JP3340822B2 - Bidirectional optical transmission / reception method and bidirectional optical transmission / reception device - Google Patents

Bidirectional optical transmission / reception method and bidirectional optical transmission / reception device

Info

Publication number
JP3340822B2
JP3340822B2 JP29421793A JP29421793A JP3340822B2 JP 3340822 B2 JP3340822 B2 JP 3340822B2 JP 29421793 A JP29421793 A JP 29421793A JP 29421793 A JP29421793 A JP 29421793A JP 3340822 B2 JP3340822 B2 JP 3340822B2
Authority
JP
Japan
Prior art keywords
signal
transmission
differential signal
differential
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29421793A
Other languages
Japanese (ja)
Other versions
JPH07131491A (en
Inventor
武雄 市川
Original Assignee
株式会社デノン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デノン filed Critical 株式会社デノン
Priority to JP29421793A priority Critical patent/JP3340822B2/en
Publication of JPH07131491A publication Critical patent/JPH07131491A/en
Application granted granted Critical
Publication of JP3340822B2 publication Critical patent/JP3340822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、デジタル信号を伝送す
双方向光送受信方法及び双方向光送受信装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to transmitting digital signals .
And a bidirectional optical transmitting and receiving method.

【0002】[0002]

【従来の技術】デジタル信号の光伝送には「1」と「0」の
2値信号において「1」の場合は、発光素子を駆動して光
を放射し、「0」の場合は、光の放射を行わない、或いは
「1」と「0」を逆に扱うなどNRZ信号をそのまま伝送す
る方法がある。また、図3の説明図に示すように、NR
Z信号をバイフェーズマーク変調方式により、データビ
ット「1」ではパルス幅Tと「0」ではパルス幅2Tになる
ようにして、発光素子を駆動する方法があり、これらが
一般的である。このようにして、双方向の光伝送も行わ
れるが、送受信1と送受信2の伝送レートは同一或いは
異なる場合がある。
2. Description of the Related Art In optical transmission of digital signals, when a binary signal of "1" and "0" is "1", a light emitting element is driven to emit light, and when it is "0", light is emitted. There is a method of transmitting the NRZ signal as it is, such as not radiating the NRZ signal or treating "1" and "0" in reverse. Further, as shown in the explanatory diagram of FIG.
There is a method of driving the light emitting element such that the Z signal has a pulse width T for the data bit “1” and a pulse width 2T for the data bit “0” by the bi-phase mark modulation method, and these methods are generally used. In this manner, bidirectional optical transmission is also performed, but the transmission rates of transmission / reception 1 and transmission / reception 2 may be the same or different.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、発光素
子は、図4の特性図のように、パルスのデューティ比に
より発光素子に印加できる尖頭順電流が異なり、これは
光出力の違いとなっている。そのため、NRZ信号によ
る伝送は、「1」の信号が連続した場合、直流分を多く含
み連続して発光素子に電流を流すため光出力を大きくす
ることが出来ず効率が悪い。また「1」と「0」の判別は光
の有無であるから、検出感度は減衰の影響を直接受け
る。
However, as shown in the characteristic diagram of FIG. 4, the light emitting element has a different peak forward current that can be applied to the light emitting element depending on the duty ratio of the pulse, which results in a difference in light output. I have. For this reason, the transmission by the NRZ signal is inefficient when the signal of “1” is continuous, because a large amount of direct current is included and a current flows to the light emitting element continuously, so that the optical output cannot be increased and the efficiency is low. Further, since the distinction between “1” and “0” is based on the presence or absence of light, the detection sensitivity is directly affected by attenuation.

【0004】一方、バイフェーズマーク変調方式は、1
T幅と2T幅のパルスにより、発光素子を駆動するの
で、効率はよく、減衰による影響もNRZ信号より少な
い。しかし、いずれの場合においても、パルスの立上り
と立ち下がりの期間を正確に検出して、伝送されたパル
スを再生しなければならないが、伝送では、低周波部及
び高周波部の周波数特性の劣化によりパルス幅が広が
る。これは、パルスの立上りまたは立ち下がりの時刻の
差として「ジッタ」と呼ばれ符号誤りを発生させる。
On the other hand, the bi-phase mark modulation system has
Since the light emitting element is driven by the pulses having the T width and the 2T width, the efficiency is high and the influence of the attenuation is smaller than that of the NRZ signal. However, in either case, the transmitted pulse must be reproduced by accurately detecting the rising and falling periods of the pulse.However, in transmission, the frequency characteristics of the low-frequency part and the high-frequency part are deteriorated. The pulse width increases. This is called “jitter” as a difference between the rising and falling times of the pulse, and causes a code error.

【0005】また、パルスの立上りまたは立ち下がりの
特性は、発光素子の性能にも影響される。発光素子は種
類により応答速度の違いがあり、使用する周波数によっ
て選択するが、一般には、パルスの立上りでは急峻であ
り、立ち下がりは緩やかになっており使用可能周波数範
囲であっても高い周波数程差は大きい。従って、NRZ
信号においては、発光素子の効率を高めることと、バイ
フェーズマーク変調方式による信号でも共通する伝送時
のパルス幅が受信、再生時において、共通の課題とな
る。
[0005] The rising or falling characteristics of the pulse are also affected by the performance of the light emitting element. The light emitting element has a different response speed depending on the type, and is selected depending on the frequency to be used.In general, the rising of the pulse is steep and the falling is gradual. The difference is great. Therefore, NRZ
For signals, increasing the efficiency of the light emitting element and the common pulse width during transmission for signals using the biphase mark modulation method are common issues during reception and reproduction.

【0006】さらに、双方向の光伝送の場合で、双方の
クロックが同一周期である場合、受信において、同相に
近い程同一の側にある送信信号の漏洩雑音の干渉を受け
て、微弱な受信信号ほど影響は大きくなり、光の漏れ
や、電磁シールド対策など行っても再生信号のビット誤
りを起こしやすくなるので、一方向のみの光伝送に比
べ、双方向送受信可能距離は、半分以下に劣化する問題
がある。
Further, in the case of bidirectional optical transmission, when both clocks have the same period, in reception, the closer to the same phase, the more the reception of the transmission signal on the same side is affected by the interference of the leakage noise, and the weaker the reception is. The more the signal, the greater the effect.Even if you take measures such as light leakage or electromagnetic shielding, it is easy for bit errors in the reproduced signal to occur.Therefore, the bidirectional transmission / reception distance is reduced to less than half compared to one-way optical transmission. There is a problem to do.

【0007】[0007]

【課題を解決するための手段】そのため本発明では、パ
ルスを微分し、パルスの立上り部分とパルスの立ち下が
り部分を区別して、立ち下がり部分の微分信号を反転さ
せ、パルスの立上り部分に多重するとパルスの立上りと
立ち下がり位置は、それぞれの微分信号の前縁と一致す
る。この微分信号を発光素子の駆動信号として光送信
し、受信における再生では立上り信号ごとに方向が変わ
るフリップフロップ回路により送信における微分前のパ
ルスを得る。同一のクロックにて双方向の光送受信を行
う場合においては、送信1と送信2との位相差をクロッ
ク周期の略半分として、前述の微分信号の伝送を行え
ば、送信1と送信2のパルスの立上り部分は一致するこ
とは無く、受信信号は、同一の側にある送信信号の漏洩
雑音をレベルで明確に区分けができる。
Therefore, according to the present invention, the pulse is differentiated, the rising portion of the pulse is distinguished from the falling portion of the pulse, the differentiated signal of the falling portion is inverted, and the pulse is multiplexed with the rising portion of the pulse. The rising and falling positions of the pulse coincide with the leading edge of each differential signal. The differentiated signal is optically transmitted as a drive signal for the light emitting element, and in reproduction in reception, a pulse before differentiation in transmission is obtained by a flip-flop circuit whose direction changes for each rising signal. In the case where bidirectional optical transmission and reception are performed using the same clock, if the above-described differential signal transmission is performed with the phase difference between the transmission 1 and the transmission 2 being substantially half of the clock cycle, the pulse of the transmission 1 and the transmission 2 can be obtained. The rising portions of the signals do not coincide with each other, and the received signal can clearly separate the leakage noise of the transmission signal on the same side by the level.

【0008】[0008]

【作用】伝送すべきパルス幅を立上りの微分信号のみに
て伝送するため、発光素子の効率を高めることが可能で
あり、パルスの立上りと立ち下がりを同じ方向の微分信
号としたので、発光素子のもつ急峻な立ち上がり特性を
生かせると共に、発光素子特性や伝送による劣化の影響
の受け方は、前述のNRZ信号による場合や、バイフェ
ーズマーク変調方式によるものと全く同一なので、伝送
によるパルス幅の変動は起こらない。また、双方向の信
号は、伝送において重要であるパルス立上り部分で重な
ることはなく漏洩雑音による干渉は無い。
Since the pulse width to be transmitted is transmitted only by the rising differential signal, the efficiency of the light emitting element can be increased. Since the rising and falling of the pulse are differentiated in the same direction, the light emitting element can be used. In addition to taking advantage of the steep rising characteristics of, the effects of light emitting element characteristics and deterioration due to transmission are exactly the same as those described above with the NRZ signal and with the biphase mark modulation method, so that the pulse width fluctuation due to transmission is Does not happen. In addition, bidirectional signals do not overlap at a pulse rising portion that is important in transmission, and there is no interference due to leakage noise.

【0009】[0009]

【実施例】図1は、本発明の一実施例を示す説明図であ
る。送信1においては、デジタル信号10は、電子機械
工業会規格のCP−1201のフォーマットによるバイ
フェーズマーク変調による信号とし、図1の説明に用い
るパルスの周期Tは、バイフェーズマーク変調による最
小パルス幅であり、微分回路により微分信号11を得
る。ダイオードなどを使った分離回路により、正方向の
微分信号12と負方向の微分信号に分けられ、負方向微
分信号は、反転回路に入り、反転微分信号13となり、
正方向の微分信号12と多重化して多重微分信号14と
して、発光素子15を駆動して、空間に光を放射する。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention. In transmission 1, the digital signal 10 is a signal obtained by bi-phase mark modulation in the format of CP-1201 of the Electronic Machinery Manufacturers Association, and the pulse period T used in the description of FIG. And the differential signal 11 is obtained by the differentiating circuit. By a separating circuit using a diode or the like, the signal is divided into a positive differential signal 12 and a negative differential signal. The negative differential signal enters an inverting circuit and becomes an inverted differential signal 13,
The light emitting element 15 is driven to emit light to space as a multiplexed differential signal 14 multiplexed with the positive differential signal 12.

【0010】受信1においては、受光素子16にて光を
電気信号に変換後、E/O後の受信信号17を、立上り
パルス毎に方向が変化するフリップフロップ回路(2分
周回路)により、再生デジタル信号18を得る。フリッ
プフロップ回路の動作については、図2(a)の回路構成
図と図2(b)の波形図に示して説明を省略する。そして
再生デジタル信号18から、PLL回路により、再生ク
ロック19をつくる。
In the reception 1, after the light is converted into an electric signal by the light receiving element 16, the reception signal 17 after the E / O is converted by a flip-flop circuit (divided-by-2 circuit) whose direction changes every rising pulse. A reproduction digital signal 18 is obtained. The operation of the flip-flop circuit is shown in the circuit diagram of FIG. 2A and the waveform diagram of FIG. Then, a reproduction clock 19 is generated from the reproduction digital signal 18 by a PLL circuit.

【0011】送信2においては、再生クロック19を基
準信号として、デジタル信号20を送り、送信1のよう
に多重微分信号24を得て、再生クロック19の周期の
半分の遅延を与える遅延素子25を通し、遅延微分信号
26を得る。そして、以後は送信1と同じ処理を行って
送信し、受信2は、受信1と同様の構成によってデジタ
ル信号30を再生する。これにより、送信1と送信2が
時間幅Tの半分の位相差であれば、双方向のパルス立上
り部分は重なることは無く、単方向の伝送とほぼ同一の
送受信距離が確保できる。
In transmission 2, a digital signal 20 is sent using the reproduction clock 19 as a reference signal, a multiple differential signal 24 is obtained as in transmission 1, and a delay element 25 for giving a delay of half the period of the reproduction clock 19 is provided. Through this, a delayed differential signal 26 is obtained. Thereafter, the same processing as in the transmission 1 is performed for transmission, and the reception 2 reproduces the digital signal 30 by the same configuration as the reception 1. Accordingly, if the transmission 1 and the transmission 2 have a phase difference of half of the time width T, the rising portions of the bidirectional pulses do not overlap, and the same transmission / reception distance as in the unidirectional transmission can be secured.

【0012】[0012]

【発明の効果】以上本発明によれば、発光素子を効率よ
く利用することができる。また、発光素子のパルス応答
の立上り、立ち下がりの時間差と伝送系で起こるジッタ
の影響を除き、誤りのないパルスの再生ができる。ま
た、単方向の伝送とほぼ同一の送受信距離を確保できる
ので、必要とする回路も少なく発光素子の数も低減がで
きる。
According to the present invention, the light emitting device can be used efficiently. Also, it is possible to reproduce an error-free pulse except for the influence of the time difference between the rise and fall of the pulse response of the light emitting element and the jitter occurring in the transmission system. In addition, since the same transmission / reception distance as in unidirectional transmission can be secured, the number of required circuits is small and the number of light emitting elements can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す説明図。FIG. 1 is an explanatory diagram showing one embodiment of the present invention.

【図2】(a)(b)は本発明の一実施例に用いるフリップ
フロップ回路で、(a)に回路構成図、(b)に波形図を示
す。
FIGS. 2A and 2B are flip-flop circuits used in one embodiment of the present invention. FIG. 2A shows a circuit configuration diagram, and FIG. 2B shows a waveform diagram.

【図3】従来例の説明図。FIG. 3 is an explanatory view of a conventional example.

【図4】発光素子の特性図。FIG. 4 is a characteristic diagram of a light-emitting element.

【符号の説明】[Explanation of symbols]

10 デジタル信号 11 微分信号 12 正方向の微分信号 13 反転微分信号 14 多重微分信号 15 発光素子 16 受光素子 17 E/O後の受信信号 18 再生デジタル信号 19 再生クロック 20 デジタル信号 21 微分信号 22 正方向の微分信号 23 反転微分信号 24 多重微分信号 25 遅延素子 26 遅延微分信号 27 発光素子 28 受光素子 29 E/O後の受信信号 30 再生デジタル信号 Reference Signs List 10 Digital signal 11 Differential signal 12 Differential signal in positive direction 13 Inverted differential signal 14 Multiple differential signal 15 Light emitting element 16 Light receiving element 17 Received signal after E / O 18 Reproduction digital signal 19 Reproduction clock 20 Digital signal 21 Differential signal 22 Forward direction Differential signal 23 Inverted differential signal 24 Multiple differential signal 25 Delay element 26 Delay differential signal 27 Light emitting element 28 Light receiving element 29 Received signal after E / O 30 Reproduction digital signal

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H04L 25/49 H04L 5/14 H04B 10/00 H04L 7/027 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H04L 25/49 H04L 5/14 H04B 10/00 H04L 7/027

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1伝送信号を微分し負方向微分信号を反
転させて正方向微分信号に多重化した第1多重微分信号
を光に変換して送信するステップと、送信された信号を
受信して得た多重微分信号のパルスの立ち上がりに基づ
いて第1伝送信号を再生すると共に再生された第1伝送
信号に基づいてクロック信号を生成するステップと、
記クロック信号を基準信号として第2伝送信号を微分し
負方向微分信号を反転させて正方向微分信号に多重化し
た第2多重微分信号を生成し前記第2多重微分信号を前
記クロック信号の周期の略1/2の時間遅延した遅延微
分信号を生成し前記遅延微分信号を光に変換して送信す
るステップと、送信された信号を受信して得た遅延微分
信号のパルスの立ち上がりに基づいて第2伝送信号を再
生するステップとを備えたことを特徴とする双方向光送
受信方法。
Transmitting 1. A converts the first multiple differential signal <br/> obtained by multiplexing the forward differential signal by inverting the negative differential signal by differentiating the first transmission signal to the light, transmitted Signal
Regenerating the first transmission signal based on the rising edge of the pulse of the received multiple differential signal and reproducing the reproduced first transmission signal
Generating a clock signal based on the signal, before
Differentiating the second transmission signal using the clock signal as a reference signal
Invert the negative differential signal and multiplex it into the positive differential signal
And generating the second multiple differentiated signal, and
Generating a delayed differential signal delayed by approximately one-half the period of the clock signal , converting the delayed differential signal into light, and transmitting the light; and delaying differential obtained by receiving the transmitted signal.
The second transmission signal is restarted based on the rising edge of the signal pulse.
Generating a bidirectional optical signal.
【請求項2】第1伝送信号を微分し負方向微分信号を反
転させて正方向微分信号に多重化した第1多重微分信号
を光に変換して送信する第1送信手段と、該第1送信手
が送信した信号を受信して得た多重微分信号のパルス
の立ち上がりに基づいて第1伝送信号を再生すると共に
再生された第1伝送信号に基づいてクロック信号を生成
する第2受信手段と、前記クロック信号を基準信号とし
て第2伝送信号を微分し負方向微分信号を反転させて正
方向微分信号に多重化した第2多重微分信号を生成し前
記第2多重微分信号を前記クロック信号の周期の略1/
2の時間遅延した遅延微分信号を生成し前記遅延微分信
号を光に変換して送信する第2送信手段と、該第2送信
手段が送信した信号を受信して得た遅延微分信号のパル
の立ち上がりに基づいて第2伝送信号を再生する第1
受信手段とを備えたことを特徴とする双方向光送受信装
置。
2. A first transmitting means for differentiating a first transmission signal, inverting a negative differential signal and multiplexing the first multiple differential signal multiplexed with a positive differential signal into light and transmitting the light. Regenerating the first transmission signal based on the rising edge of the pulse of the multiple differential signal obtained by receiving the signal transmitted by the first transmission means ,
Second receiving means for generating a clock signal based on the reproduced first transmission signal; and using the clock signal as a reference signal.
To differentiate the second transmission signal and invert the negative differential signal to
Generate a second multiple differential signal multiplexed with the direction differential signal
The second multiple differential signal is approximately 1 / the cycle of the clock signal.
Generating a delayed differential signal delayed by a time of 2
And second transmission means for transmitting by converting No. into light, Pal delay differential signal said second transmitting means is obtained by receiving the transmitted signal
The play of the second transmission signal on the basis of the rise of the scan 1
A bidirectional optical transmission / reception device, comprising: reception means.
JP29421793A 1993-10-29 1993-10-29 Bidirectional optical transmission / reception method and bidirectional optical transmission / reception device Expired - Fee Related JP3340822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29421793A JP3340822B2 (en) 1993-10-29 1993-10-29 Bidirectional optical transmission / reception method and bidirectional optical transmission / reception device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29421793A JP3340822B2 (en) 1993-10-29 1993-10-29 Bidirectional optical transmission / reception method and bidirectional optical transmission / reception device

Publications (2)

Publication Number Publication Date
JPH07131491A JPH07131491A (en) 1995-05-19
JP3340822B2 true JP3340822B2 (en) 2002-11-05

Family

ID=17804857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29421793A Expired - Fee Related JP3340822B2 (en) 1993-10-29 1993-10-29 Bidirectional optical transmission / reception method and bidirectional optical transmission / reception device

Country Status (1)

Country Link
JP (1) JP3340822B2 (en)

Also Published As

Publication number Publication date
JPH07131491A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
US4249266A (en) Fiber optics communication system
US5550864A (en) Bit rate-insensitive mechanism for transmitting integrated clock and data signals over digital communication link
US4912524A (en) Digital signal transmission system having conversion means for reducing the light emission time of a light emitting diode
JP3340822B2 (en) Bidirectional optical transmission / reception method and bidirectional optical transmission / reception device
EP0111968B1 (en) Transmission system for the transmission of binary data symbols
JP2004153442A (en) Optical transmission apparatus, optical receiving apparatus, and optical communication system, and transmission reception method therefor
JPH07131490A (en) Optical space transmitting and receiving method
JPH05121783A (en) Light emitting element drive circuit
JP3907318B2 (en) Transmission waveform conversion receiving circuit and transmission waveform conversion receiving method
JPS6010853A (en) Signal transmission method
US5291344A (en) Magnetic tape recording device having a rectifier installed on a rotating head drum for rectifying a signal being applied to the head
JP4155665B2 (en) Signal regeneration circuit
KR100219594B1 (en) Recording/reproducing apparatus and method
JP3907317B2 (en) Transmission waveform conversion receiver circuit
JP2000003563A (en) Information transmitting method and information transmitting device, and optical disk device using the method and the device
JPH01229549A (en) Digital signal light transmission system
JPH0528547B2 (en)
JPH0973734A (en) Information reproducing device
EP0103903A1 (en) Method and apparatus for transferring digital data
JPS5948586B2 (en) DC regeneration circuit
SU1337915A1 (en) Device for magnetic recording and reproduction of digital information
JPS609253A (en) Signal transmitting method
JP2809778B2 (en) Information modulation / demodulation device and information recording / reproducing device using the same
JPH08251238A (en) Data communication method
JP3853997B2 (en) Optical disk device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020806

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees