JP6534264B2 - Measurement method of dissolved hydrogen concentration - Google Patents

Measurement method of dissolved hydrogen concentration Download PDF

Info

Publication number
JP6534264B2
JP6534264B2 JP2015023814A JP2015023814A JP6534264B2 JP 6534264 B2 JP6534264 B2 JP 6534264B2 JP 2015023814 A JP2015023814 A JP 2015023814A JP 2015023814 A JP2015023814 A JP 2015023814A JP 6534264 B2 JP6534264 B2 JP 6534264B2
Authority
JP
Japan
Prior art keywords
electrode
concentration
sample
hydrogen
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015023814A
Other languages
Japanese (ja)
Other versions
JP2016148517A (en
Inventor
公 竹原
公 竹原
義一 原田
義一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Priority to JP2015023814A priority Critical patent/JP6534264B2/en
Publication of JP2016148517A publication Critical patent/JP2016148517A/en
Application granted granted Critical
Publication of JP6534264B2 publication Critical patent/JP6534264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、中性水素水、電解水、アルカリイオン水等の清浄な水に溶解する水素分子の濃度を計測する方法および溶存水素濃度計に関する。 The present invention relates to a method of measuring the concentration of hydrogen molecules dissolved in clean water such as neutral hydrogen water, electrolyzed water, alkali ion water and the like, and a dissolved hydrogen concentration meter.

従来、図7に示す隔膜形ポーラログラフ電極、図8に示すORP電極を利用した電気化学的測定方法による溶存水素濃度計が実用化されている。   Conventionally, a dissolved hydrogen concentration meter by an electrochemical measurement method using a diaphragm type polarographic electrode shown in FIG. 7 and an ORP electrode shown in FIG. 8 has been put to practical use.

隔膜形ポーラログラフ電極方式では、隔膜11に密接して配置される作用極14と電解液13に浸漬した対極15間に定電位を印加しておき、測定する検体(以下、サンプルと記する。)に含まれる水素分子がガス透過性を有する隔膜11を介して、白金、あるいは白金表面に白金黒めっきを施した作用極14に到達すると、電極表面で化学式1に示す水素分子(H2)の酸化反応が生じ、銀−塩化銀で構成される対極15では、化学式2に示す塩化銀(AgCl)の還元反応が生じて、作用極14と対極15間には水素量に比例した微小電流が流れる。この電流値からサンプルの水素濃度を求めている。
In the diaphragm type polarographic electrode system, a constant potential is applied between the working electrode 14 disposed in close contact with the diaphragm 11 and the counter electrode 15 immersed in the electrolyte 13, and the sample to be measured (hereinafter referred to as a sample). When hydrogen molecules contained in the metal reach the platinum or platinum-plated working electrode 14 through the gas-permeable diaphragm 11, hydrogen molecules (H 2 ) represented by the chemical formula 1 are formed on the electrode surface. An oxidation reaction occurs, and a reduction reaction of silver chloride (AgCl) shown in chemical formula 2 occurs in the counter electrode 15 composed of silver-silver chloride, and a microcurrent proportional to the amount of hydrogen between the working electrode 14 and the counter electrode 15 is Flow. The hydrogen concentration of the sample is determined from this current value.

なお、隔膜11は水温によりガスの透過性が変動するため、ハウジング12内には測温部16を設けて、測定結果の温度補正を行う。   In addition, since the permeability of gas changes with the water temperature, the diaphragm 11 provides the temperature measurement part 16 in the housing 12, and performs temperature correction | amendment of a measurement result.

ORP電極方式の電極構成を図8に示す。   The electrode configuration of the ORP electrode system is shown in FIG.

ORP電極方式においては、検出部31を白金で構成して、作用極32でサンプル中の水素分子と水素イオン活量(水素イオン濃度)の差によって発生する電位を検出する。   In the ORP electrode system, the detection unit 31 is made of platinum, and the working electrode 32 detects the potential generated by the difference between the hydrogen molecules in the sample and the hydrogen ion activity (hydrogen ion concentration).

また、検出部33を銀−塩化銀で構成し、電解液34に浸漬させた比較電極35で発生する基準電位と前記の作用極で発生する単極電位の差分にあたる酸化還元電位から水素濃度を求めている。   In addition, the hydrogen concentration is calculated from the redox potential corresponding to the difference between the reference potential generated at the comparison electrode 35 which is made of silver-silver chloride and is immersed in the electrolyte 34 and the single electrode potential generated at the working electrode. I'm asking.

さらに、図8に示すハウジング36下端には、サンプルと比較電極35の電気的な接続を保つために多孔質セラミックからなる液絡部37を設ける。   Furthermore, at the lower end of the housing 36 shown in FIG. 8, a liquid junction 37 made of porous ceramic is provided to maintain the electrical connection between the sample and the comparison electrode 35.

前述の基準電位は電解液34の種類によって異なり、例えば、3.3M 塩化カリウム溶液を利用した場合は257mV (25℃)、3M塩化カリウム溶液を利用した場合は219mV(25℃)となる。
一般に基準電位が公知の前記濃度の塩化カリウム溶液が採用されるが、本法の原理的には一定電位を与える他濃度の塩化カリウム溶液を用いることもできる。
The reference potential described above varies depending on the type of the electrolyte 34, and is, for example, 257 mV (25 ° C.) when using a 3.3 M potassium chloride solution and 219 mV (25 ° C.) when using a 3 M potassium chloride solution.
Generally, a potassium chloride solution having the above-mentioned concentration which has a known reference potential is employed, but in principle, other concentrations of potassium chloride solution which give a constant potential can also be used.

溶存水素による酸化還元電位は前記化学式1に示す酸化還元反応に従い、Nernst式によって数式1で与えられ、酸化体である水素イオンの濃度([H+])と還元体である溶存水素分子の濃度([H2])によって決定される。
The redox potential due to the dissolved hydrogen is given by the Nernst equation according to the redox reaction shown in the above chemical formula 1 by the Nernst equation, and the concentration of hydrogen ions ([H + ]) which is an oxidant and the concentration of dissolved hydrogen molecules which is a reductant It is determined by ([H 2 ]).

数式1のEHは酸化還元電位、EH 0は水素の標準酸化還元電位、Rはガス定数、Tは絶対温度、nは化学式1で受け渡しされる電子数(n=2)、Fはファラデー定数、pHはサンプルのpH値を示す。なお、前記EH 0はIUPAC(International Union of Pure and Applied Chemistry)により、全ての温度で0Vと規定されている。 E H in equation 1 is the redox potential, E H 0 is the standard redox potential of hydrogen, R is the gas constant, T is the absolute temperature, n is the number of electrons delivered according to formula 1 (n = 2), F is the faraday The constant, pH, indicates the pH value of the sample. The E H 0 is defined as 0 V at all temperatures by IUPAC (International Union of Pure and Applied Chemistry).

同様に溶存酸素の酸化還元反応にもNernst式が成り立つ。   Similarly, the Nernst equation holds for the redox reaction of dissolved oxygen.

溶存酸素の酸化還元反応の一例を化学式3に、この反応によってNernst式で与えられる酸化還元電位を数式2に示す。
An example of the oxidation-reduction reaction of dissolved oxygen is shown in Formula 3, and the oxidation-reduction potential given by the Nernst formula by this reaction is shown in Formula 2.

数式2より、酸化還元電位EOは溶存酸素濃度([O2])にともなって変化する。
水素と酸素が共存するサンプルにおいて、酸化還元電位は溶存水素濃度とpHで決定される前述の酸化還元電位(EH)と酸素の酸化還元電位(EO)を混合した電位として検出されるため、溶存酸素は溶存水素濃度の測定に影響を与えることになる。
From Equation 2, the oxidation-reduction potential E O varies with the dissolved oxygen concentration ([O 2]).
In a sample in which hydrogen and oxygen coexist, the redox potential is detected as a mixture of the aforementioned redox potential (E H ) determined by the dissolved hydrogen concentration and pH and the redox potential of oxygen (E O ) Dissolved oxygen will affect the measurement of dissolved hydrogen concentration.

なお、溶存酸素、pHが一定の条件では、溶存酸素の酸化還元電位は一定に保たれ、数式1より、測定対象である溶存水素濃度([H2])と酸化還元電位(EH)は相関をもつ。従って、ORP電極方式では酸化還元電位(EH)を計測することで溶存水素濃度を求めている。 Note that, under the condition that the dissolved oxygen and pH are constant, the redox potential of the dissolved oxygen is kept constant, and according to Equation 1, the dissolved hydrogen concentration ([H 2 ]) to be measured and the redox potential (E H ) are It has a correlation. Therefore, in the ORP electrode system, the dissolved hydrogen concentration is determined by measuring the oxidation-reduction potential (E H ).

特開2002−195975号公報JP 2002-195975 A

従来の隔膜形ポーラログラフ電極方式においては、作用極が隔膜によりサンプルから隔離されているため、不純物の影響を受けにくく、また、水素分子の酸化反応に応じて流れる電流値を計測しているため、高精度の測定が実現できる。   In the conventional diaphragm type polarographic electrode system, since the working electrode is separated from the sample by the diaphragm, it is difficult to be affected by impurities, and the current value flowing according to the oxidation reaction of hydrogen molecules is measured. High accuracy measurement can be realized.

但し、サンプル温度にともなう隔膜のガス透過率の変化を補正するため、電極内に測温部の取付けが必要となる。   However, in order to correct the change in gas permeability of the diaphragm due to the sample temperature, it is necessary to mount a temperature measuring unit in the electrode.

また、作用極と対極間に常時、定電位を供給する電源回路や微小電流の変化を判定するための増幅回路やノイズ対策が必要となり、複雑な制御回路を要すため、大型で高額な測定器となっている。   In addition, a power supply circuit that supplies a constant potential constantly between the working electrode and the counter electrode, an amplification circuit for determining changes in minute current and noise control are required, and a complex control circuit is required, so a large and expensive measurement is required. It is a bowl.

加えて、電解水のような微細気泡を多量に含むサンプルでは、電極内にガスが透過して、電解液中に電極応答に影響を与える気泡が短期間で形成されるため、電解液の補充や入替え等の煩雑な保守が必要となっていた。   In addition, in a sample containing a large amount of micro bubbles such as electrolyzed water, a gas permeates into the electrode, and a bubble that affects the electrode response is formed in the electrolyte solution in a short period of time. And complicated maintenance such as replacement.

一方、ORP電極方式では、電極に発生する電位から直接、溶存水素濃度に置き換えるため、極めて簡素な構成の測定器が実現可能である反面、サンプルのpHや共存する溶存酸素によって電極電位が多大な影響を受ける。   On the other hand, in the ORP electrode method, since the potential generated at the electrode is directly replaced with the dissolved hydrogen concentration, a measuring instrument with an extremely simple configuration can be realized, but the electrode potential is large due to the pH of the sample and the coexisting dissolved oxygen. to be influenced.

前述したように数式1の酸化還元電位EHは、溶存酸素濃度、pH一定の条件下では、溶存水素濃度に対応する電位を示すが、溶存酸素濃度、pHはサンプルの水温や遊離炭酸濃度等によって変動するため、ORP電極方式では測定可能なサンプルの水質が極めて限定的なものとなっていた。 As described above, the redox potential E H of Formula 1 indicates the potential corresponding to the dissolved hydrogen concentration under the conditions of the dissolved oxygen concentration and the constant pH, but the dissolved oxygen concentration and the pH indicate the water temperature and free carbonic acid concentration of the sample, etc. In the ORP electrode system, the water quality of the sample that can be measured has become extremely limited.

とりわけ、溶存酸素濃度やpHの変動が顕著な電気分解を利用して調製した水素水やアルカリイオン水の溶存水素濃度は測定できなかった。   In particular, it was not possible to measure the dissolved hydrogen concentration of the hydrogen water or the alkaline ionized water prepared using electrolysis in which the fluctuation of the dissolved oxygen concentration or pH is remarkable.

上述の課題を解決するため、溶存水素、溶存酸素を含む各種pHのサンプルに対し、グルコースオキシダーゼおよびカタラーゼの適量を添加し、併せて、グルコースおよび中性域のpH緩衝機能をもつリン酸水素二ナトリウムとリン酸二水素カリウムとが含まれる液体試薬を添加する。
なお、前記グルコースオキシダーゼおよびカタラーゼの適量は、サンプルに添加後、前者の活性が5kU/L以上、望ましくは、10kU/L以上、後者の活性が0.5MU/L以上となる添加量に相当する。なお、前記活性の単位(U/L)は1リットル中のグルコースオキシダーゼ、またはカタラーゼの反応性を表し、グルコースオキシダーゼの場合、25℃、pH7において、グルコースと酸素を反応させ、グルコン酸δ−ラクトンとして1μmolを生成できるグルコースオキシダーゼの反応性を1U、カタラーゼの場合、25℃、pH7において、1分間に1μmolの過酸化水素が分解できるカタラーゼの反応性を1Uとする。
In order to solve the above-mentioned problems, appropriate amounts of glucose oxidase and catalase are added to samples of various pH including dissolved hydrogen and dissolved oxygen, and hydrogen phosphate having pH buffer function of glucose and neutral region is combined. Add a liquid reagent that contains sodium and potassium dihydrogen phosphate.
The appropriate amounts of glucose oxidase and catalase correspond to addition amounts such that the former activity is 5 kU / L or more, preferably 10 kU / L or more and the latter activity is 0.5 MU / L or more after addition to the sample. The unit of activity (U / L) represents the reactivity of glucose oxidase or catalase in one liter, and in the case of glucose oxidase, glucose and oxygen are reacted at 25 ° C. and pH 7, gluconic acid δ-lactone The reactivity of glucose oxidase capable of producing 1 μmol is 1 U. In the case of catalase, the reactivity of catalase capable of decomposing 1 μmol of hydrogen peroxide in 1 minute at 25 ° C. and pH 7 is 1 U.

白金黒めっきを施した白金電極(以下、白金黒めっき電極と称する)を備えた作用極と、塩化カリウム溶液からなる電解液に銀−塩化銀電極を浸漬させた比較電極とから構成されるORP電極を用いて前述の前処理を施したサンプルの酸化還元電位を測定し、溶存水素濃度に換算する。   ORP consisting of a working electrode with a platinum-black plated platinum electrode (hereinafter referred to as a platinum-black-plating electrode) and a reference electrode in which a silver-silver chloride electrode is immersed in an electrolyte consisting of a potassium chloride solution The redox potential of the sample subjected to the above-mentioned pretreatment is measured using an electrode, and converted to the concentration of dissolved hydrogen.

グルコースおよびグルコースオキシダーゼ、カタラーゼの触媒作用によって酸化還元電位に影響を及ぼす溶存酸素を分解し、かつ、リン酸水素二ナトリウムとリン酸二水素カリウムの緩衝機能でサンプルのpHを一定に保つことができる。   The catalytic action of glucose and glucose oxidase, catalase decomposes the dissolved oxygen affecting the redox potential, and the buffer function of disodium hydrogen phosphate and potassium dihydrogen phosphate can keep the pH of the sample constant. .

また、グルコースオキシダーゼ、カタラーゼは選択的に触媒機能を発揮するため、試薬過剰の条件下でも酸化還元電位に影響を及ぼさず、安定した測定を実現することができる。   In addition, since glucose oxidase and catalase selectively exert a catalytic function, stable measurement can be realized without affecting the redox potential even under reagent-rich conditions.

加えて、極めて大きい比表面積を有する白金黒めっき電極を採用することで、水素吸蔵能力が増加して、溶存水素に対して安定した電位応答を得ることができる。   In addition, by adopting a platinum black plating electrode having an extremely large specific surface area, the hydrogen storage capacity can be increased, and a stable potential response to dissolved hydrogen can be obtained.

なお、前述の構成の溶存水素濃度計で白金電極を作用極に使用した従来のORP電極を利用することもできる。この場合、白金黒めっき電極に比べ、電極応答の安定性がわずかに低下するが、後述するように保守性やコスト面で高いメリットを創出できる。   In addition, the conventional ORP electrode which used the platinum electrode for the working electrode by the dissolved hydrogen concentration meter of the above-mentioned structure can also be utilized. In this case, the stability of the electrode response is slightly reduced compared to the platinum black plated electrode, but high merits can be created in terms of maintainability and cost as described later.

本発明によれば、様々な溶存酸素濃度、pHを示す水素水やアルカリイオン水等の電解水に対しても溶存水素濃度を高精度で測定できる、小型で安価な濃度計を実現できる。   According to the present invention, it is possible to realize a small-sized and inexpensive densitometer capable of measuring dissolved hydrogen concentration with high accuracy even to electrolyzed water such as hydrogen water or alkaline ion water showing various dissolved oxygen concentrations and pH.

本発明の溶存水素濃度計の検出電位と溶存水素濃度の関係を示す図である。It is a figure which shows the relationship between the detection electric potential of the dissolved hydrogen concentration meter of this invention, and dissolved hydrogen concentration. グルコースオキシダーゼの活性に対する溶存酸素濃度の変化を示す図である。It is a figure which shows the change of the dissolved oxygen concentration with respect to the activity of glucose oxidase. カタラーゼの活性と検出電位の関係を示す図である。It is a figure which shows the activity of catalase, and the relationship of a detection potential. 本発明の溶存水素濃度計の電極構造を示す図である。It is a figure which shows the electrode structure of the dissolved hydrogen concentration meter of this invention. 白金電極を使用して溶存水素濃度を測定した結果を示す図である。It is a figure which shows the result of having measured the dissolved hydrogen concentration using a platinum electrode. 6ヵ月間冷蔵保管した液体試薬Iを使用し、白金黒めっき電極を備えた作用極で溶存水素濃度を測定した結果を示す図である。It is a figure which shows the result of having measured the dissolved hydrogen concentration in the working electrode provided with the platinum black plating electrode using the liquid reagent I stored refrigerated for six months. 従来技術の隔膜形ポーラログラフ電極の構造を示す図である。It is a figure which shows the structure of the diaphragm type polarographic electrode of a prior art. 従来技術のORP電極の構造を示す図である。It is a figure which shows the structure of ORP electrode of a prior art. 水素電極の構造を示す図である。It is a figure which shows the structure of a hydrogen electrode. 本発明の溶存水素濃度計の電極応答の一例を示す図である。It is a figure which shows an example of the electrode response of the dissolved hydrogen concentration meter of this invention.

本発明の溶存水素濃度計において、サンプルの前処理に利用する溶存酸素の分解反応を化学式4に示す。   In the dissolved hydrogen concentration meter of the present invention, the decomposition reaction of dissolved oxygen used for the pretreatment of a sample is represented by Formula 4.

化学式4(1)に示すように、サンプル中の溶存酸素はグルコースオキシダーゼ存在下でグルコースを添加するとグルコン酸と過酸化水素(H2O2)を生成する。 As shown in chemical formula 4 (1), dissolved oxygen in the sample generates gluconic acid and hydrogen peroxide (H 2 O 2 ) when glucose is added in the presence of glucose oxidase.

また、化学式4(2)に示すように、カタラーゼ存在下で生成した過酸化水素は酸素(O2)と水(H2O)を生成し、化学式4(3)に示すように、総反応では酸素とグルコースからグルコン酸が生成され、溶存酸素は消去される。
Also, as shown in chemical formula 4 (2), hydrogen peroxide generated in the presence of catalase forms oxygen (O 2 ) and water (H 2 O), and as shown in chemical formula 4 (3), the total reaction Then, gluconic acid is produced from oxygen and glucose, and the dissolved oxygen is eliminated.

なお、亜硫酸塩、アスコルビン酸、鉄(II)イオン等の添加で溶存酸素を消去することもできるが、亜硫酸塩を利用した場合は溶存酸素の回収にともないpHが酸性側にシフトする。また、アスコルビン酸を使用した場合は水に溶解するとpH2〜3程度の酸性を示し、いずれも酸化還元電位に大きな正誤差を与える要因となる。   The dissolved oxygen can also be eliminated by the addition of sulfite, ascorbic acid, iron (II) ions, etc. However, when sulfite is used, the pH shifts to the acid side as the dissolved oxygen is recovered. In addition, when ascorbic acid is used, when it is dissolved in water, it exhibits an acidity of about pH 2 to 3, and any of them causes a large positive error to the redox potential.

一方、鉄(II)イオンは溶存酸素と反応し、アルカリ性の水酸化鉄(II)を生成し、さらに水酸化鉄(II)から水酸化鉄(III)が生成して、コロイドが形成される。このため、pH上昇による酸化還元電位の負誤差が生じたり、コロイドによる汚損で電極の感度低下を招く。
以上の課題により、前述の成分はいずれも酸化還元電位を利用した水素濃度の測定には適用が困難であった。
On the other hand, iron (II) ions react with dissolved oxygen to form alkaline iron (II) hydroxide, and iron (II) hydroxide further forms iron (III) hydroxide to form colloids. . For this reason, a negative error of the redox potential occurs due to the pH increase, or the fouling by the colloid causes a decrease in the sensitivity of the electrode.
Due to the above problems, it is difficult to apply any of the components described above to the measurement of hydrogen concentration using the redox potential.

これに対し、グルコースはアルデヒド基(−CHO)をもつため、還元性を示すといわれているが、常温下では強アルカリ領域を除くと、単独で溶存酸素を消去する機能は示さず、安定である。このため、溶存酸素濃度に対して過剰量のグルコースを添加した場合でも、pH変動は生じず、酸化還元電位に影響を与えることはない。   On the other hand, glucose is said to exhibit reducibility because it has an aldehyde group (-CHO), but it does not exhibit the function of eliminating dissolved oxygen alone when the strong alkaline region is removed at normal temperature, which is stable is there. For this reason, even when an excessive amount of glucose is added to the dissolved oxygen concentration, no pH fluctuation occurs and the redox potential is not affected.

加えて、グルコースオキシダーゼはグルコースと酸素の反応を選択的に促進する触媒として働くため、溶存酸素が消去された後に余剰のグルコースとの反応は進行せず、酸化還元電位への影響は生じない。   In addition, since glucose oxidase acts as a catalyst for selectively promoting the reaction of glucose and oxygen, the reaction with excess glucose does not proceed after dissolved oxygen is eliminated, and there is no effect on the redox potential.

図2に電気分解で生成した水素水にグルコースオキシダーゼの添加量を変えて、異なる活性に調製したサンプルの溶存酸素濃度の変化を示す。   FIG. 2 shows changes in dissolved oxygen concentration of samples prepared to have different activities by changing the amount of glucose oxidase added to hydrogen water generated by electrolysis.

グルコースオキシダーゼの添加量(活性)が低下すると、溶存酸素濃度の低下速度が減速する傾向が確認されている。溶存酸素濃度の低下速度が遅くなるほど、サンプルの酸化還元電位の安定に時間を要すため、本発明では実用上、グルコースオキシダーゼの活性が5kU/L以上、望ましくは、10kU/L以上となるように調製する。   It has been confirmed that when the addition amount (activity) of glucose oxidase decreases, the decrease rate of the dissolved oxygen concentration tends to decrease. Since it takes time to stabilize the redox potential of the sample as the rate of decrease of the dissolved oxygen concentration slows down, in the present invention, the activity of glucose oxidase is 5 kU / L or more, preferably 10 kU / L or more for practical use. Prepare to.

なお、化学式4(3)に示すように、グルコースと酸素は化学量論的に2:1で反応が進むため、飽和酸素水(約40mg/L,25℃)まで適用させるためには、グルコース濃度は約2.5mM以上とする必要があるが、後述の図1に示すように、大過剰の条件でも溶存水素濃度の測定には影響を与えないことを確認している。   As shown in the chemical formula 4 (3), since the reaction proceeds with 2: 1 stoichiometrically, glucose and oxygen are required to be applied to saturated oxygen water (about 40 mg / L, 25 ° C.) The concentration needs to be about 2.5 mM or more, but as shown in FIG. 1 described later, it has been confirmed that the measurement of the dissolved hydrogen concentration is not affected even under a large excess condition.

図3に電気分解で生成した水素水にグルコースオキシダーゼ10kU/L、グルコース0.045MおよびpH調整剤としてリン酸水素二ナトリウム、リン酸二水素カリウムを各々0.025Mとなるように添加した後、カタラーゼの添加量を変えて異なる活性に調製したサンプルの酸化還元電位の変化を示す。   After adding glucose oxidase 10 kU / L, glucose 0.045 M and disodium hydrogen phosphate as a pH adjuster to 0.025 M each to hydrogen water produced by electrolysis in Fig. 3 and then adding catalase It shows the change of the redox potential of the samples prepared by changing the addition amount to have different activities.

図3より、カタラーゼの活性が0.7〜4.5MU/Lの範囲ではサンプルの酸化還元電位はほぼ一定であることから、前述のグルコースと同様にカタラーゼが過剰量存在しても溶存水素濃度の測定には影響を与えないことを確認している。   As shown in FIG. 3, since the redox potential of the sample is almost constant when the catalase activity is in the range of 0.7 to 4.5 MU / L, it is possible to measure the dissolved hydrogen concentration even if an excess amount of catalase is present like the above-mentioned glucose. Has confirmed that it will not affect.

なお、0.1mg/L程度の測定精度を確保するためには、酸化還元電位の変動を2mV以下に抑える必要があり、図3の試験結果より、カタラーゼの活性は少なくとも0.5MU/L以上とすることが望ましい。   In order to secure a measurement accuracy of about 0.1 mg / L, it is necessary to suppress the fluctuation of the redox potential to 2 mV or less, and according to the test results of FIG. 3, the activity of catalase is at least 0.5 MU / L or more. Is desirable.

また、溶存酸素分解後に生成するグルコン酸は弱酸性を示し、サンプルの酸化還元電位に影響を与えるため、サンプル中の濃度がそれぞれ0.025Mとなる様、リン酸水素二ナトリウムとリン酸二水素カリウムを添加しておくことで、反応後のサンプルのpHを6.9(25℃)近傍に維持し、グルコン酸生成の影響を取り除くことができる。   In addition, gluconic acid produced after dissolved oxygen decomposition is weakly acidic and affects the redox potential of the sample, so that the concentration in the sample is 0.025 M each, disodium hydrogen phosphate and potassium dihydrogen phosphate The pH of the sample after reaction can be maintained at around 6.9 (25.degree. C.) to remove the influence of gluconic acid production by adding.

なお、同様に弱酸性の緩衝機能をもつフタル酸水素カリウム0.05MでpH4.0(25℃)となる様、前記リン酸塩の代替とするか、前述のリン酸水素二ナトリウムとリン酸二水素カリウムの添加量を変えて、pH4〜9内の任意のpHに調整してもよい。   Similarly, the above-mentioned phosphate may be substituted, or the above-mentioned disodium hydrogen phosphate and diphosphoric acid may be substituted for the above-mentioned phosphate so that potassium hydrogen phthalate 0.05 M having weak acid buffer function and pH 4.0 (25 ° C.) can be obtained. The addition amount of hydrogen potassium may be changed to adjust to any pH within pH 4-9.

溶存水素濃度の測定に使用する電極の構造を図4に示す。   The structure of the electrode used to measure the dissolved hydrogen concentration is shown in FIG.

ハウジング1内に電解液2とは隔離した状態で先端の白金電極3の表面に白金黒めっき4を施した作用極5と、銀−塩化銀で構成される検出部6を備えた比較電極7を3.3M、または、3Mの塩化カリウム溶液からなる電解液2に浸漬する。   A comparative electrode 7 provided with a working electrode 5 in which platinum black plating 4 is applied to the surface of the platinum electrode 3 at the tip in a state separated from the electrolytic solution 2 in the housing 1 and a detection unit 6 composed of silver-silver chloride Is immersed in an electrolytic solution 2 consisting of a 3.3 M or 3 M potassium chloride solution.

また、サンプルと比較電極7の電気的な接続を保つために多孔質セラミックからなる液絡部8を先端部に設ける。   Further, in order to maintain the electrical connection between the sample and the reference electrode 7, a liquid junction 8 made of porous ceramic is provided at the tip.

作用極5に白金黒めっき4を施すことで電極の表面積を拡張できるため、水素分子の吸着作用がはたらき、水素に対する電極感度が向上し、電極応答が安定化し、高精度の測定を実現できる。   Since the surface area of the electrode can be expanded by applying platinum black plating 4 to the working electrode 5, the adsorption action of hydrogen molecules works, the electrode sensitivity to hydrogen is improved, the electrode response is stabilized, and highly accurate measurement can be realized.

なお、白金黒めっきは同時に溶存酸素の吸着作用も発揮するが、前述の試薬を添加することで溶存酸素をほぼ完全に取り除くことができるため、電極応答は純粋に水素分子の濃度に依存することになる。   Note that although platinum black plating simultaneously exhibits the adsorptive action of dissolved oxygen, the electrode response can be purely dependent on the concentration of hydrogen molecules since dissolved oxygen can be almost completely removed by adding the above-mentioned reagent. become.

電気化学分析の基準電位を定める電極として水素電極が知られている。   A hydrogen electrode is known as an electrode for determining a reference potential of electrochemical analysis.

図9に水素電極の構造を示す。   FIG. 9 shows the structure of the hydrogen electrode.

水素電極は白金上に白金黒めっきを施した電極21表面に水素ガス22を過剰量供給して、水素イオン活量が1の溶液23に浸漬させる構成をとり、このとき電極21に発生する単極電位を0Vと定めている。   The hydrogen electrode has a structure in which an excessive amount of hydrogen gas 22 is supplied to the surface of a platinum black-plated electrode 21 and immersed in a solution 23 having a hydrogen ion activity of 1. The pole potential is defined as 0V.

なお、水素電極は維持管理、安全性の面で課題が多く、この代替として前述の銀−塩化銀を電極に用い、塩化カリウム溶液に浸漬した比較電極が実用化されている。   The hydrogen electrode has many problems in terms of maintenance and safety, and as a substitute for this, a comparative electrode in which the above-described silver-silver chloride is used for the electrode and is immersed in a potassium chloride solution has been put to practical use.

本発明では、電極21に発生する電位は、水素22の吸着量および溶液23の水素イオン活量によって変動し、溶液の水素イオン活量が一定の下では電極21への水素22の吸着量に応じて幾分かの電位変動が生じるとの仮定の下、作用極に白金黒めっき電極を採用した。   In the present invention, the potential generated at the electrode 21 fluctuates depending on the amount of adsorption of hydrogen 22 and the hydrogen ion activity of the solution 23, and the amount of adsorption of hydrogen 22 on the electrode 21 is constant when the hydrogen ion activity of the solution is constant. A platinum black-plated electrode was adopted as the working electrode under the assumption that a certain potential fluctuation occurred accordingly.

溶存水素、溶存酸素を含むサンプルに前述のグルコースオキシダーゼ、グルコース、カタラーゼおよびpH調整剤を添加し、前述の図4に示す電極を浸漬して、作用極5と比較電極7間の電位から溶存水素濃度を決定する。   The aforementioned glucose oxidase, glucose, catalase and pH adjuster are added to a sample containing dissolved hydrogen and dissolved oxygen, and the electrode shown in FIG. 4 described above is immersed to dissolve hydrogen from the potential between the working electrode 5 and the reference electrode 7 Determine the concentration.

従来技術である前述の隔膜形ポーラログラフ電極方式においても、白金黒めっき電極を採用しているが、同方式では化学式1に示す水素分子の酸化反応を進行させる様、作用極と対極間に定電位を連続的に与えており、作用極表面は溶存水素濃度に応じた水素分子の吸着状態が維持される。   The platinum black plated electrode is also adopted in the above-mentioned diaphragm type polarographic electrode system which is the prior art, but in the same system, a constant potential is established between the working electrode and the counter electrode so as to advance the oxidation reaction of hydrogen molecule shown in chemical formula 1. Is continuously given, and the working surface of the working electrode maintains the adsorption state of hydrogen molecules according to the concentration of dissolved hydrogen.

一方、本発明の溶存水素濃度計においては、故意に水素分子の分解反応を進行させるものではないため、時間とともに電極表面への水素分子の吸着が進行し、溶存水素濃度に相関をもつ電極応答が得られない可能性も想定されたが、発明者らの検証により溶存水素濃度の定量を実現できる電極応答を確認した。   On the other hand, in the dissolved hydrogen concentration meter of the present invention, since the decomposition reaction of hydrogen molecules is not intentionally performed, adsorption of hydrogen molecules on the electrode surface progresses with time, and an electrode response having a correlation with dissolved hydrogen concentration However, the inventors confirmed that the electrode response that can realize the determination of the dissolved hydrogen concentration.

溶存水素濃度の異なる電解水サンプルをグルコースオキシダーゼ13kU/L、グルコース0.045M、カタラーゼ2.7MU/L、pH調整剤としてリン酸水素二ナトリウム、リン酸二水素カリウムを各々0.025Mとなるように調製後、電極応答を測定した結果を図1に示す。   After preparing electrolytic water samples with different dissolved hydrogen concentration, glucose oxidase 13 kU / L, glucose 0.045 M, catalase 2.7 MU / L, disodium hydrogen phosphate as pH adjuster, and potassium dihydrogen phosphate as 0.025 M each The results of measuring the electrode response are shown in FIG.

なお、本検証には電極の電解液に3.3M塩化カリウム溶液を利用した。加えて、φ3mmの円形白金電極上に白金黒めっきを施した作用極を用いた。   In addition, the 3.3 M potassium chloride solution was utilized for the electrolyte solution of an electrode for this verification. In addition, a working electrode in which platinum black plating was performed on a round platinum electrode of φ3 mm was used.

検出電位は溶存水素濃度に相関を示し、溶存水素濃度が0.2〜1.6mg/Lの範囲で−565〜−595mVの酸化還元電位を与えた。   The detected potential was correlated with the concentration of dissolved hydrogen, and when the concentration of dissolved hydrogen was in the range of 0.2 to 1.6 mg / L, a redox potential of -565 to -595 mV was given.

図10に電極応答の一例を示す。   FIG. 10 shows an example of the electrode response.

図10に示すように電極応答はいずれの濃度においても、測定開始後、急激に電位が下降し、所定の下限電位に到達した後に再度、上昇する傾向を示すが、各濃度に対応した下限電位を数分間維持できる特性から溶存水素濃度の判定情報として、下限電位を利用することが有効であることを確認した。   As shown in FIG. 10, the electrode response at any concentration shows a tendency for the potential to drop sharply after measurement starts and to rise again after reaching the predetermined lower limit potential, but the lower limit potential corresponding to each concentration It has been confirmed that it is effective to use the lower limit potential as determination information of the dissolved hydrogen concentration because of the characteristic that it can be maintained for several minutes.

なお、測定器の実現にあたっては、図1の電極特性を予め検量線として、または、電極特性の近似式をハードウェアに記憶させておき、検出電位が到達する下限電位を読み取り、溶存水素濃度に読み替える検出、演算機能を搭載する。   In addition, in realizing the measuring instrument, the electrode characteristics in FIG. 1 are stored in advance as a calibration curve, or an approximate expression of the electrode characteristics is stored in hardware, and the lower limit potential reached by the detected potential is read. Equipped with detection and calculation functions to be replaced.

以上、本発明の溶存水素濃度計では、検出電位に影響を与えない酵素触媒およびpH調整剤を添加し、水素分子に対する高感度の応答性をもつ白金黒めっき電極を採用することで、サンプルの溶存酸素濃度、pHに影響されることなく、安定した溶存水素濃度の測定を実現できる。   As described above, in the dissolved hydrogen concentration meter of the present invention, by adding an enzyme catalyst and a pH adjuster that do not affect the detection potential, and adopting a platinum black plating electrode having high sensitivity response to hydrogen molecules, A stable measurement of dissolved hydrogen concentration can be realized without being influenced by the dissolved oxygen concentration and pH.

また、実用化にあたって、サンプルに添加する前処理試薬の種類が多く、計量、溶解の操作に手間を要すことから、グルコースオキシダーゼおよびカタラーゼの適量を清浄水に溶解させた液体試薬Iとグルコースおよびリン酸水素二ナトリウム、リン酸二水素カリウム等のpH調整剤を所定量、清浄水で溶解させた液体試薬IIとを用意し、スポイト等で各々の液体試薬を定量添加する手法を用いることが有効である。   In addition, since there are many types of pretreatment reagents added to the sample for practical use, and it takes time and effort to measure and dissolve, liquid reagent I and glucose in which an appropriate amount of glucose oxidase and catalase are dissolved in clean water Prepare a liquid reagent II in which a predetermined amount of pH adjuster such as disodium hydrogen phosphate or potassium dihydrogen phosphate is dissolved in clean water, and use the method of quantitatively adding each liquid reagent with a syringe etc. It is valid.

本発明の溶存水素濃度計に利用する電極は前述の図4に示した通り、検出部として白金黒めっき電極を備えた小径の棒構造をとるため、数10mL程度の少量のサンプルでも検出部を浸漬して溶存水素濃度の測定が行うことができる。   The electrode used for the dissolved hydrogen concentration meter of the present invention has a small diameter rod structure provided with a platinum black plating electrode as a detection unit as shown in FIG. Immersion and measurement of dissolved hydrogen concentration can be performed.

例えば、サンプル量を15mLとし、活性が200kU/gのグルコースオキシダーゼおよび10MU/gのカタラーゼを原料とした場合、グルコースオキシダーゼを0.25g以上、さらに望ましくは0.5g以上、カタラーゼを0.5g以上、純水1Lに溶解することで前述の液体試薬Iを調製する。
このとき、液体試薬Iのグルコースオキシダーゼの活性は50kU/L以上、さらに望ましくは100kU/L以上、カタラーゼの活性は5MU/L以上となる。
For example, when the sample volume is 15 mL and glucose oxidase having activity of 200 kU / g and catalase at 10 MU / g are used as a raw material, 0.25 g or more of glucose oxidase, more preferably 0.5 g or more, 0.5 g or more of catalase, pure water The aforementioned liquid reagent I is prepared by dissolving in 1 L.
At this time, the activity of glucose oxidase of liquid reagent I is 50 kU / L or more, more preferably 100 kU / L or more, and the activity of catalase is 5 MU / L or more.

また、グルコースを3g以上、リン酸水素二ナトリウム23.8g、リン酸二水素カリウム22.8gを純水1Lに溶解することで液体試薬IIを調製する。
このとき、液体試薬IIのグルコース濃度は約17mM以上、リン酸水素二ナトリウム、リン酸二水素カリウムの濃度は各々、約0.17Mとなる。
Further, a liquid reagent II is prepared by dissolving 3 g or more of glucose, 23.8 g of disodium hydrogen phosphate, and 22.8 g of potassium dihydrogen phosphate in 1 L of pure water.
At this time, the glucose concentration of the liquid reagent II is about 17 mM or more, and the concentrations of disodium hydrogen phosphate and potassium dihydrogen phosphate are each about 0.17 M.

前述の液体試薬Iの2mL、液体試薬IIの3mLをサンプル15mLに添加することで、サンプルのグルコースオキシダーゼの活性は5kU/L以上、さらに望ましくは10kU/L、カタラーゼの活性は0.5MU/L以上、グルコース濃度として2.5mM以上、リン酸水素二ナトリウムおよびリン酸二水素カリウムの濃度として各々0.025Mとなり、サンプルの溶存酸素の分解とpH調整を行うことができる。   By adding 2 mL of liquid reagent I and 3 mL of liquid reagent II to 15 mL of the sample, the glucose oxidase activity of the sample is 5 kU / L or more, more preferably 10 kU / L, and the catalase activity is 0.5 MU / L or more. The concentration of glucose is 2.5 mM or more, and the concentrations of disodium hydrogen phosphate and potassium dihydrogen phosphate each are 0.025 M, and the dissolved oxygen of the sample can be decomposed and the pH can be adjusted.

なお、前述の液体試薬Iで利用するグルコースオキシダーゼおよびカタラーゼの原料活性、並びに液体試薬I、液体試薬IIの各成分の活性、濃度並びに添加量は一例であって、両液体試薬添加後のサンプル中の成分が前記活性および濃度となる様に、原料活性、液体試薬Iの活性、液体試薬IIの各成分濃度、液体試薬I、液体試薬IIの添加量について、任意の条件を設定してもよい。   The activity of the raw material of glucose oxidase and catalase used in the above-mentioned liquid reagent I, and the activity, concentration and addition amount of each component of liquid reagent I and liquid reagent II are one example, and in the sample after addition of both liquid reagents Any conditions may be set for the raw material activity, the activity of the liquid reagent I, the concentration of each component of the liquid reagent II, and the addition amount of the liquid reagent I and the liquid reagent II so that the component .

加えて、水溶液中での酵素の安定性は充分な知見がなく、とりわけ、グルコースオキシダーゼ単体では冷凍保存が一般的であるが、本発明の検証段階で、冷蔵状態で6ヵ月間保管した場合でも前述の液体試薬Iの機能は低下しないことを確認しており、充分な実用性を備えた試薬として扱うことができる。   In addition, the stability of the enzyme in an aqueous solution is not sufficiently known, and in particular, cryopreservation with glucose oxidase alone is common, but even when stored under refrigeration for 6 months at the verification stage of the present invention It has been confirmed that the function of the liquid reagent I described above does not deteriorate, and it can be treated as a reagent with sufficient practicality.

図6に6ヵ月間冷蔵保管した液体試薬Iを用いた溶存水素濃度の測定結果を示す。   FIG. 6 shows the measurement results of the dissolved hydrogen concentration using liquid reagent I stored refrigerated for 6 months.

図6の結果は、前述の電極特性の近似式を組み込んだ測定器を使用し、基準濃度に対する乖離を調査したもので、6ヵ月間冷蔵保管後の液体試薬Iを用いても安定した濃度測定が実現できることを示している。   The results in FIG. 6 were obtained by investigating the deviation from the reference concentration using a measuring device incorporating the above-described approximate expression of the electrode characteristics, and stable concentration measurement even when using liquid reagent I after storage for 6 months in a refrigerator Indicates that can be achieved.

更に、本発明で使用するグルコースオキシダーゼ、カタラーゼはタンパク質、グルコースは糖類であり、いずれも生分解性であること、また、pH調整剤のリン酸塩は一般の環境水中にも含まれていることから、安全で環境に優しい試薬として提供できる。   Furthermore, glucose oxidase used in the present invention, catalase is a protein, and glucose is a saccharide, both of which are biodegradable, and phosphate of a pH adjusting agent is also contained in general environmental water Can be provided as a safe and environmentally friendly reagent.

一方、本発明の溶存水素濃度計は図8に示す白金電極を作用極として利用することもできる。この場合、白金黒めっき電極に比べ、作用極の水素吸蔵機能が低下するため、測定結果に軽度のばらつきをともなうものの、前述の図10に示す白金黒めっき電極を使用した場合と同等の電極応答を示し、下限電位を利用した溶存水素濃度の判定を実現でき、簡易計測器としての実用性を満たすことができる。   On the other hand, the dissolved hydrogen concentration meter of the present invention can also use the platinum electrode shown in FIG. 8 as a working electrode. In this case, since the hydrogen storage function of the working electrode is lower than that of the platinum black plated electrode, the measurement result has slight variations, but the electrode response equivalent to the case of using the platinum black plated electrode shown in FIG. The determination of the dissolved hydrogen concentration using the lower limit potential can be realized, and the practicality as a simple measuring instrument can be satisfied.

図5に白金電極を作用極とした場合の測定結果を示す。   The measurement result at the time of using a platinum electrode as a working electrode in FIG. 5 is shown.

溶存水素濃度が0.2〜0.4 mg/Lの範囲で基準濃度に対して、正負双方の測定誤差が確認されるが、±0.1 mg/L程度の精度を確保できる。   Although a measurement error of both positive and negative is confirmed with respect to a reference concentration in the range of 0.2 to 0.4 mg / L of dissolved hydrogen concentration, an accuracy of about ± 0.1 mg / L can be secured.

また、白金黒めっきは非常に表面積が大きいため、界面活性剤による洗浄ができず、加えて、強度が乏しいため、ブラッシングによる清掃もできないが、白金電極は使用者による研磨処理で容易に初期状態に再生できることや、めっき加工が不要となるため、より低コストの電極を提供できるメリットを創出できる。   In addition, since platinum black plating has a very large surface area, it can not be cleaned with a surfactant, and in addition, its strength is poor, so it can not be cleaned by brushing, but platinum electrodes can easily be initially polished by the user. It is possible to create the merit of providing a lower cost electrode because it can be regenerated and plating is not required.

本発明の溶存水素濃度計を利用することで、豊富な溶存酸素を含む水素水やpH10程度のアルカリイオン水に含まれる溶存水素濃度を簡便な操作で測定することができる。   By using the dissolved hydrogen concentration meter of the present invention, it is possible to measure the dissolved hydrogen concentration contained in hydrogen water containing abundant dissolved oxygen and alkaline ionized water having a pH of about 10 by a simple operation.

また、電極構成も簡素でありながら、溶存水素濃度0.1mg/Lあたりの電位変動が数mVオーダーの変化として検出できるため、電気的な判別が容易で、精度の高い測定を実現できる。   In addition, while the electrode configuration is simple, the potential fluctuation per dissolved hydrogen concentration of 0.1 mg / L can be detected as a change of several millivolts, so electrical discrimination is easy and highly accurate measurement can be realized.

加えて、サンプルの溶存水素濃度および水素イオン濃度によって発生した電位を検出しているため、検出用の電源が不要であることから、測定器本体は入力回路、演算回路のみの極めてシンプルな構成で実現することができる。   In addition, since the potential generated by the dissolved hydrogen concentration and hydrogen ion concentration of the sample is detected, a power source for detection is unnecessary, so the measuring instrument has a very simple configuration of only the input circuit and the arithmetic circuit. It can be realized.

さらに、作用極が直接、サンプルに接触する構造であるため、電解液への気泡の混入も生じず、煩雑な保守が不要な測定器を構成することができる。   Furthermore, since the working electrode is in direct contact with the sample, the mixing of air bubbles into the electrolytic solution does not occur, and a measuring instrument that does not require complicated maintenance can be configured.

1 ハウジング
2 電解液
3 白金電極
4 白金黒めっき
5 作用極
6 銀−塩化銀製の検出部
7 比較電極
8 液絡部
Reference Signs List 1 housing 2 electrolyte 3 platinum electrode 4 platinum black plating 5 working electrode 6 detection unit made of silver-silver chloride 7 comparison electrode 8 liquid junction

Claims (7)

ハウジング下端に露出した白金電極を備えた作用極と、所定濃度の塩化カリウム溶液からなる電解液に浸漬し、隔離された銀−塩化銀電極を備えた比較電極と、前記白金電極と離隔してハウジング下端に併設した多孔質セラミックからなる液絡部とを有する電極を用い、グルコースオキシダーゼの活性として5kU/L以上、カタラーゼの活性として0.5MU/L以上、グルコースの濃度として2.5mM以上とし、pH4〜9内の一定値に調整できるpH調整剤をそれぞれ添加したサンプルの酸化還元電位を測定し、その下限電位から溶存水素濃度を特定することを特徴とする溶存水素濃度の測定方法A working electrode having a platinum electrode exposed to the housing bottom, and immersed in an electrolytic solution consisting of potassium chloride solution having a predetermined concentration, isolated silver - a reference electrode having a silver chloride electrode, before xylo gold electrode using an electrode having a liquid junction formed of porous ceramic which is parallel in the housing lower end spaced apart from the, 5kU / L or more as an active glucose oxidase, 0.5 mU / L over the activity of catalase, 2.5 mM as the concentration of glucose A measurement method of dissolved hydrogen concentration characterized by measuring the oxidation-reduction potential of the sample which added the pH adjuster which can be adjusted to the fixed value in pH 4-9 each as above, and determined the lower limit electric potential. . 前記作用極を白金黒めっき付白金電極とすることを特徴とする請求項1の溶存水素濃度の測定方法The method for measuring the concentration of dissolved hydrogen according to claim 1, wherein the working electrode is a platinum electrode with platinum black plating . 前記塩化カリウム溶液の濃度が3.3M、または3Mであることを特徴とする請求項1または請求項2の溶存水素濃度の測定方法The method of measuring the concentration of dissolved hydrogen according to claim 1 or 2, wherein the concentration of the potassium chloride solution is 3.3M or 3M. 前記サンプルに添加後の活性が5kU/L以上のグルコースオキシダーゼおよび0.5MU/L以上のカタラーゼとなる様にグルコースオキシダーゼとカタラーゼの適量を清浄水に溶解させた液体試薬Iと、サンプルに添加後の濃度が2.5mM以上のグルコースおよび中性領域、または弱酸性領域の一定値に前記サンプルを調整できるpH調整剤を清浄水に溶解させた液体試薬IIとからなる前処理試薬を用いることを特徴とする請求項1ないし請求項3の何れかに記載の溶存水素濃度の測定方法A liquid reagent I prepared by dissolving an appropriate amount of glucose oxidase and catalase in clean water so that the activity after addition to the sample is 5 kU / L or more glucose oxidase and 0.5 MU / L or more catalase, and after addition to the sample It is characterized by using a pretreatment reagent comprising a liquid reagent II in which a pH adjuster capable of adjusting the sample to a constant value of 2.5 mM or more and a neutral region or a weakly acidic region is dissolved in clean water. The method for measuring the concentration of dissolved hydrogen according to any one of claims 1 to 3. 前記サンプルに添加後の濃度が各々0.025Mとなるリン酸水素二ナトリウムとリン酸二水素カリウムを添加し、前記サンプルをpH6.9近傍に調整できるpH調整剤を用いることを特徴とする請求項1ないし請求項4の何れかに記載の溶存水素濃度の測定方法The method is characterized in that disodium hydrogen phosphate and potassium dihydrogen phosphate each having a concentration of 0.025 M after addition to the sample are added, and a pH adjuster capable of adjusting the sample to around pH 6.9 is used. The measuring method of the dissolved hydrogen concentration in any one of 1 thru | or 4. 前記サンプルにリン酸水素二ナトリウム、リン酸二水素カリウムの適量を添加し、前記サンプルをpH4〜9内の一定pHに調整できるpH調整剤を用いることを特徴とする請求項1ないし請求項4の何れかに記載の溶存水素濃度の測定方法A pH adjuster capable of adjusting the sample to a constant pH within 4 to 9 is used by adding an appropriate amount of disodium hydrogen phosphate and potassium dihydrogen phosphate to the above-mentioned sample. The measuring method of the dissolved hydrogen concentration in any one of-. 前記サンプルに添加後の濃度が0.05Mとなるフタル酸水素カリウムを添加し、前記サンプルをpH4.0近傍の一定pHに調整できるpH調整剤を用いることを特徴とする請求項1ないし請求項4の何れかに記載の溶存水素濃度の測定方法The method is characterized in that potassium hydrogen phthalate whose concentration after addition is 0.05 M is added to the sample, and a pH adjuster capable of adjusting the sample to a constant pH around 4.0 is used. The measuring method of the dissolved hydrogen concentration in any one of-.
JP2015023814A 2015-02-10 2015-02-10 Measurement method of dissolved hydrogen concentration Active JP6534264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015023814A JP6534264B2 (en) 2015-02-10 2015-02-10 Measurement method of dissolved hydrogen concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023814A JP6534264B2 (en) 2015-02-10 2015-02-10 Measurement method of dissolved hydrogen concentration

Publications (2)

Publication Number Publication Date
JP2016148517A JP2016148517A (en) 2016-08-18
JP6534264B2 true JP6534264B2 (en) 2019-06-26

Family

ID=56687831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023814A Active JP6534264B2 (en) 2015-02-10 2015-02-10 Measurement method of dissolved hydrogen concentration

Country Status (1)

Country Link
JP (1) JP6534264B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021923A1 (en) * 2016-07-26 2018-02-01 Общество с ограниченной ответственностью "ДАТА-ЦЕНТР Автоматика" Method for counting number of produced rods in rolling production
RU2632769C1 (en) 2016-08-10 2017-10-09 Борис Иванович Пастухов Method and system for multiparameter estimation of weather, earth magnetic field and air condition influence on functioning of various systems of human body
JP6870140B1 (en) * 2020-04-22 2021-05-12 輝郎 木山 In-vivo redox potential measuring device, in-vivo redox potential measuring method, and in-vivo redox potential verification method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545328A (en) * 1991-08-13 1993-02-23 Taiyo Yuden Co Ltd Ph converting-type glucose sensor and sensor plate
US5284140A (en) * 1992-02-11 1994-02-08 Eli Lilly And Company Acrylic copolymer membranes for biosensors
JP3477333B2 (en) * 1995-11-27 2003-12-10 松下電工株式会社 Cleaning method of redox potential sensor
JP2003254936A (en) * 2002-02-28 2003-09-10 Apurikusu:Kk Oxidation-reduction potential measuring method and oxidation-reduction potential measuring device
JP2007047135A (en) * 2005-08-05 2007-02-22 Aomoriken Kogyo Gijutsu Kyoiku Shinkokai Gel electrolyte of polarograph type electrode, and preparing method
JP5157880B2 (en) * 2008-12-22 2013-03-06 東亜ディーケーケー株式会社 Electrode inspection method for redox potential measuring device and standard solution for electrode inspection of redox potential measuring device

Also Published As

Publication number Publication date
JP2016148517A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
Guilbault et al. Enzyme electrodes based on the use of a carbon dioxide sensor. Urea and L-tyrosine electrodes
US5503720A (en) Process for the quantitative determination of electrochemically reducible or oxidizable substances, particularly peracetic acid mixed with other oxidizing substances
JP4486702B2 (en) Creatinine concentration measuring method, measuring device and measuring apparatus, and salinity measuring method, measuring device and measuring apparatus using them
JP6534264B2 (en) Measurement method of dissolved hydrogen concentration
GB2520753A (en) Electrochemical sensor apparatus and electrochemical sensing method
GB2480898A (en) Electrochemical gas sensor
US20050011771A1 (en) Chlorite sensor
Kirstein et al. Enzyme electrode for urea with amperometric indication: Part I—Basic principle
CN105784814A (en) Sensor based on concentration cell principle
JP5157880B2 (en) Electrode inspection method for redox potential measuring device and standard solution for electrode inspection of redox potential measuring device
JP2010060391A (en) Dissolved oxygen sensor
RU2442976C2 (en) Method for production of highly stable sensitive element of hydrogen peroxide sensor
US3830709A (en) Method and cell for sensing nitrogen oxides
Shah et al. Electrochemical sensing of nitrite at aminophenol-formaldehyde polymer/phosphomolybdic acid nanocomposite modified electrode
Abdullin et al. Determination of uric acid by voltammetry and coulometric titration
US20060163088A1 (en) Amperometric sensor with counter electrode isolated from fill solution
JPH03191854A (en) Apparatus and method for restricting ef- fect of insoluble oxygen content of eletrolytic solution to minimum in low range oxygen analyzer
JP3093086B2 (en) Electric analysis method using battery cells
Kargbo et al. Strong anodic electrochemiluminescence from dissolved oxygen with 2-(dibutylamino) ethanol for glucose oxidase assay
JP2001013102A (en) Fractionately measuring method for peracetic acid and hydrogen peroxide
Shaidarova et al. Electrocatalytic determination of oxalate ions on chemically modified electrodes
Milardović et al. Determination of oxalate in urine, using an amperometric biosensor with oxalate oxidase immobilized on the surface of a chromium hexacyanoferrate-modified graphite electrode
Herrmann et al. Miniaturized sensor module for in-situ control of waters
Miki et al. Electrocatalytic activity of cytochrome c for the reduction of nitric oxide
Nei Some milestones in the 50-year history of electrochemical oxygen sensor development

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190528

R150 Certificate of patent or registration of utility model

Ref document number: 6534264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250