JP3356022B2 - Power interconnection interchange command device - Google Patents

Power interconnection interchange command device

Info

Publication number
JP3356022B2
JP3356022B2 JP25467697A JP25467697A JP3356022B2 JP 3356022 B2 JP3356022 B2 JP 3356022B2 JP 25467697 A JP25467697 A JP 25467697A JP 25467697 A JP25467697 A JP 25467697A JP 3356022 B2 JP3356022 B2 JP 3356022B2
Authority
JP
Japan
Prior art keywords
demand
power
supply
power supply
interconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25467697A
Other languages
Japanese (ja)
Other versions
JPH1198694A (en
Inventor
泰志 原田
田村  滋
満男 鶴貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25467697A priority Critical patent/JP3356022B2/en
Publication of JPH1198694A publication Critical patent/JPH1198694A/en
Application granted granted Critical
Publication of JP3356022B2 publication Critical patent/JP3356022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電力連系線で連系さ
れた電力連系系統における電力連系線融通指令を決定す
る方法に係わり、特に負荷変動の統計的性質を利用して
安定な電力連系線融通指令を決定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining a power interconnection line interchange command in a power interconnection system interconnected by an electric power interconnection line, and more particularly to a method for stably utilizing a statistical property of a load change. The present invention relates to a method for determining a power interconnection line interchange command.

【0002】[0002]

【従来の技術】電力連絡線として、例えば直流連系系統
に含まれる複数の電力需給システムの間で電力を融通す
る場合、その融通指令を決定する従来手法を分類する
と、次のようなものがある。
2. Description of the Related Art For example, when power is exchanged between a plurality of power supply and demand systems included in a DC interconnection system as a power communication line, the conventional methods for determining the interchange command are classified as follows. is there.

【0003】第1の従来手法は、比例制御法である。こ
れは、各電力需給システムの周波数偏差を常時検出し
て、両者の周波数偏差の差に比例した値を融通指令とす
る方法である。これは、かつて、平常時における北海道
と本州の間の直流連系線の融通指令を決定する方法とし
て適用されていた。これにより、北海道と本州の周波数
偏差の差をゼロに近づけ、両者の周波数偏差を抑制して
いた。
The first conventional method is a proportional control method. This is a method in which a frequency deviation of each power supply and demand system is constantly detected, and a value proportional to the difference between the two frequency deviations is used as an accommodation command. This was once applied as a method of determining a DC interconnection line interchange command between Hokkaido and Honshu in normal times. As a result, the difference between the frequency deviations of Hokkaido and Honshu was brought close to zero, and the frequency deviations of both were suppressed.

【0004】第2の従来手法は、しきい値法である。こ
れは、各電力需給システムの周波数偏差を常時検出し
て、周波数偏差があるしきい値を逸脱した場合には、随
時、融通指令を所定の値とする方法である。すべての電
力需給システムについて、周波数偏差がしきい値を逸脱
しない場合には、融通指令をゼロとする。これは、かつ
て、緊急時における北海道と本州の間の直流連系線の融
通指令を決定する手法として適用されていた。これによ
り、北海道と本州の一方の周波数偏差が大きくなったと
き、その周波数偏差を小さくする方向に電力を融通し、
周波数偏差を抑制していた。
A second conventional technique is a threshold method. This is a method in which the frequency deviation of each power supply and demand system is constantly detected, and if the frequency deviation deviates from a certain threshold value, the interchange command is set to a predetermined value as needed. If the frequency deviation does not deviate from the threshold value for all power supply and demand systems, the interchange command is set to zero. This was once applied as a method of determining a DC interconnection line interchange order between Hokkaido and Honshu in an emergency. As a result, when one of the frequency deviations of Hokkaido and Honshu becomes large, the power is exchanged in a direction to reduce the frequency deviation,
Frequency deviation was suppressed.

【0005】第3の従来手法は、多変数制御法である。
これは、各電力需給システムの周波数やガバナトルクを
状態変数とし、状態変数の検出値若しくは推定値にフィ
ードバックゲインを掛けたものを融通指令とする方法で
ある。ここで重みは、最適制御理論を適用して決定す
る。これは、現在、北海道と本州の間の直流連系線の融
通指令を決定する手法として適用されている。これによ
り、北海道と本州の周波数偏差を速やかにゼロに近づけ
る制御を実現している。
A third conventional technique is a multivariable control method.
This is a method in which the frequency or governor torque of each power supply and demand system is used as a state variable, and a value obtained by multiplying a detected value or an estimated value of the state variable by a feedback gain is used as an accommodation command. Here, the weight is determined by applying the optimal control theory. This is currently applied as a method for determining a DC interconnection line interchange command between Hokkaido and Honshu. As a result, control for quickly bringing the frequency deviation between Hokkaido and Honshu to zero is realized.

【0006】以上、第1から第3の手法の詳細は、三瓶
雅俊:「現代制御理論を応用した直流AFCのシステム
・シミュレーション評価」(平成元年電気学会全国大会
予稿集S.12−3〜S.12−6頁)に記載されてい
る。
The details of the first to third methods are described in Masatoshi Sampei: "System Simulation Evaluation of DC AFC Applying Modern Control Theory" (Proceedings S.12-3, 1989) S.12-6).

【0007】[0007]

【発明が解決しようとする課題】これらの従来技術には
以下のような問題点が存在する。
However, these prior arts have the following problems.

【0008】第1の手法では、電力需給システム間の周
波数偏差の差によって融通指令を決定する。この手法
は、対象とする電力需給システムの系統定数や発電量総
和や負荷変動特性など、電力需給に関わる特性が同一若
しくは近接しているならば有効である。しかし、一方の
負荷変動が他方のそれよりも著しく激しかったり、一方
の発電量総和が他方のそれより著しく小さかったりな
ど、両電力需給システムの条件が異なれば、各電力需給
システムの責任分担のバランスが維持されない。たとえ
ば、極端なケースとして、一方の周波数偏差は常にゼロ
であり、他方の周波数偏差は常にゼロとは限らない場合
を考える。このとき、この手法を適用すると、前者の周
波数偏差は必ず悪化し、逆に後者の周波数偏差は必ず改
善される。すなわち、後者は前者に対して、自らの責任
の一部を押しつけていることになる。したがって、第1
の手法は、責任分担のバランス維持の点で問題がある。
In the first method, the accommodation command is determined based on the difference in frequency deviation between the power supply and demand systems. This method is effective if characteristics related to power supply and demand, such as system constants, power generation sum, and load fluctuation characteristics, of the target power supply and demand system are the same or close to each other. However, if the conditions of both power supply and demand systems are different, such as the load fluctuation of one is significantly more intense than that of the other, or the total power generation of one is significantly smaller than that of the other, the responsibilities of each power supply and demand system will be balanced. Is not maintained. For example, consider an extreme case where one frequency deviation is always zero and the other frequency deviation is not always zero. At this time, when this method is applied, the former frequency deviation always worsens, and conversely, the latter frequency deviation always improves. In other words, the latter imposes some of its responsibilities on the former. Therefore, the first
This method has a problem in maintaining the balance of responsibility.

【0009】第2の手法では、電力需給システムの周波
数偏差がしきい値を越える場合を検出し、その大きさに
応じて融通指令を決定する。この手法は、一方の電力需
給システムの周波数偏差が大きく外れたとき、他方の応
援を得て周波数偏差を抑えるという目的のためには、適
切に動作すると思われる。しかし、両方の電力需給シス
テムの周波数偏差が同方向に大きく外れたとき、一方の
電力需給システムはどこまで他方を応援すべきかなど、
解決が困難な責任分担の問題が発生する。また、両電力
需給システムの条件が大きく異なる場合、各電力需給シ
ステムの責任のバランスを維持するには、妥当なしきい
値を求めるのが困難であると思われる。なぜなら、周波
数が大きく外れるケースはあまり頻繁には起こらないた
め統計的扱いは困難であり、各個別ケースに対して妥当
なしきい値を検討せざるを得ない。この場合、条件によ
って妥当なしきい値は異なるので、いろいろな条件に対
して最も妥当に当てはまるしきい値を決定するのは困難
と思われるからである。したがって、第2の手法は、責
任分担と制御パラメータの調整の容易さの点で問題があ
る。
In the second method, a case where the frequency deviation of the power supply and demand system exceeds a threshold value is detected, and an accommodation command is determined in accordance with the magnitude of the deviation. This approach seems to work properly for the purpose of reducing the frequency deviation with the help of the other when the frequency deviation of one power supply and demand system deviates significantly. However, when the frequency deviation of both power supply and demand systems deviates greatly in the same direction, how much should one power supply and demand system support the other?
A problem of division of responsibility that is difficult to solve arises. Also, when the conditions of the two power supply and demand systems are significantly different, it seems difficult to find an appropriate threshold value in order to maintain the balance of responsibilities of each power supply and demand system. This is because the case in which the frequency deviates greatly does not occur very often, so that it is difficult to statistically handle the frequency. Therefore, an appropriate threshold value must be considered for each individual case. In this case, the appropriate threshold value differs depending on the condition, and it is considered difficult to determine the threshold value most appropriately applicable to various conditions. Therefore, the second method has a problem in terms of responsibility sharing and ease of adjusting control parameters.

【0010】第3の手法では、状態フィードバックによ
って融通指令を決定する。この手法は、周波数偏差を最
も速やかにゼロに戻すような制御を実現する。ただし、
その最適性の前提条件として、需給不均衡量がステップ
状ということがある。しかし、実際の平常時における需
給不均衡量はランダム変動である。したがって、この手
法が有効なのは、平常時よりもむしろ電源脱落事故など
の場合である。更に、各電力需給システムの責任分担の
バランスを維持するには、フィードバックゲインを調整
する必要があるが、最適制御理論での調整対象パラメー
タは評価関数の重み行列だけであるため、フィードバッ
クゲインを思い通りに調整するのは困難と思われる。し
たがって、第3の手法は、責任分担のバランスと制御パ
ラメータの調整の容易さの点で問題がある。
In the third method, the accommodation command is determined by state feedback. This technique implements control to return the frequency deviation to zero as quickly as possible. However,
A precondition for the optimality is that the imbalance between supply and demand is step-like. However, the actual imbalance between supply and demand in normal times is a random fluctuation. Therefore, this method is effective in the case of a power loss accident rather than in normal times. Furthermore, in order to maintain the balance between the responsibilities of each power supply and demand system, it is necessary to adjust the feedback gain.However, the only parameter to be adjusted in the optimal control theory is the weight matrix of the evaluation function. Seems difficult to adjust. Therefore, the third method has a problem in terms of balance of responsibility assignment and easiness of adjustment of control parameters.

【0011】これらの問題に対して、本発明が解決しよ
うとする課題は、各電力需給システムがそれぞれ自らの
需給不均衡量を抑制する責任を果たし、かつ、需給不均
衡量を互いに相殺しあうような融通指令を容易に決定す
る方法を提供することにある。ここで、各電力需給シス
テムがそれぞれ自らの需給不均衡量を抑制する責任を果
たすとは、ある特定の電力需給システムが他の電力需給
システムに対して常に一方的に自らの需給不均衡量を押
しつけたり、逆に一方的に他の需給不均衡量を取り込ん
だりすることがないということを意味する。
[0011] In order to solve these problems, the problem to be solved by the present invention is that each power supply and demand system fulfills its responsibility to suppress its own supply and demand imbalance, and cancels each other. It is an object of the present invention to provide a method for easily determining such an accommodation order. Here, each power supply and demand system fulfills its responsibility to suppress its own imbalance, which means that a certain power supply and demand system always unilaterally controls its own supply and demand imbalance with respect to other power supply and demand systems. It means that it does not impose or, on the other hand, unilaterally take in other imbalances.

【0012】[0012]

【課題を解決するための手段】上記目的を達成させるた
めに、本発明では、各電力需給システムの負荷と発電量
の差を需給不均衡量とし、複数の電力需給システムを電
力連系線で接続したもの全体を電力連系系統とし、該電
力連系線は時々刻々に与えられた融通指令どおりの電力
を流すとき、電力連系統を構成する各電力需給システム
の需給不均衡量の合計を、予め決定した一定の責任分担
率で配分し、配分結果と実際の需給不均衡量の差を融通
指令とするようにしたものである。
In order to achieve the above object, according to the present invention, the difference between the load of each power supply and demand system and the amount of power generation is regarded as a supply and demand imbalance, and a plurality of power supply and demand systems are connected by a power interconnection line. When the whole of the connected ones is used as a power interconnection system, and the power interconnection line flows the power according to the interchange command given from time to time, the total of the supply and demand imbalance amounts of the respective power supply and demand systems constituting the power interconnection system is calculated. In this case, the allocation is performed at a predetermined responsibility sharing ratio, and the difference between the allocation result and the actual imbalance between supply and demand is used as the accommodation command.

【0013】本手法を用いれば、平常時の需給不均衡量
がランダム変動であるとすると、需給不均衡量は相殺さ
れる。また、本手法では、責任分担率を調整することに
よって、各電力需給システムの責任分担を自由に設定す
ることができる。特に、責任分担率の増加もしくは減少
に対して責任分担量が単調増加もしくは単調減少するた
め、責任分担率の調整が容易である。
With this method, if the imbalance between supply and demand during normal times is randomly fluctuating, the imbalance between supply and demand is offset. Further, in the present method, the responsibility sharing of each power supply and demand system can be freely set by adjusting the responsibility sharing ratio. In particular, the amount of responsibility is monotonically increased or decreased with respect to the increase or decrease of the responsibility allotment, so that it is easy to adjust the responsibility allotment.

【0014】まず、需給不均衡量が相殺されるための前
提条件、すなわち、平常時の需給不均衡量がランダム変
動であるという条件が成立する理由を説明する。関根泰
次著:「電力系統工学」(昭和51)47頁に記載のよ
うに、実際の負荷変動は、トレンド変動であるサスティ
ンド成分と、ランダム変動であるフリンジ成分とからな
るが、このうち平常時において需給不均衡の主な原因と
なるのはフリンジ分である。よって、平常時の需給不均
衡量はランダム変動とみなすことができる。
First, the precondition for offsetting the supply-demand imbalance amount, that is, the reason why the condition that the supply-demand imbalance amount in normal times is a random fluctuation will be described. As described on page 47 of Yasuji Sekine, "Power System Engineering" (Showa 51), actual load fluctuations consist of a sustained component that is a trend fluctuation and a fringe component that is a random fluctuation. The main cause of supply and demand imbalance in normal times is fringe. Therefore, the imbalance between supply and demand in normal times can be regarded as random fluctuation.

【0015】つぎに、ランダム変動する複数の需給不均
衡量の和をとれば、需給不均衡量の一部を相殺できるこ
とを説明する。原理は、伏見正則:「確率と確率統計」
(昭和62)75頁記載の理論、すなわち「正規分布に
従う互いに独立な複数の確率変数の標準偏差をσ1,σ
2,……,σnとし、これらの確率変数の和の標準偏差
をσとすると、σの2乗はσ1〜σnの2乗和に一致す
る」という理論に基づいている。いま、需給不均衡量の
標準偏差が同じである2つの電力需給システムを考え
る。このとき、これら2つの電力需給システムをあわせ
て1つの電力需給システムとしたときの需給不均衡量の
標準偏差を求めるには、上記理論において、n=2と
し、σ1=σ2=σとすれば良く、√2σと計算でき
る。いま、この需給不均衡量を上記2つの電力需給シス
テムで等しく分担するとすれば、1つの電力需給システ
ムの分担量の標準偏差は(√2/2)σとなる。元の標準
偏差がσであったので、需給不均衡量は(√2/2)倍
に低減されたことになる。このように、複数の需給不均
衡量の和をとることにより、需給不均衡量を相殺するこ
とができる。
Next, it will be explained that a part of the supply-demand imbalance amount can be offset by taking the sum of a plurality of supply-demand imbalance amounts that fluctuate randomly. The principle is Masanori Fushimi: "Probability and probability statistics"
(Showa 62) The theory described on page 75, that is, "standard deviations of a plurality of mutually independent random variables following a normal distribution are represented by σ1, σ
2,..., Σn, and the standard deviation of the sum of these random variables is σ, the square of σ corresponds to the sum of the squares of σ1 to σn ”. Now, consider two power supply and demand systems in which the standard deviation of the supply and demand imbalance is the same. At this time, in order to obtain the standard deviation of the supply and demand imbalance when these two power supply and demand systems are combined into one power supply and demand system, in the above theory, n = 2 and σ1 = σ2 = σ Well, it can be calculated as √2σ. Now, assuming that the supply and demand imbalance is equally shared between the two power supply and demand systems, the standard deviation of the share of one power supply and demand system is (√2 / 2) σ. Since the original standard deviation was σ, the amount of supply and demand imbalance was reduced by (√2 / 2) times. In this way, by taking the sum of a plurality of imbalances, the imbalances can be offset.

【0016】本発明では、需給不均衡量の和をとった
後、責任分担率で需給不均衡量を配分するので、各電力
需給システムの需給不均衡量を相殺し、かつ、需給不均
衡量の分担を調整することができる。
In the present invention, since the demand-supply imbalance amount is distributed by the responsibility sharing ratio after the sum of the supply-demand imbalance amount, the demand-supply imbalance amount of each power supply and demand system is offset, and the supply-demand imbalance amount is reduced. Can be adjusted.

【0017】そして、直流連系線の融通電力は、瞬時に
融通指令通りに制御することができるので、この理論を
実現することが物理的に可能である。
Since the interchange power of the DC interconnection can be controlled instantaneously according to the interchange command, it is physically possible to realize this theory.

【0018】本発明では、パラメータは責任分担率のみ
を調整し、かつ、責任分担率の増減と責任分担量の増減
は単調増加もしくは単調減少の関係にあるため、パラメ
ータの調整が容易である。また、パラメータの調整によ
って、各電力需給システムの責任分担は自由に設定でき
る。更に、本発明の手法では、各電力需給システムの需
給不均衡量を一度合計するので、需給不均衡量がランダ
ム変動であるとすると需給不均衡量は互いに相殺し合
い、それによって各電力需給システムの需給不均衡量を
統計的に減少させる効果が得られる。
In the present invention, the parameter is adjusted only by the responsibility sharing ratio, and the change of the responsibility sharing ratio and the change of the responsibility sharing amount are in a monotonous increase or a monotonous decrease relationship, so that the parameter can be easily adjusted. Also, by adjusting the parameters, the responsibilities of each power supply and demand system can be freely set. Furthermore, in the method of the present invention, since the supply and demand imbalance of each power supply and demand system is once summed up, if the supply and demand imbalance is a random fluctuation, the supply and demand imbalance cancels each other out, and thereby the power supply and demand system of each power supply and demand system This has the effect of statistically reducing the supply-demand imbalance.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔実施例1〕図2に本発明の全体構成を示す。電力需給
システム1aは、負荷2aと発電機3aと需給制御系4
aを備える。負荷2aは時々刻々変動し、その変動は、
関根泰次著:「電力系統工学」(昭和51)47頁に記
載のように、サスティンド成分とフリンジ成分とから構
成される。発電機3aは、発電指令5aに発電量6aを
できるだけ近づける。ここで、「できるだけ近づける」
と表現した理由は、発電機3aの応答速度,設備容量及
び制御遅れ時間などの制約により、一般に、発電量6s
を発電指令5aに対して完全に一致させることはできな
いからである。なお、発電指令5aの変化が穏やかであ
るほど、発電量6aを発電指令5aに、より近づけるこ
とができる。需給制御系4aは、負荷2aと発電量6a
の差を計算し、その計算結果を需給不均衡量7aとす
る。更に、需給制御系4aは需給不均衡量7aをゼロに
近づけることを目標に発電指令5aを策定する。需給制
御系4aの内部に含まれる発電指令決定部8aは、電気
学会技術報告(II)部第302号「電力系統の需給制御技
術」76頁〜79頁記載の方法で実現できる。電力需給
システム1bも同様の構造を有し、負荷2bと発電機3
bと需給制御系4bを備える。
[Embodiment 1] FIG. 2 shows the overall configuration of the present invention. The power supply and demand system 1a includes a load 2a, a generator 3a, and a supply and demand control system 4.
a. The load 2a fluctuates from moment to moment.
As described in Yasuji Sekine, "Power System Engineering" (Showa 51), p. 47, it is composed of a sustained component and a fringe component. The generator 3a brings the power generation amount 6a as close as possible to the power generation command 5a. Here, "close as close as possible"
The reason is that the power generation amount is generally 6 s due to restrictions such as the response speed of the generator 3a, the installed capacity, and the control delay time.
Cannot completely match the power generation command 5a. The gentler the change of the power generation command 5a, the closer the power generation amount 6a can be to the power generation command 5a. The supply and demand control system 4a includes a load 2a and a power generation 6a.
Is calculated, and the calculation result is set as the supply-demand imbalance amount 7a. Further, the supply and demand control system 4a formulates the power generation command 5a with the goal of making the supply and demand imbalance amount 7a close to zero. The power generation command determining unit 8a included in the supply and demand control system 4a can be realized by the method described in the IEEJ Technical Report (II) Part No. 302, "Power Supply and Demand Control Technology", pp. 76-79. The power supply and demand system 1b has a similar structure, and includes a load 2b and a generator 3
b and a supply and demand control system 4b.

【0020】また、この図1では、負荷2aを検出でき
ることを前提として全体構成を記載したが、通常は、負
荷を直接検出することはできない。この場合、関根泰次
著:「電力系統工学」(昭和51)36頁〜38頁に記
載の方法で、周波数偏差と連系線潮流から需給不均衡量
を推定する。図1に需給制御系4aが需給不均衡量を推
定する場合における本発明の全体構成を示す。
In FIG. 1, the overall configuration is described on the assumption that the load 2a can be detected. However, normally, the load cannot be directly detected. In this case, the supply-demand imbalance amount is estimated from the frequency deviation and the interconnection line flow by the method described in Yasuji Sekine, “Power System Engineering” (Showa 51), pp. 36-38. FIG. 1 shows the overall configuration of the present invention when the supply and demand control system 4a estimates the supply and demand imbalance.

【0021】以下では、図1に基づいて、融通指令決定
装置の実現方法を説明する。第1に、融通指令決定装置
11は、需給制御系4aと4bから需給不均衡量7aと
7bをそれぞれ取得する。ここで、需給不均衡量7aと
7bを需給制御系4aと4bから取得するのではなく、
融通指令決定装置11が電力需給システム1aと1bの
周波数偏差と連系線潮流から需給不均衡量7aと7bを
直接推定することも可能である。次に、融通指令決定装
置11は、取得した需給不均衡量7aと7bの合計を算
出し、その合計に責任分担率12を乗算した結果を電力
需給システム1aの責任分担量13aとする。ここで、
責任分担率12は需給不均衡量が最も良く相殺される値
に予め設定する。この値は、シミュレーション若しくは
実験を多数回試行し、統計的に求める。第3に、責任分
担量13aから需給不均衡量7aを減算した結果を、電
力連系線である直流連系線14への融通指令15とす
る。ここで、直流連系線14の潮流の向きは、電力需給
システム1aから1bへの向きを正とする。
Hereinafter, a method for realizing the accommodation command determination device will be described with reference to FIG. First, the accommodation command determination device 11 acquires the supply and demand imbalance amounts 7a and 7b from the supply and demand control systems 4a and 4b, respectively. Here, instead of obtaining the supply and demand imbalance amounts 7a and 7b from the supply and demand control systems 4a and 4b,
It is also possible for the interchange command determining device 11 to directly estimate the supply and demand imbalance amounts 7a and 7b from the frequency deviations of the power supply and demand systems 1a and 1b and the interconnection flow. Next, the interchange command determination device 11 calculates the sum of the acquired supply and demand imbalance amounts 7a and 7b, and multiplies the sum by the responsibility sharing ratio 12 to obtain the responsibility sharing amount 13a of the power supply and demand system 1a. here,
The responsibility sharing ratio 12 is set in advance to a value at which the supply-demand imbalance amount is best offset. This value is obtained statistically by performing simulations or experiments many times. Third, a result obtained by subtracting the supply-demand imbalance amount 7a from the responsibility sharing amount 13a is used as an interchange command 15 for the DC interconnection line 14, which is an electric interconnection line. Here, the direction of the power flow of the DC interconnection line 14 is positive from the power supply and demand system 1a to the power supply system 1b.

【0022】電力需給システム1aは、図3のように、
複数の電力需給システム21を直流連系ではなく交流連
系線22で連系した連系系統でもよい。ただし、そのた
めの前提条件は、電力需給システムを構成する複数の電
力需給システム21の周波数が、時々刻々すべて一致し
ているとみなせることである。
As shown in FIG. 3, the power supply and demand system 1a
A plurality of power supply and demand systems 21 may be interconnected by an AC interconnection 22 instead of a DC interconnection. However, a prerequisite for this is that the frequencies of a plurality of power supply and demand systems 21 constituting the power supply and demand system can be regarded as being all the same every moment.

【0023】〔実施例2〕図4の構成の直流連系系統を
対象に、本発明の数値例を示す。図4において、電力需
給システム41と42を交流連系線43で連系したもの
全体を電力需給システム44とし、電力需給システム4
2と45を直流連系線46で連系したものを直流連系系
統47とする。電力需給システム41,42及び45の
負荷をそれぞれ51,52及び55とする。電力需給シ
ステム41,42及び45の発電機をそれぞれ61,6
2及び65とする。電力需給システム41,42及び4
5の需給制御系をそれぞれ71,72及び75とする。
ここで、各電力需給システムの負荷,発電機及び需給制
御系の関係は、図1における電力需給システム1aの負
荷,発電機及び需給制御系と同様の関係にあるものとす
る。電力需給システム41,42及び45の各周波数計
測値を81,82,85とする。交流連系線43及び直
流連系線46の融通量計測値をそれぞれ83,86とす
る。融通指令決定装置100は、需給不均衡量推定部1
01と102、及び、責任分担率103とからなる。ここ
で、需給不均衡量推定部101は、周波数計測値81と
82及び融通量計測値83と86を用い、電力需給シス
テム44の需給不均衡量推定値111を算出する。需給
不均衡量推定部102は、周波数計測値85及び融通量
計測値86を用い、電力需給システム45の需給不均衡
量推定値112を算出する。これら需給不均衡量の符号
は、供給過剰をプラスとし、供給不足をマイナスとす
る。需給不均衡量推定部101及び102の計算は、関
根泰次著:「電力系統工学」(昭和51)36頁〜38
頁の記載にならい、次式で算出することができる。
[Embodiment 2] A numerical example of the present invention will be described for a DC interconnection system having the configuration shown in FIG. In FIG. 4, the whole of the power supply and demand systems 41 and 42 interconnected by an AC interconnection line 43 is referred to as a power supply and demand system 44,
A DC interconnection system 47 is obtained by interconnecting 2 and 45 with a DC interconnection line 46. The loads of the power supply and demand systems 41, 42, and 45 are 51, 52, and 55, respectively. The generators of the power supply and demand systems 41, 42 and 45 are
2 and 65. Power supply and demand systems 41, 42 and 4
The supply and demand control systems of No. 5 are 71, 72 and 75, respectively.
Here, the relationship between the load, the generator, and the supply and demand control system of each power supply and demand system is the same as the relationship between the load, the generator, and the supply and demand control system of the power supply and demand system 1a in FIG. The measured frequency values of the power supply and demand systems 41, 42, and 45 are 81, 82, and 85, respectively. The interchangeability measurement values of the AC interconnection line 43 and the DC interconnection line 46 are 83 and 86, respectively. The accommodation command determining device 100 includes a supply-demand imbalance amount estimating unit 1.
01 and 102, and a responsibility sharing ratio 103. Here, the supply and demand imbalance amount estimating unit 101 calculates the supply and demand imbalance amount estimation value 111 of the power supply and demand system 44 using the frequency measurement values 81 and 82 and the interchange amount measurement values 83 and 86. The supply and demand imbalance estimation unit 102 calculates the supply and demand imbalance estimation value 112 of the power supply and demand system 45 using the frequency measurement value 85 and the interchange amount measurement value 86. The signs of these supply and demand imbalances indicate that excess supply is positive and that supply shortage is negative. Calculations of the supply and demand imbalance estimation units 101 and 102 are described in Yasuji Sekine, “Electric Power System Engineering” (Showa 51), pp. 36-38.
Following the description on the page, it can be calculated by the following equation.

【0024】(数1) (需給不均衡量推定値111)=(周波数計測値81)×K
41+(周波数計測値82)×K42+(融通量計測値8
6) (数2) (需給不均衡量推定値112)=(周波数計測値85)×K
45−(融通量計測値86) ここで、K41,K42及びK45はそれぞれ電力需給
システム41,42及び45の系統定数であり、需給偏
差に対する周波数偏差の感度を意味する。
(Equation 1) (Estimated value of supply and demand imbalance 111) = (Measured frequency value 81) × K
41+ (measured frequency 82) × K42 + (measured interchange amount 8
6) (Equation 2) (estimated value of supply and demand imbalance 112) = (frequency measurement value 85) × K
45- (measured amount 86) Here, K41, K42, and K45 are system constants of the power supply and demand systems 41, 42, and 45, respectively, and represent the sensitivity of the frequency deviation to the supply and demand deviation.

【0025】ここでは、各値を、K41=1(pu/H
z),K42=2(pu/Hz)及びK45=2(pu/H
z)として演算する。融通指令決定装置100は、需給
不均衡量推定値111と112の和に責任分担率103
を乗算したものを電力需給システム45の責任分担量1
13とし、責任分担量113から需給不均衡量推定値1
12を減算したものを融通指令104とする。さらに、
融通指令決定装置100は、融通指令104を直流連系線
46に対して送出する。ここで、融通指令104の符号
は、電力需給システム42から45への向きがプラスで
ある。直流連系線46は、融通電力114を融通指令1
04に常に一致させる。交流連系線43を通過する交流
連系線潮流93は、関根泰次著:「電力系統工学」(昭
和51)36頁〜38頁に記載のように、電力需給シス
テム41と42の周波数が常に同じになる量だけ流れる
とする。なお、本発明による周波数変動抑制効果を明確
にするため、各電力需給システムの発電量は、時間的に
変化させないものとする。図5に、各電力需給システム
の負荷51,52及び55の時間的変化を示す。
Here, each value is set to K41 = 1 (pu / H
z), K42 = 2 (pu / Hz) and K45 = 2 (pu / H)
z). The interchange command determining device 100 calculates the sum of the estimated values 111 and 112 of the supply and demand imbalance, and
Multiplied by the amount of responsibility 1 of the power supply and demand system 45
13 and the supply-demand imbalance estimated value 1
The value obtained by subtracting 12 is used as the accommodation command 104. further,
The accommodation command determination device 100 sends the accommodation command 104 to the DC interconnection line 46. Here, the sign of the interchange command 104 is positive in the direction from the power supply and demand system 42 to 45. The DC interconnection line 46 provides the interchange power 114 with the interchange command 1
04 always match. As described in Yasuji Sekine, “Power System Engineering” (Showa 51), pp. 36-38, the frequency of the power supply and demand systems 41 and 42 is changed. Suppose that it always flows by the same amount. Note that, in order to clarify the frequency fluctuation suppression effect according to the present invention, the power generation amount of each power supply and demand system is not changed over time. FIG. 5 shows temporal changes of the loads 51, 52, and 55 of each power supply and demand system.

【0026】以上の条件のもとで、責任分担率103を
0.0から1.0まで刻み0.2 で変えたときの、本発明
を適用したときの電力需給システム44と45の周波数
偏差を図6〜図11に示す。図6のように、電力需給シ
ステム45の責任分担率を0.0 にすると、電力需給シ
ステム45の周波数変動は抑制されるが、逆に電力需給
システム44の周波数変動は助長される。具体的には、
図6では、電力需給システム45の周波数の標準偏差は
0.0204Hzから0.0051Hzに改善されたが、
逆に電力需給システム44のそれは0.0193Hzか
ら0.0221Hzに拡大した。一方、図11のよう
に、電力需給システム45の責任分担率を1.0 にする
と、電力需給システム45の周波数変動は助長される
が、電力需給システム44の周波数変動は抑制される。
更に、図8のように、電力需給システム45の責任分担
率を0.4 に選ぶと、電力需給システム44と45の両
方の周波数の標準偏差が抑制される。このように、本発
明を適用すれば、責任分担率を適切な値に選ぶことによ
り、直流連系線で連系している両方の電力需給システム
の周波数変動を抑制することができる。
Under the above conditions, the frequency deviation between the power supply and demand systems 44 and 45 when the present invention is applied when the responsibility sharing ratio 103 is changed from 0.0 to 1.0 in steps of 0.2. Are shown in FIGS. As shown in FIG. 6, when the responsibility sharing ratio of the power supply and demand system 45 is set to 0.0, the frequency fluctuation of the power supply and demand system 45 is suppressed, but the frequency fluctuation of the power supply and supply system 44 is promoted. In particular,
In FIG. 6, the standard deviation of the frequency of the power supply and demand system 45 has been improved from 0.0204 Hz to 0.0051 Hz.
Conversely, that of the power supply and demand system 44 expanded from 0.0193 Hz to 0.0221 Hz. On the other hand, as shown in FIG. 11, when the responsibility ratio of the power supply and demand system 45 is set to 1.0, the frequency fluctuation of the power supply and demand system 45 is promoted, but the frequency fluctuation of the power supply and demand system 44 is suppressed.
Further, as shown in FIG. 8, when the responsibility sharing ratio of the power supply and demand system 45 is selected to be 0.4, the standard deviation of both frequencies of the power supply and demand systems 44 and 45 is suppressed. In this way, by applying the present invention, by selecting the responsibility sharing ratio to an appropriate value, it is possible to suppress the frequency fluctuation of both power supply and demand systems interconnected by the DC interconnection line.

【0027】図12に、責任分担率による電力需給シス
テム44と45の周波数偏差の変化を示す。この図か
ら、この実施例の場合、責任分担率を0.3〜0.5に選
べば、電力需給システム44と45のいずれについて
も、周波数の標準偏差が本発明を適用しない場合よりも
小さくなることが分かる。特に、この図から分かるよう
に、責任分担率によって周波数の標準偏差のバランスが
連続的に変化するので、周波数の標準偏差のバランスを
見ながら、責任分担率を容易に設定することができる。
FIG. 12 shows the change in the frequency deviation between the power supply and demand systems 44 and 45 depending on the responsibility sharing ratio. From this figure, in the case of this embodiment, if the responsibilities are selected from 0.3 to 0.5, the standard deviation of the frequency is smaller for both of the power supply and demand systems 44 and 45 than when the present invention is not applied. It turns out that it becomes. Particularly, as can be seen from this figure, the balance of the frequency standard deviation continuously changes depending on the responsibility sharing ratio, so that the responsibility sharing ratio can be easily set while checking the balance of the frequency standard deviation.

【0028】そして、上述した本実施例の内容を例え
ば、電力需給システム41,42および45をアナログ
シミュレータ、又はデジタルシミュレータ等の電力系統
模擬装置で構成し、責任分担率を変化させてその状態を
測定することにより、実際の電力系統を用いなくても安
定した系統の運用が可能になる。
Then, the contents of the above-described embodiment are configured, for example, by configuring the power supply and demand systems 41, 42, and 45 with a power system simulation device such as an analog simulator or a digital simulator, and changing the state of responsibility by changing the responsibility sharing ratio. By performing the measurement, stable operation of the grid can be performed without using the actual power grid.

【0029】また、上述の実施例において直流連系線を
交流連系線に置き換えても同様の運用が行えることは当
然である。
It is natural that the same operation can be performed even if the DC interconnection is replaced with the AC interconnection in the above-described embodiment.

【0030】以上に示したように、本発明を適用すれ
ば、各電力需給システムの周波数変動を小さく抑えるこ
とができる。本発明の手法における設定パラメータは責
任分担率のみであるが、この責任分担率の値は、周波数
の標準偏差のバランスを比較することにより容易に決定
することが可能である。
As described above, by applying the present invention, the frequency fluctuation of each power supply and demand system can be suppressed to a small value. Although the setting parameter in the method of the present invention is only the responsibility sharing ratio, the value of the responsibility sharing ratio can be easily determined by comparing the balance of the frequency standard deviation.

【0031】[0031]

【発明の効果】本発明を適用すれば、直流連系系統内の
電力需給システム間の需給不均衡量を相殺することがで
きるので、各電力需給システムの需給不均衡量の分担が
統計的に小さくなる。その結果、各電力需給システムの
周波数変動を小さく抑えられる。
According to the present invention, since the imbalance between the power supply and demand systems in the DC interconnection system can be offset, the distribution of the imbalance between the power supply and demand of each power supply and demand system is statistically increased. Become smaller. As a result, the frequency fluctuation of each power supply and demand system can be suppressed to a small value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】需給不均衡量を直接検出できるときの本発明の
全体構成図である。
FIG. 1 is an overall configuration diagram of the present invention when a supply-demand imbalance amount can be directly detected.

【図2】需給不均衡量を直接検出できないときの本発明
の全体構成図である。
FIG. 2 is an overall configuration diagram of the present invention when a supply-demand imbalance amount cannot be directly detected.

【図3】交流連系線で連系した複数の電力需給システム
の図である。
FIG. 3 is a diagram of a plurality of power supply and demand systems interconnected by an AC interconnection line.

【図4】例題で用いる直流連系系統を示す図である。FIG. 4 is a diagram showing a DC interconnection system used in an example.

【図5】各電力需給システムの負荷の時間的変化を示す
図である。
FIG. 5 is a diagram showing a temporal change of a load of each power supply and demand system.

【図6】責任分担率を0.0 とするときの融通電力と周
波数偏差を示す図である。
FIG. 6 is a diagram showing the accommodating power and the frequency deviation when the responsibility sharing ratio is set to 0.0.

【図7】責任分担率を0.2 とするときの融通電力と周
波数偏差を示す図である。
FIG. 7 is a diagram showing the interchange power and the frequency deviation when the responsibility sharing ratio is set to 0.2.

【図8】責任分担率を0.4 とするときの融通電力と周
波数偏差を示す図である。
FIG. 8 is a diagram showing the interchange power and the frequency deviation when the responsibility sharing ratio is set to 0.4.

【図9】責任分担率を0.6 とするときの融通電力と周
波数偏差を示す図である。
FIG. 9 is a diagram showing the interchange power and the frequency deviation when the responsibility sharing ratio is set to 0.6.

【図10】責任分担率を0.8 とするときの融通電力と
周波数偏差を示す図である。
FIG. 10 is a diagram showing the interchange power and the frequency deviation when the responsibility sharing ratio is set to 0.8.

【図11】責任分担率を1.0 とするときの融通電力と
周波数偏差を示す図である。
FIG. 11 is a diagram showing the accommodating power and the frequency deviation when the responsibility sharing ratio is set to 1.0.

【図12】責任分担率による周波数の標準偏差の違いを
示す図である。
FIG. 12 is a diagram illustrating a difference in frequency standard deviation depending on a responsibility sharing ratio.

【符号の説明】[Explanation of symbols]

1a,1b…電力需給システム、2a,2b…負荷、3
a,3b…発電機、4a,4b…需給制御系、5a,5
b…発電指令、6a,6b…発電量、7a,7b…需給
不均衡量、11…融通指令決定装置、12…責任分担
率、13a…責任分担量、14…直流連系線、15…融
通指令、16…融通電力、17a,17b…周波数偏差。
1a, 1b: electric power supply and demand system, 2a, 2b: load, 3
a, 3b: generator, 4a, 4b: supply and demand control system, 5a, 5
b: power generation command, 6a, 6b: power generation amount, 7a, 7b: supply and demand imbalance, 11: accommodation command determining device, 12: responsibility sharing ratio, 13a: responsibility sharing amount, 14: DC interconnection line, 15: accommodation Command, 16: interchange power, 17a, 17b: frequency deviation.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭50−35612(JP,A) 特開 平4−75428(JP,A) 特開 平6−261457(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02J 3/00 - 5/00 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-50-35612 (JP, A) JP-A-4-75428 (JP, A) JP-A-6-261457 (JP, A) (58) Field (Int.Cl. 7 , DB name) H02J 3/00-5/00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】各電力需給システムが、発電指令に対して
発電量を追従させる発電機と、変動負荷に対して発電量
を一致させるように発電機に対して発電指令を出す需給
制御系とを備えたものであって、各電力需給システムの
負荷と発電量の差を需給不均衡量とし、複数の電力需給
システムを電力連系線で接続したもの全体を電力連系系
統とし、該電力連系線は時々刻々に与えられた融通指令
どおりの電力を流すとき、電力連系系統を構成する各電
力需給システムの需給不均衡量の合計を、予め設定した
責任分担率で配分し、配分結果と実際の需給不均衡量の
差を融通指令とすることを特徴とする電力連系融通指令
装置。
1. Each power supply and demand system responds to a power generation command.
A generator that tracks the amount of power generated and the amount of power generated for fluctuating loads
Supply and demand to issue a power generation command to the generator to match
Control system, the difference between the load and the power generation amount of each power supply and demand system is defined as the supply and demand imbalance, and the entirety of a plurality of power supply and demand systems connected by the power connection line is used as the power connection system When the power interconnection flows the power according to the interchange command given every moment, the total of the supply and demand imbalances of the respective power supply and demand systems constituting the power interconnection system is set in advance. A power interconnection command device, wherein the command is allocated at a sharing ratio, and the difference between the allocation result and the actual imbalance between supply and demand is used as a credit command.
【請求項2】請求項第1項の電力連系融通指令装置にお
いて、前記電力連系線を直流連系線で構成したことを特
徴とする電力連系融通指令装置。
2. The power interconnection command device according to claim 1, wherein said power interconnection line is constituted by a DC interconnection line.
【請求項3】請求項第1項の電力連系融通指令装置にお
いて、前記電力連系融通線を交流連系線で構成したこと
を特徴とする電力連系融通指令装置。
3. The power interconnection command device according to claim 1, wherein said power interconnection line is constituted by an AC interconnection line.
【請求項4】請求項第1項の電力連系融通指令装置にお
いて、前記責任分担率が調整できることを特徴とする電
力連系融通指令装置。
4. A power interconnection command device according to claim 1, wherein said responsibility sharing ratio can be adjusted.
【請求項5】請求項第1項の電力連系融通指令装置にお
いて、前記責任分担率をシミュレーションによって求め
ることを特徴とする電力連系融通指令装置。
5. The power interconnection command device according to claim 1, wherein said responsibility sharing ratio is obtained by simulation.
【請求項6】請求項第1項の電力連系融通指令装置にお
いて、前記需給不均衡量を各電力需給システムの周波数
計測値および前記電力連系線に流れる電力から算出する
ことを特徴とする電力連系融通指令装置。
6. The power interconnection command device according to claim 1, wherein the amount of supply and demand imbalance is calculated from a frequency measurement value of each electric power supply and demand system and electric power flowing through the electric power interconnection line. Power interconnection interchange command device.
【請求項7】請求項第1項の電力連系融通指令装置にお
いて、前記責任分担率をシミュレーションによって変化
させ、各電力需給システムの周波数状態が安定した値に
なるように前記責任分担率を変化させることを特徴とす
る電力連系融通指令装置。
7. The power interconnection command device according to claim 1, wherein said responsibility sharing ratio is changed by simulation, and said responsibility sharing ratio is changed so that the frequency state of each power supply and demand system becomes a stable value. A power interconnection command device, characterized in that:
JP25467697A 1997-09-19 1997-09-19 Power interconnection interchange command device Expired - Fee Related JP3356022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25467697A JP3356022B2 (en) 1997-09-19 1997-09-19 Power interconnection interchange command device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25467697A JP3356022B2 (en) 1997-09-19 1997-09-19 Power interconnection interchange command device

Publications (2)

Publication Number Publication Date
JPH1198694A JPH1198694A (en) 1999-04-09
JP3356022B2 true JP3356022B2 (en) 2002-12-09

Family

ID=17268323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25467697A Expired - Fee Related JP3356022B2 (en) 1997-09-19 1997-09-19 Power interconnection interchange command device

Country Status (1)

Country Link
JP (1) JP3356022B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2407927B (en) 2003-11-07 2006-03-01 Responsiveload Ltd Responsive electricity grid substation
JPWO2008047400A1 (en) * 2006-10-16 2010-02-18 Vpec株式会社 Power system
JP5553390B2 (en) 2009-03-12 2014-07-16 株式会社風技術センター AC autonomous decentralized power system
JP4783453B2 (en) 2009-09-10 2011-09-28 力也 阿部 Multi-terminal type asynchronous interconnection device, power equipment control terminal device, power network system and control method therefor
JP5612920B2 (en) * 2010-06-27 2014-10-22 国立大学法人 東京大学 Multi-terminal power converter, power system and control program therefor
US8401709B2 (en) * 2009-11-03 2013-03-19 Spirae, Inc. Dynamic distributed power grid control system
JP5565056B2 (en) * 2010-04-08 2014-08-06 東京電力株式会社 Control device for DC interconnection system
JP5583507B2 (en) * 2010-07-29 2014-09-03 株式会社日立製作所 Method and apparatus for monitoring and controlling smart grid
JP5612718B2 (en) * 2011-05-18 2014-10-22 国立大学法人 東京大学 Multi-terminal type asynchronous interconnection device, power equipment control terminal device, power network system and control method therefor
JP5802463B2 (en) * 2011-07-22 2015-10-28 株式会社東芝 Electric quantity adjusting device, electric quantity adjusting method, electric quantity adjusting program, and power supply system

Also Published As

Publication number Publication date
JPH1198694A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
JP3356022B2 (en) Power interconnection interchange command device
Rimorov et al. Quasi-steady-state approach for analysis of frequency oscillations and damping controller design
Papangelis et al. Coordinated supervisory control of multi-terminal HVDC grids: A model predictive control approach
Marinovici et al. Distributed hierarchical control architecture for transient dynamics improvement in power systems
Taranto et al. Robust decentralised design for multiple FACTS damping controllers
KR102264862B1 (en) System and Method for Controlling Inertial of Energy Storage System
US11178610B2 (en) Adaptive method for aggregation of distributed loads to provide emergency frequency support
Rajkumar et al. Nonlinear control methods for power systems: a comparison
US11811409B2 (en) Load frequency control device and load frequency control method
JP6154767B2 (en) Automatic frequency control device and automatic frequency control method
Majumder et al. Allowable delay heuristic in provision of primary frequency reserve in future power systems
Seo et al. Verification of effective reactive power reserve with respect to reactive power load demands in the power system
Bento et al. Analysis of the load growth direction variation in the dynamic security assessment
US7526366B2 (en) Electrical power control system, and method for setting electric state variables and/or parameters in a current conductor
Thu et al. Mitigation of low frequency oscillations by optimal allocation of power system stabilizers: Case study on MEPE test system
CN115333123A (en) Method, device, equipment and medium for new energy power generation to participate in power system frequency modulation
Chang et al. Simplified frequency estimation for unit scheduling criteria for grids with high wind penetration
Petrichenko et al. Smart load shedding system
Ramanathan et al. Small-disturbance angle stability enhancement through direct load control part I-framework development
JP3436677B2 (en) Power system stabilizer
Pawellek et al. Utilization of HVDC-Systems in the International Grid Control Cooperation
JP7486798B2 (en) Method, processor, and program for estimating a load frequency control signal
AU2017417148B2 (en) Control of multiple energy storages in a microgrid
Castro et al. Towards representing load dynamics on primary frequency control-constrained Unit Commitment
TW202416620A (en) Distributed power source integrated management device, power conversion device, power system management system, distributed power source management method and recording medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees