JP3446410B2 - Laser diffraction particle size distribution analyzer - Google Patents

Laser diffraction particle size distribution analyzer

Info

Publication number
JP3446410B2
JP3446410B2 JP18746895A JP18746895A JP3446410B2 JP 3446410 B2 JP3446410 B2 JP 3446410B2 JP 18746895 A JP18746895 A JP 18746895A JP 18746895 A JP18746895 A JP 18746895A JP 3446410 B2 JP3446410 B2 JP 3446410B2
Authority
JP
Japan
Prior art keywords
sample
particle size
scattered light
size distribution
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18746895A
Other languages
Japanese (ja)
Other versions
JPH0933423A (en
Inventor
治夫 島岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP18746895A priority Critical patent/JP3446410B2/en
Publication of JPH0933423A publication Critical patent/JPH0933423A/en
Application granted granted Critical
Publication of JP3446410B2 publication Critical patent/JP3446410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、レーザ回折式粒度
分布測定装置に関し、とくには開放型のセルを用いてセ
ルを水平に置いて測定するような、少量かつ比較的高濃
度のサンプルの粒度測定に用いられる縦型レーザ回折式
粒度分布測定装置に関する。 【0002】 【従来の技術】例えば、縦型レーザ回折式粒度分布測定
装置では、図2のように開放型のセル31を用いて、こ
のセル31内に、サンプル(試料)を入れて水平に置
き、鉛直方向上方からレーザ光をセルに対して直角に照
射して、下方に出力される回折/散乱光をリングデテク
タ等のアレイセンサによって検出しサンプルの粒度分布
を測定している。 【0003】ところで、汎用的な粒度分布測定装置にお
いては、サブミクロン粒子のような微小径粒子までも測
定を行う必要があり、この場合には前方散乱光だけでな
くレーザ入射光軸に対する約90度方向の側方散乱光
や、セル後方に出力される後方散乱光を測定し、全体の
変化を検出しなければ粒子径の分布状態を解析できな
い。そのため図のように側方散乱光、後方散乱光も検出
するようにしている。 【0004】 【発明が解決しようとする課題】しかし、図2のように
セル内に導入するサンプルの量が多い場合には、レーザ
光による側方散乱光が強いので問題がないが、図3のよ
うにセル32の深さが浅い場合、または、サンプルの量
が少ないためにセル32内のサンプル層の厚さが薄い場
合には、特に側方散乱光が微弱で検出できず、粒度分布
を測定できないことがある。 【0005】一方、側方散乱光を多く得るために、図2
のようにセルの深さを深くして、サンプルの量を増やせ
ば、大きなセルや多量の試料が必要となるので、経済的
でないばかりか、多重散乱の可能性が高くなり、特に高
濃度のサンプルの測定が非常に困難になるという問題が
あった。 【0006】本発明は、上記課題を解決するために創案
されたもので、セル内のサンプル層の厚さが薄い場合で
も、側方散乱光を得ることができ、微小径粒子までも測
定できる縦型レーザ回折式粒度分布測定装置を提供する
ものである。 【0007】 【課題を解決するための手段】上記目的を達成するため
に、本発明のレーザ回折式粒度分布測定装置は、所定厚
さのサンプル層にレーザ光を照射する手段と、そのレー
ザ光の照射により得られるサンプル粒子群による照射前
方の回折/散乱光の強度分布を測定する手段と、レーザ
光軸に対してほぼ直角方向近辺に出力される側方散乱光
の強度分布を測定する手段とを備え、前記サンプル層は
開放型セルにサンプルをいれたもの又は透明板にサンプ
ルを滴下したもの若しくはプレート状のサンプルであっ
て、前記サンプル層の厚さ方向に対してレーザ光軸が所
定の角度を持つようにレーザ光照射手段を構成し、側方
散乱光が前記サンプル層中を通過する距離を短くしたこ
とを特徴としている。 【0008】このように構成することで、サンプル層に
レーザ光を照射した場合、レーザ光軸と約90度を成す
方向に散乱する光は、従来のように上方からサンプル層
の深さ(厚さ)方向に沿うようにレーザ光を照射した場
合に側方に散乱する光よりもサンプル中を通過する距離
が短いので、サンプル粒子による多重散乱の影響を受け
にくく、また、散乱光の強度分布測定手段を側方散乱光
の発生地点まで近付けることができるので強い強度の側
方散乱光を測定することができる。 【0009】 【発明の実施の形態】本発明の一実施形態を、以下、図
面に基づいて説明する。 【0010】図1は本発明による縦型レーザ回折式粒度
分布測定装置の構成を示している。1はレーザ光源、2
はレーザ光源1からの出力光を所定の断面積を持つ平行
光束にするコリメータ、3は上面が開放され、サンプル
(試料)粒子を分散させた懸濁液が入った開放型セル、
4は集光レンズ、5はリングセンサまたはアレイセンサ
等からなる前方回折/散乱光センサ、6は側方散乱光セ
ンサ、7は後方散乱光センサ、8は各光センサで検出さ
れた信号を用いてサンプルの粒度分布を計算等するため
のコンピュータである。 【0011】開放型セル3は水平に置かれており、照射
レーザ光の進行方向、開放型セル3の上方には集光レン
ズ4が、その後方には回折/散乱光センサ5が配置され
ている。 【0012】開放型セル3の周囲には照射レーザ光の光
軸と約90度の角度をなす方向に側方散乱光センサ6
が、セル3の後方には後方散乱光センサ7が配置されて
いる。レーザ光源1から出射されたレーザ光はコリメー
タ2によって所定断面積を持つ平行光束となり、開放型
セル3に照射される。セル3にはサンプル粒子を分散さ
せた懸濁液が入っているので、照射されたレーザ光はサ
ンプル粒子によって、散乱ないしは回折される。 【0013】この回折/散乱光は集光レンズ4を経て前
方回折/散乱光センサ5の受光面上に回折/散乱像を結
ぶ。また、大きな散乱角を持つ散乱光の強度は、側方散
乱光センサ6または後方散乱光センサ7で測定される。 【0014】前方回折/散乱光センサ5の出力と側方散
乱光センサ6、後方散乱光センサ7の出力はそれぞれ増
幅器およびA/D変換器等(いずれも図示せず)を介し
てコンピュータ8に取り込まれ、コンピュータ8は各光
強度データ、すなわち回折/散乱光強度分布データを用
いて、以下に示すアルゴリズムによって試料粒子の粒度
分布を算出する。 【0015】光強度分布パターンは、粒子の大きさによ
って変化する。実際のサンプルには、大きさの異なる粒
子が混在するため、粒子群から生じる光強度分布パター
ンは、それぞれの粒子からの回折/散乱光の重ね合わせ
となる。 【0016】これを、マトリクス(行列)で表現する
と、 s=Aq ・・・・ (1) となる。ただし、 【0017】 【式1】【0018】 【式2】 sは光強度分布ベクトルである。その要素s(i=
1,2,・・・m)は、リングディテクタの各素子及び
側方散乱光センサによって検出される入射光量である。
qは粒度分布(頻度分布%)ベクトルである。粒度分布
範囲を有限とし、この範囲内をn分割して、最大値をd
1 、最小値をdn+1 とする。それぞれの分割区間
[dj ,dj+1 ]を1つの粒子径Xj で代表させる。q
の要素qj (j=1,2,……n)は粒子径Xj に対応
する粒子量である。 【0019】通常は、 となるように正規化(ノルマライズ)を行っている。 【0020】Aは、粒度分布(ベクトル)qを、光強度
分布(ベクトル)sに、変換する係数行列である。Aの
要素のaij(i=1,2,・・・m, j=1,2,・
・・n)の物理的意味は、粒子径xの単位粒子量の粒
子群によって回折/散乱した光のi番目の素子に対する
入射光量である。 【0021】ai,j の数値は、理論的に計算することが
できる。これには、粒子径が光源となるレーザ光の波長
に比べて十分に大きい場合には、Fraunhofer回折理論を
用いる。しかし、粒子径がレーザ光の波長と同程度か、
それより小さいサブミクロンの領域では、Mie 散乱理論
を用いる必要がある。Fraunhofer回折理論は、前方微小
角散乱において、粒子径が波長に比べて十分大きな場合
に有効なMie 散乱理論の優れた近似であると考えること
ができる。 【0022】Mie 散乱理論を用いて、係数行列Aの要素
を計算するためには、粒子及びそれを分散させる媒液の
屈折率を設定する必要がある。 【0023】さて、粒度分布(ベクトル)の最小自乗解
を求める式を導出すると、 q=(AT A)-1T s ・・・・ (5) (5)式が得られる。ただし、AT はAの転置行列であ
り、( )-1は逆行列を示す。 【0024】(5)式の右辺において、光強度分布(ベ
クトル)sの各要素は、前方回折/散乱光センサ及び側
方散乱光センサ、後方散乱光センサで検出される数値で
ある。また、係数行列Aは、Fraunhofer回折理論あるい
はMie 散乱理論を用いて、予め計算しておくことができ
る。したがって、それらの既知のデータを用いて(5)
式の計算を実行すれば、粒度分布(ベクトル)qが求ま
ることは明らかである。なお、サブミクロン粒子の粒度
分布を測定するためには、測定対象となる粒子及びそれ
を分散させる媒液の屈折率を設定する必要がある。 【0025】以上のようにして、セル内の懸濁液のサブ
ミクロン領域を含む広範囲な粒度分布を求めることがで
きる。 【0026】そして、サンプル層が非常に薄い場合で
も、レーザ光を鉛直方向と所定角度を成す斜めの方向か
ら照射するようにしているので、側方散乱光の発生量が
高くなり、この散乱光を検出することができる。 【0027】このようにサンプル層が薄いことは、多重
散乱の危険性が減少し、比較的高濃度のサンプル測定も
行うことができる。 【0028】したがって、上記のように開放型セルにサ
ンプル(試料)粒子を分散させた懸濁液をいれた場合だ
けでなく、サンプルが稀少な場合には、スライドグラス
等の透明な板にサンプルを滴下し、カバーグラス等を付
けずに、一定の面積に広がった状態で粒度分布測定をす
ることができる。また、プレート状のサンプルについて
も、特別な固定手段を必要とせずに、光軸を通過するよ
うに配置できる穴のあいた台を設け、その上に置くだけ
で同様な測定をすることができる。 【0029】なお、上述の実施形態では、レーザ光を鉛
直方向(サンプル層の厚さ方向)と所定角度をなす下方
から照射しているが、これをレーザ光源とコリメータを
セルの上方に配置し、集光レンズと前方回折/散乱光セ
ンサをセルの下方に配置し、レーザ光を鉛直方向(サン
プル層の厚さ方向)と所定角度をなす上方から照射する
ようにしても同様の効果が得られる。 【0030】 【発明の効果】以上説明したように、本発明のレーザ回
折式粒度分布測定装置によれば、所定のサンプル層の厚
さ方向に対してレーザ光軸が所定角度傾いた方向となる
ようにしているので、サンプル層が薄くても、側方散乱
光を検出することができ、サンプルのサブミクロン領域
を含む広範囲の粒度分布測定を行うことができる。ま
た、サンプル層が薄くて良いために、比較的高濃度のサ
ンプルであっても多重散乱を抑制することができるので
正確に測定することができる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a laser diffraction type particle size distribution measuring apparatus, and more particularly, to a method in which an open type cell is used to measure a cell horizontally. The present invention relates to a vertical laser diffraction type particle size distribution measuring device used for measuring the particle size of a sample having a small amount and a relatively high concentration. 2. Description of the Related Art For example, in a vertical laser diffraction type particle size distribution measuring apparatus, an open cell 31 is used as shown in FIG. The sample is irradiated with laser light at right angles to the cell from above in the vertical direction, and diffracted / scattered light output below is detected by an array sensor such as a ring detector to measure the particle size distribution of the sample. In a general-purpose particle size distribution measuring apparatus, it is necessary to measure even small-diameter particles such as submicron particles. In this case, not only forward scattered light but also about 90 If the side scattered light in the degree direction and the back scattered light output to the rear of the cell are measured and the entire change is not detected, the distribution state of the particle diameter cannot be analyzed. Therefore, side scattered light and back scattered light are detected as shown in the figure. However, when the amount of the sample introduced into the cell is large as shown in FIG. 2, there is no problem because the side scattered light by the laser beam is strong. In the case where the depth of the cell 32 is shallow as described above, or when the thickness of the sample layer in the cell 32 is small due to the small amount of the sample, the side scattered light is particularly weak and cannot be detected, and the particle size distribution May not be measured. On the other hand, in order to obtain a large amount of side scattered light, FIG.
If the cell depth is increased and the amount of sample is increased, a large cell and a large amount of sample are required, which is not only economical, but also increases the possibility of multiple scattering. There is a problem that the measurement of the sample becomes very difficult. The present invention has been made in order to solve the above-mentioned problems. Even when the thickness of a sample layer in a cell is small, side scattered light can be obtained and even fine particles can be measured. An object of the present invention is to provide a vertical laser diffraction type particle size distribution measuring device. In order to achieve the above object, a laser diffraction type particle size distribution measuring apparatus according to the present invention comprises: means for irradiating a sample layer having a predetermined thickness with a laser beam; Means for measuring the intensity distribution of diffracted / scattered light in front of the irradiation by the sample particle group obtained by the irradiation of the laser beam, and means for measuring the intensity distribution of the side scattered light outputted in a direction substantially perpendicular to the laser optical axis. The sample layer is a sample in which the sample is placed in an open cell, a sample in which a sample is dropped on a transparent plate, or a plate-shaped sample, and a laser optical axis is predetermined with respect to a thickness direction of the sample layer. The laser light irradiating means is configured to have an angle of?, And the distance that side scattered light passes through the sample layer is reduced. With this configuration, when the sample layer is irradiated with laser light, light scattered in a direction at about 90 degrees with respect to the laser optical axis, as in the conventional case, has a depth (thickness) of the sample layer from above. When the laser beam is irradiated along the direction, the distance that the light passes through the sample is shorter than that of the light scattered sideways, so that it is less susceptible to multiple scattering by the sample particles, and the intensity distribution of the scattered light Since the measuring means can be brought close to the point where the side scattered light is generated, the side scattered light having a high intensity can be measured. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of a vertical laser diffraction type particle size distribution measuring apparatus according to the present invention. 1 is a laser light source, 2
Is a collimator that converts output light from the laser light source 1 into a parallel light beam having a predetermined cross-sectional area; 3 is an open-type cell having an open upper surface and containing a suspension in which sample (sample) particles are dispersed;
4 is a condensing lens, 5 is a forward diffraction / scattered light sensor comprising a ring sensor or an array sensor, 6 is a side scattered light sensor, 7 is a back scattered light sensor, and 8 is a signal detected by each light sensor. Computer for calculating the particle size distribution of the sample. The open cell 3 is placed horizontally, and a condensing lens 4 is arranged above the open cell 3 in the traveling direction of the irradiation laser beam, and a diffraction / scattered light sensor 5 is arranged behind the condenser lens 4. I have. Around the open cell 3, a side scattered light sensor 6 is formed in a direction making an angle of about 90 degrees with the optical axis of the irradiation laser light.
However, a backscattered light sensor 7 is arranged behind the cell 3. The laser light emitted from the laser light source 1 is converted into a parallel light beam having a predetermined cross-sectional area by the collimator 2 and is applied to the open cell 3. Since the cell 3 contains a suspension in which the sample particles are dispersed, the irradiated laser light is scattered or diffracted by the sample particles. The diffracted / scattered light passes through the condenser lens 4 and forms a diffracted / scattered image on the light receiving surface of the forward diffracted / scattered light sensor 5. The intensity of the scattered light having a large scattering angle is measured by the side scattered light sensor 6 or the back scattered light sensor 7. The output of the forward diffraction / scattered light sensor 5, the output of the side scattered light sensor 6, and the output of the back scattered light sensor 7 are sent to a computer 8 via an amplifier, an A / D converter, etc. (neither is shown). The computer 8 calculates the particle size distribution of the sample particles by using the respective light intensity data, that is, the diffraction / scattered light intensity distribution data, by the following algorithm. The light intensity distribution pattern changes depending on the size of the particles. Since particles having different sizes are mixed in an actual sample, the light intensity distribution pattern generated from the particle group is a superposition of diffraction / scattered light from each particle. When this is expressed by a matrix, s = Aq (1) Where: [Equation 2] s is a light intensity distribution vector. The element s i (i =
1, 2,... M) are incident light amounts detected by the respective elements of the ring detector and the side scattered light sensor.
q is a particle size distribution (frequency distribution%) vector. The particle size distribution range is finite, and the range is divided into n, and the maximum value is d.
1 and the minimum value is dn + 1 . Each divided section [d j , d j + 1 ] is represented by one particle diameter X j . q
The element q j (j = 1, 2,... N) is the particle amount corresponding to the particle diameter X j . Usually, Is normalized (normalized) so that A is a coefficient matrix for converting a particle size distribution (vector) q into a light intensity distribution (vector) s. A ij of elements of A (i = 1, 2,... M, j = 1, 2,.
Physical meaning of · · n) is the incident light amount for the i-th element of the light diffracted / scattered by particles in the unit particles of particle size x j. The numerical values of a i, j can be calculated theoretically. For this, the Fraunhofer diffraction theory is used when the particle diameter is sufficiently large compared to the wavelength of the laser beam serving as the light source. However, whether the particle size is about the same as the wavelength of the laser light,
For smaller submicron regions, Mie scattering theory must be used. The Fraunhofer diffraction theory can be considered to be a good approximation of the Mie scattering theory that is effective in forward small angle scattering when the particle size is sufficiently large compared to the wavelength. In order to calculate the elements of the coefficient matrix A using the Mie scattering theory, it is necessary to set the refractive index of the particles and the medium in which the particles are dispersed. By deriving an equation for obtaining the least squares solution of the particle size distribution (vector), the following equation is obtained: q = (A T A) -1 A T s (5) Where A T is the transposed matrix of A, and () −1 indicates the inverse matrix. In the right side of the equation (5), each element of the light intensity distribution (vector) s is a numerical value detected by the forward diffraction / scattered light sensor, the side scattered light sensor, and the back scattered light sensor. Further, the coefficient matrix A can be calculated in advance using the Fraunhofer diffraction theory or the Mie scattering theory. Therefore, using those known data, (5)
It is obvious that the particle size distribution (vector) q is obtained by executing the calculation of the expression. In order to measure the particle size distribution of the submicron particles, it is necessary to set the refractive index of the particles to be measured and the medium in which the particles are dispersed. As described above, a wide particle size distribution including a submicron region of the suspension in the cell can be obtained. Even when the sample layer is very thin, the laser beam is emitted from an oblique direction that forms a predetermined angle with the vertical direction, so that the amount of side scattered light increases, and this scattered light is increased. Can be detected. The thin sample layer reduces the risk of multiple scattering, and enables measurement of a sample with a relatively high concentration. Therefore, not only when the suspension in which the sample (sample) particles are dispersed is placed in the open cell as described above, but also when the sample is rare, the sample is placed on a transparent plate such as a slide glass. Is dropped, and the particle size distribution can be measured in a state of being spread over a certain area without attaching a cover glass or the like. Also, for a plate-shaped sample, a similar measurement can be performed by simply providing a table with a hole that can be disposed so as to pass through the optical axis and placing it on the sample, without requiring any special fixing means. In the above-described embodiment, the laser beam is irradiated from below at a predetermined angle with respect to the vertical direction (the thickness direction of the sample layer). However, the laser light source and the collimator are arranged above the cell. The same effect can be obtained by disposing the condenser lens and the forward diffraction / scattered light sensor below the cell and irradiating the laser beam from above at a predetermined angle with respect to the vertical direction (the thickness direction of the sample layer). Can be As described above, according to the laser diffraction type particle size distribution measuring apparatus of the present invention, the direction of the laser optical axis is inclined at a predetermined angle with respect to the thickness direction of a predetermined sample layer. Thus, even if the sample layer is thin, side scattered light can be detected, and a wide range of particle size distribution measurement including a submicron region of the sample can be performed. Further, since the sample layer may be thin, multiple scattering can be suppressed even for a sample having a relatively high concentration, so that accurate measurement can be performed.

【図面の簡単な説明】 【図1】本発明の一実施形態の縦型レーザ回折式粒度分
布測定装置を示す図である。 【図2】従来の縦型レーザ回折式粒度分布測定を示す図
である。 【図3】従来の縦型レーザ回折式粒度分布測定を示す図
である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a vertical laser diffraction type particle size distribution measuring device according to an embodiment of the present invention. FIG. 2 is a view showing a conventional vertical laser diffraction type particle size distribution measurement. FIG. 3 is a diagram illustrating a conventional vertical laser diffraction type particle size distribution measurement.

Claims (1)

(57)【特許請求の範囲】 【請求項1】 所定厚さのサンプル層にレーザ光を照射
する手段と、そのレーザ光の照射により得られるサンプ
ル粒子群による照射前方の回折/散乱光の強度分布を測
定する手段と、レーザ光軸に対してほぼ直角方向近辺に
出力される側方散乱光の強度分布を測定する手段とを備
えた粒度分布測定装置において、 前記サンプル層は開放型セルにサンプルをいれたもの又
は透明板にサンプルを滴下したもの若しくはプレート状
のサンプルであって、前記サンプル層の厚さ方向に対し
てレーザ光軸が所定の角度を持つようにレーザ光照射手
段を構成し、側方散乱光が前記サンプル層中を通過する
距離を短くしたことを特徴とするレーザ回折式粒度分布
測定装置。
(57) [Claims] 1. A means for irradiating a laser beam to a sample layer having a predetermined thickness, and the intensity of diffraction / scattered light in front of irradiation by a group of sample particles obtained by the irradiation of the laser light. In a particle size distribution measuring device comprising a means for measuring the distribution and a means for measuring the intensity distribution of side scattered light output in a direction substantially perpendicular to the laser optical axis, the sample layer is an open cell Laser light irradiation means is a sample in which a sample is placed, a sample in which a sample is dropped on a transparent plate, or a plate-shaped sample, and a laser beam axis is arranged at a predetermined angle with respect to a thickness direction of the sample layer. A laser diffraction type particle size distribution measuring device, wherein the distance that side scattered light passes through the sample layer is shortened.
JP18746895A 1995-07-24 1995-07-24 Laser diffraction particle size distribution analyzer Expired - Fee Related JP3446410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18746895A JP3446410B2 (en) 1995-07-24 1995-07-24 Laser diffraction particle size distribution analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18746895A JP3446410B2 (en) 1995-07-24 1995-07-24 Laser diffraction particle size distribution analyzer

Publications (2)

Publication Number Publication Date
JPH0933423A JPH0933423A (en) 1997-02-07
JP3446410B2 true JP3446410B2 (en) 2003-09-16

Family

ID=16206616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18746895A Expired - Fee Related JP3446410B2 (en) 1995-07-24 1995-07-24 Laser diffraction particle size distribution analyzer

Country Status (1)

Country Link
JP (1) JP3446410B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807738A (en) * 2015-03-24 2015-07-29 中国科学院上海光学精密机械研究所 Device for detecting shapes of single aerosol particles in real time

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE398185T1 (en) 1997-05-05 2008-07-15 Chemometec As METHOD AND SYSTEM FOR DETERMINING SOMA CELLS IN MILK
JP3758577B2 (en) * 2002-01-22 2006-03-22 株式会社島津製作所 Device for collecting suspended particulate matter in the atmosphere and measuring method for collected suspended particulate matter
JP3822840B2 (en) * 2002-05-10 2006-09-20 株式会社堀場製作所 Particle size distribution measuring device
JP3895673B2 (en) * 2002-11-21 2007-03-22 株式会社堀場製作所 Particle size distribution measuring device
JP4019267B2 (en) * 2002-11-21 2007-12-12 株式会社島津製作所 Device for collecting suspended particulate matter in the atmosphere
JP4058624B2 (en) * 2002-11-28 2008-03-12 株式会社島津製作所 Device for collecting and measuring suspended particulate matter in the atmosphere
CN102221518A (en) * 2010-04-13 2011-10-19 张福根 Laser particle size analyzer
JP6191426B2 (en) * 2013-12-05 2017-09-06 株式会社島津製作所 Particle size distribution measuring device, display processing device used therefor, and particle size distribution measuring method
JP6858875B2 (en) * 2017-09-29 2021-04-14 パイオニア株式会社 Measuring equipment, measuring methods, computer programs and storage media
CN108593528B (en) * 2018-04-24 2020-07-03 天津大学 Laser interference based method for measuring shape and size of non-spherical rough particles
CN108801864B (en) * 2018-05-15 2020-05-12 天津大学 Transparent ellipsoid particle steering discrimination method based on interference focusing image
CN108627674B (en) * 2018-05-15 2020-05-12 天津大学 Transparent ellipsoid particle steering discrimination method based on interference defocused image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807738A (en) * 2015-03-24 2015-07-29 中国科学院上海光学精密机械研究所 Device for detecting shapes of single aerosol particles in real time

Also Published As

Publication number Publication date
JPH0933423A (en) 1997-02-07

Similar Documents

Publication Publication Date Title
JP3446410B2 (en) Laser diffraction particle size distribution analyzer
JP3412606B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP2722362B2 (en) Method and apparatus for measuring particle or defect size information
JP2910596B2 (en) Particle size distribution analyzer
JP2827901B2 (en) Particle size distribution measurement method
JP2862077B2 (en) Particle size distribution analyzer
JP3151036B2 (en) Method and apparatus for detecting submicron particles
JP3566840B2 (en) Concentration measuring device
JP3531557B2 (en) Laser diffraction / scattering particle size distribution analyzer
JPH0462455A (en) Particle size distribution measuring instrument
JP2636051B2 (en) Particle measurement method and device
JP2626009B2 (en) Particle size distribution analyzer
JP3058571B2 (en) Particle size distribution analysis method
JP3552355B2 (en) Vertical laser diffraction particle size distribution analyzer
WO1991014935A1 (en) A method and an apparatus for cleaning control
JPH0640058B2 (en) Particle size distribution measuring device
JP3282580B2 (en) Laser diffraction / scattering particle size distribution analyzer
JPH11183356A (en) Laser diffraction and scattering type particle size distribution measuring device
JPH07260669A (en) Grain size distribution measuring device
JP3025051B2 (en) Scattered light measurement cell
JP2803296B2 (en) Particle size distribution analyzer
JPH0754291B2 (en) Particle size distribution measuring device
JP2001133385A (en) Laser diffraction/scatter type particle-size distribution measuring device
JP2836481B2 (en) Particle size distribution analyzer
JPH07117484B2 (en) Correction method of particle size distribution in fine particle measurement

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees