JP3234585B2 - Differential measurement of peracetic acid and hydrogen peroxide - Google Patents

Differential measurement of peracetic acid and hydrogen peroxide

Info

Publication number
JP3234585B2
JP3234585B2 JP18604299A JP18604299A JP3234585B2 JP 3234585 B2 JP3234585 B2 JP 3234585B2 JP 18604299 A JP18604299 A JP 18604299A JP 18604299 A JP18604299 A JP 18604299A JP 3234585 B2 JP3234585 B2 JP 3234585B2
Authority
JP
Japan
Prior art keywords
peracetic acid
hydrogen peroxide
electrode
measuring
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18604299A
Other languages
Japanese (ja)
Other versions
JP2001013102A (en
Inventor
格図 朝
Original Assignee
理工協産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理工協産株式会社 filed Critical 理工協産株式会社
Priority to JP18604299A priority Critical patent/JP3234585B2/en
Publication of JP2001013102A publication Critical patent/JP2001013102A/en
Application granted granted Critical
Publication of JP3234585B2 publication Critical patent/JP3234585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気化学センサーを用
いた過酢酸の測定法及び過酢酸と過酸化水素との分別測
定法に関する。更に詳細には、付加試薬を必要とせず、
瞬時に過酢酸の測定並びに過酢酸と過酸化水素の分別測
定を可能にした電気化学センサーを用いた測定法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring peracetic acid using an electrochemical sensor and a method for separating peracetic acid from hydrogen peroxide. More specifically, without the need for additional reagents,
The present invention relates to a measurement method using an electrochemical sensor which enables instantaneous measurement of peracetic acid and separation measurement of peracetic acid and hydrogen peroxide.

【0002】[0002]

【従来の技術】医療、食品業界において、殺菌剤として
過酢酸が広く使用されている。過酢酸は、古くから殺菌
剤として用いられている過酸化水素に比べ、殺菌力がは
るかに優れている。更に従来から殺菌剤として知られる
次亜塩素酸ナトリウムに比べ、機械の材質、自然環境に
対する負担が遥かに低い。外国、特にアメリカでは、過
酢酸が次亜塩素酸ナトリウムに取って代わる殺菌剤とし
て盛んに使用されている。近年日本国内でも殺菌剤とし
て過酢酸を使用するようになり、その使用量は急スピー
ドで年々増えつつある。
2. Description of the Related Art In the medical and food industries, peracetic acid is widely used as a bactericide. Peracetic acid has much better bactericidal activity than hydrogen peroxide, which has long been used as a bactericide. Furthermore, the burden on the material of the machine and the natural environment is much lower than that of sodium hypochlorite conventionally known as a disinfectant. In foreign countries, especially in the United States, peracetic acid is widely used as a disinfectant to replace sodium hypochlorite. In recent years, peracetic acid has been used as a bactericide in Japan, and its use has been increasing rapidly every year.

【0003】殺菌剤用の過酢酸は、通常、過酸化水素と
酢酸とから下記式
[0003] Peracetic acid for a fungicide is usually prepared by the following formula from hydrogen peroxide and acetic acid.

【化1】 で表される反応式により合成されているため、市販され
ている過酢酸は、過酢酸、過酸化水素、酢酸等の混合水
溶液である。このような混合水溶液の形態にある過酢酸
の濃度管理は重要である。過酢酸の濃度測定は、ヨウ素
適定法(特開平6−130051号公報)、分光法等の
バッチ方式の分析法、あるいは電気伝導度法(特表平6
−503162号公報、実開平6−7057号公報、特
開平9−127053号公報等)によって行なわれてい
る。バッチ方式の分析法は、付加試薬を必要とし、濃度
をその場で瞬時に連続的に測定することが困難であり、
また、従来の電気伝導度法は、過酢酸を含む混合水溶液
のトータル的な電気伝導度を見ているため、溶液に含ま
れている過酢酸、過酸化水素等の実際の濃度を分別して
測定することができない。従って、従来の分析法は、過
酢酸、過酸化水素等の濃度管理を正確にまた的確に行う
上で十分に満足し得るものではない。
Embedded image Since it is synthesized by the reaction formula represented by the following formula, commercially available peracetic acid is a mixed aqueous solution of peracetic acid, hydrogen peroxide, acetic acid, and the like. It is important to control the concentration of peracetic acid in the form of such a mixed aqueous solution. The concentration of peracetic acid is measured by an iodine titration method (Japanese Patent Application Laid-Open No. 6-130051), a batch analysis method such as a spectroscopic method, or an electric conductivity method (Japanese Patent Application Laid-Open No.
503162, JP-A-6-7057, JP-A-9-127053, etc.). The batch-type analysis method requires an additional reagent, and it is difficult to measure the concentration instantaneously and continuously on the spot.
In addition, since the conventional electric conductivity method monitors the total electric conductivity of the mixed aqueous solution containing peracetic acid, the actual concentration of peracetic acid, hydrogen peroxide, etc. contained in the solution is measured separately. Can not do it. Therefore, the conventional analytical methods are not sufficiently satisfactory for accurately and accurately controlling the concentration of peracetic acid, hydrogen peroxide, and the like.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明の目的
は、電気化学センサーを用いて、過酢酸の濃度を瞬時に
連続的に測定し、また過酢酸と過酸化水素の濃度を瞬時
に連続的に同時に分別測定する方法を提供することにあ
る。
Accordingly, it is an object of the present invention to measure the concentration of peracetic acid instantaneously and continuously using an electrochemical sensor and to measure the concentration of peracetic acid and hydrogen peroxide continuously. Another object of the present invention is to provide a method for separately and separately measuring.

【0005】[0005]

【課題を解決するための手段】本発明者は、電気化学セ
ンサーを用いて、過酢酸の濃度を瞬時に連続的に測定す
ることができ、また過酢酸と過酸化水素の濃度を瞬時に
連続的に同時に分別測定できる方法を見出すことを目的
として鋭意研究した結果、過酢酸及び過酸化水素を含む
水溶液の金電極上のサイクリックボルタモグラムにおい
て、−250mV及び−750mV(vs.Ag/Ag
Cl)付近にそれぞれ過酢酸及び過酸化水素の還元反応
に帰属する一つの非可逆的な波が現れること、即ち過酢
酸及び過酸化水素のそれぞれの還元反応による限界電流
値を与えるそれぞれの検出電位が−250mV及び−7
50mV(vs.Ag/AgCl)付近に存在するこ
と、そしてこれらの検出電位は大きく離れていること、
従って検出電位における濃度と電流値との関係に基づい
て、試料中の過酢酸濃度の瞬時連続的な測定が可能であ
り、また過酢酸と過酸化水素のそれぞれの濃度を瞬時連
続的に分別測定することが可能であることを見出し本発
明を完成した。
Means for Solving the Problems The present inventor can measure the concentration of peracetic acid instantaneously and continuously using an electrochemical sensor, and can measure the concentration of peracetic acid and hydrogen peroxide continuously. For the purpose of finding a method that can simultaneously perform fractional measurement, the results of a cyclic voltammogram of an aqueous solution containing peracetic acid and hydrogen peroxide on a gold electrode were -250 mV and -750 mV (vs. Ag / Ag).
Cl), one irreversible wave appears attributable to the reduction reaction of peracetic acid and hydrogen peroxide, respectively, that is, the respective detection potentials that give the limiting current values due to the reduction reaction of peracetic acid and hydrogen peroxide, respectively. Is -250 mV and -7
Being present at around 50 mV (vs. Ag / AgCl), and their detection potentials being far apart;
Therefore, the concentration of peracetic acid in the sample can be measured instantaneously and continuously based on the relationship between the concentration at the detection potential and the current value, and the respective concentrations of peracetic acid and hydrogen peroxide can be separately measured instantaneously and continuously. It has been found that the present invention is possible.

【0006】即ち、本発明は、過酢酸及び過酸化水素を
含む試料中の過酢酸及び過酸化水素を電気化学センサー
を用いて分別測定する方法であって、過酢酸及び過酸化
水素のそれぞれの還元反応による限界電流値を与えるそ
れぞれの検出電位を、試料中の電極に対して印加して、
それぞれの電流値を測定し、得られる電流値から、予め
作成した過酢酸及び過酸化水素のそれぞれの検出電位に
おける濃度と電流値との検量線に基づいて、試料中の過
酢酸及び過酸化水素のそれぞれの濃度を測定する、過酢
酸及び過酸化水素の分別測定法である。更に、本発明
は、過酢酸を含む試料中の過酢酸を電気化学センサーを
用いて測定する方法であって、過酢酸の還元反応による
限界電流値を与える検出電位を、試料中の電極に対して
印加して、電流値を測定し、得られる電流値から、予め
作成した過酢酸の検出電位における濃度と電流値との検
量線に基づいて、試料中の過酢酸の濃度を測定する、過
酢酸の測定法である。更に、本発明は、過酢酸測定用作
用電極あるいは過酢酸測定用作用電極と過酸化水素測定
用作用電極と共に、参照電極及び補助電極を設け、更に
試料注入器、ポテンシオスタット及び電流を記録表示す
るためのコントロール器を含む、上記のいずれかの測定
法に用いるための電気化学センサーである。
That is, the present invention is a method for separately measuring peracetic acid and hydrogen peroxide in a sample containing peracetic acid and hydrogen peroxide using an electrochemical sensor. Each detection potential that gives the limiting current value by the reduction reaction is applied to the electrode in the sample,
The respective current values are measured, and from the obtained current values, the peracetic acid and hydrogen peroxide in the sample are determined based on the calibration curve of the concentration and the current value at the respective detection potentials of peracetic acid and hydrogen peroxide prepared in advance. This is a method for separately measuring peracetic acid and hydrogen peroxide by measuring the respective concentrations of Furthermore, the present invention is a method for measuring peracetic acid in a sample containing peracetic acid using an electrochemical sensor, wherein a detection potential that gives a limiting current value due to a reduction reaction of peracetic acid is applied to an electrode in the sample. To measure the concentration of peracetic acid in the sample from the obtained current value based on a previously prepared calibration curve of the concentration at the detection potential of peracetic acid and the current value. This is a method for measuring acetic acid. Further, the present invention provides a working electrode for measuring peracetic acid or a working electrode for measuring peracetic acid and a working electrode for measuring hydrogen peroxide, a reference electrode and an auxiliary electrode, and further records and displays a sample injector, a potentiostat, and a current. An electrochemical sensor for use in any of the above measurement methods, including a controller for performing the measurement.

【0007】[0007]

【発明の実施の形態】本発明では、試料中の過酢酸及び
過酸化水素を電気化学センサーを用いて測定するために
は、過酢酸及び過酸化水素のそれぞれの還元反応による
限界電流値を与えるそれぞれの検出電位を、試料中の電
極に対して印加して、それぞれの電流値を測定する。次
いで、得られる電流値から、予め各種の既知濃度の過酢
酸及び過酸化水素を用いて作成した過酢酸及び過酸化水
素のそれぞれの検出電位における濃度と電流値との検量
線に基づいて、試料中の過酢酸及び過酸化水素のそれぞ
れの濃度を決定する。本発明の測定を行うには、過酢酸
測定用作用電極、あるいは過酢酸測定用作用電極と過酸
化水素測定用作用電極と共に、参照電極及び補助電極を
設けた通常の電気化学フローセルを用いる。または、作
用電極として微小電極を用いる場合には、対極が基準電
極を兼ねることができるため、2電極式でも測定でき
る。過酢酸の濃度を測定するためには、過酢酸測定用作
用電極に、参照電極としてAg/AgClを用いた場合
には、過酢酸の還元反応の検出電位である、−150m
Vから−300mVの範囲の電位を印加し、電流値を測
定する。過酸化水素を測定する場合には、同様に参照電
極としてAg/AgClを用いた場合には、−700m
Vから−950mVの範囲の電位を過酸化水素測定用作
用電極に印加する。このように、両者の検出電位が大き
く離れているため(約700mV)、本発明では、過酢
酸と過酸化水素の分別測定が可能となる。これらの電位
範囲においては、試料中の溶存酸素(O2)の還元反応
も起こるため、過酢酸及び過酸化水素の濃度測定が影響
受けることが考えられる。しかしながら、通常の殺菌剤
に含まれる過酢酸及び過酸化水素の濃度は、それぞれ1
500〜3000ppm、5000〜15000ppm
と高いため、高濃度の過酢酸と過酸化水素の電極反応に
より生じた電流に比べ、溶存酸素により生じた電流は十
分無視できることになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, in order to measure peracetic acid and hydrogen peroxide in a sample using an electrochemical sensor, a limiting current value due to each reduction reaction of peracetic acid and hydrogen peroxide is given. Each detection potential is applied to an electrode in the sample, and each current value is measured. Next, from the obtained current value, the sample was prepared based on a calibration curve of the concentration and the current value at the respective detection potentials of peracetic acid and hydrogen peroxide prepared in advance using various known concentrations of peracetic acid and hydrogen peroxide. Determine the respective concentrations of peracetic acid and hydrogen peroxide in the solution. To carry out the measurement of the present invention, a normal electrochemical flow cell provided with a reference electrode and an auxiliary electrode together with a working electrode for measuring peracetic acid or a working electrode for measuring peracetic acid and a working electrode for measuring hydrogen peroxide is used. Alternatively, when a microelectrode is used as the working electrode, the counter electrode can also serve as a reference electrode, so that measurement can be performed even with a two-electrode system. In order to measure the concentration of peracetic acid, when Ag / AgCl is used as a reference electrode for the working electrode for measuring peracetic acid, the detection potential of the reduction reaction of peracetic acid is -150 m.
A potential ranging from V to -300 mV is applied, and the current value is measured. When measuring hydrogen peroxide, similarly, when Ag / AgCl is used as a reference electrode, -700 m
A potential ranging from V to -950 mV is applied to the working electrode for measuring hydrogen peroxide. As described above, since the two detection potentials are far apart (about 700 mV), the present invention enables the separate measurement of peracetic acid and hydrogen peroxide. In these potential ranges, the reduction reaction of dissolved oxygen (O 2 ) in the sample also occurs, so that the concentration measurement of peracetic acid and hydrogen peroxide may be affected. However, the concentration of peracetic acid and hydrogen peroxide contained in a general disinfectant is 1
500-3000ppm, 5000-15000ppm
Therefore, the current generated by dissolved oxygen is sufficiently negligible compared to the current generated by the electrode reaction between high concentrations of peracetic acid and hydrogen peroxide.

【0008】過酢酸及び過酸化水素の電極反応機構につ
いては、今のところまだはっきりしていないが、溶液の
pHの変化により、特に過酢酸のピーク電位、即ち検出
電位がシフトすることから過酢酸の電極反応にはプロト
ンが関与していることが分かる。従って、過酢酸の濃度
を精度よく測定するには、測定試料液のpHを一定に保
つことが重要である。そして、本発明のように電極反応
による過酢酸の濃度測定には、例えば酢酸緩衝液(CH
3COOH/CH3COONa、pH=4.7)中で行な
うことが最も好ましい。勿論、過酢酸と過酸化水素の両
者を含む試料中の両者の分別測定にも同様の酢酸緩衝液
を用いるのが好ましい。
Although the electrode reaction mechanism of peracetic acid and hydrogen peroxide is not yet clear at this time, the peak potential of peracetic acid, that is, the detection potential is shifted by the change of the pH of the solution, and thus the peracetic acid and hydrogen peroxide are shifted. It can be seen that protons are involved in the electrode reaction. Therefore, in order to accurately measure the concentration of peracetic acid, it is important to keep the pH of the measurement sample solution constant. For measuring the concentration of peracetic acid by the electrode reaction as in the present invention, for example, an acetate buffer (CH
Most preferably, it is carried out in 3 COOH / CH 3 COONa, pH = 4.7). Of course, it is preferable to use the same acetate buffer for the differential measurement of a sample containing both peracetic acid and hydrogen peroxide.

【0009】本発明では、過酢酸測定用作用電極あるい
は過酸化水素測定用作用電極としては、金(Au)、白
金(Pt)、カーボン(C)、チタン(Ti)等からな
る固体電極を用いるのが好ましい。また、過酢酸測定用
作用電極あるいは過酸化水素測定用作用電極として、
金、白金、カーボン、チタン等からなる電極の表面を化
学的に処理した修飾電極を用いることもできる。参照電
極(基準電極)としては、Ag/AgCl、Hg/Hg
2Cl2、Ag/Ag+等から構成される電極が好まし
い。補助電極としては、金、白金、カーボン、チタン、
ステンレス等からなる固体電極を用いるのが好ましい。
In the present invention, a solid electrode made of gold (Au), platinum (Pt), carbon (C), titanium (Ti) or the like is used as a working electrode for measuring peracetic acid or a working electrode for measuring hydrogen peroxide. Is preferred. As a working electrode for measuring peracetic acid or a working electrode for measuring hydrogen peroxide,
A modified electrode obtained by chemically treating the surface of an electrode made of gold, platinum, carbon, titanium or the like can also be used. Ag / AgCl, Hg / Hg as a reference electrode (reference electrode)
An electrode composed of 2 Cl 2 , Ag / Ag + or the like is preferable. As auxiliary electrodes, gold, platinum, carbon, titanium,
It is preferable to use a solid electrode made of stainless steel or the like.

【0010】本発明のように、過酢酸測定用作用電極あ
るいは過酸化水素測定用作用電極と共に、参照電極及び
補助電極を設け、電極活性種が電極の表面で反応する場
合、反応電流の大きさは、電荷移動反応の速さと反応種
の拡散速度の両方に影響される。電極に電位を印加した
場合、電極表面で、反応種の濃度が十分高い。その時に
得られる電流は、電極反応速度と電荷移動速度に支配さ
れる。しかし、電極反応の進行により、電極表面におけ
る反応種が減り続けることになる。そのとき得られる電
流は、沖合いから反応種が電極へ拡散して来る速さ、即
ち、拡散速度に支配される。言い換えれば、電極表面の
濃度勾配の発生は、過酢酸あるいは過酸化水素の濃度測
定に大きく影響する。従って、電極表面のこのような濃
度勾配を無くすことが望ましい。濃度勾配を無くす方法
としては、電極面積を極端に小さくする方法(例えば、
微小電極を用いる方法)、測定液が電極の表面を流れる
ようにする方法(例えば、チャンネルフロー電極を用い
る方法)、電極を回転させ方法(例えば、回転電極を用
いる方法)などがある。本発明では、電極面積を極端に
小さくする方法、あるいは測定液が電極の表面を流れる
ようにする方法を採用するのが好ましい。
[0010] As in the present invention, a reference electrode and an auxiliary electrode are provided together with a working electrode for measuring peracetic acid or a working electrode for measuring hydrogen peroxide, and when the electrode active species reacts on the surface of the electrode, the magnitude of the reaction current is increased. Is affected by both the speed of the charge transfer reaction and the rate of diffusion of the reactive species. When a potential is applied to the electrode, the concentration of the reactive species is sufficiently high on the electrode surface. The current obtained at that time is governed by the electrode reaction speed and the charge transfer speed. However, as the electrode reaction proceeds, the number of reactive species on the electrode surface continues to decrease. The current obtained at that time is governed by the speed at which the reactive species diffuses from the offshore to the electrode, that is, the diffusion speed. In other words, the generation of a concentration gradient on the electrode surface greatly affects the measurement of the concentration of peracetic acid or hydrogen peroxide. Therefore, it is desirable to eliminate such a concentration gradient on the electrode surface. As a method of eliminating the concentration gradient, a method of making the electrode area extremely small (for example,
There are a method using a micro electrode), a method in which a measurement liquid flows on the surface of the electrode (for example, a method using a channel flow electrode), and a method in which the electrode is rotated (for example, a method using a rotating electrode). In the present invention, it is preferable to adopt a method of making the electrode area extremely small, or a method of making the measurement liquid flow on the surface of the electrode.

【0011】電極面積を極端に小さくするには、過酢酸
測定用作用電極あるいは過酸化水素測定用電極として微
小電極を用いるのが好ましい。例えば、これらの作用電
極として、直径φが50μm以下の円盤電極を用いる
と、物質拡散が3次元拡散になるため、容易に限界電流
を得られる。特に、本発明では、円盤電極の直径φが2
5μmの金電極を過酢酸測定用作用電極あるいは過酸化
水素測定用電極として用いた場合、S字型のサイクリッ
クボルタモグラムが得られ、その限界電流は広い電位窓
を示すため好ましい。測定液が電極の表面を流れように
するためには、過酢酸測定用作用電極あるいは過酸化水
素測定用電極としてチャンネルフロー電極を用いるのが
好ましい。チャンネルフロー電極を用いた場合もサイク
リックボルタモグラムはS字型を示し、限界電流が得ら
れるので好ましい。本発明の測定法では、測定中電極に
いつも負の電位を印加するので、試料液中の溶質の電極
表面での吸着現象は極めて低く、電極の劣化はほとんど
見られない。しかしながら、測定をより精度よく安定さ
せるため、電極を定期的に電気研磨し、電極を活性化す
ることが望ましい。
In order to extremely reduce the electrode area, it is preferable to use a microelectrode as a working electrode for measuring peracetic acid or an electrode for measuring hydrogen peroxide. For example, if a disk electrode having a diameter φ of 50 μm or less is used as these working electrodes, the material diffusion becomes three-dimensional diffusion, so that the limiting current can be easily obtained. In particular, in the present invention, the diameter φ of the disc electrode is 2
When a 5 μm gold electrode is used as a working electrode for measuring peracetic acid or an electrode for measuring hydrogen peroxide, an S-shaped cyclic voltammogram is obtained, and the limiting current thereof is preferable because it shows a wide potential window. In order for the measurement liquid to flow on the surface of the electrode, it is preferable to use a channel flow electrode as a working electrode for measuring peracetic acid or an electrode for measuring hydrogen peroxide. Also when a channel flow electrode is used, the cyclic voltammogram shows an S-shape, which is preferable because a limiting current can be obtained. In the measurement method of the present invention, since a negative potential is always applied to the electrode during the measurement, the adsorption phenomenon of the solute in the sample solution on the electrode surface is extremely low, and the electrode is hardly deteriorated. However, in order to stabilize the measurement with higher accuracy, it is desirable that the electrode is periodically electropolished to activate the electrode.

【0012】本発明の測定法を行うには、過酢酸測定用
作用電極あるいは過酢酸測定用作用電極と過酸化水素測
定用作用電極と共に、参照電極及び補助電極を設け、更
に試料注入器、ポテンシオスタット及び電流を記録表示
するためのコントロール器を含む電気化学センサーが用
いられる。本発明で用いる電気化学センサーのシステム
構成は、図6に示したようなものである。図6におい
て、調製タンク10からサンプルをサンプリングする流
路11と、測定用緩衝液が流れる流路12を設け、上述
流路11に設けた試料注入器14と、上述緩衝液流路1
2に設けた緩衝液送液ポンプ15により両流路を合流さ
せる。合流した測定液を二本の作用電極26(過酢酸測
定用作用電極)、27(過酸化水素測定用作用電極)
と、参照電極28と、補助電極29とを設けた電気化学
フローセルに流して、セルの出口17から廃棄する。ポ
テンシオスタット18はフローセルの電極の電位を制御
する。測定液中の過酢酸と過酸化水素はそれぞれ作用電
極26、27で反応し、反応電流が生じる。そして生じ
た電流の大きさは過酢酸と過酸化水素の濃度に応じて変
化する。ポテンシオスタット18はそれら電極で生じた
電流をコントロール器19に送る。コントロール器19
は、受けた電流を表示、記録したり、また、緩衝液送液
ポンプ15、試料注入器14及び原液送液ポンプ21な
どをコントロールする。過酢酸濃度管理システムにはま
た、緩衝溶液供給瓶13、原液タンク20、原液供給流
路22、作業液供給流路24、殺菌ライン25及び作業
液リターン流路23等から構成される。
In order to carry out the measuring method of the present invention, a reference electrode and an auxiliary electrode are provided together with a working electrode for measuring peracetic acid or a working electrode for measuring peracetic acid and a working electrode for measuring hydrogen peroxide. An electrochemical sensor including a stat and a controller for recording and displaying the current is used. The system configuration of the electrochemical sensor used in the present invention is as shown in FIG. In FIG. 6, a flow path 11 for sampling a sample from a preparation tank 10 and a flow path 12 through which a buffer for measurement flows are provided, and a sample injector 14 provided in the flow path 11 and a buffer 1
The two flow paths are joined by the buffer solution feed pump 15 provided in 2. The combined measurement liquid is applied to two working electrodes 26 (a working electrode for measuring peracetic acid) and 27 (a working electrode for measuring hydrogen peroxide).
, And then flow through an electrochemical flow cell provided with a reference electrode 28 and an auxiliary electrode 29, and are discarded from an outlet 17 of the cell. The potentiostat 18 controls the potential of the electrodes of the flow cell. The peracetic acid and hydrogen peroxide in the measurement solution react at the working electrodes 26 and 27, respectively, to generate a reaction current. The magnitude of the generated current varies depending on the concentrations of peracetic acid and hydrogen peroxide. The potentiostat 18 sends the current generated at these electrodes to a controller 19. Control device 19
Displays and records the received current, and controls the buffer solution feed pump 15, the sample injector 14, the undiluted solution feed pump 21, and the like. The peracetic acid concentration management system also includes a buffer solution supply bottle 13, a stock solution tank 20, a stock solution supply flow path 22, a working liquid supply flow path 24, a sterilization line 25, a work liquid return flow path 23, and the like.

【0013】[0013]

【発明の効果】本発明の測定法によれば、電気化学セン
サーを用いて過酢酸の濃度を瞬時に連続的に測定するこ
とができ、また過酢酸と過酸化水素とを瞬時に連続的に
分別測定することができる。更には、本発明の測定法
は、付加試薬を必要としない簡便な方法である。本発明
の測定法は、例えば、医療衛生部門、食品生産ラインに
おける殺菌行程に用いる殺菌剤である過酢酸作業液に含
まれる過酢酸、過酸化水素の濃度測定並びに濃度管理に
有効である。
According to the measuring method of the present invention, the concentration of peracetic acid can be instantaneously and continuously measured using an electrochemical sensor, and the concentration of peracetic acid and hydrogen peroxide can be instantaneously and continuously measured. It can be measured separately. Furthermore, the measurement method of the present invention is a simple method that does not require an additional reagent. The measurement method of the present invention is effective, for example, for measuring and controlling the concentration of peracetic acid and hydrogen peroxide contained in a peracetic acid working liquid which is a disinfectant used in a sterilization process in a food production line in a medical hygiene department.

【0014】[0014]

【実施例】以下に本発明を実施例により更に詳細に説明
するが、本発明はこれら実施例に何ら限定されるもので
はない。 実施例1 (1)サイクリックボルタモグラムの測定 作用電極として直径φが25μmの円盤金微小電極、参
照電極としてAg/AgCl、補助電極としてステンレ
ス鋼を設けた電気化学センサーを用い、pH4.7の酢
酸緩衝溶液中で室温で、過酢酸4.58mol/l及び
過酸化水素1.58mol/lを含む混合溶液を約20
0倍に希釈した溶液のサイクリックボルタモグラムを測
定した。得られたサイクリックボルタモグラムは図1に
示した通りである。図1から明らかなように、S字型の
サイクリックボルタモグラムが得られた。図1から、−
250mV及び−750mV(vs.Ag/AgCl)
付近にそれぞれ過酢酸及び過酸化水素の還元反応に帰属
する一つの非可逆的な波が現れること、即ち過酢酸及び
過酸化水素のそれぞれの還元反応による限界電流値を与
えるそれぞれの検出電位が−250mV及び−750m
V付近に存在することが判った。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 (1) Measurement of Cyclic Voltammogram An electrochemical sensor provided with a disc-shaped gold microelectrode having a diameter φ of 25 μm as a working electrode, Ag / AgCl as a reference electrode, and stainless steel as an auxiliary electrode was used. At room temperature in a buffer solution, a mixed solution containing 4.58 mol / l of peracetic acid and 1.58 mol / l of hydrogen peroxide was added to about 20 ml.
The cyclic voltammogram of the 0-fold diluted solution was measured. The obtained cyclic voltammogram is as shown in FIG. As is clear from FIG. 1, an S-shaped cyclic voltammogram was obtained. From FIG. 1,-
250 mV and -750 mV (vs. Ag / AgCl)
In the vicinity, one irreversible wave attributed to the reduction reaction of peracetic acid and hydrogen peroxide appears. 250mV and -750m
It turned out that it exists near V.

【0015】(2)過酢酸濃度及び過酸化水素濃度と限
界電流値の測定 表1及び表2に示したように、過酢酸及び過酸化水素
を、それぞれ各種濃度で含むそれぞれの溶液について、
上記(1)と同様の電気化学センサーを用いて、過酢酸
溶液については−200mV、過酸化水素水溶液につい
ては−900mVの検出電位をそれぞれ印加し、各種濃
度における限界電流値を測定した。得られた限界電流値
を表1及び表2に示した。表1及び表2に示した過酢酸
水素濃度及び過酢酸濃度は、既知の測定方法である硫酸
セリウム滴定法(分析化学便覧/改定三版、446頁
(1981年)、日本分析化学会編:丸善)によって測
定したものである。表1及び表2に示した結果を、それ
ぞれ図2及び図3に表した。図2及び図3から明らかな
ように、過酸化水素水濃度と限界電流値、並びに過酢酸
濃度と限界電流値との間には良好な直線関係があり、従
って、これらを検量線として用いることによって、限界
電流値を測定し得られる限界電流値に基づいて試料中の
過酸化水素濃度並びに過酢酸濃度を正確に求めることが
可能であることが判った。
(2) Measurement of Peracetic Acid Concentration, Hydrogen Peroxide Concentration and Limit Current Value As shown in Tables 1 and 2, for each solution containing peracetic acid and hydrogen peroxide at various concentrations,
Using the same electrochemical sensor as in (1) above, a detection potential of -200 mV was applied for the peracetic acid solution and -900 mV for the aqueous hydrogen peroxide solution, and the limiting current values at various concentrations were measured. The obtained limit current values are shown in Tables 1 and 2. The hydrogen peracetate concentration and the peracetic acid concentration shown in Tables 1 and 2 were determined by a known method of cerium sulfate titration (Analytical Chemistry Handbook / Revised Third Edition, p. 446 (1981), edited by The Japan Society for Analytical Chemistry: (Maruzen). The results shown in Tables 1 and 2 are shown in FIGS. 2 and 3, respectively. As is clear from FIGS. 2 and 3, there is a good linear relationship between the concentration of the hydrogen peroxide solution and the limiting current value, and between the concentration of peracetic acid and the limiting current value. Therefore, these should be used as a calibration curve. Thus, it was found that the concentration of hydrogen peroxide and the concentration of peracetic acid in the sample can be accurately obtained based on the limit current value obtained by measuring the limit current value.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】実施例2 実際に現場で使われている殺菌剤を水により希釈し、実
際の殺菌作業液の使用濃度範囲に合わせて8〜18%
(w/w)の一連の過酢酸溶液(1300〜3000p
pm)及び過酸化水素水溶液(4500〜10000p
pm)を作製した。そして従来の測定法(硫酸セリウム
適定法)により得られた濃度と、実施例1と同様の測定
法により得られた応答電流値(即ち限界電流値)を表3
及び4に示した。表3及び表4に示した、それぞれの値
をプロットした本発明と従来の測定法との相関性を図4
及び図5に示した。図4及び図5から明らかなように、
いずれも従来の測定法の結果とよく一致していることが
判る。
Example 2 A bactericide actually used on site is diluted with water, and 8 to 18% according to the actual concentration range of the germicidal working solution.
(W / w) in a series of peracetic acid solutions (1300-3000p
pm) and aqueous hydrogen peroxide solution (4500-10000p
pm). Table 3 shows the concentration obtained by the conventional measuring method (cerium sulfate titration method) and the response current value (that is, the limiting current value) obtained by the same measuring method as in Example 1.
And 4. FIG. 4 shows the correlation between the present invention and the conventional measurement method in which the respective values are plotted as shown in Tables 3 and 4.
And FIG. As is clear from FIGS. 4 and 5,
It can be seen that all of the results agree well with the results of the conventional measurement method.

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【表4】 [Table 4]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、実施例1で得られたサイクリックボル
タモグラムを示す。
FIG. 1 shows a cyclic voltammogram obtained in Example 1.

【図2】図2は、過酸化水素濃度と限界電流値との関係
を示すグラフである。
FIG. 2 is a graph showing a relationship between a hydrogen peroxide concentration and a limit current value.

【図3】図3は、過酢酸濃度と限界電流値との関係を示
すグラフである。
FIG. 3 is a graph showing a relationship between a peracetic acid concentration and a limit current value.

【図4】図4は、従来法による過酢酸濃度の測定値と、
本発明方法による過酢酸溶液の限界電流の側定値との関
係を示すグラフである。
FIG. 4 shows measured values of peracetic acid concentration according to a conventional method,
4 is a graph showing a relationship between a limiting current of a peracetic acid solution and a side constant value according to the method of the present invention.

【図5】図5は、従来法による過酸化水素濃度の測定値
と、本発明方法による過酸化水素溶液の限界電流の測定
値との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the measured value of the hydrogen peroxide concentration according to the conventional method and the measured value of the limiting current of the hydrogen peroxide solution according to the method of the present invention.

【図6】図6は、本発明法による過酢酸濃度管理システ
ムの概略図である。
FIG. 6 is a schematic diagram of a peracetic acid concentration management system according to the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 27/416 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 27/416 JICST file (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 過酢酸及び過酸化水素を含む試料中の過
酢酸及び過酸化水素を電気化学センサーを用いて分別測
定する方法であって、 過酢酸及び過酸化水素のそれぞれの還元反応による限界
電流値を与えるそれぞれの検出電位を、試料中の電極に
対して印加して、それぞれの電流値を測定し、 得られる電流値から、予め作成した過酢酸及び過酸化水
素のそれぞれの検出電位における濃度と電流値との検量
線に基づいて、試料中の過酢酸及び過酸化水素のそれぞ
れの濃度を測定する、 過酢酸及び過酸化水素の分別測定法。
1. A method for separately measuring peracetic acid and hydrogen peroxide in a sample containing peracetic acid and hydrogen peroxide using an electrochemical sensor, the method comprising limiting the respective reduction reactions of peracetic acid and hydrogen peroxide. Each detection potential that gives a current value is applied to the electrode in the sample, each current value is measured, and based on the obtained current value, the detection potential at each detection potential of peracetic acid and hydrogen peroxide prepared in advance is determined. A method for separately measuring peracetic acid and hydrogen peroxide, wherein the respective concentrations of peracetic acid and hydrogen peroxide in a sample are measured based on a calibration curve of the concentration and the current value.
【請求項2】 過酢酸測定用作用電極と過酸化水素測定
用作用電極、参照電極及び補助電極を設けた電気化学セ
ンサーを用いて測定する請求項1の分別測定法。
2. The method according to claim 1, wherein the measurement is performed using an electrochemical sensor provided with a working electrode for measuring peracetic acid, a working electrode for measuring hydrogen peroxide, a reference electrode and an auxiliary electrode.
【請求項3】 過酢酸及び過酸化水素のそれぞれの検出
電位として、参照電極としてAg/AgClを用いた場
合には、−150mVから−300mVの範囲の電位及
び−700mVから−950mVの範囲の電位を、試料
中の電極にそれぞれ印加する請求項2の分別測定法。
3. In the case where Ag / AgCl is used as a reference electrode, a potential in a range of -150 mV to -300 mV and a potential in a range of -700 mV to -950 mV as detection potentials of peracetic acid and hydrogen peroxide. Is applied to the electrodes in the sample, respectively.
【請求項4】 過酢酸を含む試料中の過酢酸を電気化学
センサーを用いて測定する方法であって、 過酢酸の還元反応による限界電流値を与える検出電位
を、試料中の電極に対して印加して、電流値を測定し、 得られる電流値から、予め作成した過酢酸の検出電位に
おける濃度と電流値との検量線に基づいて、試料中の過
酢酸の濃度を測定する、 過酢酸の測定法。
4. A method for measuring peracetic acid in a sample containing peracetic acid using an electrochemical sensor, wherein a detection potential giving a limiting current value due to a reduction reaction of peracetic acid is determined with respect to an electrode in the sample. Apply, measure the current value, and measure the concentration of peracetic acid in the sample from the obtained current value based on the calibration curve between the concentration at the detection potential of peracetic acid and the current value prepared in advance. Measurement method.
【請求項5】 過酢酸測定用作用電極あるいは過酢酸測
定用作用電極と過酸化水素測定用作用電極と共に、参照
電極及び補助電極を設け、更に試料注入器、ポテンシオ
スタット及び電流を記録表示するためのコントロール器
を含む、請求項1から4のいずれかの測定法に用いるた
めの電気化学センサー。
5. A working electrode for measuring peracetic acid or a working electrode for measuring peracetic acid and a working electrode for measuring hydrogen peroxide, a reference electrode and an auxiliary electrode are provided, and a sample injector, a potentiostat, and a current are recorded and displayed. An electrochemical sensor for use in the measurement method of any of claims 1 to 4, comprising a controller for:
JP18604299A 1999-06-30 1999-06-30 Differential measurement of peracetic acid and hydrogen peroxide Expired - Lifetime JP3234585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18604299A JP3234585B2 (en) 1999-06-30 1999-06-30 Differential measurement of peracetic acid and hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18604299A JP3234585B2 (en) 1999-06-30 1999-06-30 Differential measurement of peracetic acid and hydrogen peroxide

Publications (2)

Publication Number Publication Date
JP2001013102A JP2001013102A (en) 2001-01-19
JP3234585B2 true JP3234585B2 (en) 2001-12-04

Family

ID=16181391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18604299A Expired - Lifetime JP3234585B2 (en) 1999-06-30 1999-06-30 Differential measurement of peracetic acid and hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP3234585B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558529B1 (en) * 2000-02-07 2003-05-06 Steris Inc. Electrochemical sensor for the specific detection of peroxyacetic acid in aqueous solutions using pulse amperometric methods
JP3504939B2 (en) * 2002-04-04 2004-03-08 理工協産株式会社 Simultaneous analysis of peracetic acid and hydrogen peroxide
JP2010243452A (en) * 2009-04-10 2010-10-28 Apurikusu:Kk Method and instrument for continuously measuring concentration of peracetic acid
EP2459996A4 (en) * 2009-07-27 2016-10-19 Diversey Inc Systems and methods for detecting an h202 level in a cold aseptic filling system that uses a peracetic acid cleaning solution
DE102015108747A1 (en) 2014-06-03 2015-12-03 Horiba Advanced Techno, Co., Ltd. Peressigsäurekonzentrationsmessgerät
JP6262080B2 (en) * 2014-06-03 2018-01-17 株式会社 堀場アドバンスドテクノ Peracetic acid concentration meter
JP7179289B2 (en) * 2018-11-30 2022-11-29 地方独立行政法人大阪産業技術研究所 Method and device for detecting concentration of pernitric acid, and device for generating pernitric acid for sterilization
JP7303513B2 (en) * 2019-11-27 2023-07-05 富士電機株式会社 Hydrogen peroxide concentration detector

Also Published As

Publication number Publication date
JP2001013102A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
Ernst et al. Reliable glucose monitoring through the use of microsystem technology
US4172770A (en) Flow-through electrochemical system analytical method
US5503720A (en) Process for the quantitative determination of electrochemically reducible or oxidizable substances, particularly peracetic acid mixed with other oxidizing substances
JP4510933B2 (en) How to measure salinity
Fogh-Andersen et al. Direct reading glucose electrodes detect the molality of glucose in plasma and whole blood
JP3234585B2 (en) Differential measurement of peracetic acid and hydrogen peroxide
Pournaghi-Azar et al. Simple and rapid amperometric monitoring of hydrogen peroxide in salivary samples of dentistry patients exploiting its electro-reduction on the modified/palladized aluminum electrode as an improved electrocatalyst
US7378006B2 (en) Aqueous solutions for reducing the rate of oxygen loss, and methods thereof
JP3504939B2 (en) Simultaneous analysis of peracetic acid and hydrogen peroxide
JP6534264B2 (en) Measurement method of dissolved hydrogen concentration
Watson et al. Development of a glucose analyzer based on immobilized glucose oxidase
Fogt et al. Use of electrochemical sensors for on-line monitoring of ionized calcium, potassium, and glucose in whole blood of living dogs.
JP5054756B2 (en) Substrate concentration measuring method and measuring apparatus, and substrate concentration measuring reagent
Abdullin et al. Determination of uric acid by voltammetry and coulometric titration
Rad Vitamin C determination in human plasma using an electro-activated pencil graphite electrode
Cukrowski Experimental and calculated complex formation curves for mixed, dynamic and semi-dynamic, metal–ligand systems.: A differential pulse polarographic study of CuII–sarcosine–OH and CdII–MIDA–OH systems at a fixed ligand to metal ratio and varied pH
Pfeiffer et al. Continuous measurement of lactate in microdialysate
US20080184810A1 (en) Calibratable Flow Detector
JP2006105615A (en) Electrochemical measuring method and measuring apparatus using it
JPH11248668A (en) Bio-sensor and quantitative analyzing method for metal or pesticide in water by use of the bio-sensor
He et al. The kinetics-based electrochemical determination of serum glutamate pyruvate transaminase activity with a gold microelectrode
Sulaiman Differential pulse polarography as a tool for the determination of trace levels of nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+) in aqueous solution
JP2674583B2 (en) Method for removing interference of ascorbic acid in component measurement
SU1032401A1 (en) Glukose determination method
AU2021295539A1 (en) Analyte sensor and a method for producing an analyte sensor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3234585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term