JP3402387B2 - Maximum power tracking method for solar cells - Google Patents

Maximum power tracking method for solar cells

Info

Publication number
JP3402387B2
JP3402387B2 JP23426593A JP23426593A JP3402387B2 JP 3402387 B2 JP3402387 B2 JP 3402387B2 JP 23426593 A JP23426593 A JP 23426593A JP 23426593 A JP23426593 A JP 23426593A JP 3402387 B2 JP3402387 B2 JP 3402387B2
Authority
JP
Japan
Prior art keywords
voltage
solar cell
power
current
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23426593A
Other languages
Japanese (ja)
Other versions
JPH0764660A (en
Inventor
常生 久米
澄利 園田
貞明 山崎
佐田夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP23426593A priority Critical patent/JP3402387B2/en
Publication of JPH0764660A publication Critical patent/JPH0764660A/en
Application granted granted Critical
Publication of JP3402387B2 publication Critical patent/JP3402387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Photovoltaic Devices (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、太陽電池を用いた太陽
光発電システムに関し、とくに出力が最大になるように
動作点を維持する太陽電池の最大電力追尾方法に関す
る。 【0002】 【従来の技術】従来、太陽電池を用いた太陽光発電シス
テムは、太陽電池で発生するエネルギを充電器によって
一旦蓄電池に充電して再利用する用途、チョッパやイン
バータを介して電動機を駆動する用途、インバータで商
用周波数の電源に変換した後、単独であるいは配電網に
連係させて電源として用いる用途などに使用されてい
る。その場合、太陽電池は比較的高価であり、また変換
効率も高くないので、発生するエネルギをできる限り有
効に活用することが重要である。ところで、太陽電池の
特性は、照度や温度の変化によって動作電圧または動作
電流に対する出力電力が変わる。すなわち、照度や温度
の変化によって最大電力を出力する電圧または電流の動
作点が変わるため、太陽電池がいかなる条件下でも、そ
の最大電力動作点を自動的に追尾し、太陽エネルギの効
率的利用を行うシステムが開示されている(例えば、特
開昭61−97721号)。図3はその具体的内容を示
す基本構成図で、太陽電池1で発生した電力を、平滑コ
ンデンサ2、チョッパやインバータのような電力制御器
3を介して、蓄電池、電動機、配電網などの負荷機器4
に給電する主回路10を備えたシステムにおいて、電圧
検出器5で検出した太陽電池1の出力電圧が電圧設定器
6で設定した値になるように電力制御器3をフィードバ
ック制御しておき、信号重畳器7によって電圧設定値に
微小信号を加算または減算し、この時に電圧検出器5と
太陽電池の出力電流を検出する電流検出器8とからの信
号をもとに、電力演算比較器9によって演算した電力が
増加したか減少したかによって、電圧設定器6の電圧設
定値を太陽電池1の出力が大きくなる方向に修正するよ
うにしてある。電圧設定器6の電圧設定値を修正する原
理を説明すると、例えば、信号重畳器7によって電圧設
定値を増加させる場合は、図4に示すように、出力電圧
0 で運転中に、重畳電圧ΔVを加算した時の電力Pの
変化量ΔPが正であれば、出力電圧V0 は最大電力動作
点電圧Vmax よりも小さいものと判断して、V0 +ΔV
を新たな動作点とする。変化量ΔPが負であれば、出力
電圧V0 は最大電力動作点電圧Vmax よりも大きいもの
と判断して、V0 −ΔVを新たな動作点とする。この動
作をくり返すことにより、太陽電池1の出力を最大電力
動作点に暫時近づけることができる。なお、図4では、
重畳電圧ΔVが正の場合を示しているが、ΔVとして負
の値を与えた場合でも、変化量ΔPの符号の判定方法を
逆にすれば同様の結果が得られる。また電圧制御ループ
の代わりに電流制御ループを用いて、同様の動作をさせ
ることもできる。 【0003】 【発明が解決しようとする課題】ところが、従来技術で
は、現在の動作点が最大電力動作点のどちら側にあるか
を判断するために、運転中の負荷機器の動作点を変動さ
せなければならない。これは負荷状態を変化させること
になり、望ましい負荷状態を維持できないという欠点が
あった。また、負荷機器の特性によっては、電圧指令値
の変化に対して、実電圧の追従に時間を要する場合もあ
るので、比較的長い時間の重畳信号を加える必要があ
り、その間に負荷変動などが発生して正確な動作点が得
られないという問題があった。本発明は、負荷機器の動
作点を変動させることなく、太陽電池の現在の動作点を
確認することができる太陽電池の最大電力追尾方法を提
供することを目的とするものである。 【0004】 【課題を解決するための手段】上記問題を解決するた
め、本発明は、太陽電池で発生した電力を平滑コンデン
サおよび電力制御器を介して負荷機器に給電する主回路
を設け、前記太陽電池の出力電圧を検出する電圧検出器
または出力電流を検出する電流検出器の出力が電圧また
は電流設定器の設定値に等しくなるように前記電圧検出
器または電流検出器の出力を前記電力制御器にフィード
バックし、前記電圧検出器と前記電流検出器の出力とか
ら電力演算比較器の出力した電力の変化量によって前記
太陽電池の動作点を電力が増加する方向に移動するよう
に前記電圧設定値を修正する太陽電池の最大電力追尾方
法において、前記主回路の前記平滑コンデンサよりも前
記太陽電池側に、電圧設定値を修正するための重畳電圧
または重畳電流を印加するものである。 【0005】 【作用】上記手段により、主回路の平滑コンデンサより
も太陽電池側に、電圧設定値を修正するための重畳電圧
または重畳電流を発生する重畳電圧源または重畳電流源
を挿入してあるので、重畳電圧または重畳電流の負荷機
器への影響は平滑コンデンサによって阻止される 【0006】 【実施例】以下、本発明を図に示す実施例について説明
する。図1は本発明の実施例を示す構成図である。図に
おいて、太陽電池1で発生した電力を平滑コンデンサ
2、電力制御器3を介して負荷機器4に給電する主回路
10において、太陽電池1の出力電圧を検出する電圧検
出器5で検出した電圧が電圧設定器6で設定した値にな
るように電力制御器3をフィードバック制御しておき、
電圧検出器5と太陽電池1の出力電流を検出する電流検
出器8とからの信号をもとに、電力演算比較器9によっ
て演算した電力が増加したか減少したかによって、電圧
設定器6の電圧設定値を太陽電池1の出力が大きくなる
方向に修正するようにした構成は図3に示した従来例と
ほぼ同じ構成である。従来例と異なるのは次の点であ
る。すなわち、従来、信号重畳器によって電圧設定値に
微小信号を加算または減算することを止め、その代わり
に主回路10の平滑コンデンサ2よりも太陽電池1側
に、図4によって説明した電圧設定値を修正するための
重畳電圧ΔVを発生する重畳電圧源11を挿入してあ
る。ところで、平滑コンデンサ2の電圧は急変できない
ので、短時間では一定とみなすことができる。したがっ
て、重畳電圧源11の発生電圧が短時間であれば、その
電圧分だけ太陽電池1の動作点が変化するが、平滑コン
デンサ2の電圧は一定であるので、負荷機器4への影響
はない。厳密には、電圧検出器5の検出電圧が変化する
ので、制御系を通して負荷機器4に影響を与えるが、短
時間で済むので、制御系や負荷機器の時定数で吸収でき
る。このようにして、重畳電圧ΔVを与える時期と同期
させて、電力演算比較器9を動作させると、先に図4で
説明した電圧設定値を修正する原理に基づき、最大電力
動作点に対する現動作点の判定が可能である。図2は、
他の実施例を示す構成図で、電圧設定値を修正する場合
に電圧の代わりに、電流設定器6’で設定した電流を重
畳するものである。太陽電池1と並列に重畳電流源12
を設け、平滑コンデンサ2の太陽電池1側にリアクトル
13を挿入してある。リアクトル13は重畳電流電源1
2からの短時間の電流が平滑コンデンサに流入するのを
防止するためのものである。制御系を電流制御とし、電
流動作点を変化させた時の電力の変化分から現動作点を
判断し、最大電力動作点に近付ける動作は電圧を重畳す
る場合と同じである。なお、電圧や電流を重畳するに
は、重畳電圧源11または重畳電流源12を別に準備し
ておき、半導体スイッチ等で切り替えることで簡単に達
成できる。 【0007】 【発明の効果】以上述べたように、本発明によれば、負
荷機器の動作点を変動させることなく、短時間に太陽電
池の動作点を判定でき、これに基づいて精度の高い最大
電力の追尾を行う太陽電池の最大電力追尾方法を提供で
きる効果がある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic power generation system using a solar cell, and more particularly, to a maximum power of a solar cell which maintains an operating point so that an output is maximized. Related to tracking method. 2. Description of the Related Art Conventionally, a solar power generation system using a solar cell is used for charging a storage battery once with energy generated by the solar cell and reusing the storage battery, and for using a motor via a chopper or an inverter. It is used for driving, for use after being converted to a commercial frequency power supply by an inverter, or for use alone or in conjunction with a distribution network as a power supply. In that case, the solar cell is relatively expensive and the conversion efficiency is not high, so it is important to utilize the generated energy as effectively as possible. By the way, as for the characteristics of the solar cell, the output power with respect to the operating voltage or the operating current changes according to the change in the illuminance and the temperature. In other words, the operating point of the voltage or current at which the maximum power is output changes due to changes in illuminance or temperature, so that the solar cell automatically tracks its maximum power operating point under any conditions and uses solar energy efficiently. A system for performing the operation is disclosed (for example, Japanese Patent Application Laid-Open No. 61-97721). FIG. 3 is a basic configuration diagram showing the specific contents, in which the power generated by the solar cell 1 is transferred to a load such as a storage battery, a motor, and a power distribution network via a smoothing capacitor 2 and a power controller 3 such as a chopper or an inverter. Equipment 4
In a system having a main circuit 10 for supplying power to the power supply, the power controller 3 is feedback-controlled so that the output voltage of the solar cell 1 detected by the voltage detector 5 becomes a value set by the voltage setter 6, A minute signal is added to or subtracted from the voltage set value by the superimposing device 7. At this time, a power operation comparator 9 uses a signal from the voltage detector 5 and a current detector 8 for detecting an output current of the solar cell. Depending on whether the calculated power has increased or decreased, the voltage set value of the voltage setter 6 is corrected in a direction in which the output of the solar cell 1 increases. To explain the principle of correcting the voltage setting value of the voltage setting unit 6, for example, when increasing the voltage set value by the signal superposition unit 7, as shown in FIG. 4, during operation in the output voltage V 0, the superposed voltage If the amount of change ΔP in power P when ΔV is added is positive, it is determined that output voltage V 0 is smaller than maximum power operating point voltage V max , and V 0 + ΔV
Is the new operating point. If the change amount ΔP is negative, it is determined that the output voltage V 0 is higher than the maximum power operating point voltage V max , and V 0 −ΔV is set as a new operating point. By repeating this operation, the output of the solar cell 1 can be brought closer to the maximum power operating point for a while. In FIG. 4,
Although the case where the superimposed voltage ΔV is positive is shown, even when a negative value is given as ΔV, similar results can be obtained by reversing the method of determining the sign of the change amount ΔP. A similar operation can be performed using a current control loop instead of the voltage control loop. In the prior art, however, the operating point of the operating load device is varied in order to determine which side of the maximum operating point is the current operating point. There must be. This causes a change in the load state, and has a disadvantage that a desired load state cannot be maintained. In addition, depending on the characteristics of the load device, it may take time to follow the actual voltage with respect to the change in the voltage command value. There is a problem that an accurate operating point cannot be obtained due to the occurrence. An object of the present invention is to provide a solar cell maximum power tracking method capable of confirming a current operating point of a solar cell without changing an operating point of a load device. [0004] In order to solve the above problems, the present invention provides a main circuit for supplying power generated by a solar cell to a load device through a smoothing capacitor and a power controller. Controlling the output of the voltage detector or the current detector so that the output of the voltage detector for detecting the output voltage of the solar cell or the current detector for detecting the output current becomes equal to the set value of the voltage or current setting unit. The voltage is set so that the operating point of the solar cell moves in the direction in which the power increases in accordance with the amount of change in the power output from the power operation comparator from the output of the voltage detector and the output of the current detector. In the maximum power tracking method for a solar cell that corrects a value, the solar cell side of the main circuit with respect to the smoothing capacitor, a superimposed voltage for correcting a voltage set value or A superimposed current is applied. According to the above means, a superimposed voltage source or a superimposed current source for generating a superimposed voltage or a superimposed current for correcting a voltage set value is inserted closer to the solar cell than the smoothing capacitor of the main circuit. Therefore, the influence of the superimposed voltage or superimposed current on the load equipment is prevented by the smoothing capacitor. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to embodiments shown in the drawings. FIG. 1 is a configuration diagram showing an embodiment of the present invention. In the figure, a voltage detected by a voltage detector 5 that detects an output voltage of the solar cell 1 in a main circuit 10 that supplies power generated by the solar cell 1 to a load device 4 via a smoothing capacitor 2 and a power controller 3. Is feedback-controlled so that the power controller 3 has a value set by the voltage setting device 6,
Based on the signals from the voltage detector 5 and the current detector 8 for detecting the output current of the solar cell 1, whether the power calculated by the power calculation comparator 9 has increased or decreased, the voltage setting unit 6 The configuration in which the voltage set value is corrected in the direction in which the output of the solar cell 1 increases is substantially the same as the configuration of the conventional example shown in FIG. The difference from the conventional example is as follows. That is, conventionally, the addition or subtraction of a small signal to or from the voltage set value by the signal superimposing device is stopped, and instead, the voltage set value described with reference to FIG. A superimposed voltage source 11 for generating a superimposed voltage ΔV for correction is inserted. By the way, since the voltage of the smoothing capacitor 2 cannot be changed suddenly, it can be regarded as constant for a short time. Therefore, if the voltage generated by the superimposed voltage source 11 is short, the operating point of the solar cell 1 changes by that voltage, but the voltage of the smoothing capacitor 2 is constant, so there is no effect on the load device 4. . Strictly, the detected voltage of the voltage detector 5 changes, which affects the load device 4 through the control system. However, since it takes only a short time, it can be absorbed by the time constant of the control system and the load device. In this manner, when the power operation comparator 9 is operated in synchronization with the timing of applying the superimposed voltage ΔV, the current operation with respect to the maximum power operation point is performed based on the principle of correcting the voltage set value described earlier with reference to FIG. Point determination is possible. FIG.
FIG. 14 is a configuration diagram showing another embodiment, in which a current set by a current setting unit 6 ′ is superimposed instead of a voltage when a voltage set value is corrected. Superimposed current source 12 in parallel with solar cell 1
And a reactor 13 is inserted into the smoothing capacitor 2 on the solar cell 1 side. The reactor 13 is a superimposed current power supply 1
This is to prevent a short-time current from the second circuit from flowing into the smoothing capacitor. The current control is used as the control system, the current operating point is determined from the change in power when the current operating point is changed, and the operation of approaching the maximum power operating point is the same as the operation of superimposing a voltage. The superimposition of the voltage and the current can be easily achieved by preparing the superimposed voltage source 11 or the superimposed current source 12 separately and switching over by a semiconductor switch or the like. As described above, according to the present invention, the operating point of a solar cell can be determined in a short time without changing the operating point of a load device, and based on this, highly accurate operation can be performed. There is an effect that a maximum power tracking method for a solar cell that tracks the maximum power can be provided.

【図面の簡単な説明】 【図1】本発明の実施例の基本構成を示すブロック図で
ある。 【図2】本発明の他の実施例の基本構成を示すブロック
図である。 【図3】従来例の基本構成を示すブロック図である。 【図4】電圧設定器6の電圧設定値を修正する原理を説
明する説明図である。 【符号の説明】 1 太陽電池、2 平滑コンデンサ、3 電力制御器、
4 負荷機器、5 電圧検出器、6 電圧設定器、6’
電流設定器、8 電流検出器、9 電力演算比較器、
10 主回路、11 重畳電圧源、12 重畳電流源、
13 リアクトル
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a basic configuration of an embodiment of the present invention. FIG. 2 is a block diagram showing a basic configuration of another embodiment of the present invention. FIG. 3 is a block diagram showing a basic configuration of a conventional example. FIG. 4 is an explanatory diagram illustrating a principle of correcting a voltage set value of a voltage setter 6; [Description of Signs] 1 solar cell, 2 smoothing capacitor, 3 power controller,
4 Load equipment, 5 Voltage detector, 6 Voltage setting device, 6 '
Current setting device, 8 current detector, 9 power operation comparator,
10 main circuit, 11 superimposed voltage source, 12 superimposed current source,
13 Reactor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 佐田夫 福岡県北九州市八幡西区黒崎城石2番1 号 株式会社 安川電機内 (56)参考文献 特開 平4−308431(JP,A) 特開 平4−149712(JP,A) (58)調査した分野(Int.Cl.7,DB名) G05F 1/67 G05F 1/10 H01L 31/04 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sadao Ishii 2-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu-shi, Fukuoka Inside Yaskawa Electric Co., Ltd. (56) References JP-A-4-308431 (JP, A) JP-A Heihei 4-149712 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G05F 1/67 G05F 1/10 H01L 31/04

Claims (1)

(57)【特許請求の範囲】 【請求項1】 太陽電池で発生した電力を平滑コンデン
サおよび電力制御器を介して負荷機器に給電する主回路
を設け、前記太陽電池の出力電圧を検出する電圧検出器
または出力電流を検出する電流検出器の出力が電圧また
は電流設定器の設定値になるように前記電圧検出器また
は電流検出器の出力を前記電力制御器にフィードバック
し、前記電圧検出器と前記電流検出器の出力とから電力
演算比較器の出力した電力の変化量によって前記太陽電
池の動作点を電力が増加する方向に移動するように前記
電圧設定値を修正する太陽電池の最大電力追尾方法にお
いて、前記主回路の前記平滑コンデンサよりも前記太陽
電池側に、電圧設定値を修正するための重畳電圧または
重畳電流を印加することを特徴とする太陽電池の最大電
力追尾方法。
(57) [Claim 1] A main circuit for supplying power generated by a solar cell to a load device via a smoothing capacitor and a power controller, and a voltage for detecting an output voltage of the solar cell. The output of the voltage detector or the current detector is fed back to the power controller so that the output of the detector or the current detector that detects the output current becomes the set value of the voltage or the current setter. The maximum power tracking of the solar cell in which the voltage set value is corrected so that the operating point of the solar cell moves in the direction in which the power increases in accordance with the amount of change in the power output from the power detector and the output of the current detector. In the method, a superimposed voltage or current for correcting a voltage set value is applied to the solar cell side of the main circuit with respect to the smoothing capacitor. Power tracking method.
JP23426593A 1993-08-25 1993-08-25 Maximum power tracking method for solar cells Expired - Fee Related JP3402387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23426593A JP3402387B2 (en) 1993-08-25 1993-08-25 Maximum power tracking method for solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23426593A JP3402387B2 (en) 1993-08-25 1993-08-25 Maximum power tracking method for solar cells

Publications (2)

Publication Number Publication Date
JPH0764660A JPH0764660A (en) 1995-03-10
JP3402387B2 true JP3402387B2 (en) 2003-05-06

Family

ID=16968265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23426593A Expired - Fee Related JP3402387B2 (en) 1993-08-25 1993-08-25 Maximum power tracking method for solar cells

Country Status (1)

Country Link
JP (1) JP3402387B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256566B2 (en) * 2003-05-02 2007-08-14 Ballard Power Systems Corporation Method and apparatus for determining a maximum power point of photovoltaic cells
JP4797142B2 (en) * 2005-09-22 2011-10-19 独立行政法人産業技術総合研究所 Photovoltaic power generation control device

Also Published As

Publication number Publication date
JPH0764660A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
EP0220713B1 (en) Flywheel power source apparatus
US5268832A (en) DC/AC inverter controller for solar cell, including maximum power point tracking function
JPH08317664A (en) Protective method of system overvoltage in power conversion apparatus for photovoltaic power generation
JPH1146457A (en) Charging device utilizing solar cell
WO2007129808A1 (en) The control apparatus and method of senseless mppt control for photovoltaic power generation system
JP3407234B2 (en) Control method of distributed arrangement type power supply linked to power system
JP3402387B2 (en) Maximum power tracking method for solar cells
JPH11122820A (en) Solar light generator
JP2671085B2 (en) Grid-connected storage battery charger
JPH0962386A (en) Control method for power converter for photovoltatic power generation
JP3286046B2 (en) Power converter control method
JP3402388B2 (en) How to determine the maximum power operating point of a solar cell
JP2000184739A (en) Method for controlling power conversion device
JPH09179643A (en) Power converter for photovoltatic power generation
US20050068699A1 (en) Power-supply device
JP3154336B2 (en) Inverter control circuit for photovoltaic power generation
JP2001218368A (en) Power converter and photovoltaic generation system
JPH10117445A (en) Charger
JPS6176075A (en) Method of controlling power converter
JPH11196531A (en) Operating method of distributed power source
JPS6197721A (en) Control method of solar power generator
JP2000152519A (en) Charging of instantaneous voltage drop compensating device
JPH06225406A (en) Battery charging system for electric motor vehicle
JPH07212977A (en) Reactive power compensator
JP3337635B2 (en) Power supply control device and system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees