JP3358135B2 - High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same - Google Patents

High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same

Info

Publication number
JP3358135B2
JP3358135B2 JP02449194A JP2449194A JP3358135B2 JP 3358135 B2 JP3358135 B2 JP 3358135B2 JP 02449194 A JP02449194 A JP 02449194A JP 2449194 A JP2449194 A JP 2449194A JP 3358135 B2 JP3358135 B2 JP 3358135B2
Authority
JP
Japan
Prior art keywords
steel
sulfide stress
stress cracking
strength
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02449194A
Other languages
Japanese (ja)
Other versions
JPH06322478A (en
Inventor
均 朝日
博己 藤井
正勝 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP02449194A priority Critical patent/JP3358135B2/en
Publication of JPH06322478A publication Critical patent/JPH06322478A/en
Application granted granted Critical
Publication of JP3358135B2 publication Critical patent/JP3358135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐硫化物応力割れ抵抗
性に優れた降伏強度が84〜100kgf/mm2の高強度油
井用鋼管、形鋼、その他各種の部材に使用される鋼、お
よびその製造方法に関するものである。
The present invention relates to a steel used for high-strength steel pipes for oil wells having a yield strength of 84 to 100 kgf / mm 2 and excellent in sulfide stress cracking resistance, shaped steel, and various other members. And a method of manufacturing the same.

【0002】[0002]

【従来の技術】特公昭56−33459号公報にて示さ
れるように、特定の化学成分を含有する鋼を通常の方法
で焼入れ・焼戻しして製造する耐硫化物応力割れ抵抗性
に優れた鋼が知られている。このような発明においては
結晶粒度の記載がないが、経験的に6〜9番であると推
測される。また、ISIJ International vol. 32 (1992)
p1021 において、結晶粒を微細にすると耐硫化物応力割
れ抵抗性が向上することも知られている。
2. Description of the Related Art As shown in Japanese Patent Publication No. 56-33459, a steel excellent in sulfide stress cracking resistance is produced by quenching and tempering a steel containing a specific chemical component by a usual method. It has been known. Although there is no description of the crystal grain size in such an invention, it is empirically estimated that the number is 6 to 9. Also, ISIJ International vol. 32 (1992)
In p1021, it is also known that making the crystal grains fine improves the resistance to sulfide stress cracking.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
技術で得られる耐硫化物応力割れ抵抗性に優れた鋼は降
伏強度が80kgf/mm2 以下のものであって、強度上昇
(降伏強度が84〜100kgf/mm2 )と共に急激に劣化
する耐硫化物応力割れ抵抗性を維持したまま、更に強度
を向上させることは、従来行われている通常の焼入れ・
焼戻し処理では不可能であった。
However, the steel having excellent sulfide stress cracking resistance obtained by the prior art has a yield strength of not more than 80 kgf / mm 2 and an increase in strength (yield strength of 84 kgf / mm 2 or less). Up to 100 kgf / mm 2 ), while maintaining the sulfide stress cracking resistance, which rapidly degrades, the strength is further improved by the conventional quenching and quenching.
It was impossible with tempering.

【0004】本発明は上記問題点を解決するものであっ
て、従来の焼入れ・焼戻し処理では使用されていない極
細粒を利用し、これが得られる工程とこれを有効に活用
できる鋼成分に特定することにより、非常に高強度(降
伏強度が80〜100kgf/mm2 )で且つ耐硫化物応力割
れ抵抗性に優れた鋼を提供することを目的とする。
The present invention solves the above-mentioned problems, and utilizes ultrafine grains not used in the conventional quenching and tempering treatments, and specifies the process by which these can be obtained and the steel components that can effectively utilize them. Accordingly, an object of the present invention is to provide a steel having extremely high strength (yield strength of 80 to 100 kgf / mm 2 ) and excellent sulfide stress cracking resistance.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために、多くの実験的検討を行った結果、鋼
成分を調整し、結晶粒を通常使用されている細粒鋼の9
番より更に微細にすることで、従来知られている結晶粒
の微細効果の延長上からは予測できない優れた耐硫化物
応力割れ特性の油井用鋼管が得られることを知見した。
しかし、一般的な熱処理方法ではこのような細粒は得ら
れず、更に、細粒化すると鋼の焼入れ性が著しく低下す
るため、細粒が得られ且つ焼入れ性を確保する工夫が必
要であった。すなわち、本発明は、これらの知見に基づ
いて構成したもので、その要旨は(1)質量%でC :
0.10〜0.35%、Si:0.01〜0.50%、
Mn:0.10〜0.6%、S :0.005%以下、
P :0.015%以下、Mo:0.30〜1.0%、
Al:0.005〜0.1%、Nb:0.01〜0.1
%、Ti:0.005〜0.04%で且つ Ti≧3.
4N、N :0.006%以下、B :0.0008〜
0.0016%を含有し、必要によっては、更にCr:
0.1〜1.5%、V :0.01〜0.1%、Co:
0.05〜0.5%、Zr:0.001〜0.1% 希土類元素:0.001〜0.05%、Ca:0.00
1〜0.02%の1種または2種を含有して残部が実質
的にFeからなり、粒度が9.5番(ASTM No.)
より細粒の焼戻しマルテンサイト組織を呈することを特
徴とする耐硫化物応力割れ抵抗性に優れた高強度鋼であ
る。なお、ここで結晶粒度はマルテンサイトに変態する
前のオーステナイト状態での粒度、すなわち旧オーステ
ナイト粒度を言う。
Means for Solving the Problems The inventors of the present invention have conducted a number of experimental studies in order to achieve the above object, and as a result, have adjusted the steel composition and changed the crystal grains to the fine-grained steel generally used. Of 9
It has been found that by making the grain size even smaller than that, it is possible to obtain a steel pipe for oil wells having excellent sulfide stress cracking resistance that cannot be predicted from the extension of the conventionally known effect of crystal grain refinement.
However, such fine grains cannot be obtained by a general heat treatment method, and furthermore, when the grain size is reduced, the hardenability of the steel is significantly reduced. Therefore, it is necessary to devise a method of obtaining fine grains and securing the hardenability. Was. That is, the present invention has been made based on these findings, and its gist is that (1) C:
0.10 to 0.35%, Si: 0.01 to 0.50%,
Mn: 0.10 to 0.6%, S: 0.005% or less,
P: 0.015% or less, Mo: 0.30 to 1.0%,
Al: 0.005 to 0.1%, Nb: 0.01 to 0.1
%, Ti: 0.005 to 0.04% and Ti ≧ 3.
4N, N: 0.006% or less, B: 0.0008-
0.0016%, and optionally Cr:
0.1-1.5%, V: 0.01-0.1%, Co:
0.05-0.5%, Zr: 0.001-0.1% Rare earth element: 0.001-0.05%, Ca: 0.00
1 to 0.02% of one or two kinds, the balance being substantially composed of Fe, and having a particle size of 9.5 (ASTM No.)
It is a high-strength steel excellent in sulfide stress cracking resistance characterized by exhibiting a finer grain tempered martensite structure. Here, the crystal grain size means a grain size in an austenite state before transformation into martensite, that is, a prior austenite grain size.

【0006】(2)質量%でC :0.10〜0.35
%、Si:0.01〜0.50%、Mn:0.10〜
0.6%、S :0.005%以下、P :0.015
%以下、Mo:0.30〜1.0%、Al:0.005
〜0.1%、Nb:0.01〜0.1%、Ti:0.0
05〜0.04%で且つ Ti≧3.4N、N :0.
006%以下、B :0.0008〜0.0016%を
含有し、必要によっては、更にCr:0.1〜1.5
%、V :0.01〜0.1%、Co:0.05〜0.
5%、Zr:0.001〜0.1% 希土類元素:0.001〜0.05%、Ca:0.00
1〜0.02%の1種または2種を含有して残部が実質
的にFeからなる化学成分を有する鋼を3℃/秒以上の
加熱速度で930〜1000℃の温度域に5分以下の短
時間再加熱後焼入れてマルテンサイト組織とし、その後
c1変態点以下で焼戻すことを特徴とする、降伏強度が
84〜100kgf/mm2 の耐硫化物応力割れ抵抗性に優れ
た高強度鋼の製造方法。
(2) C: 0.10 to 0.35 by mass%
%, Si: 0.01 to 0.50%, Mn: 0.10 to 0.1%
0.6%, S: 0.005% or less, P: 0.015
% Or less, Mo: 0.30 to 1.0%, Al: 0.005
-0.1%, Nb: 0.01-0.1%, Ti: 0.0
0.5 to 0.04% and Ti ≧ 3.4N, N: 0.
006% or less, B: 0.0008 to 0.0016%, and if necessary, Cr: 0.1 to 1.5
%, V: 0.01-0.1%, Co: 0.05-0.
5%, Zr: 0.001 to 0.1% Rare earth element: 0.001 to 0.05%, Ca: 0.00
A steel containing 1 to 0.02% of one or two kinds and a balance substantially composed of Fe is heated to a temperature range of 930 to 1000 ° C. at a heating rate of 3 ° C./sec or more for 5 minutes or less. A high strength with a yield strength of 84 to 100 kgf / mm 2 and excellent resistance to sulfide stress cracking, characterized in that the steel is reheated for a short time, then quenched to a martensitic structure, and then tempered below the A c1 transformation point. Steel production method.

【0007】[0007]

【作用】以下本発明の製造方法について詳細に説明す
る。先ず、本発明において上記のような鋼成分に限定し
た理由について説明する。Cは鋼の強度を高め、焼入れ
性を増す効果を有する鋼の基本成分であるが、少なすぎ
るとその効果がなく、多すぎると焼き割れを誘発する原
因となるため0.1〜0.35%とした。Siは、脱酸
剤が残存したものであるが、少なすぎるとその効果がな
く、多すぎると耐硫化物応力割れ抵抗性が低下するため
0.01〜0.50%とした。
The production method of the present invention will be described below in detail. First, the reason why the present invention is limited to the above steel components will be described. C is a basic component of steel that has the effect of increasing the strength of the steel and increasing the hardenability, but if it is too small, it has no effect, and if it is too large, it causes quenching cracking. %. Si has a deoxidizing agent remaining, but if it is too small, it has no effect, and if it is too large, the resistance to sulfide stress cracking decreases, so the content of Si is set to 0.01 to 0.50%.

【0008】Mnは鋼の基本成分としてSの無害化のた
めに必須であり、焼入れ性を高める点では有効な元素で
あるが、反面Mn自体は耐硫化物応力割れ抵抗性を大幅
に低下させるため、その添加量を0.1〜0.6%とし
た。Sは、鋼に不可避の不純物であるがMnSを形成し
て耐硫化物応力割れ抵抗性に有害であり、0.005%
以下とした。Pは、粒界に偏析して耐硫化物応力割れ抵
抗性を大幅に低下させるため、その含有量を0.015
%以下とした。
[0008] Mn is essential for detoxifying S as a basic component of steel and is an effective element in terms of enhancing hardenability, but Mn itself significantly reduces sulfide stress cracking resistance. Therefore, the addition amount is set to 0.1 to 0.6%. S is an unavoidable impurity in steel, but forms MnS and is harmful to sulfide stress cracking resistance.
It was as follows. P segregates at the grain boundaries and greatly reduces sulfide stress cracking resistance.
% Or less.

【0009】Moは、耐硫化物応力割れ抵抗性を高める
作用を有し、更に焼入れ性を向上させる効果も有する。
0.3%未満では効果が十分でなく、0.8%を超えて
添加しても効果が飽和するだけでなく、Mo2 Cが析出
して靱性が劣化するため、添加量を0.3〜0.8%と
した。Alは、Siと同様脱酸剤が残存したものであ
る。少なすぎるとその効果がなく、多すぎると介在物を
増加して耐硫化物応力割れ抵抗性を劣化させるので0.
005〜0.1%とした。
Mo has the effect of increasing the resistance to sulfide stress cracking and has the effect of further improving the hardenability.
If it is less than 0.3%, the effect is not sufficient. If it exceeds 0.8%, the effect is not only saturated, but also Mo 2 C precipitates and the toughness is deteriorated. -0.8%. Al has a deoxidizing agent remaining like Si. If the amount is too small, the effect is not obtained. If the amount is too large, inclusions increase and the resistance to sulfide stress cracking deteriorates.
005 to 0.1%.

【0010】Nbは、結晶粒を9.5番以上に微細にす
るのに最も重要な元素である。少なすぎるとその効果が
なく、多すぎてもその効果が飽和し、しかも非常に高価
であるので0.01〜0.1%とした。Tiは、鋼から
完全には除去できない成分であるNをTiNとして固定
しBの焼入れ性向上効果を発揮させる。特に、本発明の
ように焼入れのための再加熱時の加熱速度が速いとAl
Nが効果的に形成されないので必須の元素である。更に
Ti酸化物を形成してPを粒内に存在せしめ、粒界への
偏析量を低減する効果も有する。少なすぎるとこの効果
が発揮されず、またN固定のためには原子モル比で等し
い3.4N以上の添加が必要である。しかし多すぎると
焼戻し時にTiCが大量に析出して靱性を著しく阻害す
るため0.005〜0.04%で且つTi≧3.4Nと
した。
[0010] Nb is the most important element for making crystal grains finer than 9.5. If the amount is too small, the effect is not obtained, and if the amount is too large, the effect is saturated and the cost is very high. Ti fixes N, which is a component that cannot be completely removed from steel, as TiN and exerts an effect of improving the hardenability of B. In particular, if the heating rate during reheating for quenching is high as in the present invention, Al
N is an essential element because N is not effectively formed. Further, it has the effect of forming Ti oxide to cause P to be present in the grains, thereby reducing the amount of segregation to the grain boundaries. If the amount is too small, this effect is not exhibited, and addition of 3.4N or more in the same atomic molar ratio is necessary for fixing N. However, if the content is too large, a large amount of TiC precipitates during tempering and significantly impairs the toughness. Therefore, the content was made 0.005 to 0.04% and Ti ≧ 3.4N.

【0011】Nは、鋼に不可避的に含まれるが、多すぎ
るとTi添加量を増してもBの焼入れ性を損なうことが
あるため最大0.006%とした。Bは、微量で焼入れ
性を格段に向上させる元素であることは良く知られてい
るが、更に細粒になっても焼入れ性が低下しない。且つ
耐硫化物応力割れ抵抗性は低下させない。Moを除く焼
入れ性向上元素は一方で耐硫化物応力割れ抵抗性を低下
させる作用を有する。従って、焼入れ後の組織をマルテ
ンサイトにするために極めて有効で且つ耐硫化物応力割
れ抵抗性を低下させないBは本発明に必須の元素であ
る。特に極微細粒を利用する本発明鋼では無くてはなら
ない元素である。少なすぎると効果が十分でなく、Mo
添加鋼の場合、多すぎても焼入れ性向上効果が減ずるの
で、その添加量を0.0008〜0.0016%とし
た。
[0011] N is inevitably contained in steel, but if it is too large, the hardenability of B may be impaired even if the added amount of Ti is increased. It is well known that B is an element that significantly improves the hardenability in a very small amount, but the hardenability does not decrease even if it becomes finer. In addition, the resistance to sulfide stress cracking does not decrease. On the other hand, the quenchability improving element except Mo has an effect of lowering sulfide stress cracking resistance. Therefore, B, which is extremely effective for changing the structure after quenching to martensite and does not reduce the resistance to sulfide stress cracking, is an essential element in the present invention. Particularly, it is an indispensable element in the steel of the present invention utilizing ultrafine grains. If the amount is too small, the effect is not sufficient, and Mo
In the case of the added steel, the effect of improving the hardenability is reduced even if it is too large, so the amount of addition is made 0.0008 to 0.0016%.

【0012】上記の成分組成の鋼で更にCr,V,C
o,Zr,希土類元素,Caを必要に応じて選択的に添
加する。Crは、焼入れ性を向上させマルテンサイトを
形成させることにおいては効果を発するが、反面多量に
添加すると耐硫化物応力割れ抵抗性を低下させる。0.
1%未満では添加効果がなく、1.5%を超えて添加す
ると耐硫化物応力割れ抵抗性の低下が顕著になるのでC
r添加量を0.1〜1.5%とした。Vは、強化元素と
して有効であるが微量では効果がなく、多量に添加する
と靱性を劣化するので0.01〜0.1%の添加量とし
た。Coは湿潤硫化水素環境で鋼表面に堅牢な皮膜形成
を行わせ水素侵入量を低減することで耐硫化物応力割れ
抵抗性を向上させる効果を有する。微量では効果が顕著
でなく、多量に添加しても効果が飽和し高価な元素であ
ることから0.05〜0.5%の添加量とした。Zr
は、Zr酸化物を形成してPを粒内に存在せしめ、粒界
への偏析量を低減する効果を有する。少なすぎるとこの
効果が発揮されず、多量に添加するとZr酸化物が多量
に形成され割れの起点となることが懸念されるため0.
001〜0.1%の添加量とした。
[0012] The steel having the above-mentioned composition has Cr, V, C
o, Zr, rare earth elements, and Ca are selectively added as needed. Cr is effective in improving hardenability and forming martensite, but when added in a large amount, it reduces sulfide stress cracking resistance. 0.
If it is less than 1%, there is no effect of addition, and if it exceeds 1.5%, the sulfide stress cracking resistance is remarkably reduced.
The amount of r added was set to 0.1 to 1.5%. V is effective as a strengthening element, but has no effect in a very small amount, and if added in a large amount, toughness is deteriorated. Therefore, V was added in an amount of 0.01 to 0.1%. Co has the effect of improving the sulfide stress cracking resistance by forming a robust film on the steel surface in a wet hydrogen sulfide environment and reducing the amount of hydrogen intrusion. The effect is not remarkable when the amount is small, and the effect is saturated even if added in a large amount, and the element is expensive. Therefore, the addition amount is set to 0.05 to 0.5%. Zr
Has the effect of forming a Zr oxide to cause P to be present in the grains, thereby reducing the amount of segregation at the grain boundaries. If the amount is too small, this effect is not exhibited, and if added in a large amount, there is a concern that a large amount of Zr oxide is formed and may be a starting point of cracking.
The amount was 001 to 0.1%.

【0013】希土類元素およびCaは、介在物の形態を
球状化させて無害化する有効な元素である。少なすぎる
とその効果がなく、多すぎると介在物を増加して耐硫化
物応力割れ抵抗性を低下させるので各々0.001〜
0.05%,0.001〜0.02%とした。
[0013] Rare earth elements and Ca are effective elements that make the form of inclusions spherical and harmless. When the amount is too small, the effect is not obtained. When the amount is too large, the number of inclusions increases and the resistance to sulfide stress cracking decreases.
0.05%, 0.001 to 0.02%.

【0014】このような化学成分からなる鋼は、粒度が
9.5より細粒の焼戻しマルテンサイト組織を呈してい
なくてはならない。耐硫化物応力割れ抵抗性に最も大き
な影響をおよぼす要因は組織であり、本発明の最も重要
な要件の一つである。このような高強度鋼は焼入れによ
り製造されるが、焼入れ組織中にマルテンサイト以外の
ベイナイト等が混在すると耐硫化物応力割れ抵抗性が低
下する。マルテンサイト率は高い方が良いが、工業的に
製造できる範囲である95%以上をここではマルテンサ
イト組織という。マルテンサイトは強度が高すぎ、且つ
非常に脆いので焼戻しにより所望の強度にする。従っ
て、本発明が目的とする組織は焼戻しマルテンサイトで
ある。
The steel having such a chemical composition must have a tempered martensite structure with a grain size smaller than 9.5. The factor that has the greatest effect on sulfide stress cracking resistance is the texture, which is one of the most important requirements of the present invention. Such high-strength steel is manufactured by quenching. However, if bainite other than martensite is mixed in the quenched structure, the resistance to sulfide stress cracking is reduced. Although a higher martensite ratio is better, a martensite structure of 95% or more, which is an industrially producible range, is herein used. Since martensite is too strong and very brittle, it is tempered to obtain the desired strength. Therefore, the target structure of the present invention is tempered martensite.

【0015】次に結晶粒度の限定理由について述べる。
図1は同一化学成分の鋼で加熱速度と加熱温度の変化に
より結晶粒度を変え、焼入れ処理でマルテンサイト組織
にしたのち、種々の温度で焼戻しをしてから、耐硫化物
応力割れ抵抗性を測定し、急に抵抗性が低下し始める強
度水準を検討した結果である。図から分かるように、通
常の焼入れで得られる9番以下では、結晶粒が細かくな
ると共に徐々に限界の強度が高くなっている。しかしな
がら、9番より細粒になると延長線より高強度側に限界
の強度が移動している。従来はこのような細粒化の効果
は不明であった上に、一般にはこのような細粒を得るこ
とは困難であるので、極細粒を使用する思想は無かっ
た。しかし、従来の強度限界を打ち破るためには、この
ような細粒組織が必要である。従って、必要な粒度を
9.5番より細粒とした。
Next, the reasons for limiting the crystal grain size will be described.
Fig. 1 shows the change of the crystal grain size by the change of heating rate and heating temperature in steel of the same chemical composition, the martensitic structure by quenching, tempering at various temperatures, and the resistance to sulfide stress cracking. This is a result of measuring and examining the strength level at which the resistance starts to decrease suddenly. As can be seen from the figure, in the case of No. 9 or less obtained by normal quenching, the crystal grains become finer and the limit strength gradually increased. However, when the grain becomes finer than No. 9, the limit strength moves to a higher strength side than the extension line. Heretofore, the effect of such fine graining has not been known, and since it is generally difficult to obtain such fine grains, there has been no idea of using ultrafine grains. However, in order to overcome the conventional strength limit, such a fine grain structure is necessary. Therefore, the required particle size was made finer than 9.5.

【0016】以下にこのような細粒のマルテンサイトを
上記の鋼について得る焼入れ方法を説明する。焼入れの
条件としては細粒で且つ高い焼入れ性が確保される必要
がある。図2は加熱速度と結晶粒度の関係を示すもの
で、図から分かるように平均加熱速度が3℃/秒より遅
いと所望の細粒が得られないので加熱速度は3℃/秒以
上とした。また、加熱時間が5分を超えると粒成長を始
めるので加熱時間は最大5分とした。加熱温度は低いほ
ど細粒が得られるが、MoとBを複合添加した鋼におい
ては、余りに加熱温度が低いと焼入れ性が低下する。ま
た、加熱温度が高くなると粒成長が著しくなるだけでは
なく、再び焼入れ性が低下する。図3に焼入れ性および
結晶粒度と焼入れ温度の関係を示す。VC-90は90%マ
ルテンサイト組織率が得られる臨界冷却速度であり、値
が小さい程焼入れ性が高いことを示す。図から細粒で且
つ焼入れ性が高い加熱温度として930〜1000℃と
した。
The quenching method for obtaining such fine-grained martensite for the above steel will be described below. As quenching conditions, it is necessary to ensure fine grains and high quenchability. FIG. 2 shows the relationship between the heating rate and the crystal grain size. As can be seen from the figure, if the average heating rate is lower than 3 ° C./sec, the desired fine grains cannot be obtained. . When the heating time exceeds 5 minutes, grain growth starts, so the heating time was set to a maximum of 5 minutes. Fine grains are obtained as the heating temperature is lower, but in steels to which Mo and B are added in combination, if the heating temperature is too low, the hardenability decreases. In addition, when the heating temperature is increased, not only the grain growth becomes remarkable, but also the hardenability decreases again. FIG. 3 shows the relationship between the quenching property and the grain size and the quenching temperature. VC -90 is a critical cooling rate at which a 90% martensite structure ratio can be obtained, and a smaller value indicates higher hardenability. As shown in the figure, the heating temperature was 930 to 1000 ° C. as a fine grain and high hardenability.

【0017】[0017]

【実施例】まず表1に示される化学成分の鋼を通常の溶
製・鋳造した後、モデル圧延機で継目無鋼管を製造し、
焼入れ・焼戻し処理を施した。焼戻し温度は変化させ
て、所望の強度範囲にある材料に対して耐硫化物応力割
れ試験を行った。試験は1規定の酢酸と1モルの酢酸ナ
トリウムを混合してpH;3.5に調整した液に10%
硫化水素+90%窒素を飽和した液中で平滑丸棒試験片
に降伏強度の80%に相当する引張応力を付与して破断
時間を測定した。720時間まで試験を行い、破断しな
かったものが優れた耐硫化物応力割れ抵抗性を有してい
ると見なせる。表2,3にその結果を示す。
EXAMPLES First, a steel having the chemical composition shown in Table 1 was melted and cast in a normal manner, and then a seamless steel pipe was manufactured by a model rolling mill.
Quenching and tempering were performed. The sulfide stress cracking test was performed on a material having a desired strength range while changing the tempering temperature. The test was performed by mixing 1N acetic acid and 1 mol of sodium acetate to obtain a pH of 10%.
In a liquid saturated with hydrogen sulfide + 90% nitrogen, a tensile stress equivalent to 80% of the yield strength was applied to a smooth round bar test piece, and the breaking time was measured. The test was performed up to 720 hours, and those that did not break can be regarded as having excellent sulfide stress cracking resistance. Tables 2 and 3 show the results.

【0018】なお、マルテンサイト比率は焼戻し後では
測定が難しいので、焼入れ後、組織試験片を採取して調
べた。結晶粒度はオーステナイト粒界を現出した後、J
ISの切断法に基づいて測定した。
Since the martensite ratio is difficult to measure after tempering, after quenching, a structural test piece was sampled and examined. The grain size is determined by J
It was measured based on the IS cutting method.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【発明の効果】以上のように本発明によれば、鋼成分を
特定し、特定の条件で熱処理を施した油井用鋼管は、高
強度で、しかも、優れた耐硫化物応力割れ抵抗性を有し
ている。
As described above, according to the present invention, a steel pipe for an oil well which has been subjected to a heat treatment under specific conditions by specifying a steel component has high strength and excellent resistance to sulfide stress cracking. Have.

【図面の簡単な説明】[Brief description of the drawings]

【図1】オーステナイト粒度と耐硫化物応力割れ抵抗性
が優れている限界強度の関係を示す図。
FIG. 1 is a diagram showing the relationship between austenitic grain size and critical strength at which sulfide stress cracking resistance is excellent.

【図2】加速速度と結晶粒径の関係を示す図。FIG. 2 is a diagram showing a relationship between an acceleration speed and a crystal grain size.

【図3】焼入れ性および結晶粒度と焼入れ温度の関係を
示す図。
FIG. 3 is a graph showing the relationship between hardenability, crystal grain size, and hardening temperature.

フロントページの続き (56)参考文献 特開 平4−21718(JP,A) 特開 昭62−253720(JP,A) 特開 昭63−238242(JP,A) 特開 昭63−4046(JP,A) 特開 昭52−66815(JP,A) 特開 平1−56821(JP,A) 特開 昭63−105921(JP,A) 特許2579094(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 Continuation of the front page (56) References JP-A-4-21718 (JP, A) JP-A-62-253720 (JP, A) JP-A-63-238242 (JP, A) JP-A-63-4046 (JP, A) JP-A-52-66815 (JP, A) JP-A-1-56821 (JP, A) JP-A-63-105921 (JP, A) Patent 2579904 (JP, B2) (58) Int.Cl. 7 , DB name) C22C 38/00-38/60

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で C :0.10〜0.35%、 Si:0.01〜0.50%、 Mn:0.10〜0.6%、 S :0.005%以下、 P :0.015%以下、 Mo:0.30〜1.0%、 Al:0.005〜0.1%、 Nb:0.01〜0.1%、 Ti:0.005〜0.04%で且つ Ti≧3.4
N、 N :0.006%以下、 B :0.0008〜0.0016% を含有し、残部が実質的にFeからなり、粒度が9.5
番(ASTM No.)より細粒の焼戻しマルテンサイト
組織を呈することを特徴とする耐硫化物応力割れ抵抗性
に優れた高強度鋼。
C: 0.10 to 0.35% by mass, Si: 0.01 to 0.50%, Mn: 0.10 to 0.6%, S: 0.005% or less, P : 0.015% or less, Mo: 0.30 to 1.0%, Al: 0.005 to 0.1%, Nb: 0.01 to 0.1%, Ti: 0.005 to 0.04% And Ti ≧ 3.4
N, N: 0.006% or less, B: 0.0008 to 0.0016%, the balance being substantially Fe, and a particle size of 9.5.
High-strength steel excellent in sulfide stress cracking resistance characterized by exhibiting a finer grained tempered martensite structure than ASTM No.
【請求項2】 請求項1記載の鋼に更にCr:0.1〜
1.5%を含有することを特徴とする耐硫化物応力割れ
抵抗性に優れた高強度鋼。
2. The steel according to claim 1, further comprising Cr: 0.1 to
High strength steel excellent in sulfide stress crack resistance, characterized by containing 1.5%.
【請求項3】 請求項1あるいは2記載の鋼に更にV:
0.01〜0.1%を含有することを特徴とする耐硫化
物応力割れ抵抗性に優れた高強度鋼。
3. The steel according to claim 1, further comprising:
A high-strength steel excellent in sulfide stress cracking resistance characterized by containing 0.01 to 0.1%.
【請求項4】 請求項1,2あるいは3のいずれかに記
載の鋼に更にCo:0.05〜0.5%を含有すること
を特徴とする耐硫化物応力割れ抵抗性に優れた高強度
鋼。
4. The steel according to claim 1, further comprising Co: 0.05 to 0.5%, wherein the steel further comprises Co: 0.05 to 0.5%. Strength steel.
【請求項5】 請求項1,2,3あるいは4のいずれか
に記載の鋼に更にZr:0.001〜0.1%を含有す
ることを特徴とする耐硫化物応力割れ抵抗性に優れた高
強度鋼。
5. The steel according to claim 1, further comprising 0.001 to 0.1% of Zr, having excellent resistance to sulfide stress cracking. High strength steel.
【請求項6】 請求項1,2,3,4あるいは5のいず
れかに記載の鋼に更に希土類元素:0.001〜0.0
5%、Ca:0.001〜0.02%の1種または2種
を含有することを特徴とする耐硫化物応力割れ抵抗性に
優れた高強度鋼。
6. The steel according to claim 1, further comprising a rare earth element: 0.001 to 0.0.
A high-strength steel excellent in sulfide stress cracking resistance, characterized by containing one or two kinds of 5% and Ca: 0.001 to 0.02%.
【請求項7】 質量%で C :0.10〜0.35%、 Si:0.01〜0.50%、 Mn:0.10〜0.6%、 S :0.005%以下、 P :0.015%以下、 Mo:0.30〜1.0%、 Al:0.005〜0.1%、 Nb:0.01〜0.1%、 Ti:0.005〜0.04%で且つ Ti≧3.4
N、 N :0.006%以下、 B :0.0008〜0.0016% を含有して残部が実質的にFeからなる化学成分を有す
る鋼を3℃/秒以上の加熱速度で930〜1000℃の
温度域に5分以下の短時間再加熱後焼入れてマルテンサ
イト組織とし、その後Ac1変態点以下で焼戻すことを特
徴とする、降伏強度が84〜100kgf/mm2 の耐硫化物
応力割れ抵抗性に優れた高強度鋼の製造方法。
7. In mass%, C: 0.10 to 0.35%, Si: 0.01 to 0.50%, Mn: 0.10 to 0.6%, S: 0.005% or less, P : 0.015% or less, Mo: 0.30 to 1.0%, Al: 0.005 to 0.1%, Nb: 0.01 to 0.1%, Ti: 0.005 to 0.04% And Ti ≧ 3.4
A steel containing N, N: 0.006% or less, B: 0.0008 to 0.0016%, and having a chemical composition substantially consisting of Fe, with the balance being substantially 930 to 1000 at a heating rate of 3 ° C./sec or more. Sulfide stress with a yield strength of 84 to 100 kgf / mm 2 , characterized by being reheated to a temperature range of 5 ° C. for a short time of 5 minutes or less, then quenched to form a martensite structure, and then tempered at a transformation temperature of A c1 or less. A method for producing high-strength steel with excellent crack resistance.
【請求項8】 請求項7記載の鋼に更にCr:0.1〜
1.5%を含有することを特徴とする降伏強度が84〜
100kgf/mm2 の耐硫化物応力割れ抵抗性に優れた高強
度鋼の製造方法。
8. The steel according to claim 7, further comprising Cr: 0.1 to
The yield strength characterized by containing 1.5% is 84-
A method for producing high-strength steel excellent in resistance to sulfide stress cracking of 100 kgf / mm 2 .
【請求項9】 請求項7あるいは8記載の鋼に更にV:
0.01〜0.1%を含有することを特徴とする降伏強
度が84〜100kgf/mm2 の耐硫化物応力割れ抵抗性に
優れた高強度鋼の製造方法。
9. The steel according to claim 7, further comprising:
A method for producing a high-strength steel having a yield strength of 84 to 100 kgf / mm 2 and excellent sulfide stress cracking resistance, characterized by containing 0.01 to 0.1%.
【請求項10】 請求項7,8あるいは9のいずれかに
記載の鋼に更にCo:0.05〜0.5%を含有するこ
とを特徴とする降伏強度が84〜100kgf/mm2 の耐硫
化物応力割れ抵抗性に優れた高強度鋼の製造方法。
10. The steel according to claim 7, further comprising Co: 0.05 to 0.5%, characterized by a yield strength of 84 to 100 kgf / mm 2 . Method for producing high strength steel with excellent sulfide stress cracking resistance.
【請求項11】 請求項7,8,9あるいは10のいず
れかに記載の鋼に更にZr:0.001〜0.1%を含
有することを特徴とする降伏強度が84〜100kgf/mm
2 の耐硫化物応力割れ抵抗性に優れた高強度鋼の製造方
法。
11. The steel according to claim 7, further comprising 0.001 to 0.1% of Zr: a yield strength of 84 to 100 kgf / mm.
2. Method for producing high-strength steel with excellent sulfide stress cracking resistance.
【請求項12】 請求項7,8,9,10あるいは11
のいずれかに記載の鋼に更に希土類元素:0.001〜
0.05%、Ca:0.001〜0.02%の1種また
は2種を含有することを特徴とする降伏強度が84〜1
00kgf/mm2の耐硫化物応力割れ抵抗性に優れた高強度
鋼の製造方法。
12. The method according to claim 7, 8, 9, 10, or 11.
The rare earth element: 0.001 to
A yield strength of 84 to 1 characterized by containing one or two of 0.05% and Ca: 0.001 to 0.02%.
A method for producing a high-strength steel excellent in sulfide stress cracking resistance of 00 kgf / mm 2 .
JP02449194A 1993-02-26 1994-02-22 High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same Expired - Fee Related JP3358135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02449194A JP3358135B2 (en) 1993-02-26 1994-02-22 High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-37958 1993-02-26
JP3795893 1993-02-26
JP02449194A JP3358135B2 (en) 1993-02-26 1994-02-22 High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06322478A JPH06322478A (en) 1994-11-22
JP3358135B2 true JP3358135B2 (en) 2002-12-16

Family

ID=26362010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02449194A Expired - Fee Related JP3358135B2 (en) 1993-02-26 1994-02-22 High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3358135B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073421A1 (en) * 2004-01-30 2005-08-11 Sumitomo Metal Industries, Ltd. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
CN108779529A (en) * 2016-03-04 2018-11-09 新日铁住金株式会社 Steel and Oil Well Pipe

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR023265A1 (en) * 1999-05-06 2002-09-04 Sumitomo Metal Ind HIGH RESISTANCE STEEL MATERIAL FOR AN OIL WELL, EXCELLENT IN THE CROCKING OF THE SULFIDE VOLTAGE AND METHOD TO PRODUCE A HIGH RESISTANCE STEEL MATERIAL.
JP4140556B2 (en) 2004-06-14 2008-08-27 住友金属工業株式会社 Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking
JP4609138B2 (en) 2005-03-24 2011-01-12 住友金属工業株式会社 Manufacturing method of oil well pipe steel excellent in sulfide stress cracking resistance and oil well seamless steel pipe
EP1892309B1 (en) * 2005-06-10 2013-08-07 Nippon Steel & Sumitomo Metal Corporation Oil well pipe for expandable-tube use excellent in toughness after pipe expansion and process for producing the same
ES2690121T3 (en) 2012-06-20 2018-11-19 Nippon Steel & Sumitomo Metal Corporation Steel for oil well tube, oil well tube, and method to produce the same
US9909198B2 (en) 2012-11-05 2018-03-06 Nippon Steel & Sumitomo Metal Corporation Method for producing a low alloy steel for oil country tubular goods having excellent sulfide stress cracking resistance
AR096965A1 (en) 2013-07-26 2016-02-10 Nippon Steel & Sumitomo Metal Corp LOW ALLOY STEEL TUBE FOR OIL WELL AND METHOD FOR THE MANUFACTURE OF THE SAME
AR101200A1 (en) 2014-07-25 2016-11-30 Nippon Steel & Sumitomo Metal Corp LOW ALLOY STEEL TUBE FOR OIL WELL
CN107075636B (en) 2014-10-17 2019-07-16 日本制铁株式会社 Low-alloy Oil Well Pipe
US10550962B2 (en) * 2016-03-04 2020-02-04 Nippon Steel Corporation Steel material and oil-well steel pipe
BR112019002925B1 (en) * 2016-09-01 2022-09-20 Nippon Steel Corporation STEEL MATERIAL AND OIL WELL STEEL PIPE
MX2019003749A (en) 2016-10-06 2019-07-01 Nippon Steel & Sumitomo Metal Corp Steel material, steel pipe for oil wells, and method for producing steel material.
MX2019008642A (en) 2017-01-24 2019-09-23 Nippon Steel Corp Steel material, and steel material manufacturing method.
AR114708A1 (en) 2018-03-26 2020-10-07 Nippon Steel & Sumitomo Metal Corp STEEL MATERIAL SUITABLE FOR USE IN AGRI ENVIRONMENT
AR114712A1 (en) 2018-03-27 2020-10-07 Nippon Steel & Sumitomo Metal Corp STEEL MATERIAL SUITABLE FOR USE IN AGRI ENVIRONMENT
AR115003A1 (en) 2018-04-05 2020-11-18 Nippon Steel & Sumitomo Metal Corp STEEL MATERIAL SUITABLE FOR USE IN AGRI ENVIRONMENT
WO2019198468A1 (en) 2018-04-09 2019-10-17 日本製鉄株式会社 Steel material suitable for use in sour environments
WO2019198460A1 (en) 2018-04-09 2019-10-17 日本製鉄株式会社 Steel pipe and method for producing steel pipe
EP3778971B1 (en) 2018-04-09 2023-07-19 Nippon Steel Corporation Steel pipe and method for producing steel pipe
US20210262051A1 (en) 2018-10-31 2021-08-26 Nippon Steel Corporation Steel material and method for producing steel material
AR118071A1 (en) 2019-02-15 2021-09-15 Nippon Steel Corp STEEL MATERIAL SUITABLE FOR USE IN AGRI ENVIRONMENT
AR118070A1 (en) 2019-02-15 2021-09-15 Nippon Steel Corp STEEL MATERIAL SUITABLE FOR USE IN AGRI ENVIRONMENT
BR112021017459A2 (en) * 2019-03-22 2021-12-14 Nippon Steel Corp Seamless steel tube suitable for use in acidic environment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073421A1 (en) * 2004-01-30 2005-08-11 Sumitomo Metal Industries, Ltd. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
EA010037B1 (en) * 2004-01-30 2008-06-30 Сумитомо Метал Индастриз, Лтд. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
AU2005209562B2 (en) * 2004-01-30 2008-09-25 Nippon Steel Corporation Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
CN100523256C (en) * 2004-01-30 2009-08-05 住友金属工业株式会社 Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
US9017494B2 (en) 2004-01-30 2015-04-28 Nippon Steel & Sumitomo Metal Corporation Method for producing seamless steel pipe for oil wells excellent in sulfide stress cracking resistance
CN108779529A (en) * 2016-03-04 2018-11-09 新日铁住金株式会社 Steel and Oil Well Pipe
CN108779529B (en) * 2016-03-04 2020-07-31 日本制铁株式会社 Steel material and steel pipe for oil well

Also Published As

Publication number Publication date
JPH06322478A (en) 1994-11-22

Similar Documents

Publication Publication Date Title
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
KR101232972B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP3160329B2 (en) Manufacturing method of heat resistant high strength bolt
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP2579094B2 (en) Manufacturing method of oil well steel pipe with excellent sulfide stress cracking resistance
JPH06340946A (en) Non-tempered steel with high toughness and preparation thereof
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPS6364495B2 (en)
JP4132178B2 (en) PC steel wire or bar with good delayed fracture resistance and manufacturing method thereof
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPH06136441A (en) Production of high strength and low yield ratio bar steel for reinforcing bar
JP3620099B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
JPH0741855A (en) Production of low yield radio and high toughness seamless steel pipe showing metallic structure essentially consisting of fine-grained ferrite
JPH083636A (en) Production of low yield ratio high toughness steel
JP3298718B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet
JPH04358026A (en) Production of seamless low alloy steel tube having fine-grained structure
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JP3033459B2 (en) Manufacturing method of non-heat treated high strength steel
JP2655956B2 (en) Manufacturing method of low yield ratio refractory steel sheet for building structure
JPH09263831A (en) Production of extra thick high strength bent pipe excellent in toughness at low temperature

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees