JP3259811B2 - Method for manufacturing nitride semiconductor device and nitride semiconductor device - Google Patents

Method for manufacturing nitride semiconductor device and nitride semiconductor device

Info

Publication number
JP3259811B2
JP3259811B2 JP14847095A JP14847095A JP3259811B2 JP 3259811 B2 JP3259811 B2 JP 3259811B2 JP 14847095 A JP14847095 A JP 14847095A JP 14847095 A JP14847095 A JP 14847095A JP 3259811 B2 JP3259811 B2 JP 3259811B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
substrate
conductive substrate
semiconductor layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14847095A
Other languages
Japanese (ja)
Other versions
JPH098403A (en
Inventor
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP14847095A priority Critical patent/JP3259811B2/en
Publication of JPH098403A publication Critical patent/JPH098403A/en
Priority to JP2000067673A priority patent/JP3511970B2/en
Application granted granted Critical
Publication of JP3259811B2 publication Critical patent/JP3259811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は発光ダイオード、レーザ
ダイオード等の発光デバイス、又はフォトダイオード等
の受光デバイスに使用される窒化物半導体(InXAlY
Ga1-X-YN、0≦X、0≦Y、X+Y≦1)よりなる素子
とその製造方法に関する。
The present invention is a light emitting diode BACKGROUND OF THE emitting device such as a laser diode, or photodiode nitride semiconductor (In X Al Y used in the light-receiving device such as a
The present invention relates to an element comprising Ga 1 -XYN , 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) and a method of manufacturing the same.

【0002】[0002]

【従来の技術】窒化物半導体はそのバンドギャップエネ
ルギーが1.9eV〜6.0eVまであるので発光素
子、受光素子等の各種半導体デバイス用として注目され
ており、最近この材料を用いた青色LED、青緑色LE
Dが実用化されたばかりである。
2. Description of the Related Art Nitride semiconductors have attracted attention for various semiconductor devices such as light-emitting elements and light-receiving elements because of their band gap energies from 1.9 eV to 6.0 eV. Blue-green LE
D has just been put to practical use.

【0003】一般に窒化物半導体素子はMBE、MOV
PE等の気相成長法を用いて、基板上にn型、p型ある
いはi型等に導電型を規定した窒化物半導体を積層成長
させることによって得られる。基板には例えばサファイ
ア、スピネル、ニオブ酸リチウム、ガリウム酸ネオジウ
ム等の絶縁性基板の他、炭化ケイ素、シリコン、酸化亜
鉛、ガリウム砒素等の導電性基板が使用できることが知
られているが、窒化物半導体と完全に格子整合する基板
は未だ開発されておらず、現在のところ、格子定数が1
0%以上も異なるサファイアの上に窒化物半導体層を強
制的に成長させた青色、青緑色LED素子が実用化され
ている。
Generally, nitride semiconductor devices are MBE, MOV
It is obtained by stacking and growing a nitride semiconductor having a conductivity type defined as n-type, p-type, or i-type on a substrate by using a vapor phase growth method such as PE. It is known that, in addition to an insulating substrate such as sapphire, spinel, lithium niobate, and neodymium gallate, a conductive substrate such as silicon carbide, silicon, zinc oxide, and gallium arsenide can be used as the substrate. Substrates that are perfectly lattice-matched with semiconductors have not been developed, and currently have a lattice constant of 1
Blue and blue-green LED elements in which a nitride semiconductor layer is forcibly grown on sapphire different from 0% or more have been put to practical use.

【0004】図6は従来の青色LED素子の構造を示す
模式的な断面図である。従来のLED素子は、基本的に
サファイア基板61の上に窒化物半導体よりなるn型層
62と活性層63とp型層64とが順に積層されたダブ
ルへテロ構造を有している。前記のようにサファイアは
絶縁性であり基板側から電極を取り出すことができない
ので、同一窒化物半導体層表面に正電極65と負電極6
6とが設けられた、いわゆるフリップチップ方式の素子
とされている。
FIG. 6 is a schematic sectional view showing the structure of a conventional blue LED element. The conventional LED element basically has a double hetero structure in which an n-type layer 62 made of a nitride semiconductor, an active layer 63, and a p-type layer 64 are sequentially stacked on a sapphire substrate 61. As described above, sapphire is insulative and cannot take out the electrode from the substrate side, so that the positive electrode 65 and the negative electrode 6 are provided on the same nitride semiconductor layer surface.
6 and a so-called flip-chip type element.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、サファ
イアを基板とする従来のフリップチップ方式の素子には
数々の問題点がある。まず第一に、同一面側から両方の
電極を取り出すためチップサイズが大きくなり多数のチ
ップがウェーハから得られない。第二に、負電極と正電
極とが水平方向に並んでいるため電流が水平方向に流
れ、その結果電流密度が局部的に高くなりチップが発熱
する。第三にサファイアという非常に硬く、劈開性のな
い基板を使用しているので、チップ化するのに高度な技
術を必要とする。さらにLDを実現しようとする際には
基板の劈開性を用いた窒化物半導体の劈開面を共振面と
できないので共振面の形成が非常に困難である。
However, there are many problems in the conventional flip-chip type device using sapphire as a substrate. First, since both electrodes are taken out from the same surface side, the chip size becomes large, and a large number of chips cannot be obtained from the wafer. Second, since the negative electrode and the positive electrode are arranged in the horizontal direction, current flows in the horizontal direction. As a result, the current density locally increases, and the chip generates heat. Third, since a very hard and non-cleavable substrate called sapphire is used, a high level of technology is required to make a chip. Furthermore, when realizing an LD, it is very difficult to form a resonance surface because the cleavage surface of the nitride semiconductor using the cleavage properties of the substrate cannot be used as the resonance surface.

【0006】以上のような問題を回避するため、上記の
ように炭化ケイ素、シリコン、酸化亜鉛、ガリウム砒
素、ガリウムリン等の導電性基板の上に窒化物半導体を
成長する試みも成されているが、未だ成功したという報
告はされていない。
In order to avoid the above problems, attempts have been made to grow a nitride semiconductor on a conductive substrate such as silicon carbide, silicon, zinc oxide, gallium arsenide, gallium phosphide, etc., as described above. However, no success has been reported.

【0007】従って本発明はこのような事情を鑑み成さ
れたものであって、その目的とするところは、主として
上下より電極を取り出せる構造を有する窒化物半導体素
子の製造方法、および窒化物半導体素子を提供すること
にある。
Accordingly, the present invention has been made in view of such circumstances, and a purpose thereof is to provide a method of manufacturing a nitride semiconductor device having a structure in which electrodes can be mainly taken out from above and below, and a nitride semiconductor device. Is to provide.

【0008】[0008]

【課題を解決するための手段】本発明の窒化物半導体素
子の製造方法は、絶縁性基板の上に窒化物半導体層が成
長されたウェーハの窒化物半導体層面に導電性基板を接
着する第一の工程と、導電性基板接着後、前記ウェーハ
の絶縁性基板の一部、又は全部を除去して窒化物半導体
層を露出させる第二の工程とを備えることを特徴とす
る。また、本発明の窒化物半導体素子は導電性基板と窒
化物半導体とが接着されてなることを特徴とする。
According to the present invention, there is provided a method of manufacturing a nitride semiconductor device, comprising: bonding a conductive substrate to a nitride semiconductor layer surface of a wafer having a nitride semiconductor layer grown on an insulating substrate; And a second step of removing a part or all of the insulating substrate of the wafer and exposing the nitride semiconductor layer after bonding the conductive substrate. Further, the nitride semiconductor device of the present invention is characterized in that the conductive substrate and the nitride semiconductor are bonded.

【0009】本発明の方法において、絶縁性基板には前
記のようにサファイア、スピネル、ニオブ酸リチウム、
ガリウム酸ネオジウム等が用いられ、好ましくはサファ
イア、スピネルの上に成長された窒化物半導体が結晶性
に優れている。一方、窒化物半導体に接着する導電性基
板には、導電性を有する基板材料であればどのようなも
のでも良く、例えばSi、SiC、GaAs、GaP、
InP、ZnSe、ZnS、ZnO等を用いることがで
きる。但し、導電性基板は窒化物半導体が積層された絶
縁性基板とほぼ同じ形状を有し、さらにほぼ同じ面積
か、あるいはそれよりも大きな面積を有するウェーハ状
の基板を選択することはいうまでもない。
In the method of the present invention, sapphire, spinel, lithium niobate,
Neodymium gallate or the like is used. Preferably, a nitride semiconductor grown on sapphire or spinel has excellent crystallinity. On the other hand, the conductive substrate adhered to the nitride semiconductor may be any substrate material having conductivity, such as Si, SiC, GaAs, GaP, and the like.
InP, ZnSe, ZnS, ZnO, or the like can be used. However, the conductive substrate has substantially the same shape as the insulating substrate on which the nitride semiconductor is laminated, and it is needless to say that a wafer-like substrate having substantially the same area or a larger area is selected. Absent.

【0010】一方、窒化物半導体層が積層されたウェー
ハの絶縁性基板を除去するには、例えば研磨、エッチン
グ等の技術を用いる。通常絶縁性基板の厚さは数百μm
あり、窒化物半導体層は厚くても20μm以下であるの
で、研磨により基板を除去する際に研磨厚が制御しにく
い場合は、最初研磨で大まかな部分を除去し、その後エ
ッチングで細かい部分を除去して、電極を形成するのに
必要とする窒化物半導体面を露出させても良い。また例
えばレーザ素子のように絶縁物を電流狭窄層として窒化
物半導体層表面に必要とする素子を作製する場合には、
絶縁性基板全てを除去せずに、選択エッチングにより窒
化物半導体層を露出させるのに必要な部分のみを除去す
ることも可能である。
On the other hand, in order to remove the insulating substrate of the wafer on which the nitride semiconductor layers are stacked, for example, techniques such as polishing and etching are used. Usually the thickness of the insulating substrate is several hundred μm
Yes, since the nitride semiconductor layer is at most 20 μm in thickness, if the polishing thickness is difficult to control when removing the substrate by polishing, the rough portion is first removed by polishing, and then the fine portion is removed by etching. Then, a nitride semiconductor surface required for forming an electrode may be exposed. Further, for example, when manufacturing an element such as a laser element that requires an insulator as a current confinement layer on the surface of the nitride semiconductor layer,
Instead of removing the entire insulating substrate, it is also possible to remove only a portion necessary for exposing the nitride semiconductor layer by selective etching.

【0011】さらに本発明の方法及び素子において、窒
化物半導体層に接着する導電性基板は劈開性を有するこ
とを特徴とする。この劈開性を有する導電性基板には、
例えばGaAs、GaP、InP、SiC等を好ましく
用いることができる。
Further, in the method and the device according to the present invention, the conductive substrate adhered to the nitride semiconductor layer has a cleavage property. In this conductive substrate having cleavage,
For example, GaAs, GaP, InP, SiC and the like can be preferably used.

【0012】次に本発明の方法及び素子は窒化物半導体
層面と導電性基板とを電極、又は導電性材料を介して接
着することを特徴とする。この方法は導電性基板に劈開
性のある基板を使用しても同様に適用可能である。接着
する方法には、導電性基板の接着面と、窒化物半導体層
面とを鏡面として、それら鏡面同士を張り合わせた後、
熱圧着するいわゆるウェーハ接着の手法を用いてもよい
が、電極又は導電性材料を介することにより簡単に接着
することができる。導電性材料は窒化物半導体と導電性
基板を接着できる材料であればどのようなものでも良
く、例えばIn、Au、ハンダ、銀ペースト等の材料を
使用することができる。
Next, the method and the device according to the present invention are characterized in that the surface of the nitride semiconductor layer and the conductive substrate are bonded via an electrode or a conductive material. This method can be similarly applied even if a cleavage substrate is used as the conductive substrate. The bonding method includes, as a mirror surface, the bonding surface of the conductive substrate and the nitride semiconductor layer surface, and after bonding these mirror surfaces together,
Although a so-called wafer bonding method of thermocompression bonding may be used, bonding can be easily performed via an electrode or a conductive material. The conductive material may be any material as long as it can bond the nitride semiconductor and the conductive substrate. For example, materials such as In, Au, solder, and silver paste can be used.

【0013】また前記接着手法において、電極は窒化物
半導体層表面に形成されたオーミック電極及び/又は導
電性基板表面に形成されたオーミック電極を含むことを
特徴とする。なお、オーミック電極とは、一般に窒化物
半導体表面に形成される膜厚の薄いオーミック電極と、
その電極の上に付けられた膜厚の厚い接着用の金属、例
えばAu、In、Al等の金属を含んで本明細書ではオ
ーミック電極と定義する。窒化物半導体層表面に形成す
るオーミック電極材料としては、n型層が接着面であれ
ば例えば特開平5−291621号公報に示されたA
l、Cr、Ti、Inの内の少なくとも一種の材料、特
に好ましくはTiをn型層と接する側とした電極、また
特開平7−45867号公報に示されたTi−Alを含
む材料を挙げることができる。また接着面がp型層であ
れば同じく特開平5−291621号公報に示されたA
u、Pt、Ag、Niの内の少なくとも一種の材料、特
に好ましくはNiをp型層と接する側とした電極を挙げ
ることができる。
In the bonding method, the electrode includes an ohmic electrode formed on the surface of the nitride semiconductor layer and / or an ohmic electrode formed on the surface of the conductive substrate. Note that an ohmic electrode is generally a thin ohmic electrode formed on a nitride semiconductor surface,
In this specification, an ohmic electrode is defined as including a thick metal for adhesion, for example, a metal such as Au, In, or Al, which is provided on the electrode. As the ohmic electrode material formed on the surface of the nitride semiconductor layer, if the n-type layer is an adhesive surface, for example, A described in JP-A-5-291621
At least one of l, Cr, Ti, and In, particularly preferably an electrode having Ti in contact with the n-type layer, and a material containing Ti-Al disclosed in JP-A-7-45867. be able to. Also, if the bonding surface is a p-type layer, A
An electrode having at least one material selected from u, Pt, Ag, and Ni, particularly preferably Ni on the side in contact with the p-type layer can be given.

【0014】窒化物半導体はp型層が得られにくく、p
型層を得るため例えば特開平3−218625号公報に
開示されるような電子線照射、また特開平5−1831
89号公報に開示されるような熱的アニーリング処理が
成長後に行われ、最表面のp型層が低抵抗化される。こ
のため窒化物半導体ウェーハは最上層がp型層になって
いることが多い。そこで、この窒化物半導体ウェーハと
導電性基板を接着する際には、p型層に形成されたオー
ミック電極を介してp型の導電性基板とを接着すること
が特に望ましい。
In the nitride semiconductor, it is difficult to obtain a p-type layer.
In order to obtain a mold layer, for example, electron beam irradiation as disclosed in JP-A-3-218625 or JP-A-5-1831
No. 89, a thermal annealing treatment is performed after the growth to reduce the resistance of the outermost p-type layer. For this reason, in many cases, the uppermost layer of the nitride semiconductor wafer is a p-type layer. Therefore, when bonding the nitride semiconductor wafer and the conductive substrate, it is particularly desirable to bond the nitride semiconductor wafer to the p-type conductive substrate via the ohmic electrode formed on the p-type layer.

【0015】一方、もう片方の接着面の導電性基板に形
成するオーミック電極としては例えば導電性基板がn型
GaAsであれば、Ag−Sn、In−Sn、Ni−S
n、Au−Sn、Au−Si、Au−Ge等を用いるこ
とができ、p型GaAsであれば、Au−Zn、Ag−
Zn、Ag−In等を用いることができる。その他Si
C、Si等についても公知のオーミック電極材料を用い
ることができるが前記のようにp型の導電性基板をその
導電性基板のオーミック電極を介して接着することが特
に望ましい。
On the other hand, as the ohmic electrode formed on the other conductive substrate on the bonding surface, for example, when the conductive substrate is n-type GaAs, Ag-Sn, In-Sn, Ni-S
n, Au-Sn, Au-Si, Au-Ge, or the like can be used. In the case of p-type GaAs, Au-Zn, Ag-
Zn, Ag-In, or the like can be used. Other Si
Known ohmic electrode materials can be used for C, Si and the like, but it is particularly desirable to bond a p-type conductive substrate through the ohmic electrode of the conductive substrate as described above.

【0016】[0016]

【作用】本発明の方法及び素子では窒化物半導体層に導
電性基板を接着している。つまり、窒化物半導体が絶縁
性基板の上に成長されたウェーハでは、窒化物半導体よ
り得られる各種素子はフリップチップ形式とならざるを
得ないが、導電性基板をウェーハ最上層の窒化物半導体
層に接着することにより、導電性基板が電極を形成する
基板となる。その後、絶縁性基板を除去すると窒化物半
導体層が露出するので、露出した窒化物半導体層面にも
う一方の電極を形成することができ、従来のような電極
が水平方向に並んだ素子ではなく、互いの電極が対向し
た素子を作製することができる。
According to the method and device of the present invention, a conductive substrate is bonded to a nitride semiconductor layer. In other words, in the case of a wafer on which a nitride semiconductor is grown on an insulating substrate, various elements obtained from the nitride semiconductor must be of a flip-chip type. The conductive substrate becomes a substrate on which electrodes are formed by bonding to the substrate. After that, when the insulating substrate is removed, the nitride semiconductor layer is exposed, so that another electrode can be formed on the exposed nitride semiconductor layer surface, and is not a conventional element in which electrodes are arranged in a horizontal direction, An element in which the electrodes face each other can be manufactured.

【0017】次に接着する導電性基板に劈開性のある材
料を選択すると、劈開性のない絶縁性基板の上に成長さ
れた窒化物半導体でも、接着された導電性基板の劈開性
を利用してチップ状に分割できる。このためチップサイ
ズの小さい素子が得られやすくなり、さらに窒化物半導
体の劈開面を光共振面とするレーザ素子が作製できるよ
うになる。
Next, if a material having a cleavage property is selected for the conductive substrate to be bonded, even if the nitride semiconductor is grown on an insulating substrate having no cleavage property, the cleavage property of the bonded conductive substrate is utilized. Can be divided into chips. Therefore, an element having a small chip size can be easily obtained, and a laser element having a cleavage plane of a nitride semiconductor as an optical resonance surface can be manufactured.

【0018】また窒化物半導体層面と導電性基板とは一
般にウェーハ接着と呼ばれる技術で接着する方法もある
が、特に窒化物半導体層の電極、若しくは導電性基板の
電極、又は導電性材料を介して接着すると導電性基板と
窒化物半導体層との間の電気的特性も安定化するため好
ましい。さらにこの導電性材料としてAu、Al、Ag
等の窒化物半導体の発光波長を反射できる材料を選択す
れば、発光素子を作製した際、これらの導電性材料が接
着した導電性基板に来る光を反射して、窒化物半導体層
の側に戻す作用があるので発光素子の発光効率が向上す
る。
There is also a method of bonding the surface of the nitride semiconductor layer and the conductive substrate by a technique generally called wafer bonding. In particular, a method of bonding via the electrode of the nitride semiconductor layer, the electrode of the conductive substrate, or the conductive material is used. Bonding is preferable because the electrical characteristics between the conductive substrate and the nitride semiconductor layer are also stabilized. Further, as the conductive material, Au, Al, Ag
If a material that can reflect the emission wavelength of the nitride semiconductor, such as, is selected, when a light emitting device is manufactured, the light coming to the conductive substrate to which these conductive materials are adhered is reflected, and the light is reflected on the side of the nitride semiconductor layer. Since there is a returning action, the luminous efficiency of the light emitting element is improved.

【0019】特に接着材料として、窒化物半導体層表面
に形成されたオーミック電極及び/又は導電性基板表面
に形成されたオーミック電極を含めば、例えば発光素子
のような発光デバイスを作製すると、抵抗値が低くなり
デバイスのVfを低下させる作用がある。
In particular, if an ohmic electrode formed on the surface of the nitride semiconductor layer and / or an ohmic electrode formed on the surface of the conductive substrate is included as an adhesive material, for example, when a light emitting device such as a light emitting device is manufactured, the resistance value is increased. To lower the Vf of the device.

【0020】[0020]

【実施例】以下、実施例で本発明を詳説する。図1乃至
図3は本発明の方法の一工程を説明するウェーハ及び導
電性基板の模式的な断面図であり、図4は実施例1によ
り得られた窒化物半導体発光素子の構造を示す模式的な
断面図であり、以下これらの図を元に実施例1を述べ
る。
The present invention will be described below in detail with reference to examples. 1 to 3 are schematic cross-sectional views of a wafer and a conductive substrate for explaining one step of the method of the present invention. FIG. 4 is a schematic view showing the structure of a nitride semiconductor light-emitting device obtained in Example 1. 1 is a schematic cross-sectional view, and a first embodiment will be described below based on these drawings.

【0021】[実施例1]サファイア基板1の表面に窒
化物半導体層2が積層されたウェーハを用意する。なお
窒化物半導体層2はサファイア基板1から順にドナー不
純物がドープされたAlXGa1-XN(0≦X≦1)より
なるn型層21と、InYGa1-YN(0<Y<1)より
なる活性層22と、アクセプター不純物がドープされた
AlXGa1-XN(0≦X≦1)よりなるp型層23とを
少なくとも有するダブルへテロ構造を有している。なお
最上層のp型層23は400℃以上のアニーリングによ
り低抵抗化されている。
Example 1 A wafer having a nitride semiconductor layer 2 laminated on the surface of a sapphire substrate 1 is prepared. The nitride semiconductor layer 2 is composed of an n-type layer 21 made of AlXGa1-XN (0 ≦ X ≦ 1) doped with a donor impurity in order from the sapphire substrate 1 and an active layer made of InYGa1-YN (0 <Y <1). 22 and a p-type layer 23 made of Al x Ga 1 -xN (0 ≦ x ≦ 1) doped with an acceptor impurity. The resistance of the uppermost p-type layer 23 is reduced by annealing at 400 ° C. or higher.

【0022】次に図1に示すように窒化物半導体層2の
表面のほぼ全面にNiとAuを含むオーミック電極30
を500オングストロームの膜厚で形成する。つまり窒
化物半導体層2の最上層のp型層のほぼ全面にp型層と
好ましいオーミックが得られる第一のオーミック電極3
0を形成する。さらにそのオーミック電極30の上にに
接着性を良くするためにAu薄膜を0.1μm形成す
る。
Next, as shown in FIG. 1, an ohmic electrode 30 containing Ni and Au is formed on almost the entire surface of the nitride semiconductor layer 2.
Is formed to a thickness of 500 angstroms. In other words, the first ohmic electrode 3 having a favorable ohmic contact with the p-type layer is provided on almost the entire surface of the uppermost p-type layer of the nitride semiconductor layer 2.
0 is formed. Further, an Au thin film having a thickness of 0.1 μm is formed on the ohmic electrode 30 to improve the adhesiveness.

【0023】一方、導電性基板として、サファイア基板
1とほぼ同じ大きさを有するp型GaAs基板50を用
意し、このp型GaAs基板50の表面にAu−Znよ
りなる第二のオーミック電極40を500オングストロ
ームの膜厚で形成する。さらにその第二のオーミック電
極40の上に接着性を良くするためにAu薄膜を0.1
μm形成する。
On the other hand, a p-type GaAs substrate 50 having substantially the same size as the sapphire substrate 1 is prepared as a conductive substrate, and a second ohmic electrode 40 made of Au-Zn is formed on the surface of the p-type GaAs substrate 50. It is formed with a thickness of 500 angstroms. Further, an Au thin film is formed on the second ohmic electrode 40 to improve the adhesiveness.
μm is formed.

【0024】次に、図2に示すように第一のオーミック
電極30を有する窒化物半導体ウェーハと、第二のオー
ミック電極40を有するp型GaAs基板50とのオー
ミック電極同士を貼り合わせ、加熱により圧着する。但
し、圧着時ウェーハのサファイア基板1とp型GaAs
基板50とは平行となるようにする。平行でないと次の
サファイア基板を除去する工程において、露出される窒
化物半導体層の水平面が出ないからである。また第一の
オーミック電極30と第二のオーミック電極40とを接
着するためにAuを使用したが、この他電極30と40
との間にインジウム、錫、ハンダ、銀ペースト等の導電
性材料を介して接着することも可能である。なおp型G
aAs基板50を接着する際に窒化物半導体層の劈開性
と、基板50との劈開方向を合わせて接着してあること
は言うまでもない。
Next, as shown in FIG. 2, the ohmic electrodes of the nitride semiconductor wafer having the first ohmic electrode 30 and the p-type GaAs substrate 50 having the second ohmic electrode 40 are bonded to each other, and heated. Crimp. However, the sapphire substrate 1 and the p-type GaAs
It should be parallel to the substrate 50. If they are not parallel, in the next step of removing the sapphire substrate, the exposed horizontal surface of the nitride semiconductor layer will not be formed. Although Au was used for bonding the first ohmic electrode 30 and the second ohmic electrode 40, other electrodes 30 and 40 were used.
It is also possible to bond between them through a conductive material such as indium, tin, solder, and silver paste. Note that p-type G
Needless to say, when the aAs substrate 50 is bonded, the cleavage property of the nitride semiconductor layer and the cleavage direction with the substrate 50 are matched.

【0025】次にp型GaAs基板50を接着したウェ
ーハを研磨器に設置し、サファイア基板1のラッピング
を行い、サファイア基板を除去して、窒化物半導体層2
のn型層21を露出させる。なおこの工程において、例
えばサファイア基板1を数μm程度の厚さが残るように
ラッピングした後、さらに残ったサファイア基板をエッ
チングにより除去することも可能である。サファイア基
板1除去後のウェーハの構造を図3に示す。
Next, the wafer to which the p-type GaAs substrate 50 is bonded is set on a polishing machine, the sapphire substrate 1 is wrapped, the sapphire substrate is removed, and the nitride semiconductor layer 2 is removed.
The n-type layer 21 is exposed. In this step, for example, after sapphire substrate 1 is wrapped so as to have a thickness of about several μm, it is also possible to remove the remaining sapphire substrate by etching. FIG. 3 shows the structure of the wafer after the sapphire substrate 1 has been removed.

【0026】最後に露出したn型層21の表面をポリシ
ングした後、n型層にオーミック用の電極としてTi−
Alよりなる負電極25を形成し、一方p型GaAs基
板50には同じくオーミック電極としてAu−Znより
なる正電極55を全面に形成する。
After polishing the surface of the finally exposed n-type layer 21, the n-type layer is made of Ti-
A negative electrode 25 made of Al is formed, while a positive electrode 55 made of Au-Zn is also formed on the entire surface of the p-type GaAs substrate 50 as an ohmic electrode.

【0027】以上のようにして正電極および負電極が形
成されたウェーハを、p型GaAs基板の劈開性を利用
して200μm角の発光チップに分離する。分離後の発
光チップの構造を示す模式的な断面図を図4に示す。こ
の発光チップは電極25と55間に通電することによ
り、活性層22が発光するLED素子の構造を示してい
る。この発光素子は活性層22の発光が第一のオーミッ
ク電極30とp型層23との界面で反射され、p型Ga
As基板50に吸収されることがないので、従来の発光
素子に比べて発光出力が50%以上増大した。
The wafer on which the positive electrode and the negative electrode are formed as described above is separated into 200 μm square light emitting chips by utilizing the cleavage of the p-type GaAs substrate. FIG. 4 is a schematic cross-sectional view showing the structure of the light emitting chip after separation. This light emitting chip shows the structure of an LED element in which the active layer 22 emits light when electricity is passed between the electrodes 25 and 55. In this light-emitting element, light emitted from the active layer 22 is reflected at the interface between the first ohmic electrode 30 and the p-type layer 23, and the p-type Ga
Since the light was not absorbed by the As substrate 50, the light emission output was increased by 50% or more as compared with the conventional light emitting device.

【0028】またこの例は絶縁性基板がサファイア、導
電性基板がp型GaAsについて説明したが、絶縁性基
板にはサファイアの他に例えば前記したスピネル、ネオ
ジウムガレートのような絶縁性基板を用いても良く、ま
た導電性基板にはSi、ZnOのような基板を用いても
良い。
In this example, sapphire is used as the insulating substrate and p-type GaAs is used as the conductive substrate. However, in addition to sapphire, an insulating substrate such as spinel or neodymium gallate described above may be used. Alternatively, a substrate such as Si or ZnO may be used as the conductive substrate.

【0029】[実施例2]実施例1においてサファイア
基板1をラッピングする際、サファイア基板1が5μm
の膜厚で残るようにラッピングする。次に残ったサファ
イア基板1の表面に電流狭窄層が形成できるような形状
のマスクを形成し、エッチング装置でマスク開口部のサ
ファイア基板1をエッチングにより除去し、n型層21
の一部を露出させる。露出後同様にしてn型層に負電極
25とp型GaAs基板50に正電極55を形成する。
[Embodiment 2] When lapping the sapphire substrate 1 in the embodiment 1, the sapphire substrate 1
Lapping so that the film thickness remains. Next, a mask having a shape such that a current confinement layer can be formed on the surface of the remaining sapphire substrate 1 is formed, and the sapphire substrate 1 at the mask opening is removed by etching with an etching apparatus.
Expose part of After the exposure, a negative electrode 25 is formed on the n-type layer and a positive electrode 55 is formed on the p-type GaAs substrate 50 in the same manner.

【0030】次にp型GaAs基板50の劈開性を用い
て、チップ状に分離してレーザ素子とする。図5はその
レーザ素子の構造を示す模式的な断面図であり、故意に
残したサファイア基板1がレーザ素子の電流狭窄層とし
て作用している。この例は電流狭窄層としてサファイア
基板を残す例を示したが、この他にレーザ素子の電流狭
窄層を形成するには実施例1のようにサファイア基板1
を全部除去してから、例えばSiO2、TiO2のような
絶縁膜を露出した窒化物半導体層の上に形成しても良
い。
Next, using the cleavage properties of the p-type GaAs substrate 50, it is separated into chips to form a laser device. FIG. 5 is a schematic sectional view showing the structure of the laser device, and the sapphire substrate 1 left intentionally acts as a current confinement layer of the laser device. This example shows an example in which a sapphire substrate is left as a current confinement layer. However, in order to form a current confinement layer for a laser device, a sapphire substrate 1 is used as in the first embodiment.
May be formed on the exposed nitride semiconductor layer, for example, an insulating film such as SiO 2 or TiO 2 .

【0031】[0031]

【発明の効果】以上説明したように、本発明の方法によ
ると導電性基板を有する窒化物半導体素子が実現できる
ので、チップサイズの小さい素子を提供することができ
る。また素子に形成した電極同士が対向しているので、
電流が窒化物半導体層に均一に流れ発熱量が小さくな
り、レーザ素子を実現することも可能となる。さらに容
易に窒化物半導体の劈開が可能となり、その劈開面を共
振器とできるためレーザ素子の作製が容易となる。さら
にまた発光デバイスを実現すると、窒化物半導体層と導
電性基板とを接着した電極により、窒化物半導体層の発
光が電極表面で反射されるので発光出力も増大させるこ
とができる。
As described above, according to the method of the present invention, a nitride semiconductor device having a conductive substrate can be realized, so that a device having a small chip size can be provided. Also, since the electrodes formed on the element are facing each other,
The current flows evenly in the nitride semiconductor layer, the amount of heat generation is reduced, and a laser element can be realized. Further, the nitride semiconductor can be easily cleaved, and the cleaved surface can be used as a resonator, thereby facilitating the manufacture of a laser device. Furthermore, when a light emitting device is realized, the light emission of the nitride semiconductor layer is reflected on the electrode surface by the electrode in which the nitride semiconductor layer and the conductive substrate are bonded, so that the light emission output can be increased.

【0032】従来の窒化物半導体LEDは図6に示すよ
うにp型層64の表面のほぼ全面に光を透過する正電極
65が形成されていた。これはp型層の電流が広がりに
くいことによる。この正電極65により発光する光の5
0%以上が吸収されていた。しかし本発明の素子による
と図4および図5に示すように低抵抗なn型層21が最
上層となるので、従来のように全面電極を設ける必要が
なくなり、小さな部分電極でよい。従って窒化物半導体
層側からの光の取り出し効率が飛躍的に向上し発光出力
が向上する。このように本発明は窒化物半導体を用いた
デバイスを実現する上で産業上の利用価値は非常に大き
い。
As shown in FIG. 6, in the conventional nitride semiconductor LED, a positive electrode 65 for transmitting light is formed on almost the entire surface of the p-type layer 64. This is because the current in the p-type layer is difficult to spread. 5 of the light emitted by the positive electrode 65
0% or more had been absorbed. However, according to the device of the present invention, the low-resistance n-type layer 21 is the uppermost layer as shown in FIGS. Therefore, the light extraction efficiency from the nitride semiconductor layer side is dramatically improved, and the light emission output is improved. As described above, the present invention has a great industrial value in realizing a device using a nitride semiconductor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の方法の一工程を説明する窒化物半導
体ウェーハの模式断面図。
FIG. 1 is a schematic sectional view of a nitride semiconductor wafer for explaining one step of the method of the present invention.

【図2】 本発明の方法の一工程を説明する窒化物半導
体ウェーハの模式断面図。
FIG. 2 is a schematic cross-sectional view of a nitride semiconductor wafer illustrating one step of the method of the present invention.

【図3】 本発明の方法の一工程を説明する窒化物半導
体ウェーハの模式断面図。
FIG. 3 is a schematic sectional view of a nitride semiconductor wafer for explaining one step of the method of the present invention.

【図4】 本発明の一実施例に係る窒化物半導体素子の
構造を示す模式断面図。
FIG. 4 is a schematic sectional view showing the structure of a nitride semiconductor device according to one embodiment of the present invention.

【図5】 本発明の他の実施例に係る窒化物半導体素子
の構造を示す模式断面図。
FIG. 5 is a schematic sectional view showing a structure of a nitride semiconductor device according to another embodiment of the present invention.

【図6】 従来の窒化物半導体発光素子の構造を示す模
式断面図。
FIG. 6 is a schematic sectional view showing the structure of a conventional nitride semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1・・・・サファイア基板 2・・・・窒化物半導体層 21・・・・n型層 22・・・・活性層 23・・・・p型層 30・・・・第一のオーミック電極 40・・・・第二のオーミック電極 50・・・・p型GaAs基板 25・・・・負電極 55・・・・正電極 1 sapphire substrate 2 nitride semiconductor layer 21 n-type layer 22 active layer 23 p-type layer 30 first ohmic electrode 40 ... Second ohmic electrode 50... P-type GaAs substrate 25... Negative electrode 55.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 H01L 21/02 H01L 33/00 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01S 5/00-5/50 H01L 21/02 H01L 33/00 JICST file (JOIS)

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁性基板の上に窒化物半導体層が成長
されたウェーハの窒化物半導体層面に、劈開性を有する
導電性基板を接着する第一の工程と、導電性基板接着
後、前記ウェーハの絶縁性基板の一部、又は全部を除去
して窒化物半導体層を露出させる第二の工程と、導電性
基板の劈開性を利用してウェーハを分割する工程とを備
えることを特徴とする窒化物半導体素子の製造方法。
A first step of bonding a conductive substrate having a cleavage to a nitride semiconductor layer surface of a wafer on which a nitride semiconductor layer is grown on an insulating substrate; and A second step of exposing the nitride semiconductor layer by removing a part or all of the insulating substrate of the wafer, and a step of dividing the wafer by utilizing the cleavage of the conductive substrate, Of manufacturing a nitride semiconductor device.
【請求項2】 前記第一の工程において、窒化物半導体
層面と導電性基板とを電極、又は導電性材料を介して接
着することを特徴とする請求項1に記載の窒化物半導体
素子の製造方法。
2. The method of manufacturing a nitride semiconductor device according to claim 1, wherein, in the first step, the surface of the nitride semiconductor layer and the conductive substrate are bonded via an electrode or a conductive material. Method.
【請求項3】 前記電極が窒化物半導体層表面に形成さ
れたオーミック電極及び/又は導電性基板表面に形成さ
れたオーミック電極を含むことを特徴とする請求項2に
記載の窒化物半導体素子の製造方法。
3. The nitride semiconductor device according to claim 2, wherein the electrodes include an ohmic electrode formed on the surface of the nitride semiconductor layer and / or an ohmic electrode formed on the surface of the conductive substrate. Production method.
【請求項4】 窒化物半導体と導電性基板とが接着さ
れ、該導電性基板の劈開により得られた窒化物半導体の
劈開面を有することを特徴とする窒化物半導体素子。
4. A nitride semiconductor device comprising a nitride semiconductor and a conductive substrate bonded to each other and having a cleavage surface of the nitride semiconductor obtained by cleavage of the conductive substrate.
【請求項5】 上下より電極が取り出せる構造を有する
ことを特徴とする請求項4に記載の窒化物半導体素子。
5. The nitride semiconductor device according to claim 4, wherein the nitride semiconductor device has a structure in which electrodes can be taken out from above and below.
【請求項6】 前記導電性基板と前記窒化物半導体発光
素子とが電極、又は導電性材料を介して接着されている
ことを特徴とする請求項4、又は請求項5に記載の窒化
物半導体素子。
6. The nitride semiconductor according to claim 4, wherein the conductive substrate and the nitride semiconductor light emitting device are bonded via an electrode or a conductive material. element.
【請求項7】 前記電極が窒化物半導体層表面に形成さ
れたオーミック電極及び/又は導電性基板表面に形成さ
れたオーミック電極を含むことを特徴とする請求項6に
記載の窒化物半導体素子。
7. The nitride semiconductor device according to claim 6, wherein the electrode includes an ohmic electrode formed on the surface of the nitride semiconductor layer and / or an ohmic electrode formed on the surface of the conductive substrate.
【請求項8】請求項4乃至7記載の窒化物半導体素子
が、共振面を有する窒化物半導体レーザ素子であって、
前記窒化物半導体の劈開面を共振面とすることを特徴と
する窒化物半導体レーザ素子。
8. A nitride semiconductor laser device according to claim 4, wherein the nitride semiconductor device has a resonance surface.
A nitride semiconductor laser device, wherein a cleavage plane of the nitride semiconductor is a resonance plane.
【請求項9】 窒化物半導体層を成長させた絶縁性基板
の一部が除去されて、電流狭窄層として窒化物半導体層
に設けられていることを特徴とする請求項8に記載の窒
化物半導体レーザ素子。
9. The nitride according to claim 8, wherein a part of the insulating substrate on which the nitride semiconductor layer has been grown is removed, and the nitride semiconductor layer is provided as a current confinement layer. Semiconductor laser device.
JP14847095A 1995-06-15 1995-06-15 Method for manufacturing nitride semiconductor device and nitride semiconductor device Expired - Fee Related JP3259811B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14847095A JP3259811B2 (en) 1995-06-15 1995-06-15 Method for manufacturing nitride semiconductor device and nitride semiconductor device
JP2000067673A JP3511970B2 (en) 1995-06-15 2000-03-10 Nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14847095A JP3259811B2 (en) 1995-06-15 1995-06-15 Method for manufacturing nitride semiconductor device and nitride semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000067673A Division JP3511970B2 (en) 1995-06-15 2000-03-10 Nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH098403A JPH098403A (en) 1997-01-10
JP3259811B2 true JP3259811B2 (en) 2002-02-25

Family

ID=15453473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14847095A Expired - Fee Related JP3259811B2 (en) 1995-06-15 1995-06-15 Method for manufacturing nitride semiconductor device and nitride semiconductor device

Country Status (1)

Country Link
JP (1) JP3259811B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847455B2 (en) 2002-04-09 2017-12-19 Lg Innotek Co., Ltd. Vertical topology light emitting device

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3736181B2 (en) * 1998-05-13 2006-01-18 豊田合成株式会社 Group III nitride compound semiconductor light emitting device
US6936859B1 (en) 1998-05-13 2005-08-30 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
US6319742B1 (en) 1998-07-29 2001-11-20 Sanyo Electric Co., Ltd. Method of forming nitride based semiconductor layer
US20010042866A1 (en) * 1999-02-05 2001-11-22 Carrie Carter Coman Inxalygazn optical emitters fabricated via substrate removal
JP4501225B2 (en) * 2000-02-21 2010-07-14 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
DE10051465A1 (en) * 2000-10-17 2002-05-02 Osram Opto Semiconductors Gmbh Method for producing a GaN-based semiconductor component
TWI292227B (en) 2000-05-26 2008-01-01 Osram Opto Semiconductors Gmbh Light-emitting-dioed-chip with a light-emitting-epitaxy-layer-series based on gan
EP1437776B1 (en) 2001-10-12 2011-09-21 Nichia Corporation Light emitting device and method for manufacture thereof
US6744071B2 (en) 2002-01-28 2004-06-01 Nichia Corporation Nitride semiconductor element with a supporting substrate
JP4015865B2 (en) * 2002-03-22 2007-11-28 松下電器産業株式会社 Manufacturing method of semiconductor device
US20030189215A1 (en) 2002-04-09 2003-10-09 Jong-Lam Lee Method of fabricating vertical structure leds
US6841802B2 (en) 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
KR101030068B1 (en) 2002-07-08 2011-04-19 니치아 카가쿠 고교 가부시키가이샤 Method of Manufacturing Nitride Semiconductor Device and Nitride Semiconductor Device
DE10245628A1 (en) * 2002-09-30 2004-04-15 Osram Opto Semiconductors Gmbh Light-emitting semiconductor chip includes mirror layer with planar reflection surfaces inclined at acute angle with respect to main plane of beam production region
KR100495215B1 (en) 2002-12-27 2005-06-14 삼성전기주식회사 VERTICAL GaN LIGHT EMITTING DIODE AND METHOD OF PRODUCING THE SAME
JP2004266039A (en) * 2003-02-28 2004-09-24 Shin Etsu Handotai Co Ltd Light emitting device and manufacturing method thereof
US7083993B2 (en) 2003-04-15 2006-08-01 Luminus Devices, Inc. Methods of making multi-layer light emitting devices
JP4543621B2 (en) * 2003-04-24 2010-09-15 日亜化学工業株式会社 Nitride semiconductor device and method for manufacturing nitride semiconductor device
JP4766845B2 (en) 2003-07-25 2011-09-07 シャープ株式会社 Nitride-based compound semiconductor light-emitting device and method for manufacturing the same
KR101156146B1 (en) 2003-12-09 2012-06-18 재팬 사이언스 앤드 테크놀로지 에이젼시 Highly efficient group-iii nitride based light emitting diodes via fabrication of structures on an n-face surface
JP2005223165A (en) 2004-02-06 2005-08-18 Sanyo Electric Co Ltd Nitride-based light emitting element
JP4868709B2 (en) * 2004-03-09 2012-02-01 三洋電機株式会社 Light emitting element
JP4505794B2 (en) * 2004-03-10 2010-07-21 信越半導体株式会社 Method for manufacturing light emitting device
JP4368225B2 (en) 2004-03-10 2009-11-18 三洋電機株式会社 Method for manufacturing nitride-based semiconductor light-emitting device
DE102005016592A1 (en) * 2004-04-14 2005-11-24 Osram Opto Semiconductors Gmbh LED chip
JP5041653B2 (en) * 2004-04-21 2012-10-03 シャープ株式会社 Nitride semiconductor light emitting device and manufacturing method thereof
CN101366121B (en) * 2004-04-28 2011-05-04 沃提科尔公司 Vertical structure semiconductor devices
JP4597796B2 (en) * 2004-07-08 2010-12-15 シャープ株式会社 Nitride-based compound semiconductor light-emitting device and method for manufacturing the same
TWI266435B (en) 2004-07-08 2006-11-11 Sharp Kk Nitride-based compound semiconductor light emitting device and fabricating method thereof
JP2006073619A (en) * 2004-08-31 2006-03-16 Sharp Corp Nitride based compound semiconductor light emitting diode
JP4371956B2 (en) 2004-09-02 2009-11-25 シャープ株式会社 Nitride-based compound semiconductor light-emitting device and method for manufacturing the same
JP2006165070A (en) * 2004-12-02 2006-06-22 Mitsubishi Cable Ind Ltd Manufacturing method of nitride semiconductor crystal
CN100449806C (en) * 2005-04-12 2009-01-07 夏普株式会社 Nitride-based semiconductor light emitting device and manufacturing method thereof
JP4950557B2 (en) 2005-05-31 2012-06-13 三洋電機株式会社 Semiconductor light emitting device
KR100720101B1 (en) * 2005-08-09 2007-05-18 삼성전자주식회사 Top-emitting Light Emitting Devices Using Nano-structured Multifunctional Ohmic Contact Layer And Method Of Manufacturing Thereof
WO2007032546A1 (en) * 2005-09-16 2007-03-22 Showa Denko K.K. Production method for nitride semiconductor light emitting device
JP2007081312A (en) * 2005-09-16 2007-03-29 Showa Denko Kk Method of manufacturing nitride-based semiconductor light-emitting element
US7687811B2 (en) * 2006-03-21 2010-03-30 Lg Electronics Inc. Vertical light emitting device having a photonic crystal structure
JP2008091862A (en) 2006-09-08 2008-04-17 Sharp Corp Nitride semiconductor light emitting device, and manufacturing method of nitride semiconductor light emitting device
JP2008117824A (en) 2006-11-01 2008-05-22 Sharp Corp Method of manufacturing nitride-based semiconductor element
JP2008130799A (en) 2006-11-21 2008-06-05 Sharp Corp Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element
US8878245B2 (en) 2006-11-30 2014-11-04 Cree, Inc. Transistors and method for making ohmic contact to transistors
JP2007184644A (en) * 2007-04-02 2007-07-19 Matsushita Electric Ind Co Ltd Semiconductor device and method of manufacturing same
DE102007022947B4 (en) 2007-04-26 2022-05-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor body and method for producing such
JP2009105123A (en) * 2007-10-22 2009-05-14 Showa Denko Kk Light-emitting diode, and manufacturing method thereof
US8368100B2 (en) 2007-11-14 2013-02-05 Cree, Inc. Semiconductor light emitting diodes having reflective structures and methods of fabricating same
US9634191B2 (en) 2007-11-14 2017-04-25 Cree, Inc. Wire bond free wafer level LED
JP2010177464A (en) * 2009-01-29 2010-08-12 Sumitomo Electric Ind Ltd Method for manufacturing electronic device
US8741715B2 (en) 2009-04-29 2014-06-03 Cree, Inc. Gate electrodes for millimeter-wave operation and methods of fabrication
JP2009272656A (en) * 2009-08-20 2009-11-19 Sumitomo Electric Ind Ltd Semiconductor light-emitting element, and manufacturing method thereof
FR2963985A1 (en) * 2010-08-18 2012-02-24 St Microelectronics Tours Sas Gallium nitride vertical Schottky diode, has heavily doped p-type and n-type gallium nitride guard rings respectively provided at peripheries of electrode and lightly doped layer, where electrode is arranged on lightly doped layer
JP5023229B1 (en) * 2011-04-27 2012-09-12 株式会社東芝 Manufacturing method of semiconductor light emitting device
USD826871S1 (en) 2014-12-11 2018-08-28 Cree, Inc. Light emitting diode device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847455B2 (en) 2002-04-09 2017-12-19 Lg Innotek Co., Ltd. Vertical topology light emitting device
US10147847B2 (en) 2002-04-09 2018-12-04 Lg Innotek Co., Ltd. Vertical topology light emitting device
US10453998B2 (en) 2002-04-09 2019-10-22 Lg Innotek Co. Ltd. Vertical topology light emitting device
US10644200B2 (en) 2002-04-09 2020-05-05 Lg Innotek Co., Ltd. Vertical topology light emitting device

Also Published As

Publication number Publication date
JPH098403A (en) 1997-01-10

Similar Documents

Publication Publication Date Title
JP3259811B2 (en) Method for manufacturing nitride semiconductor device and nitride semiconductor device
JP3511970B2 (en) Nitride semiconductor light emitting device
US20180012929A1 (en) Light-emitting device and manufacturing method thereof
US6838704B2 (en) Light emitting diode and method of making the same
TWI399865B (en) Allngap led having reduced temperature dependence
US6462358B1 (en) Light emitting diode and method for manufacturing the same
US7439551B2 (en) Nitride-based compound semiconductor light emitting device
US7554124B2 (en) Nitride-based compound semiconductor light emitting device, structural unit thereof, and fabricating method thereof
JP5496104B2 (en) Contact for semiconductor light emitting devices
US7348601B2 (en) Nitride-based compound semiconductor light emitting device
JP4597796B2 (en) Nitride-based compound semiconductor light-emitting device and method for manufacturing the same
JP2004363532A (en) Manufacturing method for vertically structured gallium nitride light emitting diode
JP2001339100A (en) Light emitting element and its manufacturing method
JP2019207925A (en) Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element
JPH10173224A (en) Compound semiconductor light emitting element and its manufacture
JP3767863B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2836685B2 (en) Method for manufacturing p-type gallium nitride-based compound semiconductor
JP4371714B2 (en) Nitride semiconductor laser device
JP5221166B2 (en) ZnO-based semiconductor element, manufacturing method thereof, and optical semiconductor element
TW201212283A (en) Light-emitting diode, light-emitting diode lamp, and lighting equipment
JP4570683B2 (en) Nitride compound semiconductor light emitting device manufacturing method
KR100564303B1 (en) Light emitting diode and fabrication method thereof
JP3495853B2 (en) Nitride semiconductor laser
JP4288947B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP3620498B2 (en) Nitride semiconductor laser device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees