炭昇温とCr
2O3 の還元回収、仕上還元と脱硫、流滓、成分調整およ
び仕上脱炭を行う。
The apparatus for realizing the method of the present invention may be any one ordinary steel making furnace such as an AOD furnace or a converter. The hot metal produced by the usual method is charged into these furnaces,
Performs 2 O 3 reduction recovery, finish reduction and desulfurization, sludge, component adjustment and finish decarburization.

【0020】図1により本発明方法を説明する。図1は
本発明方法の例を説明するフロー図である。図示する場
合は、脱りん処理された溶銑の粗脱炭昇温吹錬前に、前
チャージの仕上脱炭で生じたCr2O3 含有スラグおよび初
装コークスを添加し、さらに吹錬中の粗脱炭昇温吹錬末
期にコークス粒をスラグ中に添加し、スロッピングを抑
制するとともに、コークス粒中の炭素でスラグ中のCr2O
3 からのCrの還元回収を図りながら粗脱炭と昇温を行
う。次いで、同じ炉内にSi含有合金およびAl含有合金の
一方もしくは両方を添加して仕上還元と脱硫を施し、そ
の終了後スラグを流出させ、次いでFe−Crを添加して成
分調整を行い、さらに仕上脱炭した後、出鋼する。仕上
脱炭後の炉内スラグは、例えばそのまま炉内に残して次
のチャージの粗脱炭昇温吹錬にリサイクルされ、仕上脱
炭で発生したCr2O3 からCrを極力回収する。
The method of the present invention will be described with reference to FIG. FIG. 1 is a flowchart illustrating an example of the method of the present invention. In the case shown in the figure, before the dephosphorization of the hot metal subjected to the decarburization, the slag containing Cr 2 O 3 and the initial coke generated by the final decarburization of the pre-charging were added before the hot de-carburization of the hot metal. Coke grains are added to the slag at the end of coarse decarburization heating and blowing to suppress slopping, and the carbon in the coke grains reduces the Cr 2 O in the slag.
Crude decarburization and temperature rise are performed while reducing and recovering Cr from 3 . Next, in the same furnace, one or both of the Si-containing alloy and the Al-containing alloy are added and subjected to finish reduction and desulfurization.After that, the slag is discharged, and then Fe-Cr is added to adjust the components. After finishing decarburization, tapping is performed. The slag in the furnace after the finish decarburization is left in the furnace as it is, for example, and recycled in the next charge of rough decarburization heating and blowing to recover as much Cr as possible from Cr 2 O 3 generated in the finish decarburization.

【0021】リサイクルスラグおよび初装コークスの添
加量は、溶銑および目標溶湯のCr分および温度に応じて
決めればよい。
The amount of the recycled slag and initially added coke may be determined according to the Cr content and the temperature of the hot metal and the target molten metal.

【0022】上述の方法により、溶銑中の炭素またはコ
ークス等の含炭素材によりCr2O3 を還元し、仕上還元期
における金属Siなどの還元剤添加の省略または添加量の
節減を図ることができる。
According to the above-described method, it is possible to reduce Cr 2 O 3 by carbon-containing material such as carbon or coke in hot metal and to omit addition of a reducing agent such as metal Si or to reduce the amount of addition during the finish reduction period. it can.

【0023】上記の方法における望ましい条件を次に説
明する。
Desirable conditions in the above method will be described below.

【0024】含炭素材の追加添加時期は、粗脱炭昇温吹
錬工程(以下、単に粗脱炭という)末期で溶湯中の
〔C〕が 1.0〜0.3 重量%の範囲に、溶湯温度が1600〜
1750℃の範囲に、それぞれ到達した時点である。含炭素
材には、コークス、チャーまたは無煙炭などを用いるこ
とができるが、粒径範囲が 0.1〜50mmのコークスを用い
るのが望ましい。含炭素材添加量の望ましい範囲は、炭
素純分換算で9〜180 kg/スラグトンである。
The carbon-containing material is added at the end of the rough decarburization heating / blowing step (hereinafter simply referred to as coarse decarburization) at a time when [C] in the molten metal is in the range of 1.0 to 0.3% by weight, 1600 ~
This is the point in time when the temperature reached the range of 1750 ° C, respectively. Coke, char, or anthracite can be used as the carbon-containing material, but it is preferable to use coke having a particle size range of 0.1 to 50 mm. A desirable range of the carbon-containing material addition amount is 9 to 180 kg / slag ton in terms of pure carbon.

【0025】次に、本発明方法の作用効果と上記条件が
望ましい理由を述べる。
Next, the operation and effect of the method of the present invention and the reason why the above conditions are desirable will be described.

【0026】粗脱炭末期にCr2O3 含有リサイクルスラグ
中のCr2O3 を溶湯中の〔C〕で還元するには、スラグが
滓化する温度(1500 ℃以上) にまで粗脱炭開始後早急に
昇熱する必要がある。しかし、炉内に装入される時の溶
銑温度は高々1300℃程度であり、粗脱炭開始前あるいは
粗脱炭開始直後にCr2O3 含有リサイクルスラグおよび例
えばコークスを添加する場合、スラグおよびコークス添
加起因の抜熱により、滓化温度(1500 ℃以上) までの昇
熱時間が長くなってしまう。
The crude To reduce Cr 2 O 3 in Cr 2 O 3 containing recycled slag in the molten metal in the [C] to decarburization end, crude decarburization to a temperature at which the slag is slag formation (1500 ° C. or higher) It is necessary to heat up immediately after the start. However, the hot metal temperature at the time of being charged into the furnace is at most about 1300 ° C., and when Cr 2 O 3 -containing recycled slag and, for example, coke are added before or immediately after coarse decarburization, slag and Due to the heat removal caused by the coke addition, the time required for heating up to the slagging temperature (1500 ° C or more) becomes longer.

【0027】図2は、粗脱炭時の溶湯温度推移とCr還元
率との関係を示す図である。図示するように、昇温初期
には還元はあまり進行しないため、コークス粒などの含
炭素材が炉内に大量にある必要はない。また、還元温度
(スラグ滓化温度、1500℃以上)まで昇温した後でも、
例えば大量のコークスを添加すると、コークスが冷却剤
の役目を果たすために急激にスラグ温度が低下して還元
温度を保持することができなくなって還元速度が低下し
てしまう。よって、溶湯温度が1500℃以上に到達した時
点で、含炭素材を追加添加、望ましくは連続添加してCr
還元を促進させるのがよい。連続添加の場合には温度低
下を抑制することができる。
FIG. 2 is a graph showing the relationship between the transition of the molten metal temperature and the rate of Cr reduction during rough decarburization. As shown in the figure, since the reduction does not proceed so much in the early stage of the temperature rise, it is not necessary for the carbon-containing material such as coke particles to be present in a large amount in the furnace. In addition, even after heating to the reduction temperature (slagging temperature, 1500 ° C or higher),
For example, when a large amount of coke is added, the coke serves as a coolant, so that the slag temperature sharply decreases and the reduction temperature cannot be maintained, thereby reducing the reduction rate. Therefore, when the temperature of the molten metal reaches 1500 ° C. or higher, additional carbon-containing material is added, desirably,
The reduction should be promoted. In the case of continuous addition, a decrease in temperature can be suppressed.

【0028】一方、コークス粒などの含炭素材を粗脱炭
末期で適正量添加することは、実施例で後述するよう
に、スロッピングを抑制するのに有効となる。これは、
コークスとスラグとは濡れ性が悪いため、CO気泡がス
ラグとコークスとの界面で合体してスラグ中を抜けやす
くなり、スラグ中にコークスを添加することにより、
還元がより進行して、スラグがフォーミングし難い組成
になるためである。
On the other hand, the addition of an appropriate amount of carbon-containing material such as coke particles at the end of rough decarburization is effective in suppressing sloping as described later in Examples. this is,
Because the coke and the slag have poor wettability, CO bubbles coalesce at the interface between the slag and the coke, making it easier to pass through the slag, and by adding coke to the slag,
This is because the reduction proceeds further and the slag becomes a composition that is difficult to form.

【0029】更に、粗脱炭末期で溶湯中〔C〕が2%以
下、スラグ中のCr2O3 が低値となった時点では、粗脱炭
開始前に添加したコークスはスラグ中にほとんど存在せ
ず、Cr2O3 の炭素による還元は、溶湯中の〔C〕による
しかなく、したがって、この還元反応はスラグと溶湯と
の界面のみで生じており、溶湯中の〔C〕の低下と共に
還元速度も低下していくので、この時期にスラグ中へコ
ークスなどの含炭素材をさらに添加して、スラグと含炭
素材との界面を生成させて還元反応を生じさせること
は、総括のCr還元速度および還元率向上のために極めて
有利である。
Further, at the end of the rough decarburization, when the content of [C] in the molten metal is 2% or less and the Cr 2 O 3 in the slag is low, the coke added before the start of the rough decarburization is almost completely contained in the slag. Absent, the reduction of Cr 2 O 3 by carbon is due only to [C] in the molten metal, and therefore, this reduction reaction occurs only at the interface between the slag and the molten metal, and the [C] in the molten metal decreases. At the same time, the reduction rate is also reduced.At this time, adding a carbon-containing material such as coke into the slag to generate an interface between the slag and the carbon-containing material to cause a reduction reaction is a general summary. This is extremely advantageous for improving the Cr reduction rate and the reduction rate.

【0030】図3は、粗脱炭末期におけるコークス添加
有無の場合の、溶湯中〔C〕とCr還元率との関係を示す
図である。横軸は粗脱炭時間、破線は溶湯中〔C〕の推
移である。図示するように、粗脱炭末期でコークスをさ
らに添加すれば低〔C〕においてもCr還元率が向上す
る。よって、含炭素材を添加する粗脱炭末期での溶湯中
の〔C〕は 1.0〜0.3 重量%の範囲とするのが望まし
い。
FIG. 3 is a diagram showing the relationship between [C] in the molten metal and the Cr reduction ratio when coke is added or not at the end of crude decarburization. The horizontal axis shows the rough decarburization time, and the broken line shows the transition in the molten metal [C]. As shown in the figure, if coke is further added at the end of crude decarburization, the Cr reduction rate is improved even at low [C]. Therefore, it is desirable that the content of [C] in the molten metal at the end of crude decarburization to which the carbon-containing material is added be in the range of 1.0 to 0.3% by weight.

【0031】前述の含炭素材のうち、粒径範囲が 0.1〜
50mmのコークスを用いるのが望ましいのは次の理由によ
る。
Of the carbon-containing materials described above, the particle size range is 0.1 to
It is desirable to use 50 mm coke for the following reasons.

【0032】添加は炉上からスラグ中へ行うが、スラグ
とコークスとの界面を生成させるにはスラグ中に分散
し、かつ滞留するような条件を選択する必要がある。コ
ークス粒径が0.1mm 未満では添加時の飛散ロスが大であ
り、更にコークスはスラグ上面に堆積してしまい、十分
なスラグとコークスとの界面積を確保することができな
い。
The addition is carried out from the furnace into the slag. In order to form an interface between the slag and coke, it is necessary to select conditions such that the slag is dispersed and stays in the slag. If the coke particle size is less than 0.1 mm, the scattering loss at the time of addition is large, and the coke is further deposited on the upper surface of the slag, and a sufficient interfacial area between the slag and the coke cannot be secured.

【0033】図4は、コークス粒径と炉内添加時の飛散
ロス率との関係を示す図である。図示するように、粒径
が0.1mm 未満ではロスが増大する。
FIG. 4 is a diagram showing the relationship between the coke particle size and the scattering loss rate during addition in the furnace. As shown in the figure, the loss increases when the particle size is less than 0.1 mm.

【0034】一方、コークス粒径が50mmを超えると下記
〜の問題が生ずる。
On the other hand, if the coke particle size exceeds 50 mm, the following problems (1) to (4) occur.

【0035】コークス添加重量当たりのスラグとコー
クスとの界面積増大効率向上が望めない。
It is not possible to improve the efficiency of increasing the interfacial area between slag and coke per coke added weight.

【0036】スラグ中への均一な分散による、スラグ
への熱付与効率化と還元速度向上が望めない。
It is not possible to improve the efficiency of heat application to the slag and the reduction rate by uniformly dispersing the slag in the slag.

【0037】上記界面積を増加させるために必要なコ
ークス添加量が増大してしまい、コストおよび熱的に不
経済となる。
The amount of coke added required to increase the interfacial area increases, which is costly and thermally uneconomical.

【0038】コークス添加時にコークスがスラグ層を
貫通して溶湯面に沈んでしまうので、スラグ中に分散す
る前に溶湯中に溶けてしまい、上記界面を効率良く生成
させることができない。
When coke is added, coke penetrates the slag layer and sinks on the surface of the molten metal, so that the coke is dissolved in the molten metal before being dispersed in the slag, and the above-mentioned interface cannot be efficiently formed.

【0039】図5は、コークス粒径と粗脱炭末期のCr還
元率との関係を示す図である。図示するように、粒径が
50mmを超えるとCr還元率が低下する。
FIG. 5 is a graph showing the relationship between the coke particle size and the Cr reduction rate at the end of the rough decarburization. As shown in the figure,
If it exceeds 50 mm, the Cr reduction rate decreases.

【0040】スラグ中にコークスを分散、滞留させた場
合、コークスは上吹き酸素と反応して高温になり、その
結果スラグとコークスとの界面で高い還元反応速度が得
られるばかりでなく、高温のコークスがスラグと接触す
ることによりスラグ全体の温度が上昇し、上記界面での
還元速度も増加する。
When coke is dispersed and retained in the slag, the coke reacts with the top-blown oxygen to reach a high temperature. As a result, not only a high reduction reaction rate is obtained at the interface between the slag and the coke, but also the high-temperature When the coke comes into contact with the slag, the temperature of the entire slag increases, and the reduction rate at the interface increases.

【0041】望ましいコークス添加量の範囲は、炭素純
分換算で9〜180 kg/スラグトンである。添加するコー
クス量は経済性の観点から決まる。すなわち、コークス
添加によりCr還元率は向上するが、9kg/スラグトン未
満ではコークス添加効果が小さすぎる。
A desirable range of the coke addition amount is 9 to 180 kg / slag ton in terms of pure carbon. The amount of coke to be added is determined from the viewpoint of economy. That is, although the Cr reduction rate is improved by adding coke, the effect of adding coke is too small at less than 9 kg / slagton.

【0042】一方、含炭素材の添加量が180 kg/スラグ
トンを超えると、下記〜の理由で不適切となる。
On the other hand, if the addition amount of the carbon-containing material exceeds 180 kg / slagton, it becomes inappropriate for the following reasons.

【0043】スラグ温度が低下し、逆に還元速度が低
下してしまう。
The slag temperature decreases, and conversely, the reduction rate decreases.

【0044】仕上還元後コークスを大量に廃棄するこ
とになり、不経済である。
After the finish reduction, a large amount of coke is discarded, which is uneconomical.

【0045】Cr2O3 還元後もコークスが多量に燃え残
って最終的に溶湯中に入ってしまい、仕上脱炭期の脱炭
量が不必要に増大し、仕上脱炭時間ひいては全精錬時間
の延長につながる。
Even after the reduction of Cr 2 O 3, a large amount of coke remains and eventually enters the molten metal, and the amount of decarburization during the final decarburization period unnecessarily increases. Will lead to an extension.

【0046】[0046]

【実施例】【Example】

(比較例)脱りん溶銑65トンを上底吹転炉に装入し、前
チャージの仕上脱炭終了時に回収したリサイクルスラグ
(重量%組成:T.Cr=20%、T.Fe=3%、CaO =27%、
SiO2=18%、MgO =10%、Al2O3 =10%以下)6000kg、
コークス4000kg、生石灰228 kgを炉内に添加後、底吹き
Arガスを17Nm3/min 、上吹きランスからの酸素を146Nm3
/minで吹き込みつつ、40分間の粗脱炭を行った。粗脱炭
末期の溶湯中〔Cr〕は 1.2重量%、〔C〕は0.8 重量
%、リサイクルスラグからのCr還元率は65%となった。
(Comparative Example) 65 tons of dephosphorized hot metal was charged into an upper-bottom blower, and recycled slag collected at the end of the pre-charging finish decarburization (weight% composition: T.Cr = 20%, T.Fe = 3%) , CaO = 27%,
SiO 2 = 18%, MgO = 10%, Al 2 O 3 = 10% or less) 6000 kg,
After adding 4000 kg of coke and 228 kg of quicklime into the furnace, bottom blowing
Ar gas 17 Nm 3 / min, oxygen from the top blowing lance 146 Nm 3
While blowing at / min, crude decarburization was performed for 40 minutes. At the end of crude decarburization, [Cr] in the molten metal was 1.2% by weight, [C] was 0.8% by weight, and the rate of reduction of Cr from recycled slag was 65%.

【0047】その後、Fe−Si(重量%組成:Si=75%、
残部Fe)243kg 、生石灰900kg 、CaF2 275kgを添加し、
仕上還元を行った。なお、粗脱炭後半にはスラグ上面が
炉口付近まで到達しており、やや頻繁にスロッピングが
発生した。
Thereafter, Fe—Si (weight% composition: Si = 75%,
The remaining Fe) 243 kg, quick lime 900 kg, CaF 2 275 kg were added,
Finish reduction was performed. In the latter half of the rough decarburization, the upper surface of the slag reached the vicinity of the furnace port, and slopping occurred somewhat frequently.

【0048】Fe−Si添加後の温度は1632℃、スラグ塩基
度は1.8 、溶湯中〔Cr〕は 1.75 重量%、リサイクルス
ラグからのCr還元率は95%であった。その後スラグを排
出し、高炭素Fe−Cr(重量%組成:Cr=60%、Si=2.7
%、C=6%、残部Fe)21トン、生石灰1.8 トンを添加
して仕上脱炭を行った。仕上脱炭後の温度は1700℃、ス
ラグ塩基度は1.5 、溶湯中〔Cr〕は13重量%であった。
The temperature after the addition of Fe—Si was 1632 ° C., the slag basicity was 1.8, [Cr] in the molten metal was 1.75% by weight, and the rate of reduction of Cr from recycled slag was 95%. Thereafter, the slag is discharged, and high-carbon Fe-Cr (weight% composition: Cr = 60%, Si = 2.7%)
%, C = 6%, balance Fe) 21 tons and quick lime 1.8 tons were added to finish decarburization. The temperature after the finish decarburization was 1700 ° C., the slag basicity was 1.5, and the content of [Cr] in the molten metal was 13% by weight.

【0049】(本発明例)脱りん溶銑65トンを上底吹転
炉に装入し、前チャージの仕上脱炭終了時に回収したス
ラグ(重量%組成:T.Cr=20%、T.Fe=3%、CaO =27
3%、SiO2=18%、MgO =10%、Al2O3 10%以下)6000
kg、コークス4000kg、生石灰228 kgを炉内に添加後、底
吹きArガスを17Nm3/min 、上吹きランスからの酸素を14
6Nm3/minで吹き込みつつ粗脱炭を行い、吹錬開始34分後
の溶湯中の〔C〕が1.9 重量%、溶湯温度が1700℃に到
達した時点で、コークス(粒径30〜40mm) 480kgを追加
添加した。その後、さらに粗脱炭を約6分間継続した。
吹錬終了時の溶湯中〔Cr〕は1.67重量%、〔C〕は0.8
重量%、リサイクルスラグからのCr還元率は90%となっ
た。
(Example of the present invention) 65 tons of dephosphorized hot metal was charged into an upper-bottom blower, and slag (weight% composition: T.Cr = 20%, T.Fe = 3%, CaO = 27
3%, SiO 2 = 18%, MgO = 10%, Al 2 O 3 10% or less) 6000
kg, 4000 kg of coke, and 228 kg of quicklime were added into the furnace, then the bottom-blown Ar gas was 17 Nm 3 / min, and the oxygen from the top-blown lance was 14
Crude decarburization is performed while blowing at 6 Nm 3 / min, and when [C] in the melt reaches 1.9% by weight and the melt temperature reaches 1700 ° C 34 minutes after the start of blowing, coke (particle size: 30 to 40 mm) An additional 480 kg was added. Thereafter, the crude decarburization was further continued for about 6 minutes.
At the end of blowing, [Cr] is 1.67% by weight, [C] is 0.8
% By weight, and the rate of reduction of Cr from recycled slag was 90%.

【0050】コークスの追加添加後にスラグ厚みは2400
mmにまで低下し、スロッピングはほとんど発生しなかっ
た。
After additional coke addition, the slag thickness is 2400
mm, and almost no slopping occurred.

【0051】その後Fe−Si(重量%組成:Si=75%、残
部Fe)200kg 、生石灰768kg 、CaF2275kg を添加し、仕
上還元を行った。Fe Si添加後の温度は1632℃、スラグ
塩基度は1.8 、溶湯中〔Cr〕は1.75重量%、リサイクル
スラグからのCr還元率は95%となった。
Thereafter, 200 kg of Fe-Si (weight% composition: Si = 75%, balance Fe), 768 kg of quicklime, and 275 kg of CaF 2 were added to finish reduction. The temperature after the addition of FeSi was 1632 ° C., the slag basicity was 1.8, [Cr] in the molten metal was 1.75% by weight, and the reduction ratio of Cr from recycled slag was 95%.

【0052】その後、スラグを排出し、高炭素Fe−Cr
(重量%組成:Cr=60%、Si=2.7 %、C=6%、残部
Fe)21トン、生石灰1.8 トンを添加して、仕上脱炭を行
った。
Thereafter, the slag is discharged and the high carbon Fe-Cr
(Weight% composition: Cr = 60%, Si = 2.7%, C = 6%, balance
Fe) 21 tons and 1.8 tons of quicklime were added to finish decarburization.

【0053】仕上脱炭後の温度は1700℃、スラグ塩基度
は1.5 、溶湯中〔Cr〕は13重量%であった。
The temperature after the decarburization was 1,700 ° C., the slag basicity was 1.5, and the content of [Cr] in the molten metal was 13% by weight.

【0054】本発明例ではスロッピングがほとんど発生
せず、かつ粗脱炭期のCr還元率が65%から90%に向上
し、Fe−Siおよび生石灰の添加量が減少した。
In the example of the present invention, almost no slopping occurred, the Cr reduction rate in the rough decarburization stage was improved from 65% to 90%, and the addition amounts of Fe-Si and quicklime were reduced.

【0055】[0055]

【発明の効果】本発明方法によれば、粗脱炭中のスロッ
ピングを抑制し、かつ1基の炉で粗脱炭末期においてCr
2O3 含有リサイクルスラグからのCr還元率を向上させる
ことができる。
According to the method of the present invention, slopping during crude decarburization is suppressed, and Cr is removed at the end of crude decarburization in one furnace.
The Cr reduction rate from the 2 O 3 -containing recycled slag can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の例を説明するフロー図である。FIG. 1 is a flowchart illustrating an example of the method of the present invention.

【図2】粗脱炭時の溶湯温度推移とCr還元率との関係を
示す図である。
FIG. 2 is a diagram showing a relationship between a transition of a molten metal temperature and a Cr reduction rate during rough decarburization.

【図3】粗脱炭末期におけるコークス添加有無の場合
の、溶湯中〔C〕とCr還元率との関係を示す図である。
FIG. 3 is a diagram showing the relationship between [C] in the molten metal and the Cr reduction ratio in the case of the presence or absence of coke addition at the end of crude decarburization.

【図4】コークス粒径と炉内添加時の飛散ロス率との関
係を示す図である。
FIG. 4 is a diagram showing the relationship between the coke particle size and the scattering loss rate during addition in a furnace.

【図5】コークス粒径と粗脱炭末期のCr還元率との関係
を示す図である。
FIG. 5 is a diagram showing the relationship between coke particle size and Cr reduction rate at the end of crude decarburization.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ステンレス鋼溶製の際の脱炭期で発生した
酸化クロム含有リサイクルスラグと含炭素材とを炉内に
添加した後、溶銑の粗脱炭昇温吹錬と酸化クロムの還元
とを行い、その後仕上還元、脱硫、流滓、成分調整およ
び仕上脱炭を施すステンレス鋼の精錬方法において、さ
らに粗脱炭昇温吹錬工程の末期に含炭素材をスラグ中に
添加してスロッピングを抑制しながら、酸化クロム含有
リサイクルスラグからのクロム還元率を向上させること
を特徴とするステンレス鋼の精錬方法。
(1) After adding chromium oxide-containing recycled slag and carbonaceous material generated during the decarburization period during melting of stainless steel into a furnace, rough decarburization heating and blowing of hot metal and reduction of chromium oxide are performed. After that, in the refining method of stainless steel to be subjected to finish reduction, desulfurization, sludge, sludge, component adjustment and finish decarburization, the carbon-containing material is further added to the slag at the end of the rough decarburization heating and blowing step. A method for refining stainless steel, comprising improving the chromium reduction rate from chromium oxide-containing recycled slag while suppressing slopping.
JP31962494A 1994-12-22 1994-12-22 Stainless steel refining method Expired - Fee Related JP3158912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31962494A JP3158912B2 (en) 1994-12-22 1994-12-22 Stainless steel refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31962494A JP3158912B2 (en) 1994-12-22 1994-12-22 Stainless steel refining method

Publications (2)

Publication Number Publication Date
JPH08176638A JPH08176638A (en) 1996-07-09
JP3158912B2 true JP3158912B2 (en) 2001-04-23

Family

ID=18112364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31962494A Expired - Fee Related JP3158912B2 (en) 1994-12-22 1994-12-22 Stainless steel refining method

Country Status (1)

Country Link
JP (1) JP3158912B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8054052B2 (en) 2007-09-11 2011-11-08 Ricoh Company, Ltd. Constant voltage circuit
US8098057B2 (en) 2008-02-05 2012-01-17 Ricoh Company, Ltd. Constant voltage circuit including supply unit having plural current sources

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100889504B1 (en) * 2002-12-23 2009-03-19 주식회사 포스코 Fabrication method of stainless steel containing very low amount of carbon for heat resisting
CN115710614A (en) * 2022-11-17 2023-02-24 山西太钢不锈钢股份有限公司 Method for preventing AOD smelting from splashing in early stage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8054052B2 (en) 2007-09-11 2011-11-08 Ricoh Company, Ltd. Constant voltage circuit
US8098057B2 (en) 2008-02-05 2012-01-17 Ricoh Company, Ltd. Constant voltage circuit including supply unit having plural current sources

Also Published As

Publication number Publication date
JPH08176638A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
JP2004190101A (en) Method for pre-treating molten iron
JP3428628B2 (en) Stainless steel desulfurization refining method
JP2947063B2 (en) Stainless steel manufacturing method
JP3158912B2 (en) Stainless steel refining method
JP4311097B2 (en) Method for preventing slag flow in converter
JPH0437136B2 (en)
JP3854482B2 (en) Hot metal pretreatment method and refining method
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JPH0472009A (en) Method for refining high cleanliness steel
JP4461495B2 (en) Dephosphorization method of hot metal
JP3063537B2 (en) Stainless steel manufacturing method
JP3924059B2 (en) Steelmaking method using multiple converters
JP3233304B2 (en) Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore
JP2964861B2 (en) Stainless steel manufacturing method
JP4411934B2 (en) Method for producing low phosphorus hot metal
JPH0967608A (en) Production of stainless steel
JPH0959708A (en) Method for efficently decarburization-blowing stainless steel
JP2882236B2 (en) Stainless steel manufacturing method
JPH0437137B2 (en)
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JP3297997B2 (en) Hot metal removal method
JP3173325B2 (en) How to make stainless steel
JP2001032009A (en) Method for refining molten steel containing chromium
JPH07216429A (en) Production of stainless crude molten steel using decarburized slag
SU691497A1 (en) Method of steel smelting

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees