JP3190157B2 - Crystal defect inspection method - Google Patents

Crystal defect inspection method

Info

Publication number
JP3190157B2
JP3190157B2 JP04532093A JP4532093A JP3190157B2 JP 3190157 B2 JP3190157 B2 JP 3190157B2 JP 04532093 A JP04532093 A JP 04532093A JP 4532093 A JP4532093 A JP 4532093A JP 3190157 B2 JP3190157 B2 JP 3190157B2
Authority
JP
Japan
Prior art keywords
crystal
inspected
light beam
observation lens
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04532093A
Other languages
Japanese (ja)
Other versions
JPH06258238A (en
Inventor
辺 正 晴 渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12716018&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3190157(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP04532093A priority Critical patent/JP3190157B2/en
Publication of JPH06258238A publication Critical patent/JPH06258238A/en
Application granted granted Critical
Publication of JP3190157B2 publication Critical patent/JP3190157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、結晶基板内の結晶欠陥
等を検査する結晶欠陥検査方法に係り、特に光ビームを
用いて半導体基板内の結晶欠陥、析出物、または異物等
の有無を検査する結晶欠陥検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal defect inspection method for inspecting crystal defects and the like in a crystal substrate, and more particularly to a method for detecting the presence or absence of crystal defects, precipitates or foreign matter in a semiconductor substrate using a light beam. The present invention relates to a crystal defect inspection method for inspection.

【0002】[0002]

【従来の技術】従来から結晶欠陥等の観察方法は種々あ
り、特に光ビームを用いた結晶欠陥等の検出方法は非破
壊で簡便であるという利点があり広く利用されている。
2. Description of the Related Art Conventionally, there are various methods for observing crystal defects and the like, and in particular, a method for detecting crystal defects and the like using a light beam has the advantage of being nondestructive and simple and has been widely used.

【0003】光ビームの進路に異物があると光ビームは
散乱され光ビームの波長以下の微小な異物の存在がわか
ることは、古くはチンダル現象として知られている。
[0003] When foreign matter is present on the path of the light beam, the light beam is scattered, and the existence of minute foreign matter having a wavelength equal to or less than the wavelength of the light beam is known as a chindal phenomenon.

【0004】半導体結晶においては、バンドギャップよ
り低いエネルギーの波長成分を有する光ビームを入射さ
せると、光ビームは吸収されることなく結晶中を進み、
結晶欠陥、析出物、または異物など周囲の半導体結晶と
屈折率の異なる部分で散乱される。入射光の強度が大き
ければ大きいほど散乱光強度は大きくなるので、通常は
光源としてレーザ光、特に赤外レーザ光が用いられる。
また、入射される光ビームを走査することにより光を散
乱する散乱体の分布を観察することができる。
In a semiconductor crystal, when a light beam having a wavelength component of energy lower than the band gap is incident, the light beam travels through the crystal without being absorbed,
The light is scattered by a portion having a different refractive index from the surrounding semiconductor crystal, such as a crystal defect, a precipitate, or a foreign substance. Since the scattered light intensity increases as the intensity of the incident light increases, laser light, particularly infrared laser light, is usually used as a light source.
In addition, the distribution of scatterers that scatter light can be observed by scanning the incident light beam.

【0005】シリコンの半導体結晶においては、YAG
レーザからの1.12μmの赤外光を光源とし、散乱光
を赤外ビジコンで検出する。光を散乱する散乱体として
は、酸素析出物などのBMD(Bulk Micro
Defect)や積層欠陥が知られている。
In a silicon semiconductor crystal, YAG
1.12 μm infrared light from a laser is used as a light source, and scattered light is detected by an infrared vidicon. As a scatterer that scatters light, a BMD (Bulk Micro) such as an oxygen precipitate is used.
Defect) and stacking faults are known.

【0006】図5乃至図7に従来の結晶欠陥検査方法の
構成の概略を示す。シリコン結晶基板1の側部の劈開面
2から光ビーム4を入射させ、結晶欠陥等4によって散
乱された散乱光5をシリコン結晶基板1の上方に載置さ
れたTVカメラの観察用レンズ6により検出する。観察
用レンズ6はシリコン結晶基板1の上面7内部近傍の観
察しようとする結晶欠陥等4の位置に焦点合わせされて
いる。観察用レンズ6による像はTVカメラの撮像管8
の撮像面に結像され、信号処理器9によって2値化等の
信号処理や記憶がされた後、TVモニター10に表示し
て観察される。
FIGS. 5 to 7 schematically show the structure of a conventional crystal defect inspection method. A light beam 4 is incident on the cleavage plane 2 on the side of the silicon crystal substrate 1, and the scattered light 5 scattered by the crystal defects 4 is illuminated by the observation lens 6 of the TV camera placed above the silicon crystal substrate 1. To detect. The observation lens 6 is focused on the position of a crystal defect or the like 4 to be observed near the inside of the upper surface 7 of the silicon crystal substrate 1. The image from the observation lens 6 is captured by an image pickup tube 8 of a TV camera.
The image is formed on the image pickup surface, subjected to signal processing such as binarization and stored by the signal processor 9, and then displayed on the TV monitor 10 for observation.

【0007】また、図6に示すように、シリコン結晶基
板1の上面7から光ビーム3を入射させ、結晶欠陥等4
によって散乱されて劈開面2から放出される散乱光5を
劈開面2の上方に載置されたTVカメラの観察用レンズ
6により検出する。観察用レンズ6はシリコン結晶基板
1の劈開面2内部近傍の観察しようとする結晶欠陥等4
の位置に焦点合わせされている。そして図5の場合と同
様に、信号処理器9を経てTVモニター10に表示して
観察される。
Further, as shown in FIG. 6, a light beam 3 is incident on the upper surface 7 of the silicon crystal substrate 1 to
The scattered light 5 scattered by and emitted from the cleavage plane 2 is detected by the observation lens 6 of the TV camera placed above the cleavage plane 2. The observation lens 6 includes a crystal defect 4 to be observed near the inside of the cleavage plane 2 of the silicon crystal substrate 1.
The focus is on the position. Then, as in the case of FIG. 5, the image is displayed on the TV monitor 10 via the signal processor 9 and observed.

【0008】また最近は、図7に示すように、シリコン
結晶基板1の上面7に垂直な偏光面を有する光ビーム3
をブリュスター角で入射させ、上面7における反射が生
じないようにして全ての光ビーム3が結晶内に進入させ
ることを利用した赤外トモグラフが報告されている。
Recently, as shown in FIG. 7, a light beam 3 having a polarization plane perpendicular to the upper surface 7 of the silicon crystal substrate 1 is formed.
Is incident at a Brewster angle, and all the light beams 3 enter the crystal without causing reflection on the upper surface 7, and an infrared tomograph is reported.

【0009】[0009]

【発明が解決しようとする課題】超LSI用シリコン結
晶基板は素子特性に悪影響を与える残留結晶欠陥は全く
ないことが望ましい。少なくともデバイス活性領域とな
る上面から数μmの範囲においては無欠陥である必要が
ある。デバイス活性領域となる範囲は超LSIの種類に
よって異なるが最大10μm程度である。この範囲にお
いてシリコン結晶基板から放出される散乱光を検出して
結晶欠陥を検出しようとする場合にいくつかの問題点が
存在する。
It is desirable that a silicon crystal substrate for an VLSI has no residual crystal defects which adversely affect device characteristics. At least in a range of several μm from the upper surface serving as the device active region, it is necessary to have no defect. The range of the device active region differs depending on the type of the VLSI, but is at most about 10 μm. In this range, there are some problems when trying to detect crystal defects by detecting scattered light emitted from the silicon crystal substrate.

【0010】まず図5に示す従来の場合には、シリコン
結晶基板1内を上面7から10μm以内で光ビーム3を
上面7と極めて平行に入射させることは極めて難しいと
いう問題点がある。例えば、入射した光ビームが100
0μm進行する間に上面7と光ビーム3との距離の変化
を1μm以内にするように、試料であるシリコン結晶基
板1と光ビーム3との角度を調整することは通常の試料
台では困難である。また、シリコン結晶基板1の劈開面
2の縁の部分は通常きれいには劈開せず、この部分を通
過した光ビームの進路は曲げら上面7と極めて平行に進
行することは難しい。
First, in the conventional case shown in FIG. 5, there is a problem that it is extremely difficult to make the light beam 3 enter the silicon crystal substrate 1 within 10 μm from the upper surface 7 very parallel to the upper surface 7. For example, if the incident light beam is 100
It is difficult to adjust the angle between the silicon crystal substrate 1 as a sample and the light beam 3 so that the change in the distance between the upper surface 7 and the light beam 3 is made within 1 μm during the travel of 0 μm on a normal sample stage. is there. In addition, the edge portion of the cleavage plane 2 of the silicon crystal substrate 1 is not usually cleaved finely, and it is difficult for the light beam passing through this portion to bend and travel extremely parallel to the upper surface 7.

【0011】また、図6に示すように、シリコン結晶基
板1の上面3に入射し劈開面2から散乱光を観察しよう
とする場合には、光ビーム3が上面3で散乱され上面7
近傍の欠陥を検出することは困難であるという問題点が
あった。また、劈開面2の縁の乱れも上面7近傍の欠陥
の検出を困難にしていた。
As shown in FIG. 6, when light is incident on the upper surface 3 of the silicon crystal substrate 1 and scattered light is to be observed from the cleavage plane 2, the light beam 3 is scattered on the upper surface 3 and
There is a problem that it is difficult to detect a nearby defect. Further, the disorder of the edge of the cleavage plane 2 also makes it difficult to detect a defect near the upper surface 7.

【0012】一方、図7に示すように、シリコン結晶基
板1の上面3に対して垂直な偏向面を有する光ビーム3
をブリュスター角で入射する場合には、上面7における
反射を無くすることができるので、原理的には上面7近
傍からの散乱光を検出することにより結晶欠陥を検出す
ることができる。
On the other hand, as shown in FIG. 7, a light beam 3 having a deflection surface perpendicular to the upper surface 3 of the silicon crystal substrate 1 is shown.
Is incident at a Brewster angle, reflection on the upper surface 7 can be eliminated, and in principle, crystal defects can be detected by detecting scattered light from near the upper surface 7.

【0013】この場合、シリコン結晶基板1の内部へ進
行した光ビーム3の強度は、αを吸収係数、tを光ビー
ム3の進行距離とするとexp(−αt)にしたがって
減衰しながら伝播する。そしてBMDなどの散乱体で散
乱される。この散乱光は散乱体から上面7までの距離を
t´とするとexp(−αt´)に減衰した後上面7か
ら放出される。検出器が高感度である場合や入射光ビー
ムが十分に強い場合には、所定の深さ以内に存在する散
乱体を全て検出することができ好都合である。特に超L
SIでは、上面7から数μmの領域における結晶欠陥の
有無が問題となり、上面7の極く近傍にある欠陥のみを
高感度で検出すればよい。このことは本願発明の他の実
施例で説明するように、吸収係数の大きい波長成分を有
する光ビームを選択することによって可能となる。
In this case, the intensity of the light beam 3 traveling inside the silicon crystal substrate 1 propagates while attenuating according to exp (-αt), where α is the absorption coefficient and t is the traveling distance of the light beam 3. And it is scattered by a scatterer such as BMD. The scattered light is emitted from the upper surface 7 after attenuating to exp (−αt ′), where t ′ is the distance from the scatterer to the upper surface 7. When the detector has high sensitivity or when the incident light beam is sufficiently strong, all the scatterers existing within a predetermined depth can be conveniently detected. Especially super L
In SI, the presence or absence of a crystal defect in a region several μm from the upper surface 7 becomes a problem, and only the defect in the immediate vicinity of the upper surface 7 needs to be detected with high sensitivity. This can be achieved by selecting a light beam having a wavelength component having a large absorption coefficient, as described in another embodiment of the present invention.

【0014】しかしながら、シリコン結晶基板1の上面
7にごみ等の微粒子が付着していると、上面7にあるご
み等と上面7近傍の散乱体とがともに観察用レンズ6の
焦点深度内にある場合には判別することができないとい
う問題点があった。この場合、ごみ等の大きさがかなり
大きいときには散乱光強度が強くなり他から判別するこ
とができるのに対し、微小なごみ等による散乱光強度は
BMD等による散乱光と同程度であるので区別が困難で
ある。またシリコン結晶基板1の上面の傷や凸凹などに
よってもごみ等と同様に入射光ビームは散乱され、上面
7近傍の結晶欠陥検出の妨げとなる。
However, if fine particles such as dust adhere to the upper surface 7 of the silicon crystal substrate 1, both the dust on the upper surface 7 and the scatterers near the upper surface 7 are within the depth of focus of the observation lens 6. In such a case, there is a problem that it cannot be determined. In this case, when the size of the dust and the like is considerably large, the intensity of the scattered light becomes strong and can be distinguished from others. Have difficulty. In addition, the incident light beam is scattered similarly to dust or the like due to scratches or irregularities on the upper surface of the silicon crystal substrate 1 and hinders detection of crystal defects near the upper surface 7.

【0015】そこで、本発明の目的は、上記従来技術の
有する問題を解消し、被検査結晶体の上面に付着したご
み等の影響を受けずに、上面近傍の被検査結晶体内に存
在する結晶欠陥等の有無を検査する方法を提供すること
である。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to eliminate the influence of dust or the like adhering to the upper surface of the crystal to be inspected and to prevent the crystal existing in the crystal to be inspected near the upper surface from being affected. An object of the present invention is to provide a method for inspecting for the presence or absence of a defect or the like.

【0016】また、本発明の他の目的は、被検査結晶体
に反射面を形成しなくとも、高精度で簡易に上面近傍の
被検査結晶体内に存在する結晶欠陥の有無を検査する方
法を提供することである。
Another object of the present invention is to provide a method for inspecting the presence or absence of a crystal defect existing in a crystal to be inspected near the upper surface easily and with high accuracy without forming a reflection surface on the crystal to be inspected. To provide.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の本発明による結晶欠陥検査方法
は、被検査結晶体の側部に上面と所定の傾き角度を有す
る反射面を形成し、被検査結晶体の表面を研磨し、被検
査結晶体の上面の上方に載置された観察用レンズを被検
査結晶体の上面近傍に焦点合わせし、前記反射面で反射
される光ビームが上面と略平行に被検査結晶体内部を伝
播するように被検査結晶体の下面から光ビームを入射さ
せ、前記観察用レンズを経て検出される散乱光による像
を観察して被検査結晶体内の結晶欠陥、析出物、または
異物等の有無を検査することを特徴とする。
According to a first aspect of the present invention, there is provided a crystal defect inspection method according to the present invention, wherein a reflection surface having a predetermined inclination angle with respect to an upper surface is provided on a side of a crystal to be inspected. Is formed, the surface of the crystal to be inspected is polished, and an observation lens mounted above the upper surface of the crystal to be inspected is focused near the upper surface of the crystal to be inspected, and is reflected by the reflection surface. A light beam is incident from the lower surface of the crystal to be inspected so that the light beam propagates inside the crystal to be inspected substantially parallel to the upper surface, and the image is inspected by observing an image by scattered light detected through the observation lens. It is characterized in that the presence or absence of a crystal defect, a precipitate, a foreign substance or the like in the crystal is inspected.

【0018】また、請求項3に記載の発明にあっては、
光ビームの波長成分を非検査結晶体の吸収係数が略10
0cm−1以上となるように選択し、被検査結晶体の上
面の上方に載置された観察用レンズを被検査結晶体の上
面近傍に焦点合わせし、前記光ビームを略ブリュースタ
角で被検査結晶体の上面に入射させ、前記観察用レンズ
経て検出される散乱光による像を観察して被検査結晶体
内の結晶欠陥、析出物、または異物等の有無を検査する
ことを特徴とする。
In the invention according to claim 3,
When the wavelength component of the light beam has an absorption coefficient of about 10
0 cm −1 or more, and the observation lens placed above the upper surface of the crystal to be inspected is focused on the vicinity of the upper surface of the crystal to be inspected, and the light beam is irradiated at a substantially Brewster angle. It is characterized in that it is made incident on the upper surface of the test crystal, and an image based on the scattered light detected through the observation lens is observed to check for the presence of crystal defects, precipitates, foreign substances, and the like in the target crystal.

【0019】[0019]

【作用】次に本発明の作用について説明する。請求項1
に記載の発明にあっては、被検査結晶体の下面から入射
された光ビームは反射面で反射されて被検査結晶体の上
面と略平行に被検査結晶体内部を伝播し、結晶欠陥、析
出物、または異物等が存在すると散乱され、この散乱光
を被検査結晶体の上面近傍に焦点合わせした観察用レン
ズによって検出する。被検査結晶体の側部に上面と所定
の傾き角度を有する反射面を形成し、光ビームを被検査
結晶体の下面から入射するようにしたので、被検査結晶
体の上面に付着したごみ等があったとしても直接その影
響をうけないで高精度に結晶欠陥、析出物、または異物
等の有無を検査することができる。
Next, the operation of the present invention will be described. Claim 1
In the invention described in the above, the light beam incident from the lower surface of the crystal to be inspected is reflected by the reflecting surface and propagates inside the crystal to be inspected substantially in parallel with the upper surface of the crystal to be inspected, and crystal defects, If a precipitate or a foreign substance is present, it is scattered, and the scattered light is detected by an observation lens focused near the upper surface of the crystal to be inspected. A reflection surface having a predetermined inclination angle with respect to the upper surface is formed on the side of the crystal to be inspected, and the light beam is made to enter from the lower surface of the crystal to be inspected. Even if there is a defect, the presence or absence of crystal defects, precipitates, foreign matter, etc. can be inspected with high accuracy without being directly affected.

【0020】また、請求項3に記載の発明にあっては、
光ビームの波長成分を非検査結晶体の吸収係数が略10
0cm−1以上となるように選択し、光ビームを略ブリ
ュースタ角で被検査結晶体の上面に入射させたので、光
ビームは被検査結晶体内部の上面近傍にのみ進入し、光
ビームが被検査結晶体の下面で反射されることの影響を
受けることなく、また被検査結晶体に反射面を形成しな
くとも、高精度で簡易に上面近傍の被検査結晶体内に存
在する結晶欠陥の有無を検査することができる。
In the invention according to claim 3,
When the wavelength component of the light beam has an absorption coefficient of about 10
Since the light beam was selected so as to be 0 cm −1 or more and was incident on the upper surface of the crystal to be inspected at a substantially Brewster angle, the light beam entered only near the upper surface inside the crystal to be inspected, Without being affected by being reflected by the lower surface of the crystal to be inspected, and without forming a reflection surface on the crystal to be inspected, the crystal defects existing in the crystal to be inspected near the upper surface can be easily detected with high accuracy. The presence can be checked.

【0021】[0021]

【実施例】次に図面を参照して本発明による結晶欠陥検
査方法の実施例を以下に詳細に説明する。図1乃至図3
を参照して本発明の第1実施例を説明する。市販の15
0mm径のシリコン結晶基板を試料として用いる。抵抗
率が2〜3オームcmのN型(100)の基板である。
酸素濃度は1.6x1018/cm(旧AST)であ
る。このような基板から15mmx15mmの観察用試
料を切り出す。図3(a)に示すように、切り出された
シリコン結晶基板1の上面7は鏡面ポリッシュされてい
るが、下面12はエッチング面であり光沢はあるがざら
ざらした面になっている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of a crystal defect inspection method according to the present invention. 1 to 3
A first embodiment of the present invention will be described with reference to FIG. 15 commercially available
A silicon crystal substrate having a diameter of 0 mm is used as a sample. This is an N-type (100) substrate having a resistivity of 2 to 3 ohm cm.
The oxygen concentration is 1.6 × 10 18 / cm 3 (old AST). A 15 mm × 15 mm observation sample is cut out from such a substrate. As shown in FIG. 3A, the upper surface 7 of the cut silicon crystal substrate 1 is mirror-polished, while the lower surface 12 is an etched surface and has a glossy but rough surface.

【0022】このようなざらざらした面である下面12
を#2000のアルミナ砥粒で研磨し、その後0.05
μmのアルミナ懸濁液を用いて鏡面仕上げし、上面7と
平行な鏡面を形成した(図3(b))。
The lower surface 12 which is such a rough surface
Is polished with # 2000 alumina abrasive, and then 0.05
Mirror finishing was performed using a μm alumina suspension to form a mirror surface parallel to the upper surface 7 (FIG. 3B).

【0023】次に図3(b)に示すシリコン結晶基板1
を45度傾斜した試料ホルダーに張り付け#800のア
ルミナ砥粒を用いて側部を研磨し、上面7に対して45
度の角度になるような反射面13を形成した。さらに反
射面13を#2000のアルミナ砥粒で研磨し、その後
0.05μmのアルミナ懸濁液を用いて鏡面仕上げし
た。
Next, the silicon crystal substrate 1 shown in FIG.
Is adhered to a sample holder inclined at 45 degrees, and the sides are polished using # 800 alumina abrasive grains.
The reflecting surface 13 was formed so as to have a degree angle. Further, the reflecting surface 13 was polished with # 2000 alumina abrasive grains, and then mirror-finished using a 0.05 μm alumina suspension.

【0024】また、本実施例においても図5等に示す場
合と同様に、シリコン結晶基板1の上面7の上方に観察
用レンズ6が設けられている。観察用レンズ6はシリコ
ン結晶基板1内部の上面7近傍の観察しようとする結晶
欠陥等4の位置に焦点合わせされている。観察用レンズ
6の焦点深度は約2μmである。
Also, in this embodiment, an observation lens 6 is provided above the upper surface 7 of the silicon crystal substrate 1 as in the case shown in FIG. The observation lens 6 is focused on the position of a crystal defect 4 to be observed near the upper surface 7 inside the silicon crystal substrate 1. The depth of focus of the observation lens 6 is about 2 μm.

【0025】次に図1に示すように、シリコン結晶基板
1の下面12の下方から光ビーム3を下面12に垂直に
スリット14を介して入射する。光ビーム3はNd:Y
AGレーザから供給され、波長成分は1.24μmであ
る。スリット14の幅は10μmである。この1.24
μmの波長成分の光ビーム3はシリコン結晶基板1に対
して十分に透過的である。
Next, as shown in FIG. 1, the light beam 3 is incident on the lower surface 12 of the silicon crystal substrate 1 vertically from below the lower surface 12 through the slit 14. The light beam 3 is Nd: Y
It is supplied from an AG laser and has a wavelength component of 1.24 μm. The width of the slit 14 is 10 μm. This 1.24
The light beam 3 having a wavelength component of μm is sufficiently transparent to the silicon crystal substrate 1.

【0026】図1において、スリット14を通過した光
ビーム15の下面12への入射位置をa,b,cと移動
させて光ビーム15を入射させる。入射位置aで入射さ
れた光ビーム15はシリコン結晶基板1内を透過し(a
´)、シリコン結晶基板1の上面7を通過して光ビーム
15の全部が出射する(a´´)。
In FIG. 1, the incident position of the light beam 15 passing through the slit 14 on the lower surface 12 is moved as a, b, and c to make the light beam 15 incident. The light beam 15 incident at the incident position a is transmitted through the silicon crystal substrate 1 (a
′), The entire light beam 15 is emitted through the upper surface 7 of the silicon crystal substrate 1 (a ″).

【0027】入射位置bで入射された光ビーム15はシ
リコン結晶基板1内を透過し(b´)、光ビーム15の
一部が反射面13で反射し、他は上面7を通過して出射
する。反射面13で反射した光ビームはシリコン結晶基
板1の内部の上面7近傍を上面7に沿って伝播する(b
´´)。散乱体であるBMD等の結晶欠陥等4がこの光
路にあると光ビームは散乱され、散乱光5が上面7へ放
出される。
The light beam 15 incident at the incident position b passes through the inside of the silicon crystal substrate 1 (b '), and a part of the light beam 15 is reflected by the reflecting surface 13 and the other passes through the upper surface 7 and exits. I do. The light beam reflected by the reflecting surface 13 propagates along the upper surface 7 near the upper surface 7 inside the silicon crystal substrate 1 (b
´´). When a crystal defect 4 such as a BMD, which is a scatterer, is present in this optical path, the light beam is scattered and scattered light 5 is emitted to the upper surface 7.

【0028】入射位置cで入射された光ビーム15はシ
リコン結晶基板1内を透過し(c´)、全部が反射面1
3で反射し(c´´)、シリコン結晶基板1の比較的内
部の深い領域を伝播する。結晶欠陥等4がこの光路にあ
ると光ビームは散乱される。散乱光5の波長は光ビーム
3の波長と同じでありシリコン結晶基板1に対して十分
に透過的であるので、さほど減衰せずに上面7へ放出さ
れる。従って、光ビーム3の入射位置を変えることによ
り上面7から種々の深さにある結晶欠陥等4を観察する
ことができる。
The light beam 15 incident at the incident position c passes through the silicon crystal substrate 1 (c '), and the entire light beam 15
The light is reflected at 3 (c ″) and propagates through a relatively deep region inside the silicon crystal substrate 1. If a crystal defect 4 exists in this optical path, the light beam is scattered. Since the wavelength of the scattered light 5 is the same as the wavelength of the light beam 3 and is sufficiently transparent to the silicon crystal substrate 1, the scattered light 5 is emitted to the upper surface 7 without much attenuation. Therefore, by changing the incident position of the light beam 3, it is possible to observe crystal defects 4 at various depths from the upper surface 7.

【0029】超LSIにとって重要な素子活性領域は上
面7から数μm以内であるので、この範囲における結晶
欠陥等4の有無の検査が重要となる。これに対応するた
めに、図2に示すように、スリット14の幅と光ビーム
3の入射位置とを調節することにより、反射面13で反
射された光ビームが上面7の極く近傍のみを伝播するよ
うにする。このために、光ビーム16を上面7と反射面
13の角部20近傍に照射するように光ビーム16の入
射位置を調節し、次に上面7から透過する光ビーム17
がなくなるようにスリット14の幅を調節すればよい。
Since the element active region important for the VLSI is within a few μm from the upper surface 7, it is important to inspect for crystal defects 4 in this range. In order to cope with this, as shown in FIG. 2, by adjusting the width of the slit 14 and the incident position of the light beam 3, the light beam reflected by the reflection surface 13 can be used only in the vicinity of the upper surface 7. Propagate. For this purpose, the incident position of the light beam 16 is adjusted so as to irradiate the light beam 16 to the vicinity of the corner 20 of the upper surface 7 and the reflection surface 13, and then the light beam 17 transmitted from the upper surface 7
What is necessary is just to adjust the width of the slit 14 so that there may be no.

【0030】結晶欠陥等4によって散乱されて上面7へ
放出された散乱光5は、図5等に示した場合と同様に、
観察用レンズ6によってTVカメラの撮像管8の撮像面
に結像される。そして、撮像管8の撮像面に結像された
像は信号処理器9によって2値化等の信号処理や記憶処
理をされた後、TVモニター10に表示して観察され
る。
The scattered light 5 scattered by the crystal defects 4 and emitted to the upper surface 7 is similar to the case shown in FIG.
An image is formed on the imaging surface of the imaging tube 8 of the TV camera by the observation lens 6. Then, the image formed on the imaging surface of the imaging tube 8 is subjected to signal processing such as binarization and storage processing by the signal processor 9 and then displayed on the TV monitor 10 for observation.

【0031】また、結晶欠陥等4を3次元的に観察する
ために図2に示すように、スリット14の幅と光ビーム
3の入射位置とを調節して、反射面13で反射した光ビ
ームが上面7から深さhの位置で上面7に平行に伝播す
るような入射位置に光ビーム19を入射する。そして、
光ビーム19の入射位置を変えて深さhを変え、各深さ
hで結晶欠陥等4を観察する。各深さhにおける結晶欠
陥等4の像は信号処理器9によって処理されるとともに
コンピュータによって画像解析され、3次元的に合成さ
れた像としてTVモニター10に表示される。
As shown in FIG. 2, the width of the slit 14 and the incident position of the light beam 3 are adjusted to observe the crystal defect 4 three-dimensionally, and the light beam reflected by the reflecting surface 13 is adjusted. Is incident on the incident position such that the light beam 19 propagates parallel to the upper surface 7 at a depth h from the upper surface 7. And
The depth h is changed by changing the incident position of the light beam 19, and crystal defects 4 are observed at each depth h. The image of the crystal defect 4 at each depth h is processed by the signal processor 9 and image-analyzed by a computer, and displayed on the TV monitor 10 as a three-dimensionally synthesized image.

【0032】本実施例の構成によれば、反射面13で反
射される光ビームが上面7と略平行にシリコン結晶基板
1内部を伝播するようにシリコン結晶基板1の下面12
から光ビーム3を入射させるので、上面7に付着したご
み等の影響を受けずに、シリコン結晶基板1内の結晶欠
陥等4を高精度に検査することができる。
According to the configuration of the present embodiment, the lower surface 12 of the silicon crystal substrate 1 is so arranged that the light beam reflected by the reflection surface 13 propagates inside the silicon crystal substrate 1 substantially parallel to the upper surface 7.
Since the light beam 3 is incident from above, the crystal defects 4 and the like 4 in the silicon crystal substrate 1 can be inspected with high accuracy without being affected by dust or the like attached to the upper surface 7.

【0033】また、光ビーム19の入射位置を変えるこ
とにより上面7からの深さhを容易に変えることができ
るので、シリコン結晶基板1における結晶欠陥等4の分
布等の3次元的特性を容易に観察することができる。
Since the depth h from the upper surface 7 can be easily changed by changing the incident position of the light beam 19, three-dimensional characteristics such as the distribution of crystal defects 4 in the silicon crystal substrate 1 can be easily improved. Can be observed.

【0034】次に図3等を参照して請求項3に記載の発
明の一実施例を説明する。
Next, an embodiment of the present invention will be described with reference to FIG.

【0035】まず、請求項3に記載の発明に関する一般
的内容について説明する。図7に示したように赤外トモ
グラフの手法によって結晶欠陥等4を検出する場合、従
来は、使用する光ビーム3の波長成分はシリコン結晶基
板1の吸収係数があまり大きくないように選択されてい
た。これは、使用する光ビーム3の波長成分が大きい吸
収係数を与える場合には、結晶欠陥等4による散乱光の
波長は入射する光ビーム3の波長と同じため散乱光がシ
リコン結晶基板1中で吸収されてしまい散乱光が検出さ
れなくなることを防ぐためである。
First, general contents relating to the third aspect of the invention will be described. As shown in FIG. 7, when a crystal defect or the like 4 is detected by an infrared tomography method, conventionally, the wavelength component of the light beam 3 to be used is selected so that the absorption coefficient of the silicon crystal substrate 1 is not so large. Was. This is because when the wavelength component of the light beam 3 to be used gives a large absorption coefficient, the wavelength of the scattered light due to the crystal defect 4 is the same as the wavelength of the incident light beam 3 and the scattered light is generated in the silicon crystal substrate 1. This is to prevent the scattered light from being absorbed and not being detected.

【0036】一方、市販のシリコン結晶基板1の下面1
2は通常ざらざらした面になっている。シリコン結晶基
板1の吸収係数があまり大きくない波長成分を有する光
ビーム3を用いる場合には、下面12へ光ビーム3が到
達し、ざらざらした面である下面12で散乱される。そ
して、図9に示すように、不均一なバックグランドノイ
ズを与え、本来検出されるべき結晶欠陥等4による散乱
光の検出を妨げていた。なお、この不均一なバックグラ
ンドノイズは、下面12を鏡面を研磨することによって
ある程度除去することが可能である。しかしこの場合、
下面12を鏡面研磨するという工程がさらに必要とな
り、通常の検査工程や実験室で簡便に行えないという問
題点があった。
On the other hand, the lower surface 1 of the commercially available silicon crystal substrate 1
2 is usually a rough surface. When the light beam 3 having the wavelength component whose absorption coefficient of the silicon crystal substrate 1 is not so large is used, the light beam 3 reaches the lower surface 12 and is scattered on the rough lower surface 12. Then, as shown in FIG. 9, non-uniform background noise is given to prevent the detection of scattered light due to crystal defects or the like 4 which should be detected. The non-uniform background noise can be removed to some extent by polishing the lower surface 12 with a mirror surface. But in this case,
A step of mirror-polishing the lower surface 12 is further required, and there is a problem that it cannot be easily performed in a normal inspection step or a laboratory.

【0037】請求項3に記載の発明は、使用する光ビー
ム3の波長成分をシリコン結晶基板1の吸収係数があま
り大きくないように選択していた従来の考えかたと異な
るものである。すなわち、超LSI等にとって重要な素
子活性領域は上面7から数μm以内でありこの範囲にお
ける結晶欠陥等4の有無の検査が重要であることに着目
して、使用する光ビーム3の波長成分をシリコン結晶基
板1の吸収係数があまり小さくないように選択したこと
である。
The third aspect of the present invention is different from the conventional idea in which the wavelength component of the light beam 3 to be used is selected so that the absorption coefficient of the silicon crystal substrate 1 is not so large. In other words, the element active region important for the VLSI or the like is within a few μm from the upper surface 7, and it is important to inspect the presence or absence of crystal defects 4 in this range. This means that the absorption coefficient of the silicon crystal substrate 1 was selected so as not to be too small.

【0038】次に、シリコン結晶基板を試料とする場合
の吸収係数について数値的に検討する。シリコン結晶基
板における吸収係数が100cm−1以上となる波長は
0.98μm以下である。また、この波長範囲における
ブリュスタ角は74度〜79度であり、従って入射する
光ビームの光路長は垂直入射に比べて2.5%〜3.5
%長くなり、散乱光の光路長も約3%長くなる。
Next, the absorption coefficient when a silicon crystal substrate is used as a sample will be examined numerically. The wavelength at which the absorption coefficient of the silicon crystal substrate is 100 cm −1 or more is 0.98 μm or less. In addition, the Brewster angle in this wavelength range is 74 degrees to 79 degrees, and therefore, the optical path length of the incident light beam is 2.5% to 3.5 compared to the normal incidence.
%, And the optical path length of the scattered light is also increased by about 3%.

【0039】シリコン結晶基板1として市販の625μ
mの厚さのウエーハを用いたときブリュースタ角で入射
した光ビームがウエーハの下面12で散乱または反射さ
れ、再び上面7へ達するまでの光路長は0.0625x
2x1.03=0.1288cmである。また、YAG
レーザの1.06μm波長における吸収係数は10cm
−1であり、従って光ビーム3の強度は上面7−下面1
2−上面7を経て28%に減衰する。また吸収係数が1
00cm−1となる波長成分0.98μmの場合は2.
5x10−4%に減衰する。吸収係数が300cm−1
となる波長成分0.9μmの場合は2.1x10−15
%に減衰し、吸収係数が1000cm となる波長成
分0.8μmの場合は1.2x10−54%に減衰しす
る。
As the silicon crystal substrate 1, commercially available 625 μm
When a wafer having a thickness of m is used, the light beam incident at the Brewster angle is scattered or reflected on the lower surface 12 of the wafer, and the optical path length until reaching the upper surface 7 again is 0.0625x.
2 × 1.03 = 0.1288 cm. Also, YAG
The absorption coefficient of the laser at 1.06 μm wavelength is 10 cm
-1 so that the intensity of the light beam 3 is
2-Decrease to 28% via upper surface 7 The absorption coefficient is 1
In the case of a wavelength component of 0.98 μm, which becomes 00 cm −1 , 2.
Attenuates to 5 × 10 −4 %. Absorption coefficient is 300 cm -1
2.1 × 10 −15 for a wavelength component of 0.9 μm
% Attenuated, absorption coefficient 1000 cm - 1 If the wavelength component 0.8μm made is attenuated to 1.2x10 -54%.

【0040】以上のことより、吸収係数が100cm
−1以上となるような波長成分を有する光ビーム3を用
いれば、シリコン結晶基板1の上面7近傍内部の結晶欠
陥等4の検出にとって下面12からの散乱の影響を無視
できると考えられる。
From the above, the absorption coefficient is 100 cm
If the light beam 3 having a wavelength component of -1 or more is used, it is considered that the influence of the scattering from the lower surface 12 can be ignored for the detection of crystal defects 4 and the like in the vicinity of the upper surface 7 of the silicon crystal substrate 1.

【0041】なお、一般に吸収係数の大きな結晶基板か
らの散乱光を検出する場合、近似的に(1/吸収係数)
の深さ範囲からの散乱光が主に検出されると考えられ
る。従って、吸収係数が略100cm−1以上から略5
000cm−1以下の間になるように波長成分を選択し
たときは、上面7から略100μmから略5μmの深さ
範囲からの散乱光が主に検出される。
In general, when detecting scattered light from a crystal substrate having a large absorption coefficient, approximately (1 / absorption coefficient)
It is considered that scattered light from the depth range is mainly detected. Therefore, the absorption coefficient is from about 100 cm −1 or more to about 5
When the wavelength component is selected to be less than 000 cm −1 , scattered light from a depth range of approximately 100 μm to approximately 5 μm from the upper surface 7 is mainly detected.

【0042】次に、請求項3に記載の発明の一実施例を
具体的に説明する。図4において、のシリコン結晶基板
1は市販の150mm径のシリコンウエーハであり、X
Yステージに載置されている。シリコン結晶基板1の上
面7の上方には、図5等に示した場合と同様に観察用レ
ンズ6が設けられ、観察用レンズ6はシリコン結晶基板
1内部の上面7近傍の観察しようとする結晶欠陥等4の
位置に焦点合わせされている。
Next, one embodiment of the third aspect of the present invention will be specifically described. In FIG. 4, a silicon crystal substrate 1 is a commercially available silicon wafer having a diameter of 150 mm.
It is mounted on the Y stage. An observation lens 6 is provided above the upper surface 7 of the silicon crystal substrate 1 as in the case shown in FIG. 5 and the like. The observation lens 6 is a crystal to be observed near the upper surface 7 inside the silicon crystal substrate 1. It is focused on the position of the defect 4 or the like.

【0043】また、レーザ光源25からファイバ26に
よって伝播された光ビーム3はブリュースタ角でシリコ
ン結晶基板1の上面7へ照射される。nを波長に依存す
る屈折率とすると、ブリュースタ角θは、 θ=tan−1n 式(1) で与えられる。吸収係数が1000cm−1以上になる
と吸収の影響も考慮して次のように定められる。すなわ
ち、反射率をRとすると、Rは式(2)で与えられる
が。このRを最小にするθとしてブリュースタ角θ
求められる。
The light beam 3 propagated from the laser light source 25 by the fiber 26 irradiates the upper surface 7 of the silicon crystal substrate 1 at Brewster's angle. Assuming that n is a wavelength-dependent refractive index, the Brewster angle θ B is given by the following equation (1): θ B = tan −1 n When the absorption coefficient is 1000 cm -1 or more, the following is determined in consideration of the influence of absorption. That is, assuming that the reflectance is R, R is given by equation (2). Is Brewster angle theta B obtained as theta is the R minimized.

【0044】[0044]

【数1】 ここで、n,kは各々複素屈折率(n+ik)の実数部
と虚数部である。ブリュースタ角θは波長が1.0μ
m〜0.47μmの範囲で74度〜79度である。
(Equation 1) Here, n and k are the real part and the imaginary part of the complex refractive index (n + ik), respectively. Brewster angle θ B has wavelength of 1.0μ
74 degrees to 79 degrees in the range of m to 0.47 μm.

【0045】レーザ光源25としては、Nd:YAGレ
ーザ(波長1.06μm)の他にKrレーザ(波長0.
78μm、0.66μm、0.54μm)とTiサファ
イアレーザを用いた。Tiサファイアレーザは0.66
μm〜1.10μmの波長可変の範囲のうち、0.69
μm〜0.95μmの範囲で大きな出力で使用可能であ
る。
As the laser light source 25, in addition to a Nd: YAG laser (wavelength 1.06 μm), a Kr laser (wavelength 0.
78 μm, 0.66 μm, 0.54 μm) and a Ti sapphire laser. 0.66 for Ti sapphire laser
0.69 out of the wavelength tunable range of μm to 1.10 μm.
It can be used with a large output in the range of μm to 0.95 μm.

【0046】吸収係数がどの程度の大きさであればシリ
コン結晶基板1の下面12からの散乱光を無視できるか
について、当初は予測困難であったので、試みにTiサ
ファイアレーザを0.9μmで発振させて上面7へ照射
した。この場合、吸収係数は約300cm−1であり、
上面7から約30μmの深さまで光ビーム3は進入して
いると考えられる。上面7から約30μm前後に観察用
レンズ6を焦点合わせして写真撮影したところ、図8に
示すような写真が得られた。図8において、27a、2
7b、27c・・・は結晶欠陥等4に対応する像であ
る。なお、符号28はその形状から判断して上面7にあ
るごみによる散乱光と思われる。図8から明らかのよう
に、図9に示したような下面12における散乱光に起因
すると思われる像29a、29b、29c・・から形成
された不均一なバックグランドノイズは全く見られなか
った。
At first, it was difficult to predict how large the absorption coefficient would be if the scattered light from the lower surface 12 of the silicon crystal substrate 1 could be neglected. Oscillation was applied to the upper surface 7. In this case, the absorption coefficient is about 300 cm −1 ,
It is considered that the light beam 3 has entered from the upper surface 7 to a depth of about 30 μm. When the photographing was performed by focusing the observation lens 6 at about 30 μm from the upper surface 7, a photograph as shown in FIG. 8 was obtained. In FIG. 8, 27a, 2
7b, 27c,... Are images corresponding to crystal defects 4 and the like. Reference numeral 28 is considered to be scattered light due to dust on the upper surface 7, judging from its shape. As is clear from FIG. 8, there was no non-uniform background noise formed from the images 29a, 29b, 29c,... Considered to be caused by the scattered light on the lower surface 12 as shown in FIG.

【0047】また、Krレーザ(波長0.78μm等)
を用いた場合にも同様に結晶欠陥等4を検出することが
できた。なお、波長0.66μmの場合においては吸収
係数が3000cm−1であり、従って上面7から約3
μmの深さまで光ビーム3は進入していると考えられる
が、上面7の極く近傍の結晶欠陥等4の他に図8におけ
る符号28のような上面7に付着した微粒子による散乱
もより多く検出された。なお、これらの微粒子による散
乱と、結晶欠陥等4による散乱との識別するためには、
観察用レンズ6の焦点合わせをずらしたときの像の変化
のしかたより可能であった。
Kr laser (wavelength 0.78 μm, etc.)
Similarly, crystal defect 4 and the like could be detected in the case of using. When the wavelength is 0.66 μm, the absorption coefficient is 3000 cm −1 ,
It is considered that the light beam 3 has penetrated to a depth of μm, but in addition to crystal defects 4 and the like very near the upper surface 7, scattering by fine particles attached to the upper surface 7 as indicated by reference numeral 28 in FIG. was detected. In order to distinguish between scattering by these fine particles and scattering by crystal defects 4 etc.,
It was possible to change the image when the focusing of the observation lens 6 was shifted.

【0048】また、光ビーム3の波長成分をシリコン結
晶基板1の吸収係数が略100cm−1以上から略50
00cm−1以下の間となるように連続的に選択し、各
波長において観察用レンズ6の焦点合わせをしなおし、
各深さhにおける結晶欠陥等4の像を得ることができ
る。これらの結果は信号処理器9によって処理されコン
ピュータによって画像解析され、3次元的に合成された
像としてTVモニター10に表示される。これにより、
シリコン結晶基板1の結晶欠陥等4を3次元的に検査を
行うことができる。
The wavelength component of the light beam 3 is changed from the absorption coefficient of the silicon crystal substrate 1 of about 100 cm −1 or more to about 50
It is continuously selected so as to be between 00 cm -1 or less, and refocusing of the observation lens 6 is performed at each wavelength.
An image of a crystal defect 4 at each depth h can be obtained. These results are processed by the signal processor 9, image-analyzed by a computer, and displayed on the TV monitor 10 as a three-dimensionally synthesized image. This allows
It is possible to three-dimensionally inspect a crystal defect 4 or the like of the silicon crystal substrate 1.

【0049】なお、レーザ光源25として波長0.48
8μmのArレーザを用いた場合は、吸収係数が200
00cm−1であり、上面7から0.5μm程度の深さ
しか進行しないことになる。観察用レンズ6の焦点深度
が約2μmであり、上面7に付着した微粒子と上面7近
傍の結晶欠陥等4とは区別できなかった。
The laser light source 25 has a wavelength of 0.48.
When an 8 μm Ar laser is used, the absorption coefficient is 200
00 cm −1 , and travels only a depth of about 0.5 μm from the upper surface 7. The depth of focus of the observation lens 6 was about 2 μm, and the fine particles attached to the upper surface 7 could not be distinguished from the crystal defects 4 near the upper surface 7.

【0050】本実施例の構成によれば、光ビーム3の波
長成分をシリコン結晶基板1の吸収係数を略100cm
以上に選択したので、シリコン結晶基板1の下面12か
らの散乱の影響を受けることなく、反射面を形成しなく
とも、高精度で簡易に上面7近傍に存在する結晶欠陥等
4の有無を検査することができる。
According to the structure of the present embodiment, the wavelength component of the light beam 3 is set so that the absorption coefficient of the silicon crystal substrate 1 is approximately 100 cm.
With the above selection, the presence or absence of crystal defects or the like 4 near the upper surface 7 can be easily inspected with high accuracy without forming a reflective surface without being affected by scattering from the lower surface 12 of the silicon crystal substrate 1. can do.

【0051】また、光ビーム3の波長成分をシリコン結
晶基板1の吸収係数が略100cm−1以上から略50
00cm−1以下の間となるように選択することによ
り、シリコン結晶基板1の結晶欠陥等4を3次元的に検
査を行うことができる。
The wavelength component of the light beam 3 is changed from the absorption coefficient of the silicon crystal substrate 1 of about 100 cm −1 or more to about 50
By selecting so as to be not more than 00 cm −1 , it is possible to three-dimensionally inspect the crystal defects 4 etc. of the silicon crystal substrate 1.

【0052】[0052]

【発明の効果】以上説明したように、本発明によれば、
被検査結晶体の側部に上面と所定の傾き角度を有する反
射面を形成し、光ビームを被検査結晶体の下面から入射
するようにしたので、被検査結晶体の上面に付着したご
み等があったとしても直接その影響をうけないで高精度
に結晶欠陥、析出物、または異物等の有無を検査するこ
とができる。
As described above, according to the present invention,
A reflection surface having a predetermined inclination angle with respect to the upper surface is formed on the side of the crystal to be inspected, and the light beam is made to enter from the lower surface of the crystal to be inspected. Even if there is a defect, the presence or absence of crystal defects, precipitates, foreign matter, etc. can be inspected with high accuracy without being directly affected.

【0053】また、光ビームの波長成分を非検査結晶体
の吸収係数が略100cm−1以上となるように選択
し、光ビームを略ブリュースタ角で被検査結晶体の上面
に入射させたので、光ビームは被検査結晶体内部の上面
近傍にのみ進入し、光ビームが被検査結晶体の下面で反
射されることの影響を受けることなく、また被検査結晶
体に反射面を形成しなくとも、高精度で簡易に上面近傍
の被検査結晶体内に存在する結晶欠陥の有無を検査する
ことができる。
The wavelength component of the light beam is selected so that the absorption coefficient of the non-inspection crystal is approximately 100 cm -1 or more, and the light beam is incident on the upper surface of the crystal to be inspected at a substantially Brewster angle. The light beam only enters the vicinity of the upper surface inside the crystal to be inspected, without being affected by the light beam being reflected by the lower surface of the crystal to be inspected, and without forming a reflection surface on the crystal to be inspected. In both cases, the presence / absence of a crystal defect existing in the crystal to be inspected near the upper surface can be easily inspected with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による結晶欠陥検査方法の一実施例にお
ける光ビームの照射の仕方を示す図。
FIG. 1 is a view showing a method of irradiating a light beam in one embodiment of a crystal defect inspection method according to the present invention.

【図2】同シリコン結晶基板内の異なる深さhに光ビー
ムを照射する仕方を示す図。
FIG. 2 is a view showing a method of irradiating a light beam to different depths h in the same silicon crystal substrate.

【図3】同シリコン結晶基板の研磨および反射面13の
形成することを示す図。
FIG. 3 is a diagram showing polishing of the silicon crystal substrate and formation of a reflection surface 13;

【図4】本発明による結晶欠陥検査方法の他の実施例を
示す概略構成図。
FIG. 4 is a schematic configuration diagram showing another embodiment of the crystal defect inspection method according to the present invention.

【図5】従来の結晶欠陥検査方法の構成を示す概略構成
図。
FIG. 5 is a schematic configuration diagram showing a configuration of a conventional crystal defect inspection method.

【図6】従来の他の結晶欠陥検査方法の構成を示す概略
構成図。
FIG. 6 is a schematic configuration diagram showing the configuration of another conventional crystal defect inspection method.

【図7】従来のさらに他の結晶欠陥検査方法の構成を示
す概略構成図。
FIG. 7 is a schematic configuration diagram showing the configuration of still another conventional crystal defect inspection method.

【図8】本発明による結晶欠陥検査方法の一実施例にお
いて得られたシリコン結晶基板1の上面7近傍の結晶欠
陥等による像を示す図。
FIG. 8 is a view showing an image due to a crystal defect or the like near the upper surface 7 of the silicon crystal substrate 1 obtained in one embodiment of the crystal defect inspection method according to the present invention.

【図9】従来の結晶欠陥検査方法において得られたシリ
コン結晶基板1の下面12による散乱による像を示す
図。
FIG. 9 is a view showing an image obtained by scattering by a lower surface 12 of a silicon crystal substrate 1 obtained by a conventional crystal defect inspection method.

【符号の説明】[Explanation of symbols]

1 シリコン結晶基板 2 劈開面 3 光ビーム 4 結晶欠陥等 5 散乱光 6 観察用レンズ 7 上面 8 TVカメラの撮像管 9 信号処理器 10 TVモニター 12 下面 13 反射面 14 スリット 15 光ビーム 27a 結晶欠陥等4の像 28 上面7の微粒子による像 29 下面12における散乱光による像 DESCRIPTION OF SYMBOLS 1 Silicon crystal substrate 2 Cleavage surface 3 Light beam 4 Crystal defect etc. 5 Scattered light 6 Observation lens 7 Top surface 8 Imaging tube of TV camera 9 Signal processor 10 TV monitor 12 Lower surface 13 Reflection surface 14 Slit 15 Light beam 27a Crystal defect etc. 4 image 28 image by fine particles on upper surface 7 29 image by scattered light on lower surface 12

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 21/84 - 21/958 H01L 21/64 - 21/66 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 21/84-21/958 H01L 21/64-21/66

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被検査結晶体の側部に上面と所定の傾き角
度を有する反射面を形成し、被検査結晶体の表面を研磨
し、被検査結晶体の上面の上方に載置された観察用レン
ズを被検査結晶体の上面近傍に焦点合わせし、前記反射
面で反射される光ビームが上面と略平行に被検査結晶体
内部を伝播するように被検査結晶体の下面から光ビーム
を入射させ、前記観察用レンズを経て検出される散乱光
による像を観察して被検査結晶体内の結晶欠陥、析出
物、または異物等の有無を検査することを特徴とする結
晶欠陥検査方法。
1. A reflection surface having a predetermined inclination angle with respect to an upper surface is formed on a side portion of a crystal to be inspected, the surface of the crystal to be inspected is polished, and is mounted above the upper surface of the crystal to be inspected. The observation lens is focused near the upper surface of the crystal to be inspected, and the light beam is reflected from the lower surface of the crystal to be inspected so that the light beam reflected by the reflection surface propagates inside the crystal to be inspected substantially parallel to the upper surface. And inspecting the presence or absence of a crystal defect, a precipitate, a foreign substance, or the like in the crystal to be inspected by observing an image by scattered light detected through the observation lens.
【請求項2】被検査結晶体の側部に上面と所定の傾き角
度を有する反射面を形成し、被検査結晶体の表面を研磨
し、被検査結晶体の上面の上方に載置された観察用レン
ズを被検査結晶体の上面近傍に焦点合わせし、前記反射
面で反射される光ビームが上面と略平行に被検査結晶体
内部を伝播するように被検査結晶体の下面から光ビーム
を入射させ、前記観察用レンズを経て検出される散乱光
による像を観察し、次に前記反射面で反射される光ビー
ムが以前と異なる深さで上面と略平行に被検査結晶体内
部を伝播するように光ビームを前記反射面の異なる位置
で反射させて前記観察用レンズを経て検出される像を以
前の像と比較することによって被検査結晶体内の結晶欠
陥、析出物、または異物等の有無を検査することを特徴
とする結晶欠陥検査方法。
A reflection surface having a predetermined inclination angle with respect to the upper surface is formed on a side portion of the crystal to be inspected, the surface of the crystal to be inspected is polished, and is placed above the upper surface of the crystal to be inspected. The observation lens is focused near the upper surface of the crystal to be inspected, and the light beam is reflected from the lower surface of the crystal to be inspected so that the light beam reflected by the reflection surface propagates inside the crystal to be inspected substantially parallel to the upper surface. And observe the image by the scattered light detected through the observation lens, and then the light beam reflected by the reflection surface passes through the inside of the crystal to be inspected substantially parallel to the upper surface at a different depth from before. By reflecting the light beam at different positions on the reflection surface so as to propagate and comparing an image detected through the observation lens with a previous image, crystal defects, precipitates, foreign matter, or the like in the crystal to be inspected. Inspection for the presence of defects Method.
【請求項3】光ビームの波長成分を非検査結晶体の吸収
係数が略100cm−1以上となるように選択し、被検
査結晶体の上面の上方に載置された観察用レンズを被検
査結晶体の上面近傍に焦点合わせし、前記光ビームを略
ブリュースタ角で被検査結晶体の上面に入射させ、前記
観察用レンズを経て検出される散乱光による像を観察し
て被検査結晶体内の結晶欠陥、析出物、または異物等の
有無を検査することを特徴とする結晶欠陥検査方法。
3. The wavelength component of the light beam is selected such that the absorption coefficient of the non-inspection crystal is approximately 100 cm -1 or more, and the observation lens placed above the upper surface of the inspection target crystal is inspected. Focus on the vicinity of the upper surface of the crystal, make the light beam incident on the upper surface of the crystal to be inspected at a substantially Brewster angle, observe an image by scattered light detected through the observation lens, and observe the image of the crystal to be inspected. A crystal defect inspection method for inspecting the presence or absence of crystal defects, precipitates, foreign matter, or the like.
【請求項4】光ビームの波長成分を非検査結晶体の吸収
係数が略100cm−1以上から略5000cm−1
下の間となるように選択し、被検査結晶体の上面の上方
に載置された観察用レンズを被検査結晶体の上面近傍に
焦点合わせし、次に前記光ビームを略ブリュースタ角で
被検査結晶体の上面に入射させ、前記観察用レンズを経
て検出される散乱光による像を観察し、次に光ビームの
波長成分を非検査結晶体の吸収係数が略100cm−1
以上から略5000cm−1以下の間で以前と異なるよ
うに選択し、前記観察用レンズを経て検出される散乱光
による像を以前の像と比較することによって被検査結晶
体内の結晶欠陥、析出物、または異物等の有無を検査す
ることを特徴とする結晶欠陥検査方法。
4. Select the wavelength components of the light beam so that the absorption coefficient of the non-test crystal is between about 5000 cm -1 or less from approximately 100 cm -1 or more, placed above the upper surface of the inspection crystals The observed observation lens is focused near the upper surface of the crystal to be inspected, and then the light beam is incident on the upper surface of the crystal to be inspected at a substantially Brewster angle, and the scattered light detected through the observation lens Is observed, and then the wavelength component of the light beam is converted to an absorption coefficient of the non-inspection crystal of about 100 cm −1.
From the above, a difference between about 5,000 cm −1 or less is selected as different from the previous one, and an image due to the scattered light detected through the observation lens is compared with the previous image to obtain crystal defects and precipitates in the crystal to be inspected. Or a crystal defect inspection method characterized by inspecting the presence or absence of foreign matter.
JP04532093A 1993-03-05 1993-03-05 Crystal defect inspection method Expired - Fee Related JP3190157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04532093A JP3190157B2 (en) 1993-03-05 1993-03-05 Crystal defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04532093A JP3190157B2 (en) 1993-03-05 1993-03-05 Crystal defect inspection method

Publications (2)

Publication Number Publication Date
JPH06258238A JPH06258238A (en) 1994-09-16
JP3190157B2 true JP3190157B2 (en) 2001-07-23

Family

ID=12716018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04532093A Expired - Fee Related JP3190157B2 (en) 1993-03-05 1993-03-05 Crystal defect inspection method

Country Status (1)

Country Link
JP (1) JP3190157B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082932A1 (en) * 2005-02-03 2006-08-10 Raytex Corporation Defective particle measuring apparatus and defective particle measuring method
DE112016007084T5 (en) 2016-07-21 2019-04-18 Ykk Corporation MARKING DEVICE AND METHOD AND METHOD FOR PRODUCING A ZIPPER CHAIN

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921756A (en) * 1995-07-10 1997-01-21 Toshiba Corp Fault evaluating apparatus for semiconductor wafer
US6392683B1 (en) * 1997-09-26 2002-05-21 Sumitomo Heavy Industries, Ltd. Method for making marks in a transparent material by using a laser
JP4678458B2 (en) * 2000-11-07 2011-04-27 信越半導体株式会社 Semiconductor wafer internal defect measuring method, semiconductor wafer manufacturing method, and semiconductor wafer internal defect measuring apparatus
TWI490576B (en) * 2010-11-29 2015-07-01 Hon Hai Prec Ind Co Ltd Optical transmission system
CN102486554B (en) * 2010-12-03 2015-04-15 鸿富锦精密工业(深圳)有限公司 Optical communication system
US10552950B2 (en) * 2017-05-25 2020-02-04 International Business Machines Corporation Mapping and encoding gemological features

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082932A1 (en) * 2005-02-03 2006-08-10 Raytex Corporation Defective particle measuring apparatus and defective particle measuring method
US7633617B2 (en) 2005-02-03 2009-12-15 Raytex Corporation Defective particle measuring apparatus and defective particle measuring method
DE112016007084T5 (en) 2016-07-21 2019-04-18 Ykk Corporation MARKING DEVICE AND METHOD AND METHOD FOR PRODUCING A ZIPPER CHAIN

Also Published As

Publication number Publication date
JPH06258238A (en) 1994-09-16

Similar Documents

Publication Publication Date Title
US5196716A (en) Method and apparatus for measuring internal defects for position and depth
JP2847458B2 (en) Defect evaluation device
TWI663394B (en) Apparatus, method and computer program product for defect detection in work pieces
US8009286B2 (en) Surface inspecting method and device
JP3381924B2 (en) Inspection device
JP4631002B2 (en) Method for detecting defects and apparatus therefor
JPH05149724A (en) Infrared-ray scanning microscope and inspecting method for infrared-ray scanning microscope
JP5349742B2 (en) Surface inspection method and surface inspection apparatus
JP2975476B2 (en) Method and apparatus for measuring photoluminescence in crystal
JPH01151243A (en) Measurement of defect distribution and apparatus therefor
US7274445B1 (en) Confocal scatterometer and method for single-sided detection of particles and defects on a transparent wafer or disk
EP0439881A1 (en) Method and apparatus for nondestructively measuring micro defects in materials
JPH11242001A (en) Method and device for inspecting an unevenness of light-transmission material, and method for selecting light-transmission substrate
JPH07294422A (en) Detecting method for surface vicinity crystal defect and device therefor
JP3190157B2 (en) Crystal defect inspection method
JP2999712B2 (en) Edge defect inspection method and apparatus
JP3673626B2 (en) Non-uniformity inspection method and apparatus for translucent material
JPH01221850A (en) Infrared scatter microscope
JPH05264468A (en) Method and apparatus for detecting internal
KR102279169B1 (en) Detection apparatus and detection method
KR20170030706A (en) Substrate Inspection Apparatus
CN112082973A (en) Tomography inspection apparatus and method
JPH08327557A (en) Device and method for inspecting defect
JP2005274173A (en) Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device
JP2004257776A (en) Inspection device for light transmission body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees