JP3402388B2 - How to determine the maximum power operating point of a solar cell - Google Patents

How to determine the maximum power operating point of a solar cell

Info

Publication number
JP3402388B2
JP3402388B2 JP24205793A JP24205793A JP3402388B2 JP 3402388 B2 JP3402388 B2 JP 3402388B2 JP 24205793 A JP24205793 A JP 24205793A JP 24205793 A JP24205793 A JP 24205793A JP 3402388 B2 JP3402388 B2 JP 3402388B2
Authority
JP
Japan
Prior art keywords
operating point
voltage
power
maximum power
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24205793A
Other languages
Japanese (ja)
Other versions
JPH0772941A (en
Inventor
常生 久米
澄利 園田
貞明 山崎
佐田夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP24205793A priority Critical patent/JP3402388B2/en
Publication of JPH0772941A publication Critical patent/JPH0772941A/en
Application granted granted Critical
Publication of JP3402388B2 publication Critical patent/JP3402388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、太陽電池を用いた太陽
光発電システムに関し、とくに太陽電池の出力が最大に
なる動作点を求める方法に関する。 【0002】 【従来の技術】従来、太陽電池を用いた太陽光発電シス
テムは、太陽電池で発生するエネルギを充電器によって
一旦蓄電池に充電して再利用する用途、チョッパやイン
バータを介して電動機を駆動する用途、インバータで商
用周波数の電源に変換した後、単独であるいは配電網に
連係させて電源として用いる用途などに使用されてい
る。その場合、太陽電池は比較的高価であり、また変換
効率も高くないので、発生するエネルギをできる限り有
効に活用することが重要である。ところで、太陽電池の
特性は、照度や温度の変化によって動作電圧または動作
電流に対する出力電力が変わる。すなわち、照度や温度
の変化によって最大電力を出力する電圧または電流の動
作点が変わるため、太陽電池がいかなる条件下でも、そ
の最大電力動作点を自動的に追尾し、太陽エネルギの効
率的利用を行うシステムが開示されている。その一例と
して、負荷に外乱を与えることにより動作電圧を変化さ
せ、その時の電力の変化によって、電力の基準値を増加
するモードと減少させるモードとを求め、太陽電池の電
力が最大になる方向の動作点に向かうようモードを選択
するものが開示されている。その具体的例として、例え
ば図3に示すように、太陽電池1で発生した電力を、平
滑コンデンサ2、チョッパやインバータのような電力制
御器3を介して、蓄電池、電動機、配電網などの負荷機
器4に給電する主回路10を備えたシステムにおいて、
電圧検出器5で検出した太陽電池1の出力電圧が電圧設
定器6で設定した値になるように電力制御器3をフィー
ドバック制御しておき、信号重畳器7によって電圧設定
値に微小信号を加算または減算し、この時に電圧検出器
5と太陽電池の出力電流を検出する電流検出器8とから
の信号をもとに、電力演算比較器9によって演算した電
力が増加したか減少したかによって、電圧設定器6の電
圧設定値を太陽電池1の出力が大きくなる方向に修正す
るようにしてある(例えば、特開昭61−97721
号)。電圧設定器6の電圧設定値を修正する原理を説明
すると、例えば、信号重畳器7によって電圧設定値を増
加させる場合は、図4に示すように、出力電圧V0で運
転中に、重畳電圧ΔVを加算した時の電力Pの変化量Δ
Pが正であれば、出力電圧V0 は最大電力動作点電圧V
max よりも小さいものと判断して、V0 +ΔVを新たな
動作点とする。変化量ΔPが負であれば、出力電圧V0
は最大電力動作点電圧Vmax よりも大きいものと判断し
て、V0 −ΔVを新たな動作点とする。この動作をくり
返すことにより最大電力動作点電圧Vmax を求め、太陽
電池1の出力を最大電力Pmax に暫時近づけることがで
きる。また、電圧設定値を修正する場合、出力電圧を無
負荷の状態から現在動作点まで順次所定のサンプリング
期間毎に変化させ、所定の時間間隔で出力電圧と出力電
流を検出して電力を演算し、記憶された過去の出力電圧
および電力の値と現在動作点の出力電圧および電力の値
から、現在動作点の出力電圧と電力との両方の増加、減
少の傾向を求め、その傾向により設定電圧を上昇させる
か下降させるかの二つのモードを選択して、太陽電池の
最大電力となる電圧設定値を求めている。 【0003】 【発明が解決しようとする課題】ところが、従来技術で
は、逐次出力電圧を変化させてその時の電力を出力電圧
を変化させる前の電力と比較することにより、新たな動
作点を求めるが、最大電力動作点に達するまで、この動
作をくり返す必要があり、多くの時間を要するという欠
点があった。また、前回のサンプリング期間における出
力値と現在の出力値との比較をして、設定電圧を増減す
るモードを選択するので、1時点での電圧や電力の検出
では電圧を設定できない。したがって、複数時点での電
圧や電力の検出が必要であり、最大電力を追尾するため
に多くの時間がかかるという問題があった。本発明は、
簡単な近似計算により最大電力動作点を求め、最大電力
の追尾時間を短縮できる太陽電池の最大電力動作点判定
方法を提供することを目的とするものである。 【0004】 【課題を解決するための手段】上記問題点を解決するた
め、本発明は太陽電池で発生した電力を平滑コンデンサ
および電力制御器を介して負荷機器に給電する主回路を
設け、前記太陽電池の出力電圧を検出する電圧検出器ま
たは出力電流を検出する電流検出器を備えて太陽電池の
出力を制御するシステムの最大電力動作点判定方法にお
いて、予め太陽電池の動作特性から最大電力P max を出
力する最大電力動作点の電圧V max または電流I max
概略範囲を求め、最大電力動作点V max に比較的近い値
の動作点を第1動作点V 1 として、その時の電力P 1
測定し、この第1動作点V 1 に負荷外乱または電圧重畳
等により偏差電圧ΔVを加え、動作電圧を次の第2動作
点V 2 =V 1 +ΔVに移動させ、その時の電力P 2 を測
定し、次に第1動作点V 1 から動作電圧ΔVを引いた第
3動作点V 3 に移動させ、その時の電力P 3 を測定し、
最大電力動作点付近の電力特性を次に(イ)式に示す2
次式で近似し、 P=aV 2 +bV+c …(イ) 先に求めた各動作点の電圧値と電力値(V 1 ,P 1 ),
(V 2 ,P 2 ),(V 3 ,P 3 ),を(イ)式に代入
し、連立方程式を解いて定数a,b,cを得て、これか
ら最大電力P max およびその時の動作電圧を最大電力動
作点V max 、次の(ロ)および(ハ)式によって求め、 max =−(b 2 −4ac)/4a …(ロ) max =−b/2a …(ハ) この最大電力動作点V max を電圧指令として太陽電池を
制御す ることを特徴とする。 【0005】 【作用】上記手段により、最大電力動作点付近の3点以
上の電圧または電流の動作点の電力を測定値し、その値
から、2次以上の近似方程式の演算により電圧または電
流の最大電力動作点を求める。最大電力動作点を含む範
囲内で動作電圧または電流を連続して短時間に変化さ
せ、この間に高速サンプリングにより複数の電圧、電流
を検出する場合は、サンプリング期間中に求めた複数の
電力値の相互比較により最大値を選択して最大電力動作
点を求める。 【0006】 【実施例】以下、本発明を図に示す実施例について説明
する。図1は本発明の実施例の太陽電池の動作電圧Vま
たは動作電流Iと出力電力Pとの関係を示す説明図であ
る。なお、太陽電池を制御する制御装置は先に図2によ
って説明した装置と同じものである。図において、予め
太陽電池の動作特性から最大電力Pmax を出力する最大
電力動作点の電圧Vmax または電流Imax の概略範囲を
求めておく。最大電圧動作点の電圧によって最大電力を
求める場合について説明すると、最大電力動作点Vmax
に比較的近い値の動作点を第1動作点V1 として、その
時の電力P1 を測定する。この第1動作点V1 に負荷外
乱または電圧重畳等により偏差電圧ΔVを加え、動作電
圧を次の第2動作点V2 =V1 +ΔVに移動させ、その
時の電力P2 を測定する。次に第1動作点V1 から動作
電圧ΔVを引いた第3動作点V3 に移動させ、その時の
電力P3 を測定する。なお、V1 、V2 、V3は太陽電
池の特性から得られるVmax の概略範囲内に入るように
選定する。次に、最大電力動作点付近の電力特性を次に
(1)式に示す2次式で近似する。 P=aV2 +bV+c …(1) 先に求めた各動作点の電圧値と電力値(V1 ,P1 ),
(V2 ,P2 ),(V3 ,P3 ),を(1)式に代入
し、連立方程式を解くと、定数a,b,cが得られる。
これから最大電力Pmax およびその時の動作電圧を最大
電力動作点Vmax が、次の(2)および(3)式によっ
て求められる。 Pmax =−(b2 −4ac)/4a …(2) Vmax =−b/2a …(3) この最大電力動作点Vmax を電圧指令として太陽電池を
制御すれば、最大電力で運転することができる。なお、
上記図1の説明では、最大電力動作点Vmax が第1動作
点V1 と第2動作点V2 との間に来るように偏差電圧Δ
Vを選択したが、最大電力動作点Vmaxが第1動作点V1
と第2動作点V2 との外側に来るようにしてもよい。
また上記実施例の最大電力動作点を、電圧Vの代わりに
電流Iの3点の動作点I1 ,I2 ,I3 、によって最大
電力動作点Imax として求めてもよい。さらに、4点以
上の動作点を設定し、4組以上の電圧または電流と電力
の情報から3次以上の高次方程式に基づいて近似するこ
とにより、高精度の最大電力動作点を演算することがで
きる。また、図2は他の実施例を示す説明図で、最大電
力動作点Vmax を含む範囲内で動作電圧を連続して短時
間変化させ、この間に高速サンプリングにより、複数の
出力電圧と電流を高速CPU等で検出して記憶し、出力
電圧と電流から電力を演算する。このサンプリング期間
中に求めた複数の電力値の相互比較を行い、最大電力動
作点Vmax を求める。時間t1 で設定電圧の変化範囲内
で最大電力動作点Vmax にならない場合は、更にサンプ
リング時間の両端の電力のうち、大きい方に動作点の変
動範囲を移動させて、時間t2 、t3 で同じ動作を繰り
返せばよい。なお、電力値の演算、比較は高速CPUを
使用すれば、1〜10ms程度で十分実行できるので、
高速サンプリングと同時に行ってもよいが、CPUの負
荷を平準化するために高速サンプリング後に演算処理を
行ってもよい。この方法では、先の実施例で示した方法
のような2次近似するための電圧範囲の制約がないた
め、広範囲に電圧を変化させて、1度で、しかも正確に
最大電力動作点を見つけることができる。また、直並列
接続した太陽電池の各エレメント間の特性のバラツキに
よって二山特性になった場合にも対応できる。また、本
方法を平滑コンデンサより太陽電池側で電圧または電流
を重畳する方法と組み合わせれば、動作点を広範囲に変
動させても負荷への影響は小さいので更に効果的であ
る。 【0007】 【発明の効果】以上述べたように、本発明によれば、最
大電力動作点付近の3点以上の電圧または電流の動作点
の電力を測定値から、簡単な近似方程式により最大電力
を演算できるので、最大電力の追尾時間を大きく短縮で
きる効果がある。また、高速サンプリングによって検出
した電力から最大電力動作点Vmax を求める場合は、2
次近似するための電圧範囲の制約がないため、広範囲に
電圧を変化させて、1度で、しかも正確に最大電力動作
点を見つけることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic power generation system using a solar cell, and more particularly to a method for determining an operating point at which the output of the solar cell is maximized. 2. Description of the Related Art Conventionally, a solar power generation system using a solar cell is used for charging a storage battery once with energy generated by the solar cell and reusing the storage battery, and for using a motor via a chopper or an inverter. It is used for driving, for use after being converted to a commercial frequency power supply by an inverter, or for use alone or in conjunction with a distribution network as a power supply. In that case, the solar cell is relatively expensive and the conversion efficiency is not high, so it is important to utilize the generated energy as effectively as possible. By the way, as for the characteristics of the solar cell, the output power with respect to the operating voltage or the operating current changes according to the change in the illuminance and the temperature. In other words, the operating point of the voltage or current at which the maximum power is output changes due to changes in illuminance or temperature, so that the solar cell automatically tracks its maximum power operating point under any conditions and uses solar energy efficiently. A system for performing is disclosed. As an example, the operating voltage is changed by applying a disturbance to the load, and a mode in which the reference value of the power is increased and a mode in which the reference value of the power is reduced are obtained according to the change in the power at that time. A device for selecting a mode so as to approach an operating point is disclosed. As a specific example, as shown in FIG. 3, for example, the power generated by the solar cell 1 is transferred to a load such as a storage battery, an electric motor, and a power distribution network via a smoothing capacitor 2 and a power controller 3 such as a chopper or an inverter. In a system including a main circuit 10 for supplying power to the device 4,
The power controller 3 is feedback-controlled so that the output voltage of the solar cell 1 detected by the voltage detector 5 becomes the value set by the voltage setting device 6, and a small signal is added to the voltage setting value by the signal superposition device 7. Or subtraction, and at this time, based on signals from the voltage detector 5 and the current detector 8 for detecting the output current of the solar cell, whether the power calculated by the power calculation comparator 9 has increased or decreased, The voltage set value of the voltage setter 6 is corrected in a direction to increase the output of the solar cell 1 (for example, see Japanese Patent Application Laid-Open No. 61-97721).
issue). To explain the principle of correcting the voltage setting value of the voltage setting unit 6, for example, when increasing the voltage set value by the signal superposition unit 7, as shown in FIG. 4, during operation in the output voltage V 0, the superposed voltage Variation Δ of power P when ΔV is added
If P is positive, the output voltage V 0 is the maximum power operating point voltage V
Judgment is made smaller than max , and V 0 + ΔV is set as a new operating point. If the variation ΔP is negative, the output voltage V 0
It is determined as greater than the maximum power operating point voltage V max, the V 0 - [Delta] V as a new operating point. Determine the maximum power operating point voltage V max by repeating this operation, the output of the solar cell 1 can be brought close briefly to the maximum power P max. Also, when correcting the voltage set value, the output voltage is sequentially changed from the no-load state to the current operating point at predetermined sampling intervals, and the output voltage and output current are detected at predetermined time intervals to calculate the power. From the stored past output voltage and power values and the current operating point output voltage and power values, the increasing and decreasing trends of both the current operating point output voltage and power are determined, and the set voltage is determined by the tendency. In this case, two modes, i.e., increasing and decreasing, are selected, and a voltage set value at which the maximum power of the solar cell is obtained. In the prior art, however, a new operating point is obtained by sequentially changing the output voltage and comparing the power at that time with the power before the output voltage is changed. This operation has to be repeated until the maximum power operating point is reached, which takes a long time. Further, since the output value in the previous sampling period is compared with the current output value and the mode for increasing or decreasing the set voltage is selected, the voltage cannot be set by detecting the voltage or power at one time. Therefore, it is necessary to detect the voltage and the power at a plurality of time points, and there is a problem that it takes much time to track the maximum power. The present invention
It is an object of the present invention to provide a method for determining a maximum power operating point of a solar cell, which obtains a maximum power operating point by a simple approximation calculation and can reduce a tracking time of the maximum power. [0004] In order to solve the above problems, the present invention provides a main circuit for supplying power generated by a solar cell to a load device through a smoothing capacitor and a power controller. In a maximum power operating point determination method for a system that includes a voltage detector for detecting an output voltage of a solar cell or a current detector for detecting an output current and controls an output of the solar cell, a maximum power P is determined in advance from an operating characteristic of the solar cell. exit max
Voltage V max or the current I max of the maximum power operating point for the force
Obtains an outline range, relatively close to the maximum power operating point V max
Is the first operating point V 1 , and the power P 1 at that time is
Measured load disturbance or voltage superimposed on the first operating point V 1
Then, the deviation voltage ΔV is added, and the operating voltage is changed to the next second operation.
Move to the point V 2 = V 1 + ΔV and measure the power P 2 at that time.
And then subtract the operating voltage ΔV from the first operating point V 1
3 Move to operating point V 3 , measure power P 3 at that time ,
Next, the power characteristic near the maximum power operating point is expressed by the following equation (2).
Approximated by the following equation, P = aV 2 + bV + c ... ( b) the destination of the voltage value and the power value of each operating point determined (V 1, P 1),
Substituting (V 2 , P 2 ) and (V 3 , P 3 ) into equation (a)
And solve the simultaneous equations to obtain constants a, b, and c.
The maximum power Pmax and the operating voltage at that time
Operation point V max, determined by the following (b) and (c) below, P max = - (b 2 -4ac) / 4a ... ( b) V max = -b / 2a ... ( iii) The maximum power operating point a solar cell the V max as a voltage command
It is characterized by control . By the above means, the power at three or more operating points of the voltage or current near the maximum power operating point is measured, and the voltage or current of the voltage or current is calculated from the measured value by a second or higher order approximation equation. Find the maximum power operating point. If the operating voltage or current is continuously changed in a short time within the range including the maximum power operating point, and multiple voltages and currents are detected by high-speed sampling during this time, the multiple power values obtained during the sampling period The maximum value is selected by mutual comparison to determine the maximum power operating point. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram showing the relationship between the operating voltage V or the operating current I and the output power P of the solar cell according to the embodiment of the present invention. The control device for controlling the solar cell is the same as the device described above with reference to FIG. In the figure, previously obtained a schematic range of the voltage V max or the current I max of the maximum power operating point for outputting the maximum power P max from the operating characteristics of the pre-solar cell. To describe the case of obtaining the maximum power by the voltage of the maximum voltage operating point, the maximum power operating point V max
Is set as the first operating point V 1 , and the power P 1 at that time is measured. The first operating point V 1 load disturbance or deviation voltage [Delta] V by the voltage superimposing etc. In addition, by moving the operating voltage for the next second operating point V 2 = V 1 + [Delta] V, measures the power P 2 at that time. Next, it is moved to a third operating point V 3 obtained by subtracting the operating voltage ΔV from the first operating point V 1, and the power P 3 at that time is measured. Note that V 1 , V 2 , and V 3 are selected so as to fall within the approximate range of V max obtained from the characteristics of the solar cell. Next, the power characteristic near the maximum power operating point is next approximated by a quadratic expression shown in Expression (1). P = aV 2 + bV + c (1) The voltage value and power value (V 1 , P 1 ) of each operating point obtained earlier,
By substituting (V 2 , P 2 ) and (V 3 , P 3 ) into equation (1) and solving the simultaneous equations, constants a, b, and c are obtained.
Now the maximum power P max and a maximum power operating point V max the operating voltage at that time is determined by the following (2) and (3) below. P max = − (b 2 −4ac) / 4a (2) V max = −b / 2a (3) If the maximum power operating point V max is used as a voltage command to control the solar cell, operation is performed at the maximum power. be able to. In addition,
In the above description of FIG. 1, the deviation voltage Δ is set so that the maximum power operating point V max comes between the first operating point V 1 and the second operating point V 2.
V was selected, but the maximum power operating point V max is the first operating point V 1
If it may be on the outside of the second operating point V 2.
The maximum power operating point of the above embodiment, the operating point I 1 of the three points of the current I in place of the voltage V, I 2, I 3, may be determined as the maximum power operating point I max by. Furthermore, by setting four or more operating points and approximating the information of four or more sets of voltage or current and power based on a third or higher order equation, a high-precision maximum power operating point is calculated. Can be. Further, in explaining FIG. 2 showing another embodiment, varied briefly continuously operating voltage within a range including the maximum power operating point V max, by a high-speed sampling during which a plurality of output voltage and current The power is detected and stored by a high-speed CPU or the like, and the power is calculated from the output voltage and the current. Performs mutual comparison of a plurality of power values obtained during the sampling period, the maximum power operating point V max. If the maximum power operating point V max is not reached within the change range of the set voltage at time t 1 , the operating point fluctuation range is further moved to the larger one of the power at both ends of the sampling time, and the time t 2 , t 2 The same operation can be repeated in step 3 . The calculation and comparison of the power value can be sufficiently performed in about 1 to 10 ms by using a high-speed CPU.
Although it may be performed simultaneously with high-speed sampling, arithmetic processing may be performed after high-speed sampling in order to level the load on the CPU. In this method, since there is no restriction on the voltage range for the second-order approximation as in the method shown in the previous embodiment, the voltage is changed over a wide range to find the maximum power operating point once and accurately. be able to. In addition, it is possible to cope with a case where the characteristics of each element of the solar cell connected in series / parallel have two peaks due to a variation in characteristics. Further, if this method is combined with a method of superimposing a voltage or a current on the solar cell side from the smoothing capacitor, the effect on the load is small even if the operating point is varied over a wide range, so that it is more effective. As described above, according to the present invention, the power at three or more operating points of the voltage or current near the maximum power operating point can be calculated from the measured values by a simple approximation equation. Can be calculated, so that the tracking time of the maximum power can be greatly reduced. When the maximum power operating point V max is obtained from the power detected by the high-speed sampling, 2
Since there is no restriction on the voltage range for the next approximation, the voltage can be changed over a wide range, and the maximum power operating point can be found exactly once and accurately.

【図面の簡単な説明】 【図1】本発明の実施例を示す動作説明図である。 【図2】本発明の他の実施例を示す動作説明図である。 【図3】太陽電池の制御装置のブロック図である。 【図4】従来例を示す動作説明図である。 【符号の説明】 Pmax 最大電力値 V1 ,I1 第1動作点 V2 ,I2 第2動作点 V3 ,I3 第3動作点BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an operation explanatory diagram showing an embodiment of the present invention. FIG. 2 is an operation explanatory view showing another embodiment of the present invention. FIG. 3 is a block diagram of a control device for a solar cell. FIG. 4 is an operation explanatory view showing a conventional example. P max maximum power value V 1 [Description of symbols], I 1 first operating point V 2, I 2 second operating point V 3, I 3 third operating point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 佐田夫 福岡県北九州市八幡西区黒崎城石2番1 号 株式会社 安川電機内 (56)参考文献 特開 昭62−93719(JP,A) 特開 昭63−36317(JP,A) 特開 平2−228715(JP,A) 特開 平4−40633(JP,A) 特開 平4−115376(JP,A) (58)調査した分野(Int.Cl.7,DB名) G05F 1/67 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Sadao Ishii 2-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu-shi, Fukuoka Inside Yaskawa Electric Co., Ltd. (56) References JP-A-62-93719 (JP, A) JP-A Sho 63-36317 (JP, A) JP-A-2-228715 (JP, A) JP-A-4-40633 (JP, A) JP-A-4-115376 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G05F 1/67

Claims (1)

(57)【特許請求の範囲】 【請求項1】 太陽電池で発生した電力を平滑コンデン
サおよび電力制御器を介して負荷機器に給電する主回路
を設け、前記太陽電池の出力電圧を検出する電圧検出器
または出力電流を検出する電流検出器を備えて太陽電池
の出力を制御するシステムの最大電力動作点判定方法に
おいて、予め太陽電池の動作特性から最大電力P max
出力する最大電力動作点の電圧V max または電流I max
の概略範囲を求め、最大電力動作点V max に比較的近い
値の動作点を第1動作点V 1 として、その時の電力P 1
を測定し、この第1動作点V 1 に負荷外乱または電圧重
畳等により偏差電圧ΔVを加え、動作電圧を次の第2動
作点V 2 =V 1 +ΔVに移動させ、その時の電力P 2
測定し、次に第1動作点V 1 から動作電圧ΔVを引いた
第3動作点V 3 に移動させ、その時の電力P 3 を測定
し、最大電力動作点付近の電力特性を次に(イ)式に示
す2次式で近似し、 P=aV 2 +bV+c …(イ) 先に求めた各動作点の電圧値と電力値(V 1 ,P 1 ),
(V 2 ,P 2 ),(V 3 ,P 3 ),を(イ)式に代入
し、連立方程式を解いて定数a,b,cを得て、これか
ら最大電力P max およびその時の動作電圧を最大電力動
作点V max 、次の(ロ)および(ハ)式によって求め、 max =−(b 2 −4ac)/4a …(ロ) max =−b/2a …(ハ) この最大電力動作点V max を電圧指令として太陽電池を
制御す ることを特徴とする太陽電池の最大電力動作点判
定方法。
(57) [Claim 1] A main circuit for supplying power generated by a solar cell to a load device via a smoothing capacitor and a power controller, and a voltage for detecting an output voltage of the solar cell. In the maximum power operating point determination method for a system that controls the output of a solar cell including a detector or a current detector that detects an output current, the maximum power Pmax is determined in advance from the operating characteristics of the solar cell
Voltage of maximum power operating point for outputting V max or the current I max
Seek generally range, relatively close to the maximum power operating point V max
The operating point of the value is defined as the first operating point V 1 , and the power P 1 at that time is
Is measured, and a load disturbance or a voltage load is applied to the first operating point V 1.
The deviation voltage ΔV is added by tatami or the like, and the operating voltage is changed to the next second operation voltage.
The point P 2 is moved to V 2 = V 1 + ΔV, and the power P 2 at that time is
Measured, and then the operating voltage ΔV was subtracted from the first operating point V 1
Is moved to the third operating point V 3, measures the power P 3 at that time
Next, the power characteristics near the maximum power operating point are shown in equation (a).
Approximated by to a quadratic equation, P = aV 2 + bV + c ... ( b) a voltage value for each operating point determined previously and the power value (V 1, P 1),
Substituting (V 2 , P 2 ) and (V 3 , P 3 ) into equation (a)
And solve the simultaneous equations to obtain constants a, b, and c.
The maximum power Pmax and the operating voltage at that time
Operation point V max, determined by the following (b) and (c) below, P max = - (b 2 -4ac) / 4a ... ( b) V max = -b / 2a ... ( iii) The maximum power operating point a solar cell the V max as a voltage command
A method for determining a maximum power operating point of a solar cell, wherein the method is controlled.
JP24205793A 1993-09-01 1993-09-01 How to determine the maximum power operating point of a solar cell Expired - Fee Related JP3402388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24205793A JP3402388B2 (en) 1993-09-01 1993-09-01 How to determine the maximum power operating point of a solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24205793A JP3402388B2 (en) 1993-09-01 1993-09-01 How to determine the maximum power operating point of a solar cell

Publications (2)

Publication Number Publication Date
JPH0772941A JPH0772941A (en) 1995-03-17
JP3402388B2 true JP3402388B2 (en) 2003-05-06

Family

ID=17083644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24205793A Expired - Fee Related JP3402388B2 (en) 1993-09-01 1993-09-01 How to determine the maximum power operating point of a solar cell

Country Status (1)

Country Link
JP (1) JP3402388B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256566B2 (en) * 2003-05-02 2007-08-14 Ballard Power Systems Corporation Method and apparatus for determining a maximum power point of photovoltaic cells
US20080257397A1 (en) * 2007-04-17 2008-10-23 John Stanley Glaser System, method, and apparatus for extracting power from a photovoltaic source of electrical energy
CN103425173A (en) * 2012-05-23 2013-12-04 上海岩芯电子科技有限公司 Distributed maximum power point tracing method based on equivalent load impedance disturbance
CN104298297A (en) * 2014-10-08 2015-01-21 陕西科技大学 Tracking control method of maximum power point in photovoltaic power generation system

Also Published As

Publication number Publication date
JPH0772941A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
EP0780750B1 (en) Inverter control method and inverter apparatus using the method
JP4457692B2 (en) Maximum power tracking control method and power conversion device
US7994768B2 (en) Control apparatus and method of senseless MPPT control for photovoltaic power generation system
JP4512145B2 (en) Motor control device
Matsui et al. A new maximum photovoltaic power tracking control scheme based on power equilibrium at DC link
US20080278983A1 (en) Controlling Apparatus of a Power Converter of Single-Phase Current For Photovoltaic Generation System
WO2022087955A1 (en) Bus voltage control method and apparatus for photovoltaic system
JPH0991051A (en) Voltage controller for battery power supply and its voltage controlling method
AU2023219995A1 (en) Systems and methods for photovoltaic direct current (dc) bus control
JPH07325635A (en) Output controller for inverter
JP3402388B2 (en) How to determine the maximum power operating point of a solar cell
JPH11262186A (en) Controller of power storage system
JPH08123561A (en) Method and device for maximum output following control for photovoltaic power generation system
JP3428869B2 (en) Fuel cell output fluctuation compensation method
JP3493644B2 (en) Maximum power tracking method for photovoltaic system
JPS63181015A (en) Control system for maximum output of photovoltaic power generator
JP3488348B2 (en) DC power supply device combined with solar cell and control method thereof
JP3567783B2 (en) Static var compensator
Nedeljković et al. Fast current control for thyristor rectifiers
JP3402387B2 (en) Maximum power tracking method for solar cells
JPS6197721A (en) Control method of solar power generator
JP2001218368A (en) Power converter and photovoltaic generation system
JP2000184739A (en) Method for controlling power conversion device
JPH10133755A (en) Method for controlling inverter and inverter device
JP2950606B2 (en) Voltage controller for variable speed pumped storage power generation system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees