JP3261339B2 - Pore distribution measuring device - Google Patents

Pore distribution measuring device

Info

Publication number
JP3261339B2
JP3261339B2 JP15028797A JP15028797A JP3261339B2 JP 3261339 B2 JP3261339 B2 JP 3261339B2 JP 15028797 A JP15028797 A JP 15028797A JP 15028797 A JP15028797 A JP 15028797A JP 3261339 B2 JP3261339 B2 JP 3261339B2
Authority
JP
Japan
Prior art keywords
film
pore distribution
light
distribution
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15028797A
Other languages
Japanese (ja)
Other versions
JPH10325791A (en
Inventor
達夫 伊串
和雄 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP15028797A priority Critical patent/JP3261339B2/en
Publication of JPH10325791A publication Critical patent/JPH10325791A/en
Application granted granted Critical
Publication of JP3261339B2 publication Critical patent/JP3261339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質シート等の
分布を測定するための細孔分布測定装置の技術分野に属
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of a pore distribution measuring device for measuring the distribution of a porous sheet or the like.

【0002】[0002]

【発明が解決しようとする課題】膜中の細孔分布は、従
来、試料細孔のヘリウム窒素ガスの吸着温度曲線を利用
したガス吸着法や、試料細孔に水銀を圧入する水銀圧入
法、光学電子顕微鏡で細孔を直接観察する方法等がある
が、その測定のための操作や分布を求めるためのデータ
処理に手間がかかり、いずれも測定に長時間を要し、迅
速に測定することは不可能であった。また、膜の内部に
形成されて表面に表れていないもの(空孔)は測定でき
なかった。
The pore distribution in the membrane has been conventionally determined by a gas adsorption method utilizing the adsorption temperature curve of helium nitrogen gas in the sample pore, a mercury intrusion method in which mercury is injected into the sample pore, There is a method of directly observing the pores with an optical electron microscope, but the operation for the measurement and the data processing for obtaining the distribution are troublesome, all of which require a long time for the measurement, and the measurement is quick. Was impossible. In addition, those which were formed inside the film and did not appear on the surface (voids) could not be measured.

【0003】一方、通常の散乱式粒度分布計では、膜の
マクロな歪みや傷による散乱、膜表面自身の散乱光や反
射光が細孔分布の散乱光と比較して非常に大きかったた
め細孔分布の情報が隠蔽されてしまい測定ができなかっ
た。
[0003] On the other hand, in a normal scattering type particle size distribution meter, scattering due to macro distortion or scratches on the film, and the scattered light and reflected light of the film surface itself are much larger than the scattered light of the pore distribution. The distribution information was hidden and measurement was not possible.

【0004】本発明はこのような実情に鑑みてなされ、
膜中の細孔分布を表面に表れていないものまで迅速に精
度よく測定できる細孔分布測定装置を提供することを目
的としている。
[0004] The present invention has been made in view of such circumstances,
It is an object of the present invention to provide a pore distribution measuring device capable of quickly and accurately measuring pore distribution in a membrane even if it does not appear on the surface.

【0005】[0005]

【課題を解決するための手段】本発明は上述の課題を解
決するための手段を以下のように構成している。すなわ
ち、請求項1に記載の発明では、透光性の一対の平行平
板間に挟持させた測定対象となる膜に対して光源から
を照射させて、その膜の細孔によって発生する散乱光
の強度分布を測定し、その測定結果に基づいて細孔分布
を演算することにより、その膜の細孔分布を求めること
を特徴としている。
According to the present invention, means for solving the above-mentioned problems are constituted as follows. That is, in the invention described in claim 1, the film to be measured sandwiched between the pair of light-transmissive parallel flat plates is irradiated from the light source to the film to be measured .
It is characterized by irradiating light , measuring the intensity distribution of scattered light generated by the pores of the film, and calculating the pore distribution based on the measurement result, thereby obtaining the pore distribution of the film. I have.

【0006】また、請求項2に記載の発明では、透光性
の素材よりなる容器中に収納した測定対象となる膜を、
その膜の材質とほぼ等しい屈折率の液体に浸漬させ、そ
の膜に対して光源からの光を照射させて、その膜の細孔
によって発生する散乱光の強度分布を測定し、その測定
結果に基づいて細孔分布を演算することにより、その膜
の細孔分布を求めることを特徴としている。
According to the second aspect of the present invention, the film to be measured contained in a container made of a translucent material is
The film is immersed in a liquid having a refractive index substantially equal to the material of the film, and the film is irradiated with light from a light source, and the intensity distribution of scattered light generated by the pores of the film is measured. It is characterized in that the pore distribution of the membrane is obtained by calculating the pore distribution based on the calculated pore distribution.

【0007】試料となる膜自体を2枚の平行平板間に挟
み込むことによって試料をまっすぐに固定することがで
き、また、膜自体の汚れや歪みが大きいときまたは膜が
厚いときには膜の材質とほぼ等しい光屈折率の液体に浸
すことによって、膜表面からの反射や散乱光を減少させ
ることができる。
The sample can be fixed straight by sandwiching the sample film itself between two parallel flat plates, and when the film itself is greatly contaminated or distorted or when the film is thick, the material of the film is almost the same. By immersing in a liquid having the same light refractive index, reflection and scattered light from the film surface can be reduced.

【0008】一方、予め設定記憶させてある変換係数行
列を用いた演算プログラムに従い、測定結果に基づいて
演算をおこなうことにより、膜の細孔分布を短時間で求
めることができる。
On the other hand, by performing calculations based on the measurement results in accordance with a calculation program using a conversion coefficient matrix which is set and stored in advance, the pore distribution of the membrane can be obtained in a short time.

【0009】[0009]

【発明の実施の形態】以下に本発明の細孔分布測定装置
の実施形態について詳細に説明する。図1は装置の全体
構成を示し、符号1は平行光を発生させるための例えば
レーザ光源等の光源、2,3は反射鏡、4はビームエキ
スパンダ、5は試料保持装置、6(61 〜6n )は集光
レンズとフォトダイオード等よりなる散乱光検出器、7
は集光レンズ、8はアレイ型検出器、9はマルチプレク
サ、10はAD変換器、11は入出力部、12はCPUであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the pore distribution measuring device of the present invention will be described in detail. FIG. 1 shows the entire configuration of the apparatus. Reference numeral 1 denotes a light source such as a laser light source for generating parallel light, reference numerals 2 and 3 denote reflecting mirrors, 4 denotes a beam expander, 5 denotes a sample holding device, and 6 (6 1). To 6 n ) are scattered light detectors including a condenser lens and a photodiode, and 7.
Is a condenser lens, 8 is an array type detector, 9 is a multiplexer, 10 is an AD converter, 11 is an input / output unit, and 12 is a CPU.

【0010】上述の試料保持手段5は、図2ないし図4
に示され、図2に示す試料保持手段5では透光性の素材
よりなる二枚の平板51,52 間に試料となる膜(またはシ
ート)Sを挟持させるようにしたものであり、開孔531
を有する枠体53に設けたボルト54,55 によって、両平板
51,52 を試料Sの両側から挟み付けることにより、試料
Sをまっすぐに固定することができ、膜表面からの反射
や散乱の発生を簡易に抑制することができ、自立しない
薄膜等に好適である。なお、枠体53を透光性の素材で形
成する場合には、開孔531 および一方の平板51を省くこ
とができる。また、測定装置に別途ホルダーが設けられ
ている場合等では、二枚の平板51,52 間に試料となる膜
Sを挟持させるようにしてもよい(図4参照)。
The above-mentioned sample holding means 5 is provided in FIGS.
In the sample holding means 5 shown in FIG. 2, a film (or sheet) S serving as a sample is sandwiched between two flat plates 51 and 52 made of a translucent material. 531
Bolts 54, 55 provided on a frame 53 having
By sandwiching the sample 51 and 52 from both sides of the sample S, the sample S can be fixed straight, and the occurrence of reflection and scattering from the film surface can be easily suppressed. is there. When the frame 53 is formed of a translucent material, the opening 531 and one of the flat plates 51 can be omitted. Further, when a separate holder is provided in the measuring apparatus, a film S serving as a sample may be sandwiched between the two flat plates 51 and 52 (see FIG. 4).

【0011】図3に示す試料保持手段5では、膜、ガラ
ス等の透光性の素材により薄型矩形状で上部開放の容器
56を形成し、その内部空間57に膜Sを挿入して、さら
に、その膜Sと同じ光屈折率を有する液体をその内部空
間57に注入してその液体中に膜Sを浸漬させるようにし
たものであり、このような液体中への浸漬により、膜S
の表面からの反射や散乱光をより効果的に減少させるこ
とができる。なお、膜Sが厚い場合には、図示は省略す
るが、膜Sと光屈折率の等しい液体を入れたセルに膜S
を入れて散乱光を測定することもできる。
In the sample holding means 5 shown in FIG. 3, a container having a thin rectangular shape and an open top is made of a transparent material such as a film or glass.
56 is formed, the film S is inserted into the internal space 57, and a liquid having the same optical refractive index as the film S is injected into the internal space 57 so that the film S is immersed in the liquid. By immersion in such a liquid, the film S
Reflection and scattered light from the surface can be more effectively reduced. In the case where the film S is thick, although not shown, the film S is placed in a cell containing a liquid having the same optical refractive index as the film S.
And the scattered light can be measured.

【0012】上述のような試料保持手段5に保持させた
膜Sに対して光源1からの平行光を照射させ膜S内の細
孔から散乱した散乱光を集光レンズ7とアレイ型検出器
8やそのまわりに配置した散乱光検出器6によりその散
乱光の強度分布を測定する。一方、CPU12には、膜S
のこれらの散乱光強度から求めた細孔分布の統一データ
から細孔分布に変換するための変換係数行列を用いた演
算プログラムが設定記憶されており、上述の散乱光の強
度分布の測定値に基づいた細孔分布を一挙に演算・算出
することができる。このような細孔分布測定装置によれ
ば、表面に現れていない膜Sの内部に存在する空孔にも
光が照射され散乱を生じるので、これらをも検出でき
る。
The film S held by the sample holding means 5 as described above is irradiated with parallel light from the light source 1 and scattered light scattered from pores in the film S is collected by a condenser lens 7 and an array type detector. The intensity distribution of the scattered light is measured by the scattered light detector 6 and the scattered light detector 6 disposed therearound. On the other hand, the CPU 12 has a film S
A calculation program using a conversion coefficient matrix for converting from the uniform data of the pore distribution obtained from these scattered light intensities to the pore distribution is set and stored, and the measured value of the intensity distribution of the scattered light described above is stored. It is possible to calculate and calculate the pore distribution based on the information at once. According to such a pore size distribution measuring device, light is also radiated to vacancies existing inside the film S that does not appear on the surface, causing scattering, so that these can also be detected.

【0013】一方、膜自身の歪みや傷などで不要な散乱
光を検出することがあるが、このような場合、細孔分布
演算をおこなうときに目的の微小な細孔分布のデータが
大きな細孔のデータに隠れてしまうことのないように細
孔分布演算で使用する散乱角データを選択するようにす
る。例えば数μm以下の細孔分布を求めていたが数百μ
mの傷を検出している場合は、十数度以上の散乱光デー
タのみを対象として細孔分布演算をおこない、不要なデ
ータを使用しないようにして膜Sにある傷等の情報をノ
イズとして消去する。
On the other hand, unnecessary scattered light may be detected due to distortion or scratches of the film itself. In such a case, when the pore distribution calculation is performed, the data of the target minute pore distribution is large. The scattering angle data used in the pore distribution calculation is selected so as not to be hidden by the pore data. For example, a pore distribution of several μm or less was determined,
When the flaw m is detected, the pore distribution calculation is performed only on the scattered light data of ten degrees or more, and information such as the flaw on the film S is used as noise so as not to use unnecessary data. to erase.

【0014】[0014]

【発明の効果】以上説明したように、本発明の細孔分布
測定装置によれば、自立性のない膜を透光性の平行平板
間に挟持させてまっすぐに固定し、その膜に光源から
を照射させて、その膜の細孔によって発生する散乱光
の強度分布を測定し、その測定結果に基づいて求めた粒
度分布から細孔分布を求めるので、面倒な前処理をおこ
なうことなく、また、消耗物品を用いることなく、容易
かつ迅速に膜の細孔分布を表面に表れていないものまで
精度よく測定することができる。
As described above, according to the pore distribution measuring apparatus of the present invention, a non-self-supporting film is sandwiched between translucent parallel flat plates and fixed straight, and the film is fixed to the film from a light source. of
By irradiation with light to measure the intensity distribution of scattered light generated by the pores of the membrane, since obtaining the pore distribution from the particle size distribution obtained on the basis of the measurement result, without performing troublesome pretreatment, Further, it is possible to easily and quickly measure the pore distribution of the membrane even if it does not appear on the surface without using consumable articles.

【0015】また、透光性の素材よりなる容器中に収納
した測定対象となる膜を、その膜の材質とほぼ等しい屈
折率の液体に浸漬させて測定することにより、膜自体の
汚れや歪みが大きいときにも、膜表面からの反射光や散
乱光を減少させることができる。
Further, by immersing a film to be measured contained in a container made of a translucent material in a liquid having a refractive index substantially equal to the material of the film and measuring the film, contamination and distortion of the film itself can be achieved. Is large, reflected light and scattered light from the film surface can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の細孔分布測定装置の一実施形態を示す
構成図である。
FIG. 1 is a configuration diagram showing one embodiment of a pore distribution measuring device of the present invention.

【図2】同試料保持装置の一例を示す断面構成図であ
る。
FIG. 2 is a sectional view showing an example of the sample holding device.

【図3】同試料保持装置の別の例を示す斜視図である。FIG. 3 is a perspective view showing another example of the sample holding device.

【図4】同試料保持装置の異なる例を示す斜視図であ
る。
FIG. 4 is a perspective view showing another example of the sample holding device.

【符号の説明】[Explanation of symbols]

1…光源、51,52…平行平板、56…容器、S…膜。 1: light source, 51, 52: parallel plate, 56: container, S: film.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 透光性の一対の平行平板間に挟持させた
測定対象となる膜に対して光源からの光を照射させて、
その膜の細孔によって発生する散乱光の強度分布を測定
し、その測定結果に基づいて細孔分布を演算することに
より、その膜の細孔分布を求めることを特徴とする細孔
分布測定装置。
A film to be measured sandwiched between a pair of light-transmitting parallel flat plates is irradiated with light from a light source,
A pore distribution measuring device for measuring the intensity distribution of the scattered light generated by the pores of the film and calculating the pore distribution based on the measurement result to obtain the pore distribution of the film. .
【請求項2】 透光性の素材よりなる容器中に収納した
測定対象となる膜を、その膜の材質とほぼ等しい屈折率
の液体に浸漬させ、その膜に対して光源からの光を照射
させて、その膜の細孔によって発生する散乱光の強度分
布を測定し、その測定結果に基づいて細孔分布を演算す
ることにより、その膜の細孔分布を求めることを特徴と
する細孔分布測定装置。
2. A film to be measured contained in a container made of a translucent material is immersed in a liquid having a refractive index substantially equal to the material of the film, and the film is irradiated with light from a light source. Measuring the intensity distribution of the scattered light generated by the pores of the film, and calculating the pore distribution based on the measurement result, thereby obtaining the pore distribution of the film. Distribution measuring device.
JP15028797A 1997-05-24 1997-05-24 Pore distribution measuring device Expired - Lifetime JP3261339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15028797A JP3261339B2 (en) 1997-05-24 1997-05-24 Pore distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15028797A JP3261339B2 (en) 1997-05-24 1997-05-24 Pore distribution measuring device

Publications (2)

Publication Number Publication Date
JPH10325791A JPH10325791A (en) 1998-12-08
JP3261339B2 true JP3261339B2 (en) 2002-02-25

Family

ID=15493690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15028797A Expired - Lifetime JP3261339B2 (en) 1997-05-24 1997-05-24 Pore distribution measuring device

Country Status (1)

Country Link
JP (1) JP3261339B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100640235B1 (en) 2004-03-03 2006-10-30 한국생산기술연구원 Apparatus and Method For Estimating Pore Structure of Electro-spun Web
FR2947339B1 (en) 2009-06-26 2011-07-15 Inst Francais Du Petrole PERFECTIONAL GRANULOMETER
FR2947338B1 (en) * 2009-06-26 2011-07-15 Inst Francais Du Petrole IMPROVED METHOD OF GRANULOMETRIC MEASUREMENT

Also Published As

Publication number Publication date
JPH10325791A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
Lin et al. Absorption coefficient of atmospheric aerosol: A method for measurement
Patel et al. Pulsed optoacoustic spectroscopy of condensed matter
Mermillod-Blondin et al. Time-resolved imaging of laser-induced refractive index changes in transparent media
JPH081416B2 (en) Particle sorter
US9664614B2 (en) Method for high resolution sum-frequency generation and infrared microscopy
JPH0347703B2 (en)
JPH09318535A (en) Light absorption spectrum measuring method of solution by laser induced photothermic displacement spectroscopy
JP3261339B2 (en) Pore distribution measuring device
Tyler et al. Nephelometer for the measurement of volume scattering function in situ
JP3446410B2 (en) Laser diffraction particle size distribution analyzer
JPH07502815A (en) Analyzer using light scattering
Lecompagnon et al. Investigations on photothermal super resolution reconstruction using 2D-structured illumination patterns
Cahen Photoacoustic cell for reflection and transition measurements
Chernomordik et al. Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination
KR101215362B1 (en) Apparatus and method for detecting photothermal effect
Mann Automated damage testing facility for excimer laser optics
JP4042068B2 (en) Coherent divergence interferometry
Wang et al. Compact surface plasmon resonance sensor using the digital versatile disc grating as a coupler and a disperser
JP3141105B2 (en) Sensor having slab optical waveguide using photothermal conversion method and detection method using photothermal conversion method
JPH0928698A (en) Optical measuring apparatus
Ottaviani et al. Light reflection from water waves: Suitable setup for a polarimetric investigation under controlled laboratory conditions
JP3295869B2 (en) Raman spectroscopy method
Zudans et al. In situ measurements of sensor film dynamics by spectroscopic ellipsometry. Demonstration of back-side measurements and the etching of indium tin oxide
JP4534049B2 (en) Closed container temperature measurement monitor
JP2002357544A (en) Measuring apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term