JPH08203530A - Combined electrode, manufacture thereof and lithium secondary battery - Google Patents

Combined electrode, manufacture thereof and lithium secondary battery

Info

Publication number
JPH08203530A
JPH08203530A JP7011007A JP1100795A JPH08203530A JP H08203530 A JPH08203530 A JP H08203530A JP 7011007 A JP7011007 A JP 7011007A JP 1100795 A JP1100795 A JP 1100795A JP H08203530 A JPH08203530 A JP H08203530A
Authority
JP
Japan
Prior art keywords
sulfur
bond
polyaniline
pyrrolidone
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7011007A
Other languages
Japanese (ja)
Inventor
Tadashi Tonomura
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7011007A priority Critical patent/JPH08203530A/en
Publication of JPH08203530A publication Critical patent/JPH08203530A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide an electrode with a long repetitive service life of oxidation/ reduction when it is used as the electrode of a battery, etc., made of an electro- chemical element. CONSTITUTION: A combined electrode is such one in which polyvinylpyrrolidone is added to a combined body consisting of an organic-disulfide compound, polyanyline and N-methyl-2-pyrrolidone or further to combined body including metallic oxide. And the added quantity of the polyvinylpyrrolidone is preferably in a range of wt.% from 0.1 to 30 in comparison with the total quantity consisting of those of the organic disulfide compound, polyanyline and N- methyl-2-pyrrolidone or in comparison with the total quantity consisting of those of the organic-disulfide compound, polyanyline, N-methyl-2-pyrrolidone and metallic oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池、エレクトロクロ
ミック表示素子、センサー、メモリー等の電気化学素子
に用いられる複数の有機化合物、あるいは有機化合物と
無機化合物よりなる複合電極およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plurality of organic compounds used in electrochemical devices such as batteries, electrochromic display devices, sensors and memories, or a composite electrode composed of an organic compound and an inorganic compound, and a method for producing the same.

【0002】[0002]

【従来の技術】1971年に白川らにより導電性のポリ
アセチレンが発見されて以来、導電性高分子を電極材料
に用いると、軽量で高エネルギー密度の電池や、大面積
のエレクトロクロミック素子、微小電極を用いた生物化
学センサー等の電気化学素子が期待できることから、導
電性高分子電極が盛んに検討されている。また、高エネ
ルギー密度が期待できる有機材料として、米国特許第4,
833,048号に有機ジスルフィド化合物が提案されてい
る。また、本発明者らは、Electrochim. Acta.誌(37
巻、1852ヘ゜ーシ゛、1992年)に、導電性高分子と有機ジス
ルフィド化合物を複合化したポリマー複合電極を提案し
ている。このポリマー複合電極は、従来の導電性高分子
電極が持っている特徴である高電圧と、有機ジスルフィ
ド化合物が持っている特徴である高エネルギー密度とを
兼ね備えている。このポリマー複合電極とリチウム負極
とを組み合わせると、電圧が3V以上で、かつエネルギ
ー密度が150Wh/kg以上の、通常の二次電池に匹
敵あるいはそれ以上の性能を持ったリチウム二次電池が
期待できる。
2. Description of the Related Art Since the discovery of conductive polyacetylene by Shirakawa et al. In 1971, the use of conductive polymers as electrode materials has led to the use of lightweight, high energy density batteries, large-area electrochromic devices, and microelectrodes. Conductive polymer electrodes are being actively studied because electrochemical devices such as biochemical sensors using the same can be expected. In addition, as an organic material that can be expected to have a high energy density, US Pat.
Organic disulfide compounds have been proposed in 833,048. In addition, the inventors of the present invention have reported that Electrochim. Acta.
Vol., 1852, 1992), a polymer composite electrode in which a conductive polymer and an organic disulfide compound are composited is proposed. This polymer composite electrode has both a high voltage, which is a characteristic of a conventional conductive polymer electrode, and a high energy density, which is a characteristic of an organic disulfide compound. When this polymer composite electrode is combined with a lithium negative electrode, a lithium secondary battery having a voltage of 3 V or more and an energy density of 150 Wh / kg or more and having performance comparable to or higher than that of an ordinary secondary battery can be expected. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うなポリマー複合電極について、酸化還元(充放電)を
繰り返すと、電極容量が徐々に減少するという問題があ
る。有機ジスルフィド化合物が酸化(充電)によりポリ
マー化した際に生成する電気絶縁性でかつイオン伝導性
に乏しいポリジスルフィド化合物は、電解質に対する溶
解性が乏しい。一方、還元(放電)によりモノマー化し
た際に生成する有機ジスルフィドモノマーは、電解質に
対する溶解性が高い。このため、酸化還元を繰り返す
と、モノマー化したジスルフィドが一部電解質に溶解
し、溶解したモノマーは、電極中にもともと位置してい
た導電性高分子が存在する場所と異なる場所でポリマー
化し、導電性高分子から離れてポリマー化した電気絶縁
性のポリジスルフィド化合物は、ポリマー電極内の電子
・イオン伝導のネットワークから孤立し、電極反応に関
与しなくなる。このため、酸化還元を繰り返すと、電極
容量が徐々に低下する。
However, when such a polymer composite electrode is subjected to repeated redox (charge / discharge), there is a problem that the electrode capacity gradually decreases. A polydisulfide compound, which is generated when an organic disulfide compound is polymerized by oxidation (charging) and has poor electrical insulation and poor ion conductivity, has poor solubility in an electrolyte. On the other hand, the organic disulfide monomer produced when it is converted into a monomer by reduction (discharge) has high solubility in an electrolyte. For this reason, when redox is repeated, the monomerized disulfide partially dissolves in the electrolyte, and the dissolved monomer is polymerized at a location different from the location where the conductive polymer originally located in the electrode is present, resulting in conductivity. The electrically insulating polydisulfide compound polymerized away from the conductive polymer is isolated from the electron / ion conduction network in the polymer electrode and does not participate in the electrode reaction. Therefore, when the redox is repeated, the electrode capacity gradually decreases.

【0004】本発明は、このような問題を解決し、導電
性高分子と有機ジスルフィド化合物を複合化したポリマ
ー複合電極の高電圧、高エネルギー密度という特徴を損
なうことなく、繰り返し酸化還元に際しても容量低下の
軽減されたポリマー複合電極を提供することを目的とす
る。本発明は、またその複合電極を正極に用いたリチウ
ム二次電池を提供することを目的とするものである。
The present invention solves such a problem and does not impair the high voltage and high energy density characteristics of a polymer composite electrode in which a conductive polymer and an organic disulfide compound are composited, and the capacity can be maintained even during repeated redox. An object of the present invention is to provide a polymer composite electrode with reduced deterioration. It is another object of the present invention to provide a lithium secondary battery using the composite electrode as a positive electrode.

【0005】[0005]

【課題を解決するための手段】本発明の複合電極は、電
解還元により硫黄ー硫黄結合が開裂して硫黄ー金属イオ
ン(プロトンを含む)結合を生成し、電解酸化により硫
黄ー金属イオン結合が元の硫黄ー硫黄結合を再生する有
機ジスルフィド化合物と、ポリアニリン、またはさらに
金属酸化物を含む複合電極に、可撓性賦与物質として式
(C69NO)n(nは整数)で表されるポリビニルピ
ロリドンを添加したものである。
In the composite electrode of the present invention, the sulfur-sulfur bond is cleaved by electrolytic reduction to generate a sulfur-metal ion (including proton) bond, and the electrolytic oxidation causes the sulfur-metal ion bond to be changed. An organic disulfide compound that regenerates the original sulfur-sulfur bond and a composite electrode containing polyaniline or a metal oxide are represented by the formula (C 6 H 9 NO) n (n is an integer) as a flexibility-imparting substance. Polyvinylpyrrolidone is added.

【0006】本発明の複合電極の製造方法は、有機ジス
ルフィド化合物と式(C69NO)n(nは整数)で表
されるポリビニルピロリドンとポリアニリンをN−アル
キルー2ーピロリドンに溶解した粘性体を基板上に塗布
し、真空下あるいは不活性ガス雰囲気下で加熱する工程
を有する。また、本発明の複合電極の製造方法は、ポリ
ビニルピロリドンとポリアニリンをN−アルキルー2ー
ピロリドンに溶解した粘性体をN−アルキルー2ーピロ
リドンで希釈し、その溶液中に金属酸化物の粉末を分散
混合し、この混合物を基板上に塗布し、真空下あるいは
不活性ガス雰囲気下で加熱する工程を有する。ここにお
いて、有機ジスルフィド化合物とポリビニルピロリドン
とポリアニリンをN−アルキルー2ーピロリドンに溶解
した粘性体を得るには、まず有機ジスルフィド化合物と
ポリビニルピロリドンをN−アルキルー2ーピロリドン
に溶解し、次いで、前記の溶液にポリアニリンを溶解し
て粘性体を得るのが好ましい。
The method for producing a composite electrode according to the present invention is a viscous substance obtained by dissolving an organic disulfide compound, polyvinylpyrrolidone represented by the formula (C 6 H 9 NO) n (n is an integer) and polyaniline in N-alkyl-2-pyrrolidone. Is coated on a substrate and heated under vacuum or in an inert gas atmosphere. In addition, the method for producing the composite electrode of the present invention is that a viscous material obtained by dissolving polyvinylpyrrolidone and polyaniline in N-alkyl-2-pyrrolidone is diluted with N-alkyl-2-pyrrolidone, and the metal oxide powder is dispersed and mixed in the solution. Then, there is a step of applying this mixture onto a substrate and heating it in a vacuum or in an inert gas atmosphere. Here, in order to obtain a viscous material in which an organic disulfide compound, polyvinylpyrrolidone and polyaniline are dissolved in N-alkyl-2-pyrrolidone, first, the organic disulfide compound and polyvinylpyrrolidone are dissolved in N-alkyl-2-pyrrolidone, and then the solution is added. It is preferred to dissolve the polyaniline to obtain a viscous body.

【0007】前記金属酸化物は、LiCoO2、V
613、LiMn24、V25およびLiNiO2よりな
る群から選ばれる遷移金属酸化物であることが好まし
い。本発明のリチウム二次電池は、上記の複合電極から
なる正極、非水電解質および負極を備える。Nーアルキ
ルー2ーピロリドンは、式RーNC46O(式中Rは、
水素原子またはアルキル基を表す)で表される。アルキ
ル基としては、メチル基、エチル基、nーブチル基が好
ましい。ポリビニルピロリドンの構造式を以下に示す。
The metal oxide is LiCoO 2 , V
It is preferably a transition metal oxide selected from the group consisting of 6 O 13 , LiMn 2 O 4 , V 2 O 5 and LiNiO 2 . The lithium secondary battery of the present invention includes the positive electrode, the non-aqueous electrolyte, and the negative electrode which are the above composite electrodes. N-alkyl-2-pyrrolidone has the formula R-NC 4 H 6 O (wherein R is
Represents a hydrogen atom or an alkyl group). As the alkyl group, a methyl group, an ethyl group and an n-butyl group are preferable. The structural formula of polyvinylpyrrolidone is shown below.

【0008】[0008]

【化1】 Embedded image

【0009】[0009]

【作用】ポリビニルピロリドンは、複合電極に適度の可
撓性を与え、薄膜状の二次電池あるいはその他の電気化
学デバイスの構成を可能とするとともに、複合体が酸化
還元(充電放電)を受けるにあたって、有機ジスルフィ
ド化合物、ポリアニリン、あるいはこれらの複合体の電
解質中への溶解・散逸を軽減し、良好な繰り返し酸化還
元(充放電)特性を与える作用を有している。さらに、
ポリビニルピロリドンは、金属酸化物を含む複合電極に
おいては、電極に可撓性を与え、ジスルフィド化合物の
散逸を防ぐ作用を有しているとともに、金属酸化物の酸
化還元反応に伴う体積変化による複合電極の緩みを軽減
し、酸化還元反応を繰り返し行っても特性劣化を著しく
軽減する作用を有する。このような本発明に従う複合電
極を正極に用い、金属リチウム、リチウムーアルミニウ
ム、リチウムーマンガン等のリチウム合金、あるいはリ
チウムイオンを可逆的に出し入れできる炭素材料、金属
硫化物、金属酸化物、導電性高分子を負極に用いること
で、高エネルギー密度でしかも繰り返し充放電サイクル
特性の優れたリチウム二次電池とすることができる。
[Function] Polyvinylpyrrolidone imparts appropriate flexibility to the composite electrode, enables the construction of a thin film secondary battery or other electrochemical device, and allows the composite to undergo redox (charge / discharge). , An organic disulfide compound, polyaniline, or a complex of these compounds is reduced in dissolution / dissipation in the electrolyte, and it has an effect of giving good repeated redox (charge / discharge) characteristics. further,
In a composite electrode containing a metal oxide, polyvinylpyrrolidone has a function of giving flexibility to the electrode and preventing dissipation of a disulfide compound, and at the same time, a composite electrode due to a volume change accompanying a redox reaction of a metal oxide. Has the effect of remarkably reducing the deterioration of characteristics even if the redox reaction is repeated. By using such a composite electrode according to the present invention as a positive electrode, lithium alloy such as metallic lithium, lithium-aluminum, lithium-manganese, or a carbon material capable of reversibly taking in and out lithium ions, a metal sulfide, a metal oxide, a conductive material By using the polymer for the negative electrode, a lithium secondary battery having high energy density and excellent repetitive charge / discharge cycle characteristics can be obtained.

【0010】[0010]

【実施例】本発明に用いる式(C69NO)n(nは整
数)で表されるポリビニルピロリドンとしては、平均分
子量が10,000〜100,000のものが好まし
い。ジスルフィド系化合物としては、米国特許第4,833,
048号に述べられてる一般式(R(S)yn(式中Rは
脂肪族基または芳香族基、Sは硫黄、yは1以上の整
数、nは2以上の整数である。)で表される化合物を用
いることができる。HSCH2CH2SHで表されるジチ
オグリコール、C22S(SH)2で表される2,5ー
ジメルカプト−1,3,4ーチアジアジール、C33
33で表されるsートリアジンー2,4,6ートリチオ
ール、C6643で表される7ーメチルー2,6,8
ートリメルカプトプリン、あるいはC4642で表さ
れる4,5−ジアミノー2、6ージメルカプトピリミジ
ン等が用いられる。いずれも市販品をそのまま用いるこ
とができる。Nーアルキルー2ーピロリドンとしては市
販の試薬を用いることができる。ピロリドン、N−メチ
ルー2ーピロリドン、N−エチルー2ーピロリドン、N
ーブチルー2ーピロリドン等を用いることができる。
EXAMPLES The polyvinylpyrrolidone represented by the formula (C 6 H 9 NO) n (n is an integer) used in the present invention preferably has an average molecular weight of 10,000 to 100,000. Examples of disulfide compounds include U.S. Pat.
The general formula (R (S) y ) n described in No. 048 (wherein R is an aliphatic group or an aromatic group, S is sulfur, y is an integer of 1 or more, and n is an integer of 2 or more). The compound represented by can be used. Dithioglycol represented by HSCH 2 CH 2 SH, 2,5-dimercapto-1,3,4-thiadiazyl represented by C 2 N 2 S (SH) 2 , C 3 H 3 N
S-triazine-2,4,6-trithiol represented by 3 S 3 and 7-methyl-2,6,8 represented by C 6 H 6 N 4 S 3
-Trimercaptopurine, or 4,5-diamino-2,6-dimercaptopyrimidine represented by C 4 H 6 N 4 S 2 is used. In each case, a commercially available product can be used as it is. A commercially available reagent can be used as N-alkyl-2-pyrrolidone. Pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N
-Butyl-2-pyrrolidone and the like can be used.

【0011】ポリアニリンとしては、アニリンを電解あ
るいは化学酸化することによりポリマー化したものが用
いられる。溶解性の点から、脱ドープ状態の還元体のポ
リアニリンが好ましい。このようなポリアニリンとして
は、日東電工(株)製の「アニリード」がある。ポリアニ
リンの還元度(RDI)は、ポリアニリンをNーメチル
ー2ーピロリドンに微量溶解した溶液の電子吸収スペク
トルで、340nm付近の短波長側に現れるパラ置換ベ
ンゼン構造に起因する吸収ピークの強度(I34 0)と、
640nm付近の長波長側に現れるキノンジイミン構造
に起因する吸収ピークの強度(I640)との比により、
RDI=I640/I340で表される。RDIが0.5以下
のポリアニリンが好適に用いられる。ポリアニリンの脱
ドープの程度は、伝導度により表される。伝導度が10
-5S/cm以下のポリアニリンが好適に用いられる。
As polyaniline, aniline polymerized by electrolysis or chemical oxidation is used. From the viewpoint of solubility, deanidized reduced polyaniline is preferable. An example of such polyaniline is “anilead” manufactured by Nitto Denko Corporation. Reduction of the polyaniline (RDI) is a polyaniline in an electronic absorption spectra of the solution was microinjected dissolved in N-methyl-2-pyrrolidone, the intensity of the absorption peak attributable to a para-substituted benzene structure appearing on the short wavelength side of the near 340nm (I 34 0) When,
By the ratio with the intensity (I 640 ) of the absorption peak due to the quinonediimine structure appearing on the long wavelength side near 640 nm,
It is represented by RDI = I 640 / I 340 . Polyaniline having an RDI of 0.5 or less is preferably used. The degree of dedoping of polyaniline is represented by conductivity. Conductivity is 10
Polyaniline of -5 S / cm or less is preferably used.

【0012】金属酸化物としては、遷移金属酸化物ある
いは複合酸化物であればいずれでも用いることができる
が、特にポリアニリンの電気化学当量150mAh/g
と同程度かあるいはこれを上回る化合物が好ましい。こ
のような遷移金属酸化物としては、LiCoO2(電気
化学当量=140〜160mAh/g)、V613(電
気化学当量=160〜230mAh/g、LiMn24
(電気化学当量=100〜120mAh/g)、V25
(電気化学当量=130〜150mAh/g)、LiN
iO2(電気化学当量=140〜220mAh/g)が
好ましい。平均粒径が1〜10μm程度の粉末状のもの
が用いられる。これらの遷移金属酸化物について、遷移
金属元素が複数のものであっても何等支障なく用いるこ
とができる。例えば、LiCoO2について、Co(コ
バルト)の一部がMn(マンガン)やNi(ニッケ
ル)、Fe(鉄)に置き換えた複合酸化物、あるいはV
613のVの一部をW(タングステン)に置き換えた複合
酸化物も用いることができる。
As the metal oxide, any of transition metal oxides and complex oxides can be used. In particular, the electrochemical equivalent of polyaniline is 150 mAh / g.
Compounds at or above the range are preferred. Examples of such transition metal oxides include LiCoO 2 (electrochemical equivalent = 140 to 160 mAh / g), V 6 O 13 (electrochemical equivalent = 160 to 230 mAh / g, LiMn 2 O 4
(Electrochemical equivalent = 100 to 120 mAh / g), V 2 O 5
(Electrochemical equivalent = 130 to 150 mAh / g), LiN
iO 2 (electrochemical equivalent = 140 to 220 mAh / g) is preferable. A powdery material having an average particle size of about 1 to 10 μm is used. These transition metal oxides can be used without any trouble even if the transition metal elements are plural. For example, for LiCoO 2 , a composite oxide in which a part of Co (cobalt) is replaced with Mn (manganese), Ni (nickel), Fe (iron), or V
A composite oxide in which a part of V of 6 O 13 is replaced with W (tungsten) can also be used.

【0013】有機ジスルフィド化合物とNーアルキルー
2ーピロリドンとポリアニリンとポリビニルピロリドン
との複合化は、先ず、ポリビニルピロリドンを溶解した
Nーアルキルー2ーピロリドン中に、有機ジスルフィド
化合物を溶解し粘性体とし、この粘性体にポリアニリン
粉末を加え溶解することで行う。あるいは、あらかじめ
膜状に成形したポリアニリン上に有機ジスルフィド化合
物とポリビニルピロリドンをNーアルキルー2ーピロリ
ドンに溶解した粘性体を塗布したのち、真空下あるいは
不活性ガス雰囲気中で全体を60から100℃に加熱す
ることで、一方の面がポリアニリンに富んみ、他方の面
が有機ジスルフィド化合物に富んだ複合電極膜としても
よい。膜状のポリアニリンとしては、電解重合法により
基板上に膜状に析出させたもの、あるいは電解重合法や
化学重合法により合成したポリアニリンをNーアルキル
ー2ーピロリドンに溶解したのち、この溶液を基板上に
流延し、Nーアルキルー2ーピロリドンを全部あるいは
一部除去することで得ることもできる。ポリビニルピロ
リドンは、有機ジスルフィド化合物とNーアルキルー2
ーピロリドンとポリアニリンの合計量に対し、0.1〜
30重量%であることが好ましい。有機ジスルフィド化
合物とNーアルキルー2ーピロリドンとポリアニリンと
の割合は、有機ジスルフィド化合物1モルに対し、Nー
アルキルー2ーピロリドンが0.5〜5モル、ポリアニ
リンが0.05〜5モル程度が好ましい。
To form a composite of an organic disulfide compound, N-alkyl-2-pyrrolidone, polyaniline and polyvinylpyrrolidone, first, an organic disulfide compound is dissolved in N-alkyl-2-pyrrolidone in which polyvinylpyrrolidone is dissolved to form a viscous body. It is performed by adding polyaniline powder and dissolving. Alternatively, after applying a viscous material in which an organic disulfide compound and polyvinylpyrrolidone are dissolved in N-alkyl-2-pyrrolidone onto polyaniline which has been formed into a film shape in advance, the whole is heated to 60 to 100 ° C. under vacuum or in an inert gas atmosphere. Thus, a composite electrode film having one surface rich in polyaniline and the other surface rich in an organic disulfide compound may be used. As the film-shaped polyaniline, a film-shaped polyaniline deposited on a substrate by an electrolytic polymerization method or a polyaniline synthesized by an electrolytic polymerization method or a chemical polymerization method is dissolved in N-alkyl-2-pyrrolidone, and then this solution is placed on the substrate. It can also be obtained by casting and removing all or part of N-alkyl-2-pyrrolidone. Polyvinylpyrrolidone is an organic disulfide compound and N-alkyl-2
ー 0.1 to the total amount of pyrrolidone and polyaniline
It is preferably 30% by weight. The ratio of the organic disulfide compound, N-alkyl-2-pyrrolidone and polyaniline is preferably about 0.5 to 5 mol of N-alkyl-2-pyrrolidone and about 0.05 to 5 mol of polyaniline with respect to 1 mol of the organic disulfide compound.

【0014】ポリアニリンとジスルフィド化合物と金属
酸化物とNーアルキルー2ーピロリドンとポリビニルピ
ロリドンとの複合化は、先ず、ジスルフィド化合物をポ
リビニルピロリドンを溶解したNーアルキルー2ーピロ
リドンに溶解して粘着性の液体とし、この液体にポリア
ニリン粉末を加えて溶解する。必要に応じ加熱して溶解
する。必要に応じ、Nーアルキルー2ーピロリドンをさ
らに加え希釈する。次に、あらかじめ金属酸化物粉末を
Nーアルキルー2ーピロリドン中に分散して得たスラリ
ーを希釈溶液に加え、ホモジナイザーにより均一に分散
混合する。得られた分散混合液を、ガラスシャーレある
いはカーボンフィルム等の基体上に流延したのち、減圧
下で加熱してNーアルキルー2ーピロリドンの一部ある
いは全部を除去し複合電極を得る。ポリビニルピロリド
ンは、有機ジスルフィド化合物とNーアルキルー2ーピ
ロリドンとポリアニリンと金属酸化物の合計量に対し、
0.1〜30重量%であることが好ましい。ポリアニリ
ンとジスルフィド化合物との割合は、ポリアニリン1モ
ルに対し、ジスルフィド化合物0.1〜5モル程度が好
ましい。ポリアニリンと金属酸化物との割合は、ポリア
ニリン1重量部に対し金属酸化物0.5〜5重量部が好
ましい。
To form a composite of polyaniline, a disulfide compound, a metal oxide, N-alkyl-2-pyrrolidone and polyvinylpyrrolidone, first, the disulfide compound is dissolved in N-alkyl-2-pyrrolidone in which polyvinylpyrrolidone is dissolved to obtain a viscous liquid. Add polyaniline powder to the liquid and dissolve. Dissolve by heating if necessary. If necessary, N-alkyl-2-pyrrolidone is further added to dilute. Next, the slurry obtained by previously dispersing the metal oxide powder in N-alkyl-2-pyrrolidone is added to the diluted solution and uniformly dispersed and mixed by a homogenizer. The obtained dispersion mixture is cast on a substrate such as a glass petri dish or a carbon film, and then heated under reduced pressure to remove a part or all of N-alkyl-2-pyrrolidone to obtain a composite electrode. Polyvinylpyrrolidone is based on the total amount of organic disulfide compound, N-alkyl-2-pyrrolidone, polyaniline and metal oxide.
It is preferably 0.1 to 30% by weight. The ratio of the polyaniline and the disulfide compound is preferably about 0.1 to 5 mol of the disulfide compound with respect to 1 mol of the polyaniline. The proportion of polyaniline and metal oxide is preferably 0.5 to 5 parts by weight of metal oxide to 1 part by weight of polyaniline.

【0015】有機ジスルフィド化合物が還元して塩を形
成する際の金属イオンには、前述の米国特許に述べられ
ているアルカリ金属イオン、アルカリ土類金属イオンに
加えて、プロトンも用いることができる。特に、アルカ
リ金属イオンとしてリチウムイオンを用いる場合は、リ
チウムイオンを供給および捕捉する電極として金属リチ
ウムあるいはリチウムーアルミニウム等のリチウム合金
を用い、リチウムイオンを伝導する電解質を用いると、
電圧が約3ボルトで200Wh/kgを越える高いエネ
ルギー密度を持ったリチウム二次電池が構成できる。ま
た、プロトンを用い、プロトンを供給および捕捉する電
極として LaNi5 等の金属水素化物を用い、プロト
ンを伝導する電解質を用いると、電圧が1から2ボルト
の電池を構成できる。なお、本発明の複合電極には、上
記成分の他、必要により、カーボン等の導電剤、合成ゴ
ム、樹脂、セラミック粉末等の形状付与剤や補強剤を加
えることができる。また、ポリビニルピロリドンを架橋
して複合膜の膜強度を高め、電解質に対する溶解性を抑
える目的で、複合膜を製膜後、放射線を照射してもよ
い。この様な放射線としては、α線、β線、γ線、電子
線、X線がある。中でもγ線の照射が効果的である。照
射量は0.5〜5Mradが好ましい。
As the metal ion used when the organic disulfide compound is reduced to form a salt, a proton can be used in addition to the alkali metal ion and alkaline earth metal ion described in the above-mentioned US patent. In particular, when using lithium ions as alkali metal ions, a lithium alloy such as metallic lithium or lithium-aluminum is used as an electrode that supplies and captures lithium ions, and an electrolyte that conducts lithium ions is used.
A lithium secondary battery having a high energy density exceeding 200 Wh / kg at a voltage of about 3 V can be constructed. When a proton is used, a metal hydride such as LaNi 5 is used as an electrode for supplying and capturing the proton, and an electrolyte for conducting the proton is used, a battery having a voltage of 1 to 2 V can be constructed. In addition to the above components, a conductive agent such as carbon, a shape-imparting agent such as synthetic rubber, a resin, or a ceramic powder or a reinforcing agent can be added to the composite electrode of the present invention, if necessary. Further, for the purpose of cross-linking polyvinylpyrrolidone to increase the film strength of the composite film and suppress the solubility of the composite film in the electrolyte, radiation may be applied after forming the composite film. Such radiation includes α rays, β rays, γ rays, electron beams, and X rays. Above all, γ-ray irradiation is effective. The irradiation amount is preferably 0.5 to 5 Mrad.

【0016】[実施例1]平均分子量が25,000の
メルク(MERCK)社製のポリビニルピロリドンを1
0%重量溶解したN−メチルー2ーピロリドン(以下、
NMPと呼ぶ)3gに2,5ージメルカプト−1,3,
4ーチアジアジール(以下、DMcTと呼ぶ)モノマー
粉末1.5g(0.01モル)を溶解し、粘性のある黄
色透明のDMcTーNMP溶液を得た。この溶液に、ポ
リアニリンとして日東電工製の「アニリード」粉末0.
5g(0.003モル)を添加し、不活性ガスで置換し
た密閉容器中において80℃に加熱することで粘着性の
黒緑色の粘性体を得た。この粘性体を、厚さ35μmの
チタン箔上に120μm厚さに印刷したのち、1cmH
gの減圧下において80℃で加熱処理した。減圧加熱に
よりNMPの68重量%が散逸した。得られた膜中のポ
リビニルピロリドンの含有量は、DMcTとポリアニリ
ンとNMPの合計量に対し10.5重量%であった。得
られた厚さ25μmの複合体膜をチタン箔と一緒に1×
1cm角に切断して複合電極Aを得た。
[Example 1] 1 polyvinylpyrrolidone manufactured by MERCK having an average molecular weight of 25,000 was used.
N-methyl-2-pyrrolidone (hereinafter,
Called NMP) 3,5-dimercapto-1,3 per 3 g
1.5 g (0.01 mol) of 4-thiadiazyl (hereinafter referred to as DMcT) monomer powder was dissolved to obtain a viscous yellow transparent DMcT-NMP solution. To this solution, as polyaniline, "anilead" powder manufactured by Nitto Denko Co., Ltd.
5 g (0.003 mol) was added, and the mixture was heated to 80 ° C. in a closed container substituted with an inert gas to obtain a sticky black-green viscous substance. This viscous material was printed on a titanium foil having a thickness of 35 μm to a thickness of 120 μm, and then 1 cmH
Heat treatment was performed at 80 ° C. under reduced pressure of g. 68% by weight of NMP was dissipated by heating under reduced pressure. The content of polyvinylpyrrolidone in the obtained film was 10.5% by weight based on the total amount of DMcT, polyaniline and NMP. The obtained composite film with a thickness of 25 μm was mixed with titanium foil in 1 ×.
A composite electrode A was obtained by cutting into 1 cm square.

【0017】[比較例1]DMcTモノマー粉末1.5
gをNMP3gに溶解し粘性のある黄色透明のDMcT
ーNMP溶液を得た。この溶液に、ポリアニリンとして
日東電工製の「アニリード」粉末0.5gを添加し、不
活性ガスで置換した密閉容器中において80℃に加熱す
ることで粘着性の黒緑色の粘性体を得た。この粘性体
を、厚さ35μmのチタン箔上に120μmの厚みに印
刷したのち、1cmHgの減圧下で80℃で加熱処理し
厚さ25μmの複合体膜を得た。得られた複合体膜をチ
タン箔と一緒に1×1cmに切断し複合電極Bを得た。
[Comparative Example 1] DMcT monomer powder 1.5
viscous yellow transparent DMcT
-An NMP solution was obtained. To this solution, 0.5 g of "anilead" powder manufactured by Nitto Denko as polyaniline was added, and heated to 80 ° C. in a closed container substituted with an inert gas to obtain a sticky black-green viscous substance. This viscous material was printed on a titanium foil having a thickness of 35 μm to a thickness of 120 μm, and then heat-treated at 80 ° C. under a reduced pressure of 1 cmHg to obtain a composite film having a thickness of 25 μm. The composite film obtained was cut together with a titanium foil into 1 × 1 cm to obtain a composite electrode B.

【0018】[実施例2]日東電工製のポリアニリン粉
末「アニリード」0.5gをNMP100mlに加え、
上澄み20mlを直径90mmのガラスシャーレにキャ
ストしたのち、60℃の真空加熱器に入れ、NMPを除
去して厚さ20μmのポリアニリン膜0.15gを得
た。次に、DMcTモノマー粉末1.5gを、平均分子
量が4,000のMERCK社製のポリビニルピロリド
ンを10重量%溶解したN−エチルー2ーピロリドン
(以下、NEPと呼ぶ)3gに溶解したDMcT−NE
P溶液を、DMcT=0.0033モル、NEP=0.
0087モルとなるように、ポリアニリン膜上にキャス
トしたのち、全体をアルゴンガス雰囲気中において80
℃で真空加熱することで厚さ25μmの複合体膜を得
た。この複合体膜を、フッ素樹脂とカーボンブラックよ
りなる厚さ50μmのカーボンフィルムとプレスローラ
にて一体化したのち、1×1cmに切断して電極Cを得
た。
Example 2 0.5 g of polyaniline powder "anilead" manufactured by Nitto Denko was added to 100 ml of NMP,
20 ml of the supernatant was cast on a glass petri dish having a diameter of 90 mm and then placed in a vacuum heater at 60 ° C. to remove NMP to obtain 0.15 g of a polyaniline film having a thickness of 20 μm. Next, DMcT-NE was prepared by dissolving 1.5 g of DMcT monomer powder in 3 g of N-ethyl-2-pyrrolidone (hereinafter, referred to as NEP) in which 10% by weight of polyvinylpyrrolidone manufactured by MERCK having an average molecular weight of 4,000 was dissolved.
P solution, DMcT = 0.0033 mol, NEP = 0.
After being cast on the polyaniline film so as to have a molar ratio of 0087 mol, the whole is 80% in an argon gas atmosphere.
A composite film having a thickness of 25 μm was obtained by heating at 0 ° C. under vacuum. This composite film was integrated with a carbon film of fluororesin and carbon black having a thickness of 50 μm by a press roller, and then cut into 1 × 1 cm to obtain an electrode C.

【0019】[比較例2]日東電工製のポリアニリン粉
末「アニリード」0.5gをNMP100mlに加え、
上澄み20mlを直径90mmのガラスシャーレにキャ
ストしたのち、60℃の真空加熱器に入れ、NMPを除
去して厚さ20μmのポリアニリン膜0.15gを得
た。次に、DMcTモノマー粉末1.5gをNEP3g
に溶解したDMcT−NEP溶液を、DMcT=0.0
033モル、NEP=0.0087モルとなるように、
ポリアニリン膜上にキャストしたのち、全体をアルゴン
ガス雰囲気中において80℃で真空加熱することで厚さ
25μmの複合体膜を得た。この複合体膜を、フッ素樹
脂とカーボンブラックよりなる厚さ50μmのカーボン
フィルムとプレスローラにて一体化したのち、1×1c
mに切断して電極Dを得た。
[Comparative Example 2] 0.5 g of polyaniline powder "Anilead" manufactured by Nitto Denko was added to 100 ml of NMP.
20 ml of the supernatant was cast on a glass petri dish having a diameter of 90 mm and then placed in a vacuum heater at 60 ° C. to remove NMP to obtain 0.15 g of a polyaniline film having a thickness of 20 μm. Next, 1.5 g of DMcT monomer powder was added to 3 g of NEP.
DMcT-NEP solution dissolved in DMcT = 0.0
033 mol, NEP = 0.0087 mol,
After casting on a polyaniline film, the whole was vacuum-heated at 80 ° C. in an argon gas atmosphere to obtain a composite film having a thickness of 25 μm. This composite film was integrated with a carbon film of fluororesin and carbon black having a thickness of 50 μm by a press roller, and then 1 × 1c
The electrode D was obtained by cutting into m.

【0020】[実施例3]DMcTモノマー粉末1.5
g(0.01モル)をNMP5gに溶解し粘性のある黄
色透明のDMcTーNMP溶液を得た。この溶液に、ポ
リアニリンとして脱ドープ還元状態の日東電工製の「ア
ニリード」粉末2.5g(0.015モル)を添加し、
不活性ガスで置換した密閉容器中において80℃に加熱
することで黒紫色液体を得た。平均粒径が6μmのV6
13粉末2.5gを、平均分子量が25,000のME
RCK社製のポリビニルピロリドンを10重量%溶解し
たNMP10gに分散混合してスラリーを得た。このス
ラリーを上記黒紫色液体に加え、ホモジナイザーで回転
数5,000rpmで約10分間混合し分散液を得た。
ロータリーエバッポレータによりNMPの一部を除去し
粘着性の分散液としたのち、カーボンブラックとフッ素
樹脂よりなる厚さ50μmの導電性カーボンフィルム上
に厚さ120μmになるように印刷した。得られたフィ
ルムを80℃で、20cmHgの真空度で約30分間減
圧加熱して厚さ25μmの複合電極膜を得た。真空減圧
加熱によりNMPの86重量%が散逸した。得られた膜
中のポリビニルピロリドンの含有量は、DMcTとポリ
アニリンとV613とNMPの合計量に対し11.8重
量%であった。複合電極膜を導電性カーボンフィルムを
一緒に1×1cmに切断して複合電極Eを得た。
[Example 3] DMcT monomer powder 1.5
g (0.01 mol) was dissolved in 5 g of NMP to obtain a viscous yellow transparent DMcT-NMP solution. To this solution, 2.5 g (0.015 mol) of "anilead" powder manufactured by Nitto Denko in a dedoped reduction state as polyaniline was added,
A black-purple liquid was obtained by heating to 80 ° C. in a closed container replaced with an inert gas. V 6 average particle size 6μm of
2.5 g of O 13 powder was added to ME with an average molecular weight of 25,000.
Polyvinylpyrrolidone manufactured by RCK was dispersed and mixed in 10 g of NMP in which 10% by weight was dissolved to obtain a slurry. This slurry was added to the above black-purple liquid, and mixed with a homogenizer at a rotation speed of 5,000 rpm for about 10 minutes to obtain a dispersion liquid.
A part of NMP was removed by a rotary evaporator to obtain an adhesive dispersion, which was then printed on a conductive carbon film of carbon black and fluororesin having a thickness of 50 μm so as to have a thickness of 120 μm. The obtained film was heated under reduced pressure at 80 ° C. under a vacuum degree of 20 cmHg for about 30 minutes to obtain a composite electrode film having a thickness of 25 μm. 86% by weight of NMP was dissipated by vacuum vacuum heating. The content of polyvinylpyrrolidone in the obtained film was 11.8% by weight based on the total amount of DMcT, polyaniline, V 6 O 13 and NMP. A composite electrode E was obtained by cutting the composite electrode film together with a conductive carbon film into 1 × 1 cm.

【0021】[比較例3]DMcTモノマー粉末1.5
g(0.01モル)をNMP5gに溶解し粘性のある黄
色透明のDMcTーNMP溶液を得た。この溶液に、ポ
リアニリンとして脱ドープ還元状態の日東電工製の「ア
ニリード」粉末2.5g(0.015モル)を添加し、
不活性ガスで置換した密閉容器中で80℃に加熱するこ
とで黒紫色液体を得た。平均粒径が6μmのV613
末2.5gをNMP10gに分散混合してスラリーを得
た。このスラリーを上記黒紫色液体に加え、ホモジナイ
ザーで回転数5,000rpmで約10分間混合し分散
液を得た。ロータリーエバッポレータによりNMPの一
部を除去し粘着性の分散液としたのち、カーボンブラッ
クとフッ素樹脂よりなる厚さ50μmの導電性カーボン
フィルム上に厚さ120μmになるように印刷した。得
られたフィルムを80℃で、20cmHgの真空度で約
30分間減圧加熱し厚さ25μmの複合電極膜を得た。
複合電極膜を導電性カーボンフィルムと一緒に1×1c
mに切断して複合電極Fを得た。
[Comparative Example 3] DMcT monomer powder 1.5
g (0.01 mol) was dissolved in 5 g of NMP to obtain a viscous yellow transparent DMcT-NMP solution. To this solution, 2.5 g (0.015 mol) of "anilead" powder manufactured by Nitto Denko in a dedoped reduction state as polyaniline was added,
A blackish purple liquid was obtained by heating to 80 ° C. in a closed container replaced with an inert gas. 2.5 g of V 6 O 13 powder having an average particle diameter of 6 μm was dispersed and mixed in 10 g of NMP to obtain a slurry. This slurry was added to the above black-purple liquid, and mixed with a homogenizer at a rotation speed of 5,000 rpm for about 10 minutes to obtain a dispersion liquid. A part of NMP was removed by a rotary evaporator to obtain an adhesive dispersion, which was then printed on a conductive carbon film of carbon black and fluororesin having a thickness of 50 μm so as to have a thickness of 120 μm. The obtained film was heated under reduced pressure at 80 ° C. under a vacuum degree of 20 cmHg for about 30 minutes to obtain a composite electrode film having a thickness of 25 μm.
Composite electrode membrane with conductive carbon film 1 x 1c
The composite electrode F was obtained by cutting into m.

【0022】電極性能評価 実施例1、2、3、比較例1、2、3で得た電極A、
B、C、D、E、Fを正極、厚み0.3mmの金属リチ
ウムを負極とし、厚み0.6mmのゲル電解質をセパレ
ータ層として偏平型電池A、B、C、D、E、Fを構成
した。なお、ゲル電解質は、LiBF4を1M溶解した
プロピレンカーボネート/エチレンカーボネート(1:
1容積比)溶液20.7gでポリアクリロニトリル3.
0gをゲル化したものである。これらの電池を室温にお
いて、0.2mAの一定電流で、4.5〜2.25Vの
範囲で充放電し、各充放電サイクルでの放電容量(Q、
単位:mAh)を測定し、充放電サイクルの進行に伴う
放電容量(Q)の減少の程度により電極性能を評価し
た。結果を表1に示す。
Evaluation of Electrode Performance Electrodes A obtained in Examples 1, 2 and 3 and Comparative Examples 1, 2 and 3,
Flat type batteries A, B, C, D, E, and F are configured by using B, C, D, E, and F as positive electrodes, metal lithium having a thickness of 0.3 mm as a negative electrode, and a gel electrolyte having a thickness of 0.6 mm as a separator layer. did. The gel electrolyte was prepared by dissolving 1M LiBF 4 in propylene carbonate / ethylene carbonate (1:
(1 volume ratio) with 20.7 g of a solution of polyacrylonitrile 3.
It is a gel of 0 g. These batteries were charged and discharged at a constant current of 0.2 mA at room temperature in the range of 4.5 to 2.25 V, and the discharge capacity (Q,
The unit: mAh) was measured, and the electrode performance was evaluated by the degree of decrease in discharge capacity (Q) with the progress of charge / discharge cycles. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】以上の結果から明らかなように、本発明に
従う実施例1、2、3の複合電極A、C、Eを用いた電
池は、それぞれ対応する比較例の複合電極B、D、Fを
用いた電池に較べ、充放電サイクルの進行に伴う放電容
量の低下が小さい。
As is clear from the above results, the batteries using the composite electrodes A, C, and E of Examples 1, 2, and 3 according to the present invention have the corresponding composite electrodes B, D, and F, respectively. The decrease in discharge capacity with the progress of charge / discharge cycles is smaller than that of the battery used.

【0025】[0025]

【発明の効果】以上のように本発明によれば、酸化還元
を繰り返し行ってもサイクルの進行に伴う容量低下が小
さい複合電極が得られる。このような複合電極をリチウ
ム二次電池の正極に用いることで充放電サイクル寿命の
長い電池を得ることができる。また、本発明の電極は、
これを対極に用いることで発色・退色の繰り返し寿命の
長いエレクトロクロミック素子を得ることができるし、
また、書き込み・読み出し繰り返し寿命の長い電気化学
アナログメモリーを構成することもできる。
As described above, according to the present invention, it is possible to obtain a composite electrode having a small capacity decrease with the progress of the cycle even if the redox is repeated. By using such a composite electrode as the positive electrode of a lithium secondary battery, a battery having a long charge / discharge cycle life can be obtained. Further, the electrode of the present invention,
By using this as a counter electrode, it is possible to obtain an electrochromic device having a long life of repeated coloring and fading,
It is also possible to construct an electrochemical analog memory having a long writing / reading cycle life.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電解還元により硫黄ー硫黄結合が開裂し
て硫黄ー金属イオン(プロトンを含む)結合を生成し、
電解酸化により硫黄ー金属イオン結合が元の硫黄ー硫黄
結合を再生する有機ジスルフィド化合物、ポリアニリ
ン、および可撓性賦与物質として式(C69NO)
n(nは整数)で表されるポリビニルピロリドンを含む
ことを特徴とする複合電極。
1. A sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including proton) bond,
An organic disulfide compound in which a sulfur-metal ion bond regenerates an original sulfur-sulfur bond by electrolytic oxidation, polyaniline, and a compound (C 6 H 9 NO) as a flexibility-imparting substance
A composite electrode comprising polyvinylpyrrolidone represented by n (n is an integer).
【請求項2】 電解還元により硫黄ー硫黄結合が開裂し
て硫黄ー金属イオン(プロトンを含む)結合を生成し、
電解酸化により硫黄ー金属イオン結合が元の硫黄ー硫黄
結合を再生する有機ジスルフィド化合物、ポリアニリ
ン、金属酸化物、および可撓性賦与物質として式(C6
9NO)n(nは整数)で表されるポリビニルピロリド
ンを含むことを特徴とする複合電極。
2. The electrolytic reduction reduces the sulfur-sulfur bond to form a sulfur-metal ion (including proton) bond,
The organic disulfide compound, in which the sulfur-metal ionic bond regenerates the original sulfur-sulfur bond by electrolytic oxidation, polyaniline, metal oxide, and a compound (C 6
A composite electrode comprising polyvinylpyrrolidone represented by H 9 NO) n (n is an integer).
【請求項3】 金属酸化物が、LiCoO2、V613
LiMn24、V25およびLiNiO2よりなる群か
ら選ばれる遷移金属酸化物である請求項2記載の複合電
極。
3. The metal oxide is LiCoO 2 , V 6 O 13 ,
The composite electrode according to claim 2, which is a transition metal oxide selected from the group consisting of LiMn 2 O 4 , V 2 O 5 and LiNiO 2 .
【請求項4】 電解還元により硫黄ー硫黄結合が開裂し
て硫黄ー金属イオン(プロトンを含む)結合を生成し、
電解酸化により硫黄ー金属イオン結合が元の硫黄ー硫黄
結合を再生する有機ジスルフィド化合物と式(C69
O)n(nは整数)で表されるポリビニルピロリドンと
ポリアニリンをN−アルキルー2ーピロリドンに溶解し
て粘性体を得る工程、および前記の粘性体を基板上に塗
布し、真空下あるいは不活性ガス雰囲気下で加熱する工
程を有することを特徴とする複合電極の製造方法。
4. The sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including proton) bond,
An organic disulfide compound in which a sulfur-metal ion bond regenerates the original sulfur-sulfur bond by electrolytic oxidation and a compound of the formula (C 6 H 9 N
O) n (n is an integer), a step of dissolving polyvinylpyrrolidone and polyaniline in N-alkyl-2-pyrrolidone to obtain a viscous body, and applying the viscous body onto a substrate, under vacuum or with an inert gas. A method of manufacturing a composite electrode, comprising a step of heating in an atmosphere.
【請求項5】 電解還元により硫黄ー硫黄結合が開裂し
て硫黄ー金属イオン(プロトンを含む)結合を生成し、
電解酸化により硫黄ー金属イオン結合が元の硫黄ー硫黄
結合を再生する有機ジスルフィド化合物と式(C69
O)n(nは整数)で表されるポリビニルピロリドンと
ポリアニリンをN−アルキルー2ーピロリドンに溶解し
て粘性体を得る工程、前記粘性体をN−アルキルー2ー
ピロリドンで希釈した溶液中に金属酸化物の粉末を分散
混合する工程、および得られた分散混合物を基板上に塗
布し、真空下あるいは不活性ガス雰囲気下で加熱する工
程を有することを特徴とする複合電極の製造方法。
5. The sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including proton) bond,
An organic disulfide compound in which a sulfur-metal ion bond regenerates the original sulfur-sulfur bond by electrolytic oxidation and a compound of the formula (C 6 H 9 N
O) n (n is an integer), a step of dissolving polyvinylpyrrolidone and polyaniline in N-alkyl-2-pyrrolidone to obtain a viscous body, a metal oxide in a solution obtained by diluting the viscous body with N-alkyl-2-pyrrolidone And a step of applying the obtained dispersion mixture onto a substrate and heating it in a vacuum or in an inert gas atmosphere.
【請求項6】 請求項1、2または3記載の複合電極か
らなる正極、非水電解質および負極を備えるリチウム二
次電池。
6. A lithium secondary battery comprising a positive electrode comprising the composite electrode according to claim 1, 2 or 3, a non-aqueous electrolyte and a negative electrode.
JP7011007A 1995-01-26 1995-01-26 Combined electrode, manufacture thereof and lithium secondary battery Pending JPH08203530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7011007A JPH08203530A (en) 1995-01-26 1995-01-26 Combined electrode, manufacture thereof and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7011007A JPH08203530A (en) 1995-01-26 1995-01-26 Combined electrode, manufacture thereof and lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08203530A true JPH08203530A (en) 1996-08-09

Family

ID=11766071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7011007A Pending JPH08203530A (en) 1995-01-26 1995-01-26 Combined electrode, manufacture thereof and lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08203530A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913840A1 (en) * 1997-10-31 1999-05-06 Kemet Electronics Corporation Doped polyaniline solutions
KR20000020531A (en) * 1998-09-22 2000-04-15 손욱 Electrode activate material slurry of secondary battery
KR100458582B1 (en) * 2002-07-23 2004-12-03 삼성에스디아이 주식회사 Electrode for lithium sulfur batteries comprising curable binder and lithium sulfur batteries comprising the same
KR100740677B1 (en) * 2004-12-31 2007-07-19 삼성정밀화학 주식회사 Conducting Polyvinylcarbazole Nano Composites and Preparation Method of They
US7790315B2 (en) 1996-05-22 2010-09-07 Sion Power Corporation Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
WO2011012343A1 (en) * 2009-07-25 2011-02-03 Evonik Degussa Gmbh Coating method for producing electrodes for electrical energy stores

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790315B2 (en) 1996-05-22 2010-09-07 Sion Power Corporation Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
EP0913840A1 (en) * 1997-10-31 1999-05-06 Kemet Electronics Corporation Doped polyaniline solutions
KR20000020531A (en) * 1998-09-22 2000-04-15 손욱 Electrode activate material slurry of secondary battery
KR100458582B1 (en) * 2002-07-23 2004-12-03 삼성에스디아이 주식회사 Electrode for lithium sulfur batteries comprising curable binder and lithium sulfur batteries comprising the same
KR100740677B1 (en) * 2004-12-31 2007-07-19 삼성정밀화학 주식회사 Conducting Polyvinylcarbazole Nano Composites and Preparation Method of They
WO2011012343A1 (en) * 2009-07-25 2011-02-03 Evonik Degussa Gmbh Coating method for producing electrodes for electrical energy stores

Similar Documents

Publication Publication Date Title
KR100276656B1 (en) Solid type secondary battery composed of thin film composite anode
US7459235B2 (en) Anode composition for lithium battery, and anode and lithium battery using the same
US6228532B1 (en) Lithium secondary cell
US5518841A (en) Composite cathode
JP3292441B2 (en) Electrode containing organic disulfide compound and method for producing the same
US6576370B1 (en) Positive electrode and lithium battery using the same
JP2005150117A (en) Cathode for lithium secondary battery and lithium secondary battery including the same
EP1178549A2 (en) Carbon substrate, anode for lithium ion rechargeable battery and lithium ion rechargeable battery
JPH11214008A (en) Compound electrode, manufacture thereof, and lithium secondary battery
JP3085943B2 (en) Lithium polymer secondary battery with anode containing metal composite anode
JPH1027615A (en) Composite electrode containing organic disulfide compound and its manufacture
KR20190032933A (en) Metal secondary battery having metal electrode
JPH08203530A (en) Combined electrode, manufacture thereof and lithium secondary battery
JP2002319400A (en) Electrode, manufacturing method therefor, and lithium battery using the same
JP2000311684A (en) Lithium secondary battery and manufacture of its positive electrode
JP2000340225A (en) Composite electrode composition and lithium battery using it
JP2002164084A (en) Lithium battery and its manufacturing method
JP3471097B2 (en) Polymer electrode, method for producing polymer electrode, and lithium secondary battery
JP3722462B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same
JPH08109196A (en) Composite electrode and its production
JP2001266885A (en) Composite electrode composition, its manufacturing method and lithium battery
JP3444463B2 (en) Electrode containing organic disulfide compound and method for producing the same
JPH07296792A (en) Composite electrode, its manufacture, and lithium secondary battery
KR100302191B1 (en) Metal-Polymer Composite Electrode Material and Its Use
JPH08203529A (en) Combined electrode, manufacture thereof and lithium secondary battery