JP3385115B2 - Gel electrolyte and lithium secondary battery - Google Patents

Gel electrolyte and lithium secondary battery

Info

Publication number
JP3385115B2
JP3385115B2 JP26934494A JP26934494A JP3385115B2 JP 3385115 B2 JP3385115 B2 JP 3385115B2 JP 26934494 A JP26934494 A JP 26934494A JP 26934494 A JP26934494 A JP 26934494A JP 3385115 B2 JP3385115 B2 JP 3385115B2
Authority
JP
Japan
Prior art keywords
sulfur
solution
bond
lithium
gel electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26934494A
Other languages
Japanese (ja)
Other versions
JPH08138742A (en
Inventor
裕史 上町
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP26934494A priority Critical patent/JP3385115B2/en
Publication of JPH08138742A publication Critical patent/JPH08138742A/en
Application granted granted Critical
Publication of JP3385115B2 publication Critical patent/JP3385115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ゲル電解質、およびこ
のゲル電解質を用いたリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gel electrolyte and a lithium secondary battery using the gel electrolyte.

【0002】[0002]

【従来の技術】1971年に白川らにより導電性のポリ
アセチレンが発見されて以来、導電性高分子を電極材料
に用いると、軽量で高エネルギー密度の電池や大面積の
エレクトロクロミック素子、微小電極を用いた生物化学
センサー等の電気化学素子が期待できることから、導電
性高分子電極が盛んに検討されている。ポリアセチレン
は、不安定で電極としては実用性に乏しいことから、他
のπ電子共役系導電性高分子が検討され、ポリアニリ
ン、ポリピロール、ポリアセン、ポリチオフェンといっ
た比較的安定な高分子が開発され、これらを正極に用い
たリチウム二次電池が開発されるに及んでいる。また、
高エネルギー密度が期待できる有機材料として、米国特
許第4,833,048号に有機ジスルフィド化合物が
提案されている。この有機ジスルフィド化合物は、最も
簡単にはR−S−S−Rと表される(Rは脂肪族あるい
は芳香族の有機基、Sは硫黄である)。S−S結合は電
解還元により開裂し、電解浴中のカチオン(M+)とで
R−S・M+で表される塩を生成する。この塩は、電解
酸化により元のR−S−S−Rに戻る。カチオン
(M+)を供給、捕捉する金属Mと有機ジスルフィド化
合物を組み合わせた金属ーイオウ二次電池が前述の米国
特許に提案されている。
2. Description of the Related Art Since conductive polyacetylene was discovered by Shirakawa et al. In 1971, when a conductive polymer was used as an electrode material, a light-weight, high-energy-density battery, a large-area electrochromic device, and a microelectrode were used. Since an electrochemical element such as a biochemical sensor used can be expected, conductive polymer electrodes are being actively studied. Since polyacetylene is unstable and impractical as an electrode, other π-electron conjugated conductive polymers have been studied, and relatively stable polymers such as polyaniline, polypyrrole, polyacene, and polythiophene have been developed. Lithium secondary batteries used for the positive electrode have been developed. Also,
An organic disulfide compound is proposed in U.S. Pat. No. 4,833,048 as an organic material that can be expected to have a high energy density. This organic disulfide compound is most simply represented as R-S-S-R (R is an aliphatic or aromatic organic group, and S is sulfur). The S—S bond is cleaved by electrolytic reduction to form a salt represented by R—S M + with a cation (M + ) in the electrolytic bath. This salt returns to the original RSSR by electrolytic oxidation. A metal-sulfur secondary battery combining a metal M that supplies and traps cations (M + ) and an organic disulfide compound has been proposed in the aforementioned U.S. Patent.

【0003】ポリアニリン、ポリピロール、ポリアセ
ン、ポリチオフェンと言った導電性高分子電極は、電極
反応に際してカチオンのみならず電解質中のアニオンを
取り込みむので、電池内にあって電解質はイオンの移動
媒体として作用するだけでなく電池反応に関与するた
め、電池容量に見合う量の電解質を電池内に供給する必
要がある。そしてその分、電池のエネルギー密度が小さ
くなるという問題を有している。エネルギー密度は、2
0〜50Wh/kg程度で、ニッケル−カドミウム蓄電
池、鉛蓄電池等の通常の二次電池に較べ2分の1程度と
小さいという問題があった。提案されている有機ジスル
フィド化合物は、米国特許第4,833,048号の発
明者らが報告しているように、例えば[(C252
CSS-2 の電解では、酸化と還元の電位が1ボルト
以上離れており電池反応は極めて遅い(J.Electrochem.
Soc, Vol.136, No.9, p.2570〜2575(1989))。従っ
て、室温付近では実用に見合う大きな電流、例えば1m
A/cm2 以上の電流を取り出すことが困難であり、1
00〜200℃の高温での使用に限られる。また、有機
ジスルフィド化合物そのものは導電性を有していないの
で、電極として使用するには炭素材料、金属、導電性高
分子等の導電剤を添加して複合電極とする必要がある。
[0003] Conductive polymer electrodes such as polyaniline, polypyrrole, polyacene and polythiophene take in not only cations but also anions in the electrolyte during the electrode reaction, so that the electrolyte acts as an ion transfer medium in the battery. In addition, it is necessary to supply an amount of electrolyte corresponding to the battery capacity into the battery because it is involved in the battery reaction as well. Then, there is a problem that the energy density of the battery is reduced accordingly. Energy density is 2
At about 0 to 50 Wh / kg, there is a problem that it is as small as about half that of a normal secondary battery such as a nickel-cadmium storage battery and a lead storage battery. Proposed organic disulfide compounds are described in, for example, [(C 2 H 5 ) 2 N], as reported by the inventors in US Pat. No. 4,833,048.
CSS -] In the second electrolysis, the potential of oxidation and reduction is very slow cell reaction are separated one volt or more (J. Electrochem.
Soc, Vol. 136, No. 9, p. 2570-2575 (1989)). Therefore, near room temperature, a large current suitable for practical use, for example, 1 m
It is difficult to extract a current of A / cm 2 or more.
Limited to use at high temperatures of 00-200 ° C. Further, since the organic disulfide compound itself does not have conductivity, it is necessary to add a conductive agent such as a carbon material, a metal, or a conductive polymer to form a composite electrode for use as an electrode.

【0004】これらの問題を解決するために、ポリアニ
リンを導電剤として用い、有機ジスルフィド化合物と複
合化した正極が提案された。ポリアニリンと有機ジスル
フィド化合物を複合化したものを正極に用いると、室温
下で実用に見合う大きな電流を取り出す電池が可能とな
った。有機ジスルフィド化合物とポリアニリンを均一に
複合化すると、さらに電池反応が向上する。有機ジスル
フィド化合物モノマーとポリアニリンをNーアルキルー
2ーピロリドンに溶解して塗布、乾燥すると、モノマー
有機ジスルフィド化合物とポリアニリンとを均一に複合
化することができる。
[0004] In order to solve these problems, a positive electrode using polyaniline as a conductive agent and complexed with an organic disulfide compound has been proposed. When a composite of polyaniline and an organic disulfide compound was used for the positive electrode, a battery capable of extracting a large current suitable for practical use at room temperature became possible. When the organic disulfide compound and polyaniline are uniformly compounded, the battery reaction is further improved. When the organic disulfide compound monomer and polyaniline are dissolved in N-alkyl-2-pyrrolidone, applied, and dried, the monomer organic disulfide compound and polyaniline can be uniformly compounded.

【0005】[0005]

【発明が解決しようとする課題】有機ジスルフィド化合
物とポリアニリンを複合化した膜を正極に用い、リチウ
ム塩を有機溶媒に溶解した電解質溶液をゲル化した膜を
電解質に用いたリチウム電池は、高容量の二次電池とし
て作動する。しかし、電池の充放電サイクルにともなう
放電容量の低下が大きいという問題があった。さらに
は、電池長期保存後の放電容量が低下するという保存特
性低下の問題もあった。本発明は、このような問題を解
決し、有機ジスルフィド化合物の有する高エネルギー密
度という特徴を損なわず、室温においても大電流が取り
出せ、しかも充放電サイクル特性劣化の少ないゲル電解
質およびこれを用いたリチウム二次電池を提供すること
を目的とするものである。
A lithium battery using a membrane in which an organic disulfide compound and polyaniline are combined as a positive electrode and a membrane obtained by gelling an electrolyte solution obtained by dissolving a lithium salt in an organic solvent as an electrolyte has a high capacity. Operates as a secondary battery. However, there is a problem that the discharge capacity is greatly reduced with the charge / discharge cycle of the battery. Further, there is a problem of a decrease in storage characteristics such as a decrease in discharge capacity after long-term storage of the battery. The present invention solves such a problem, does not impair the feature of the high energy density of the organic disulfide compound, can take out a large current even at room temperature, and furthermore has a gel electrolyte with little deterioration in charge / discharge cycle characteristics and lithium using the same. An object is to provide a secondary battery.

【0006】[0006]

【課題を解決するための手段】本発明のゲル電解質は、
電解還元により硫黄ー硫黄結合が開裂して硫黄ー金属イ
オン(プロトンを含む)結合を生成し、電解酸化により
硫黄ー金属イオン結合が元の硫黄ー硫黄結合を再生する
有機ジスルフィド化合物(以下、単に有機ジスルフィド
化合物という。)とリチウム塩を非プロトン性の有機溶
媒に溶解した溶液、およびゲル化剤よりなる。また、本
発明のリチウム二次電池は、有機ジスルフィド化合物と
ポリアニリンを含む複合膜からなる正極、リチウム塩と
有機ジスルフィド化合物のリチウム塩とを非プロトン性
の有機溶媒に溶解した溶液およびゲル化剤よりなるゲル
電解質、およびリチウムイオンを捕捉あるいは供給する
負極を具備する。
Means for Solving the Problems The gel electrolyte of the present invention comprises:
An organic disulfide compound in which a sulfur-sulfur bond is cleaved by electrolytic reduction to generate a sulfur-metal ion (including proton) bond, and the sulfur-metal ion bond regenerates the original sulfur-sulfur bond by electrolytic oxidation (hereinafter, simply referred to as an organic disulfide compound) An organic disulfide compound) and a solution in which a lithium salt is dissolved in an aprotic organic solvent, and a gelling agent. Further, the lithium secondary battery of the present invention comprises a positive electrode comprising a composite film containing an organic disulfide compound and polyaniline, a solution in which a lithium salt and a lithium salt of an organic disulfide compound are dissolved in an aprotic organic solvent, and a gelling agent. And a negative electrode for capturing or supplying lithium ions.

【0007】ここで、前記ゲル化剤は、アクリロニトリ
ル共重合体であることが好ましい。また、前記ゲル電解
質を構成する溶液への有機ジスルフィド化合物またはそ
のリチウム塩の溶解量は、飽和量に対し85%から11
0%であることが好ましい。さらに、前記正極の複合膜
は、チオール基を含む有機ジスルフィド化合物単量体と
ポリアニリンを溶解したNーアルキルー2ーピロリドン
溶液の塗膜であることがこのましい。また、前記の負極
には、金属リチウム、リチウムーアルミニウム、リチウ
ムーマンガン等のリチウム合金、あるいはリチウムイオ
ンを可逆的に出し入れできる炭素材料、金属硫化物、金
属酸化物、または導電性高分子が用いられる。
Here, the gelling agent is preferably an acrylonitrile copolymer. The amount of the organic disulfide compound or the lithium salt thereof dissolved in the solution constituting the gel electrolyte ranges from 85% to 11% of the saturation amount.
It is preferably 0%. Further, it is preferable that the composite film of the positive electrode is a coating film of an N-alkyl-2-pyrrolidone solution in which an organic disulfide compound monomer containing a thiol group and polyaniline are dissolved. Further, for the negative electrode, a metal alloy such as lithium metal, lithium-aluminum, lithium-manganese, or a carbon material capable of reversibly inserting and extracting lithium ions, a metal sulfide, a metal oxide, or a conductive polymer is used. Can be

【0008】[0008]

【作用】正極の有機ジスルフィド化合物とポリアニリン
とからなる複合膜中において、有機ジスルフィド化合物
は、電解還元時にはモノマーとなり、電解酸化時にはポ
リマーとなる。ポリマーの有機ジスルフィド化合物は有
機溶媒に不溶であり、モノマーの有機ジスルフィド化合
物は有機溶媒に可溶である。複合膜内で溶解したモノマ
ーの有機ジスルフィド化合物は、濃度勾配により複合膜
から電解質へ流れ出す。有機ジスルフィド化合物が電極
外へ流れ出せば、電池活物質の絶対量が減少するので、
電池の容量が低下する。この有機ジスルフィド化合物の
電解質への流れ出しが充放電サイクルの進行にともなう
電池の容量低下の原因となる。また、電解還元状態で電
池を保存すると、時間経過とともにモノマーの有機ジス
ルフィド化合物が電解質へ流れ出し、電池活物質の絶対
量が減少するので、電池の容量が低下する。モノマー有
機ジスルフィド化合物の溶解が保存特性の低下の原因と
もなる。
The organic disulfide compound becomes a monomer at the time of electrolytic reduction and a polymer at the time of electrolytic oxidation in the composite film composed of the organic disulfide compound and polyaniline of the positive electrode. Polymeric organic disulfide compounds are insoluble in organic solvents, and monomeric organic disulfide compounds are soluble in organic solvents. The monomeric organic disulfide compound dissolved in the composite membrane flows out of the composite membrane to the electrolyte due to the concentration gradient. If the organic disulfide compound flows out of the electrode, the absolute amount of the battery active material decreases,
Battery capacity decreases. The flow of the organic disulfide compound into the electrolyte causes a reduction in the capacity of the battery as the charge / discharge cycle progresses. In addition, when the battery is stored in the electrolytic reduction state, the organic disulfide compound as a monomer flows out into the electrolyte over time, and the absolute amount of the battery active material decreases, so that the capacity of the battery decreases. The dissolution of the monomeric organic disulfide compound causes a deterioration in storage characteristics.

【0009】上記本発明の構成においては、有機ジスル
フィド化合物をゲル電解質にあらかじめ溶解することに
より、電解還元時に複合膜中でモノマーの有機ジスルフ
ィド化合物の複合膜外への溶出を抑制することができ
る。また、有機ジスルフィド化合物をあらかじめ溶解し
た電解質は、複合膜への有機ジスルフィド化合物を供給
する供給体ともなる。このため、複合膜内で有機ジスル
フィド化合物が不活性となっても、新たに電解質から有
機ジスルフィド化合物の供給を受けて容量低下を防止で
きる。
In the structure of the present invention, by dissolving the organic disulfide compound in the gel electrolyte in advance, the elution of the monomeric organic disulfide compound out of the composite film in the composite film during electrolytic reduction can be suppressed. In addition, the electrolyte in which the organic disulfide compound is dissolved in advance also serves as a supplier for supplying the organic disulfide compound to the composite membrane. For this reason, even if the organic disulfide compound becomes inactive in the composite membrane, a decrease in capacity can be prevented by newly supplying the organic disulfide compound from the electrolyte.

【0010】[0010]

【実施例】本発明の有機ジスルフィド化合物としては、
米国特許第4,833,048号に述べられてる一般式
(R(S)ynで表される化合物を用いることができ
る。Rは脂肪族基または芳香族基、Sは硫黄、yは1以
上の整数、nは2以上の整数である。HSCH2CH2
Hで表されるジチオグリコール、C22S(SH)2
表される2,5−ジメルカプト−1,3,4−チアジア
ゾール、C3333で表されるs−トリアジン−2,
4,6−トリチオール、C6643で表される7−メ
チル−2,6,8−トリメルカプトプリン、あるいはC
4642で表される4,5−ジアミノ−2,6−ジメ
ルカプトピリミジン等が用いられる。何れも市販品をそ
のまま用いることができる。ポリアニリンとしては、ア
ニリンを電解あるいは化学酸化することによりポリマー
化したものが用いられる。溶解性の点から、脱ドープ状
態の還元体のポリアニリンが好ましい。このようなポリ
アニリンとしては、日東電工(株)製の「アニリード」が
ある。ポリアニリンの還元度(RDI)は、ポリアニリ
ンをN−メチル−2−ピロリドンに微量溶解した溶液の
電子吸収スペクトルに基づいて表すことができる。すな
わち、340nm付近の短波長側に現れるパラ置換ベン
ゼン構造に起因する吸収ピークの強度(I340)と、6
40nm付近の長波長側に現れるキノンジイミン構造に
起因する吸収ピークの強度(I640)との比、RDI=
640/I340 を指標とする。RDIが0.5以下のポ
リアニリンが好適に用いられる。ポリアニリンの脱ドー
プの程度は、伝導度により表される。伝導度が、10-5
S/cm以下のポリアニリンが好適に用いられる。ま
た、複合膜を形成する際に、有機ジスルフィド化合物と
ポリアニリンを均一に溶解する溶媒として、N−アルキ
ル−2−ピロリドンが用いられる。N−アルキル−2−
ピロリドンとしては、N−メチル−2−ピロリドン、N
−エチル−2−ピロリドン、N−ブチル−2−ピロリド
ンが、良好な溶解性を与えるので好ましい。
Examples The organic disulfide compounds of the present invention include:
The compound represented by the general formula (R (S) y ) n described in US Pat. No. 4,833,048 can be used. R is an aliphatic group or an aromatic group, S is sulfur, y is an integer of 1 or more, and n is an integer of 2 or more. HSCH 2 CH 2 S
Dithioglycol represented by H, is represented by C 2 N 2 S (SH) represented by 2 2,5-dimercapto-1,3,4-thiadiazole, C 3 H 3 N 3 S 3 s- triazine −2,
4,6-trithiol, 7-methyl-2,6,8-trimercaptopurine represented by C 6 H 6 N 4 S 3 or C
For example, 4,5-diamino-2,6-dimercaptopyrimidine represented by 4 H 6 N 4 S 2 is used. In each case, commercially available products can be used as they are. As polyaniline, aniline polymerized by electrolytic or chemical oxidation is used. From the viewpoint of solubility, reduced polyaniline in the undoped state is preferable. As such a polyaniline, there is “Anilead” manufactured by Nitto Denko Corporation. The degree of reduction (RDI) of polyaniline can be represented based on an electronic absorption spectrum of a solution in which polyaniline is slightly dissolved in N-methyl-2-pyrrolidone. That is, the intensity (I 340 ) of the absorption peak due to the para-substituted benzene structure appearing on the short wavelength side near 340 nm and 6
Ratio of absorption peak intensity (I 640 ) attributable to the quinone diimine structure appearing on the long wavelength side near 40 nm, RDI =
I 640 / I 340 is used as an index. Polyaniline having an RDI of 0.5 or less is preferably used. The degree of undoping of polyaniline is represented by conductivity. Conductivity is 10 -5
Polyaniline of S / cm or less is preferably used. In forming a composite film, N-alkyl-2-pyrrolidone is used as a solvent for uniformly dissolving the organic disulfide compound and polyaniline. N-alkyl-2-
As pyrrolidone, N-methyl-2-pyrrolidone, N
-Ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone are preferred because they give good solubility.

【0011】ゲル電解質膜の電解質溶液としては、リチ
ウム塩を非プロトン性の有機溶媒に溶解した溶液が用い
られる。リチウム塩としては、LiClO4、LiB
4、LiPF6、LiAsF6、LiCF3SO3、Li
N(CF3SO22 等が単独、あるいはこれらの混合塩
が用いられる。非プロトン性の有機溶媒としては、エチ
レンカーボネート、プロピレンカーボネート、ジエチレ
ンカーボネート、ジメチレンカーボネート、ジメトキシ
エタン、γーブチロラクトン、スルホラン、ジメチルス
ルフォキシドの単独、あるいはこれらの混合溶媒が用い
られる。ゲル電解質のゲル化剤としては、高分子主鎖が
ポリアクリロニトリル系、ポリフッ化ビニリデン系、ポ
リビニルピロリドン系、ポリビニリデンカーボネート
系、ポリエーテル系等を用いることができる。ゲル電解
質と電極界面との接着性においては、ポリアクリロニト
リル重合体あるいはその共重合体をゲル化剤に用いるの
が好ましい。ゲル電解質に溶解する有機ジスルフィド化
合物は、正極複合膜と同じ有機ジスルフィド化合物を用
いる。このゲル電解質をリチウム電池の電解質として用
いる場合は、ゲル電解質に溶解する有機ジスルフィド化
合物はリチウム塩にしておくのが望ましい。有機ジスル
フィド化合物の非プロトン性有機溶媒への溶解量は、飽
和量に対し85%から110%であれば充放電サイクル
劣化の抑制、保存特性の向上ともに極めて有効に作用す
る。
As an electrolyte solution for the gel electrolyte membrane, a solution in which a lithium salt is dissolved in an aprotic organic solvent is used. LiClO 4 , LiB
F 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , Li
N (CF 3 SO 2 ) 2 or the like is used alone, or a mixed salt thereof is used. As the aprotic organic solvent, ethylene carbonate, propylene carbonate, diethylene carbonate, dimethylene carbonate, dimethoxyethane, γ-butyrolactone, sulfolane, dimethyl sulfoxide alone or a mixed solvent thereof is used. As the gelling agent for the gel electrolyte, a polyacrylonitrile-based, polyvinylidene fluoride-based, polyvinylpyrrolidone-based, polyvinylidene carbonate-based, or polyether-based polymer main chain can be used. In terms of adhesiveness between the gel electrolyte and the electrode interface, it is preferable to use a polyacrylonitrile polymer or a copolymer thereof as the gelling agent. As the organic disulfide compound dissolved in the gel electrolyte, the same organic disulfide compound as in the positive electrode composite membrane is used. When this gel electrolyte is used as an electrolyte of a lithium battery, the organic disulfide compound dissolved in the gel electrolyte is desirably a lithium salt. When the dissolution amount of the organic disulfide compound in the aprotic organic solvent is 85% to 110% with respect to the saturation amount, both the suppression of charge / discharge cycle deterioration and the improvement of storage characteristics work very effectively.

【0012】[実施例1] 電極の作成:2,5−ジメルカプト−1,3,4−チア
ジアゾール(以下、DMcTと呼ぶ)モノマー粉末1.
5g(0.01モル)をN-メチルー2ーピロリドン
(以下、NMPと呼ぶ)3g(0.03モル)に溶解
し、粘性のある黄色透明のDMcT−NMP溶液を調製
した。この溶液に、ポリアニリンとして日東電工製の
「アニリード」粉末0.5g(0.003モル、RDI
=0.3)を添加し、不活性ガスで置換した密閉容器中
で80℃に加熱することで粘着性の暗緑色の複合体を得
た。この複合体を、大きさ4×4cm、厚さ30μmの
チタン箔上に印刷したのち、80℃、1cmHgで1時
間減圧加熱処理を行い、厚さ20μmの複合電極を得
た。この複合電極を大きさ1×1cmに切り出し電池用
の正極とした。
Example 1 Preparation of electrode: 2,5-dimercapto-1,3,4-thiadiazole (hereinafter referred to as DMcT) monomer powder
5 g (0.01 mol) was dissolved in 3 g (0.03 mol) of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) to prepare a viscous yellow transparent DMcT-NMP solution. To this solution was added 0.5 g (0.003 mol, RDI) of "Anilead" powder manufactured by Nitto Denko as polyaniline.
= 0.3) and heated to 80 ° C in a sealed container purged with an inert gas to obtain a sticky dark green complex. The composite was printed on a titanium foil having a size of 4 × 4 cm and a thickness of 30 μm, and then subjected to a reduced pressure heat treatment at 80 ° C. and 1 cmHg for 1 hour to obtain a composite electrode having a thickness of 20 μm. This composite electrode was cut out to a size of 1 × 1 cm and used as a positive electrode for a battery.

【0013】DMcT−Li塩の作成:DMcT6gを
溶解したエタノール100mlに、LiOH1.6gを
溶解した水溶液30mlを攪拌しながら滴下した。室温
下3時間攪拌したのち、エバポレータで濃縮し、吸引ろ
過を行った。ろ紙上にクリーム色の粉末が得られた。こ
れをアセトンで数回洗浄した後真空乾燥し、こうしてD
McT−Li5.2gを得た。
Preparation of DMcT-Li salt: 30 ml of an aqueous solution in which 1.6 g of LiOH was dissolved was added dropwise to 100 ml of ethanol in which 6 g of DMcT was dissolved while stirring. After stirring at room temperature for 3 hours, the mixture was concentrated with an evaporator and suction-filtered. A cream-colored powder was obtained on the filter paper. This is washed several times with acetone and then dried under vacuum.
5.2 g of McT-Li were obtained.

【0014】電解質の作成:LiClO4を1M溶解し
たプロピレンカーボネート(以下、PCと呼ぶ)−エチ
レンカーボネート(以下、ECと呼ぶ)(1:1容積
比)溶液20.7gにDMcT−Li塩を飽和量(4.
5重量%)加えて溶解した。この溶液にさらにアクリロ
ニトリル(以下、ANと呼ぶ)とエチルアクリレート
(以下とEA呼ぶ)の共重合体(AN:EA共重合モル
比=90:10)3.0gを加えて攪拌し、加熱溶解し
て電解質溶液を調整した。この電解質溶液をガラスシャ
ーレにキャストし、0℃で6時間放置した。こうして厚
さ0.5mmのゲル電解質膜1−Aを得た。比較のため
に、DMcT−Li塩を含まないゲル電解質膜を作成し
た。LiClO4を1M溶解したPC−EC(1:1容
積比)溶液20.7gにアクリロニトリルとエチルアク
リレートの共重合体(AN:EA共重合モル比=90:
10)3.0gを加え攪拌、加熱溶解し電解質溶液を調
整した。この電解質溶液をガラスシャーレにキャスト
し、0℃で6時間放置した。こうして厚さ0.5mmの
ゲル電解質膜1−Bを得た。電解質膜1−A、1−Bと
も大きさ1×1cmに切り出した。
Preparation of electrolyte: DMcT-Li salt is saturated in 20.7 g of a propylene carbonate (hereinafter, referred to as PC) -ethylene carbonate (hereinafter, referred to as EC) (1: 1 volume ratio) solution in which 1M of LiClO 4 is dissolved. Amount (4.
5% by weight) and dissolved. To this solution, 3.0 g of a copolymer of acrylonitrile (hereinafter, referred to as AN) and ethyl acrylate (hereinafter, referred to as EA) (AN: EA copolymerization molar ratio = 90: 10) was added, stirred, and dissolved by heating. To prepare the electrolyte solution. This electrolyte solution was cast on a glass petri dish and left at 0 ° C. for 6 hours. Thus, a 0.5 mm thick gel electrolyte membrane 1-A was obtained. For comparison, a gel electrolyte membrane containing no DMcT-Li salt was prepared. A copolymer of acrylonitrile and ethyl acrylate (AN: EA copolymer molar ratio = 90: 20.7 g) in 20.7 g of a PC-EC (1: 1 volume ratio) solution in which 1M of LiClO 4 was dissolved.
10) 3.0 g was added, and the mixture was stirred and dissolved by heating to prepare an electrolyte solution. This electrolyte solution was cast on a glass petri dish and left at 0 ° C. for 6 hours. Thus, a 0.5 mm thick gel electrolyte membrane 1-B was obtained. Each of the electrolyte membranes 1-A and 1-B was cut into a size of 1 × 1 cm.

【0015】電池の作成:厚さ0.3mmの金属リチウ
ムを大きさ1×1cmに切り出し負極とした。複合正極
膜、ゲル電解質膜、金属リチウム負極を順番に重ね合わ
せ、1×1cm角の電池を構成した。電解質にゲル電解
質膜1−Aを用いた電池1−A1、1−A2、電解質に
ゲル電解質膜1−Bを用いた電池1−B1、1−B2を
作成した。
Preparation of Battery: Metallic lithium having a thickness of 0.3 mm was cut into a size of 1 × 1 cm to obtain a negative electrode. The composite positive electrode membrane, the gel electrolyte membrane, and the metal lithium anode were sequentially stacked to form a 1 × 1 cm square battery. Batteries 1-A1 and 1-A2 using a gel electrolyte membrane 1-A as an electrolyte, and batteries 1-B1 and 1-B2 using a gel electrolyte membrane 1-B as an electrolyte were prepared.

【0016】[実施例2] 電極の作成:DMcTモノマー粉末1.5g(0.01
モル)をN-メチルー2ーピロリドン(NMP)3g
(0.03モル)に溶解し、粘性のある黄色透明のDM
cT−NMP溶液を調製した。この溶液に、ポリアニリ
ンとして日東電工製の「アニリード」粉末0.5g
(0.003モル、RDI値=0.3)を添加し、不活
性ガスで置換した密閉容器中で80℃に加熱することで
粘着性の暗緑色の複合体を得た。この複合体を、大きさ
4×4cm、厚さ30μmのチタン箔上に印刷したの
ち、80℃、1cmHgで1時間減圧加熱処理を行い、
厚さ20μmの複合電極を得た。この複合電極を大きさ
1×1cmに切り出し電池用の正極とした。
Example 2 Preparation of electrode: 1.5 g of DMcT monomer powder (0.01 g
Mol) with 3 g of N-methyl-2-pyrrolidone (NMP)
(0.03 mol), viscous yellow transparent DM
A cT-NMP solution was prepared. To this solution was added 0.5 g of Nitto Denko "Anilead" powder as polyaniline.
(0.003 mol, RDI value = 0.3) was added, and the mixture was heated to 80 ° C in a closed container replaced with an inert gas to obtain a sticky dark green complex. This composite was printed on a titanium foil having a size of 4 × 4 cm and a thickness of 30 μm, and then subjected to a heat treatment under reduced pressure at 80 ° C. and 1 cmHg for 1 hour.
A composite electrode having a thickness of 20 μm was obtained. This composite electrode was cut out to a size of 1 × 1 cm and used as a positive electrode for a battery.

【0017】DMcT−Li塩の作成:DMcT6gを
溶解したエタノール100mlに、LiOH1.6gを
溶解した水溶液30mlを攪拌しながら滴下した。室温
下3時間攪拌したのちエバポレータで濃縮し、吸引ろ過
を行った。ろ紙上にクリーム色の粉末が得られた。これ
をアセトンで数回洗浄した後真空乾燥し、こうしてDM
cT−Li塩5.2gを得た。
Preparation of DMcT-Li salt: 30 ml of an aqueous solution in which 1.6 g of LiOH was dissolved was added dropwise to 100 ml of ethanol in which 6 g of DMcT was dissolved while stirring. After stirring at room temperature for 3 hours, the mixture was concentrated with an evaporator, and suction filtration was performed. A cream-colored powder was obtained on the filter paper. This is washed several times with acetone, and then dried in vacuum.
5.2 g of cT-Li salt were obtained.

【0018】電解質の作成:LiBF4を1M溶解した
EC−スルホラン(以下、SLと呼ぶ)−ジエチレンカ
ーボネート(以下、DECと呼ぶ)(1:1:0.5容
積比)溶液20.7gにDMcT−Li塩を飽和量
(4.5重量%)加えて溶解した。この溶液にさらにア
クリロニトリルとエチルアクリレートの共重合体(A
N:EA共重合モル比=90:10)3.0gを加え攪
拌、加熱溶解し電解質溶液を調整した。この電解質溶液
をガラスシャーレにキャストし、0℃で6時間放置し
た。こうして厚さ0.5mmのゲル電解質膜2−Aを得
た。比較のために、DMcT−Li塩を含まないゲル電
解質膜を作成した。LiBF4を1M溶解したEC−S
L−DEC(1:1:0.5容積比)溶液20.7gに
アクリロニトリルとエチルアクリレートの共重合体(A
N:EA共重合モル比=90:10)3.0gを加え攪
拌し、加熱溶解して電解質溶液を調整した。この電解質
溶液をガラスシャーレにキャストし、0℃で6時間放置
した。こうして厚さ0.5mmのゲル電解質膜2−Bを
得た。電解質膜2−A、2−Bとも大きさ1×1cmに
切り出した。
Preparation of electrolyte: 20.7 g of an EC-sulfolane (hereinafter referred to as SL) -diethylene carbonate (hereinafter referred to as DEC) (1: 1: 0.5 volume ratio) solution in which 1M LiBF 4 was dissolved was added to DMcT. -Saturated amount of Li salt
(4.5% by weight) and dissolved. To this solution was further added a copolymer of acrylonitrile and ethyl acrylate (A
3.0 g of N: EA copolymerization molar ratio = 90: 10) was added, and the mixture was stirred and dissolved by heating to prepare an electrolyte solution. This electrolyte solution was cast on a glass petri dish and left at 0 ° C. for 6 hours. Thus, a 0.5 mm thick gel electrolyte membrane 2-A was obtained. For comparison, a gel electrolyte membrane containing no DMcT-Li salt was prepared. EC-S with 1M LiBF 4 dissolved
A copolymer of acrylonitrile and ethyl acrylate (A) was added to 20.7 g of L-DEC (1: 1: 0.5 volume ratio) solution.
(N: EA copolymerization molar ratio = 90: 10), 3.0 g, and the mixture was stirred and dissolved by heating to prepare an electrolyte solution. This electrolyte solution was cast on a glass petri dish and left at 0 ° C. for 6 hours. Thus, a 0.5 mm thick gel electrolyte membrane 2-B was obtained. Each of the electrolyte membranes 2-A and 2-B was cut into a size of 1 × 1 cm.

【0019】電池の作成:厚さ0.3mmの金属リチウ
ムを大きさ1×1cmに切り出し負極とした。複合正極
膜、ゲル電解質膜、金属リチウム負極を順番に重ね合わ
せ、1×1cm角の電池を構成した。電解質にゲル電解
質膜2−Aを用いた電池2−A1、2−A2、電解質に
ゲル電解質膜2−Bを用いた電池2−B1、2−B2を
作成した。
Preparation of battery: Metal lithium having a thickness of 0.3 mm was cut into a size of 1 × 1 cm to obtain a negative electrode. The composite positive electrode membrane, the gel electrolyte membrane, and the metal lithium anode were sequentially stacked to form a 1 × 1 cm square battery. Batteries 2-A1 and 2-A2 using the gel electrolyte membrane 2-A as the electrolyte, and batteries 2-B1 and 2-B2 using the gel electrolyte membrane 2-B as the electrolyte were prepared.

【0020】[実施例3] 電極の作成:DMcTモノマー粉末1.5g(0.01
モル)をN-メチルー2ーピロリドン(NMP)3g
(0.03モル)に溶解し、粘性のある黄色透明のDM
cT−NMP溶液を調製した。この溶液に、ポリアニリ
ンとして日東電工製の「アニリード」粉末0.5g
(0.003モル、RDI値=0.3)を添加し、不活
性ガスで置換した密閉容器中で80℃に加熱することで
粘着性の暗緑色の複合体を得た。この複合体を、大きさ
4×4cm、厚さ30μmのチタン箔上に印刷したの
ち、80℃、1cmHgで1時間減圧加熱処理を行い、
厚さ20μmの複合電極を得た。この複合電極を大きさ
1×1cmに切り出し電池用の正極とした。
Example 3 Preparation of Electrode: 1.5 g (0.01 g) of DMcT monomer powder
Mol) with 3 g of N-methyl-2-pyrrolidone (NMP)
(0.03 mol), viscous yellow transparent DM
A cT-NMP solution was prepared. To this solution was added 0.5 g of Nitto Denko "Anilead" powder as polyaniline.
(0.003 mol, RDI value = 0.3) was added, and the mixture was heated to 80 ° C in a closed container replaced with an inert gas to obtain a sticky dark green complex. This composite was printed on a titanium foil having a size of 4 × 4 cm and a thickness of 30 μm, and then subjected to a heat treatment under reduced pressure at 80 ° C. and 1 cmHg for 1 hour.
A composite electrode having a thickness of 20 μm was obtained. This composite electrode was cut out to a size of 1 × 1 cm and used as a positive electrode for a battery.

【0021】DMcT−Li塩の作成:DMcT6gを
溶解したエタノール100mlに、LiOH1.6gを
溶解した水溶液30mlを攪拌しながら滴下した。室温
下3時間攪拌したのち、エバポレータで濃縮し、吸引ろ
過を行った。ろ紙上にクリーム色の粉末が得られた。こ
れをアセトンで数回洗浄した後真空乾燥し、こうしてD
McT−Li塩5.2gを得た。
Preparation of DMcT-Li salt: 30 ml of an aqueous solution in which 1.6 g of LiOH was dissolved was added dropwise to 100 ml of ethanol in which 6 g of DMcT was dissolved while stirring. After stirring at room temperature for 3 hours, the mixture was concentrated with an evaporator and suction-filtered. A cream-colored powder was obtained on the filter paper. This is washed several times with acetone and then dried under vacuum.
5.2 g of McT-Li salt were obtained.

【0022】電解質の作成:LiClO4を1M溶解し
たPC−EC(1:1容積比)溶液20.7gにDMc
T−Li塩を飽和量(4.5重量%)加え溶解した。こ
の溶液にさらにアクリロニトリル重合体3.0gを加え
て攪拌し、加熱溶解して電解質溶液を調整した。この電
解質溶液をガラスシャーレにキャストし、0℃で6時間
放置した。こうして厚さ0.5mmのゲル電解質膜3−
Aを得た。比較のために、DMcT−Li塩を含まない
ゲル電解質膜を作成した。LiClO4を1M溶解した
PC−EC(1:1容積比)溶液20.7gにアクリロ
ニトリル共重合体3.0gを加え攪拌、加熱溶解し電解
質溶液を調整した。この電解質溶液をガラスシャーレに
キャストし、0℃で6時間放置した。こうして厚さ0.
5mmのゲル電解質膜3ーbを得た。電解膜3−A、3
−Bとも大きさ1×1cmに切り出した。
Preparation of electrolyte: DMC was added to 20.7 g of PC-EC (1: 1 volume ratio) solution in which 1M LiClO 4 was dissolved.
T-Li salt was added and dissolved in a saturated amount (4.5% by weight). An acrylonitrile polymer (3.0 g) was further added to the solution, and the mixture was stirred and dissolved by heating to prepare an electrolyte solution. This electrolyte solution was cast on a glass petri dish and left at 0 ° C. for 6 hours. Thus, a 0.5 mm thick gel electrolyte membrane 3-
A was obtained. For comparison, a gel electrolyte membrane containing no DMcT-Li salt was prepared. 3.0 g of an acrylonitrile copolymer was added to 20.7 g of a PC-EC (1: 1 volume ratio) solution in which 1 M of LiClO 4 was dissolved, and the mixture was stirred and dissolved by heating to prepare an electrolyte solution. This electrolyte solution was cast on a glass petri dish and left at 0 ° C. for 6 hours. Thus, a thickness of 0.
A 5 mm gel electrolyte membrane 3-b was obtained. Electrolytic membrane 3-A, 3
Both -B were cut out to a size of 1 × 1 cm.

【0023】電池の作成:厚さ0.3mmの金属リチウ
ムを大きさ1×1cmに切り出し負極とした。複合正極
膜、ゲル電解質膜、金属リチウム負極を順番に重ね合わ
せ、1×1cm角の電池を構成した。電解質にゲル電解
質膜3−Aを用いた電池3−A1、3−A2、電解質に
ゲル電解質膜3−Bを用いた電池3−B1、3−B2を
作成した。
Preparation of Battery: Metallic lithium having a thickness of 0.3 mm was cut into a size of 1 × 1 cm to obtain a negative electrode. The composite positive electrode membrane, the gel electrolyte membrane, and the metal lithium anode were sequentially stacked to form a 1 × 1 cm square battery. Batteries 3-A1 and 3-A2 using a gel electrolyte membrane 3-A as an electrolyte, and batteries 3-B1 and 3-B2 using a gel electrolyte membrane 3-B as an electrolyte were prepared.

【0024】[実施例4] 電極の作成:s−トリアジン−2,4,6ートリチオー
ル(以下、TTAと呼ぶ)モノマー粉末2.3g(0.
01モル)をN-メチルー2ーピロリドン(NMP)6
g(0.06モル)に溶解し、粘性のある黄色透明のT
TA−NMP溶液を調製した。この溶液に、ポリアニリ
ンとして日東電工製の「アニリード」粉末0.5g
(0.003モル、RDI値=0.3)を添加し、不活
性ガスで置換した密閉容器中で80℃に加熱することで
粘着性の暗緑色の複合体を得た。この複合体を、大きさ
4×4cm、厚さ30μmのチタン箔上に印刷したの
ち、80℃、1cmHgで1時間減圧加熱処理を行い、
厚さ20μmの複合電極を得た。この複合電極を大きさ
1×1cmに切り出し電池用の正極とした。
Example 4 Preparation of an electrode: 2.3 g of s-triazine-2,4,6-trithiol (hereinafter referred to as TTA) monomer powder (0.2 g).
01 mol) with N-methyl-2-pyrrolidone (NMP) 6
g (0.06 mol), viscous yellow transparent T
A TA-NMP solution was prepared. To this solution was added 0.5 g of Nitto Denko "Anilead" powder as polyaniline.
(0.003 mol, RDI value = 0.3) was added, and the mixture was heated to 80 ° C in a closed container replaced with an inert gas to obtain a sticky dark green complex. This composite was printed on a titanium foil having a size of 4 × 4 cm and a thickness of 30 μm, and then subjected to a heat treatment under reduced pressure at 80 ° C. and 1 cmHg for 1 hour.
A composite electrode having a thickness of 20 μm was obtained. This composite electrode was cut out to a size of 1 × 1 cm and used as a positive electrode for a battery.

【0025】TTA−Li塩の作成:TTA粉末4.5
gを分散したエタノール100mlに、LiOH1.2
gを溶解した水溶液30mlを攪拌しながら滴下した。
室温下3時間攪拌したのちエバポレータで濃縮し、吸引
ろ過を行った。ろ紙上にクリーム色の粉末が得られた。
これをアセトンで数回洗浄した後真空乾燥し、こうして
TTA−Li塩4.0gを得た。
Preparation of TTA-Li salt: TTA powder 4.5
g of ethanol dispersed in 100 ml of LiOH 1.2
g of an aqueous solution in which g was dissolved was added dropwise while stirring.
After stirring at room temperature for 3 hours, the mixture was concentrated with an evaporator, and suction filtration was performed. A cream-colored powder was obtained on the filter paper.
This was washed several times with acetone and then dried under vacuum, thus obtaining 4.0 g of a TTA-Li salt.

【0026】電解質の作成:LiClO4を1M溶解し
たPC−EC(1:1容積比)溶液20.7gにTTA
−Li塩を飽和量(2.0重量%)加え溶解した。この
溶液にさらにアクリロニトリルとエチルアクリレートの
共重合体(AN:EA共重合モル比=90:10)3.
0gを加え攪拌、加熱溶解し電解質溶液を調整した。こ
の電解質溶液をガラスシャーレにキャストし、0℃で6
時間放置した。こうして厚さ0.5mmのゲル電解質膜
4−Aを得た。比較のために、TTA−Li塩を含まな
いゲル電解質膜を作成した。LiClO4を1M溶解し
たPC−EC(1:1容積比)溶液20.7gにアクリ
ロニトリルとエチルアクリレートの共重合体(AN:E
A共重合モル比=90:10)3.0gを加え攪拌し、
加熱溶解して電解質溶液を調整した。この電解質溶液を
ガラスシャーレにキャストし、0℃で6時間放置した。
こうして厚さ0.5mmのゲル電解質膜4−Bを得た。
電解質膜4−A、4−Bとも大きさ1×1cmに切り出
した。
Preparation of electrolyte: TTA was added to 20.7 g of a PC-EC (1: 1 volume ratio) solution in which 1M of LiClO 4 was dissolved.
A Li salt was added and dissolved in a saturated amount (2.0% by weight). 2. A copolymer of acrylonitrile and ethyl acrylate (AN: EA copolymerization molar ratio = 90: 10) was further added to this solution.
0 g was added, and the mixture was stirred and dissolved by heating to prepare an electrolyte solution. This electrolyte solution was cast on a glass Petri dish and heated at 0 ° C for 6 hours.
Left for hours. Thus, a 0.5 mm-thick gel electrolyte membrane 4-A was obtained. For comparison, a gel electrolyte membrane containing no TTA-Li salt was prepared. A copolymer of acrylonitrile and ethyl acrylate (AN: E) was added to 20.7 g of a PC-EC (1: 1 volume ratio) solution in which 1M of LiClO 4 was dissolved.
A copolymer molar ratio = 90: 10) 3.0 g was added and stirred,
The solution was heated and dissolved to prepare an electrolyte solution. This electrolyte solution was cast on a glass petri dish and left at 0 ° C. for 6 hours.
Thus, a 0.5 mm thick gel electrolyte membrane 4-B was obtained.
Each of the electrolyte membranes 4-A and 4-B was cut into a size of 1 × 1 cm.

【0027】電池の作成:厚さ0.3mmの金属リチウ
ムを大きさ1×1cmに切り出し負極とした。複合正極
膜、ゲル電解質膜、金属リチウム負極を順番に重ね合わ
せ、1×1cm角の電池を構成した。電解質にゲル電解
質膜4−Aを用いた電池4−A1、4−A2、電解質に
ゲル電解質膜4−Bを用いた電池4−B、4−B2を作
成した。
Preparation of Battery: Metal lithium having a thickness of 0.3 mm was cut into a size of 1 × 1 cm to obtain a negative electrode. The composite positive electrode membrane, the gel electrolyte membrane, and the metal lithium anode were sequentially stacked to form a 1 × 1 cm square battery. Batteries 4-A1 and 4-A2 using a gel electrolyte membrane 4-A as an electrolyte and batteries 4-B and 4-B2 using a gel electrolyte membrane 4-B as an electrolyte were prepared.

【0028】以上の各電池について次の試験を行った。 (1)サイクル劣下の試験 電池1−A1、2−A1、3−A1、4−A1、1−B
1、2−B1、3−B1、4−B1を0.1mAの一定
電流で、4.25〜2.25Vの範囲で放電し、各充放
電サイクルにおける放電容量(Q、単位:mAh)を測
定し、充放電サイクルの進行に伴う放電容量(Q)の減
少の程度により電極性能を評価した。結果を表1に示
す。 (2)保存特性の試験 電池1−A2、2−A2、3−A2、4−A2、1−B
2、2−B2、3−B2、4−B2を室温下、電解還元
状態で60日保存した後に0.1mAの一定電流で4.
25〜2.25Vの範囲で1回放電し、放電容量(Q、
単位:mAh)を測定した。放電容量(Q)の減少の程
度により保存性能を評価した。結果を表2に示す。
The following tests were conducted for each of the above batteries. (1) Test batteries 1-A1, 2-A1, 3-A1, 4-A1, and 1-B with inferior cycle.
1, 2-B1, 3-B1, and 4-B1 were discharged at a constant current of 0.1 mA in the range of 4.25 to 2.25 V, and the discharge capacity (Q, unit: mAh) in each charge / discharge cycle was determined. The electrode performance was evaluated based on the degree of decrease in the discharge capacity (Q) with the progress of the charge / discharge cycle. Table 1 shows the results. (2) Storage battery 1-A2, 2-A2, 3-A2, 4-A2, 1-B
3. 2,2-B2, 3-B2, 4-B2 were stored at room temperature in the electrolytic reduction state for 60 days, and then at a constant current of 0.1 mA.
Discharge once in the range of 25 to 2.25 V, and discharge capacity (Q,
(Unit: mAh) was measured. Storage performance was evaluated based on the degree of decrease in the discharge capacity (Q). Table 2 shows the results.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】以上の結果から明らかなように、有機ジス
ルフィド化合物とポリアニリンとを複合化した複合電極
を用いたリチウム二次電池において、本発明に従う実施
例1〜4でリチウム塩化した有機ジスルフィド化合物と
リチウム塩を非プロトン性の有機溶媒に溶解した溶液を
ゲル化し電解質に用いると、充放電サイクルの進行に伴
う放電容量の低下が低減する。また、電池保存後の放電
容量の低下も低減する。
As apparent from the above results, in the lithium secondary battery using the composite electrode in which the organic disulfide compound and the polyaniline are composited, the organic disulfide compound lithium-chlorinated in Examples 1-4 according to the present invention and the lithium When a solution obtained by dissolving a salt in an aprotic organic solvent is gelled and used as an electrolyte, a decrease in discharge capacity due to the progress of a charge / discharge cycle is reduced. In addition, a decrease in discharge capacity after storage of the battery is also reduced.

【0032】[0032]

【発明の効果】本発明によれば、大電流が取り出せ、し
かも充放電サイクル劣化の少ない長寿命のリチウム二次
電池を得ることができる。
According to the present invention, it is possible to obtain a long-life lithium secondary battery capable of extracting a large current and having little deterioration in charge / discharge cycles.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/36 - 10/40 H01M 4/02 - 4/62 ──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 10/36-10/40 H01M 4/02-4/62

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解還元により硫黄−硫黄結合が開裂し
て硫黄−金属イオン(プロトンを含む)結合を生成し、
電解酸化により硫黄−金属イオン結合が元の硫黄−硫黄
結合を再生する有機ジスルフィド化合物とリチウム塩を
非プロトン性の有機溶媒に溶解した溶液、およびゲル化
剤よりなるゲル電解質であって、前記溶液への有機ジス
ルフィド化合物の溶解量が飽和量に対し85%から11
0%であるゲル電解質
1. A sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including proton) bond,
A solution in which a sulfur-metal ion bond regenerates an original sulfur-sulfur bond by electrolytic oxidation and a lithium salt dissolved in an aprotic organic solvent, and a gel electrolyte comprising a gelling agent , wherein the solution Organic diss to
The dissolved amount of the sulfide compound is from 85% to 11
Gel electrolyte that is 0% .
【請求項2】 前記ゲル化剤がアクリロニトリル共重合
体である請求項1記載のゲル電解質。
2. The gel electrolyte according to claim 1, wherein the gelling agent is an acrylonitrile copolymer.
【請求項3】 電解還元により硫黄−硫黄結合が開裂し
て硫黄−金属イオン(プロトンを含む)結合を生成し、
電解酸化により硫黄−金属イオン結合が元の硫黄−硫黄
結合を再生する有機ジスルフィド化合物(以下、単に有
機ジスルフィド化合物という。)とポリアニリンを含む
複合膜からなる正極、リチウム塩と有機ジスルフィド化
合物のリチウム塩とを非プロトン性の有機溶媒に溶解し
た溶液およびゲル化剤よりなるゲル電解質、およびリチ
ウムイオンを捕捉あるいは供給する負極を具備するリチ
ウム二次電池であって、前記溶液への有機ジスルフィド
化合物のリチウム塩の溶解量が飽和量に対し85%から
110%であるリチウム二次電池
3. A sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including proton) bond,
A positive electrode comprising a composite film containing an organic disulfide compound (hereinafter simply referred to as an organic disulfide compound) and a polyaniline in which a sulfur-metal ion bond regenerates the original sulfur-sulfur bond by electrolytic oxidation, a lithium salt and a lithium salt of the organic disulfide compound And a gel electrolyte comprising a gelling agent and a solution in which a solution is dissolved in an aprotic organic solvent, and a lithium secondary battery comprising a negative electrode for capturing or supplying lithium ions , wherein an organic disulfide to the solution is provided.
Dissolution of lithium salt of compound from 85% to saturation
110% lithium secondary battery .
【請求項4】 前記ゲル化剤がアクリロニトリル共重合
体である請求項記載のリチウム二次電池。
4. The lithium secondary battery according to claim 3 , wherein the gelling agent is an acrylonitrile copolymer.
【請求項5】 電解還元により硫黄−硫黄結合が開裂し
て硫黄−金属イオン(プロトンを含む)結合を生成し、
電解酸化により硫黄−金属イオン結合が元の硫黄−硫黄
結合を再生する有機ジスルフィド化合物(以下、単に有
機ジスルフィド化合物という。)とポリアニリンを含む
複合膜からなる正極、リチウム塩と有機ジスルフィド化
合物のリチウム塩とを非プロトン性の有機溶媒に溶解し
た溶液およびゲル化剤よりなるゲル電解質、およびリチ
ウムイオンを捕捉あるいは供給する負極を具備するリチ
ウム二次電池であって、前記正極の複合膜が、チオール
基を含む有機ジスルフィド化合物単量体とポリアニリン
を溶解したN−アルキル−2−ピロリドン溶液の塗膜で
るリチウム二次電池。
5. A sulfur-sulfur bond is cleaved by electrolytic reduction.
To form a sulfur-metal ion (including proton) bond,
Sulfur-sulfur original with sulfur-metal ion bond by electrolytic oxidation
Organic disulfide compounds that regenerate bonds (hereinafter simply
Called disulfide compounds. ) And polyaniline
Cathode composed of composite membrane, lithium salt and organic disulfide
Dissolve the lithium salt of the compound in an aprotic organic solvent
Electrolyte comprising a solution and a gelling agent,
Lithium with a negative electrode for capturing or supplying
A um secondary battery, the composite film of the positive electrode, the coating film in <br/> Oh Brighter lithium of N- alkyl-2-pyrrolidone solution prepared by dissolving an organic disulfide compound monomer and polyaniline containing a thiol group Rechargeable battery.
JP26934494A 1994-11-02 1994-11-02 Gel electrolyte and lithium secondary battery Expired - Fee Related JP3385115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26934494A JP3385115B2 (en) 1994-11-02 1994-11-02 Gel electrolyte and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26934494A JP3385115B2 (en) 1994-11-02 1994-11-02 Gel electrolyte and lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH08138742A JPH08138742A (en) 1996-05-31
JP3385115B2 true JP3385115B2 (en) 2003-03-10

Family

ID=17471078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26934494A Expired - Fee Related JP3385115B2 (en) 1994-11-02 1994-11-02 Gel electrolyte and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3385115B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0910874B1 (en) * 1996-06-14 2001-11-21 Moltech Corporation Composition useful in elctrolytes of secondary battery cells
JP3617197B2 (en) * 1996-06-15 2005-02-02 ソニー株式会社 Flame retardant gel electrolyte and battery using the same
US7524583B2 (en) 2001-12-21 2009-04-28 Sanyo Electric Co., Ltd. Non-aqueous electrolytic secondary battery
KR101353363B1 (en) * 2005-01-18 2014-02-18 옥시스 에너지 리미티드 Improvements relating to electrolyte compositions for batteries using sulphur or sulphur compounds
EP2629352A1 (en) 2012-02-17 2013-08-21 Oxis Energy Limited Reinforced metal foil electrode
EP2784850A1 (en) 2013-03-25 2014-10-01 Oxis Energy Limited A method of cycling a lithium-sulphur cell
PL2784851T3 (en) 2013-03-25 2015-12-31 Oxis Energy Ltd A method of charging a lithium-sulphur cell
ES2671399T3 (en) 2013-03-25 2018-06-06 Oxis Energy Limited A method to charge a lithium-sulfur cell
JP6218413B2 (en) * 2013-03-29 2017-10-25 株式会社Subaru Pre-doping agent, power storage device using the same, and manufacturing method thereof
GB2517228B (en) 2013-08-15 2016-03-02 Oxis Energy Ltd Laminate cell
JP2017507451A (en) 2013-12-17 2017-03-16 オキシス エナジー リミテッド Lithium-sulfur battery electrolyte
HUE042287T2 (en) 2014-05-30 2019-06-28 Oxis Energy Ltd Lithium-sulphur cell
CN110970230A (en) * 2018-09-30 2020-04-07 天津大学 Hydrogel polymerized in situ on surface of phytic acid/sulfuric acid gel, preparation method thereof and application thereof in flexible supercapacitor

Also Published As

Publication number Publication date
JPH08138742A (en) 1996-05-31

Similar Documents

Publication Publication Date Title
JP5270600B2 (en) Novel electrode materials derived from polyquinone-based ionic compounds and their use in electrochemical generators
US6228532B1 (en) Lithium secondary cell
JP3292441B2 (en) Electrode containing organic disulfide compound and method for producing the same
KR100941299B1 (en) Additive having cyano group for non-aqueous electrolyte and electrochemical device using the same
JP3385115B2 (en) Gel electrolyte and lithium secondary battery
US6576370B1 (en) Positive electrode and lithium battery using the same
US6245458B1 (en) Composite electrode, method of producing the same, and lithium secondary battery using the same
JP3883726B2 (en) Non-aqueous electrolyte secondary battery
JP2000021390A (en) Lithium polymer secondary battery provided with positive electrode containing metal composite positive electrode material
JP2004342605A (en) Electrochemical element and electrode active material for electrochemical element
WO2020084828A1 (en) Polymer, electrode active substance and secondary battery
JPH1027615A (en) Composite electrode containing organic disulfide compound and its manufacture
JP4972831B2 (en) Lithium secondary battery
JP4226844B2 (en) Method for inhibiting corrosion of electrochemical device member and battery
WO2015082711A1 (en) Alkali ion battery and method for producing the same
JP3346661B2 (en) Polymer electrode, method for producing the same, and lithium secondary battery
JP3730861B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP2002298852A (en) Electrochemical cell having ionomer binder and manufacturing method relating to the same
JPH08203530A (en) Combined electrode, manufacture thereof and lithium secondary battery
JP3471097B2 (en) Polymer electrode, method for producing polymer electrode, and lithium secondary battery
JP2001143764A (en) Lithium secondary battery
JP3444463B2 (en) Electrode containing organic disulfide compound and method for producing the same
JPH08329947A (en) Composite electrode and manufacture thereof
KR101428623B1 (en) Electrode containing diazine compounds or salt for lithium secondary batteries, and lithium secondary batteries containing the same
JPS6079677A (en) Electrolyte for lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees