JP3121497B2 - Ceramic structure - Google Patents

Ceramic structure

Info

Publication number
JP3121497B2
JP3121497B2 JP06161938A JP16193894A JP3121497B2 JP 3121497 B2 JP3121497 B2 JP 3121497B2 JP 06161938 A JP06161938 A JP 06161938A JP 16193894 A JP16193894 A JP 16193894A JP 3121497 B2 JP3121497 B2 JP 3121497B2
Authority
JP
Japan
Prior art keywords
ceramic
inorganic
sealing material
ceramic structure
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06161938A
Other languages
Japanese (ja)
Other versions
JPH0828246A (en
Inventor
和也 成瀬
哲史 大野
幸二 島戸
弘 岡添
政器 岩広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
UD Trucks Corp
Original Assignee
Ibiden Co Ltd
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26437162&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3121497(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ibiden Co Ltd, UD Trucks Corp filed Critical Ibiden Co Ltd
Priority to JP06161938A priority Critical patent/JP3121497B2/en
Priority to PCT/JP1996/000042 priority patent/WO1997025203A1/en
Priority claimed from PCT/JP1996/000042 external-priority patent/WO1997025203A1/en
Publication of JPH0828246A publication Critical patent/JPH0828246A/en
Application granted granted Critical
Publication of JP3121497B2 publication Critical patent/JP3121497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • F01N13/017Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/02Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00637Uses not provided for elsewhere in C04B2111/00 as glue or binder for uniting building or structural materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/083Carbide interlayers, e.g. silicon carbide interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/361Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Products (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Filtering Materials (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、セラミック構造体に
関し、特に、セラミック製のハニカム構造体、モノリス
構造体、その他部材の長手方向に沿って複数の貫通孔を
並列して穿孔してなるセラミック構造体の新規な構造に
ついて提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic structure and, more particularly, to a ceramic honeycomb structure, a monolith structure, and a ceramic formed by piercing a plurality of through-holes in a longitudinal direction of other members. A new structure of the structure is proposed.

【0002】[0002]

【従来の技術】一般に、長手方向に沿って複数の貫通孔
を並列して設けてなるセラミック製ハニカム構造体など
は、車両用排気ガスや工場からの排気ガスなどを浄化処
理するためのフィルタとして使われている。このセラミ
ック構造体は、その端面における貫通孔の開−封状態が
市松模様状(隣接する貫通孔どうしが互いに他と異なる
ように開−封状態となっている状態)を呈するようにな
っている。即ち、これらの貫通孔はいずれか一方の端面
のみが目封じされており、しかも隣接する貫通孔どうし
は、互いに異なる開成状態か閉止状態となっていて市松
模様状の目封じとなっている。従って、1つの貫通孔は
一方の端面が開なら他端面は閉となり、これに隣接する
貫通孔は逆に一方の端面は閉で他端面は開となる。そし
て、このセラミック構造体は、上記各貫通孔のいずれか
一方の端面から被処理ガスを流入させると、他端に向か
う途中において多孔質な隔壁を抜けて、隣接する貫通孔
に入って他端面から処理済ガスを流出させるようになっ
ている。なお、このセラミック構造体は、多孔質体であ
り、それ故に各貫通孔を隔てる隔壁を通じて互いに通気
が可能で、該構造体の中で容易に他の貫通孔へ入る。こ
のことのために、ガスの入側と出側とでは、異なる貫通
孔を流通していくことになる。このようなセラミック構
造体に排気ガスを通気すると、上記のようにして一方の
端面から流入した排気ガスは、隔壁を通過して流出口に
向かう間に、排気ガス中の粒子状物質(パティキュレー
ト)がこの隔壁部分に捕促され浄化される。なお、この
排気ガスの上記浄化作用に伴い、とくに流入口側の隔壁
には前記パティキュレートが捕集され堆積するため、次
第に目詰まりを起こして通気を妨げるようになる。その
ため、このセラミック構造体は、定期的に、バーナーや
ヒーターといった加熱手段によって目詰まりの原因とな
る隔壁に堆積したパティキュレートを燃焼除去する処理
(以下、単に「再生」という)が必要となる。
2. Description of the Related Art In general, a ceramic honeycomb structure having a plurality of through-holes arranged in parallel along a longitudinal direction is used as a filter for purifying exhaust gas for vehicles and exhaust gas from factories. It is used. In this ceramic structure, the open-sealed state of the through-hole at the end face thereof has a checkered pattern (a state in which the open-sealed state is such that adjacent through-holes are different from each other). . That is, only one end face of these through-holes is plugged, and adjacent through-holes are opened or closed differently from each other to form a checkerboard-shaped plugging. Therefore, if one end face of one through hole is open, the other end face is closed. On the other hand, the adjacent through hole has one end face closed and the other end face open. When the gas to be treated flows from one end face of each of the through holes, the ceramic structure passes through the porous partition wall on the way to the other end, enters the adjacent through hole, and enters the other end face. The treated gas is allowed to flow out of the tank. It should be noted that the ceramic structure is a porous body, so that it is possible to ventilate each other through the partition wall separating each through-hole and easily enter another through-hole in the structure. Due to this, different gas flows through the through holes on the gas inlet side and the gas inlet side. When the exhaust gas is passed through such a ceramic structure, the exhaust gas flowing from one end face as described above passes through the partition wall toward the outlet, and the particulate matter (particulate matter) in the exhaust gas is discharged. ) Is trapped and purified by the partition. In addition, the particulates are collected and deposited particularly on the partition wall on the inflow port side with the purifying action of the exhaust gas, so that the particulates are gradually clogged and the ventilation is hindered. For this reason, the ceramic structure needs to be periodically subjected to a treatment (hereinafter, simply referred to as “regeneration”) for burning and removing particulates deposited on the partition walls that cause clogging by a heating means such as a burner or a heater.

【0003】ところが、上記セラミック構造体では、か
かる再生において、不均一な加熱過程やパティキュレー
トの異常燃焼に伴う局部的な発熱、排気ガスの急激な温
度変化が与える熱衝撃などによって、構造体内部に不均
一な温度分布が生じ、熱応力が作用する。その結果、上
記セラミック構造体は、クラックの発生や溶損を招き、
ひいては破壊に到らしめてパティキュレートの捕集に支
障を与えるという問題があった。
However, in the above-mentioned ceramic structure, in such a regeneration, a non-uniform heating process, local heat generation due to abnormal burning of the particulates, and a thermal shock caused by a rapid temperature change of the exhaust gas cause the internal structure of the ceramic structure. A non-uniform temperature distribution occurs and thermal stress acts. As a result, the ceramic structure causes cracks and erosion,
As a result, there is a problem that the destruction is hindered and the collection of the particulates is hindered.

【0004】これに対し従来、上記問題を解決する手段
として、例えば、セラミック構造体を、その軸線に垂直
な面やその軸線に平行な面で、複数個のセラミック部材
に分割することにより、前記セラミック構造体に作用す
る熱応力を低減させる方法が提案されている(特開昭60
−65219 号公報参照)。さらに、この分割形のセラミッ
ク構造体(以下、「分割セラミック構造体」という)の
セラミック部材相互間に生じる隙間に、非接着性のシー
ル材を介挿させることにより、排気ガスのシール性を改
善した分割セラミック構造体が提案されている(実開平
1−63715 号公報参照)。
On the other hand, conventionally, as a means for solving the above problem, for example, a ceramic structure is divided into a plurality of ceramic members by a plane perpendicular to the axis or a plane parallel to the axis. A method for reducing the thermal stress acting on a ceramic structure has been proposed (Japanese Patent Application Laid-Open No. 60-1985).
-65219). Further, the sealing property of the exhaust gas is improved by inserting a non-adhesive sealing material into a gap generated between the ceramic members of the divided ceramic structure (hereinafter, referred to as a “divided ceramic structure”). A divided ceramic structure has been proposed (see Japanese Utility Model Laid-Open No. 1-63715).

【0005】上記各提案によれば、分割セラミック構造
体は、前記シール材を採用したことによって、一体型の
セラミック構造体で見られるような熱応力を開放するこ
とができる。しかしながら、上記シール材は非接着性で
あるため、各セラミック部材を強固に接合できない。そ
のため、上記従来技術にかかる分割セラミック構造体
は、セラミック部材を結束させて一構造体としての形態
を維持するための拘束力が必要であった。この拘束力を
付与する手段として、従来、熱膨張性断熱材を最外周部
に設けたり、あるいは熱膨張性断熱材を内部シール材と
して適用している。
According to the above proposals, the divided ceramic structure can release the thermal stress as seen in the integrated ceramic structure by employing the sealing material. However, since the sealing material is non-adhesive, the ceramic members cannot be firmly joined. For this reason, the split ceramic structure according to the above-described related art requires a binding force for binding the ceramic members and maintaining the form as one structure. Conventionally, as means for imparting this restraining force, a heat-expandable heat insulating material is provided on the outermost peripheral portion, or a heat-expandable heat insulating material is applied as an internal sealing material.

【0006】しかしながら、上記の非接着性シール材や
熱膨張性断熱材は、再生時の熱や、内燃機関から発生す
る振動の繰り返しに対する耐久性が低く、そのために、
シール材は、体積収縮や強度の劣化が進みシール性が低
下してしまう一方、熱膨張性断熱材も、体積膨張後の復
元力が急激に低下するという問題があった。従って、上
記分割セラミック構造体は、それを構成する複数個のセ
ラミック部材を支持する力を失い、排気ガスの圧力によ
り分解,飛散してしまうことがあった。しかも、たとえ
ガスの流出口側端面に補強部材を設けてもシール材の劣
化を防止することは難しく、耐久性の改善が望まれてい
た。
However, the above-mentioned non-adhesive sealing material and thermally expandable heat insulating material have low durability against heat at the time of regeneration and repetition of vibration generated from the internal combustion engine.
The sealing material has a problem that the sealing property is deteriorated due to the volume contraction and the deterioration of the strength, and the thermal expansion heat insulating material has a problem that the restoring force after the volume expansion is rapidly reduced. Therefore, the divided ceramic structure loses the force of supporting the plurality of ceramic members constituting the divided ceramic structure, and may be decomposed and scattered by the pressure of the exhaust gas. Moreover, even if a reinforcing member is provided on the end face on the gas outlet side, it is difficult to prevent the deterioration of the sealing material, and improvement of durability has been desired.

【0007】とくに、大型の分割セラミック構造体を形
造るには、さらに大きな拘束力が必要であり、従来の非
接着性シール材や熱膨張性断熱材の組合せでは、初期の
段階から対応できなくなり、実用に耐え得るものが得ら
れていない。
[0007] In particular, in order to form a large divided ceramic structure, a larger restraining force is required, and a combination of a conventional non-adhesive sealing material and a heat-expandable heat insulating material cannot be used from the initial stage. However, a product that can withstand practical use has not been obtained.

【0008】このような実情に鑑み、発明者らは、先
に、従来技術が抱える上記問題を克服するための手段と
して、分割セラミック構造体を構成するシール材を改良
し、セラミックファイバー,炭化珪素粉末および無機バ
インダーとからなるシール材を用いた「排気ガス浄化装
置およびその構成体」を提案した(特願平5−204242号
公報参照)。この提案によれば、シール材が複数個のセ
ラミック部材を相互に接合させているので、分割セラミ
ック構造体の耐久性をある程度改善することができる。
In view of such circumstances, the present inventors have first improved the sealing material constituting the divided ceramic structure by using ceramic fibers, silicon carbide, and the like as means for overcoming the above-mentioned problems of the prior art. An "exhaust gas purification apparatus and its components" using a sealing material composed of powder and an inorganic binder has been proposed (see Japanese Patent Application No. 5-204242). According to this proposal, the durability of the divided ceramic structure can be improved to some extent because the seal member connects the plurality of ceramic members to each other.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前記シ
ール材は、セラミック部材相互間に充填され硬化する際
に、マイグレーション(溶媒の乾燥除去に伴ってバイン
ダーが移動する現象をいう)を起こし易い傾向があっ
た。そのため、シール材を硬化することにより形成され
るシール層が脆弱なものとなる。つまり、上記シール材
を構成する無機バインダーは、セラミック部材とシール
層とを、強固に接合するとともに、前記シール層の応力
緩衝機能の発現に重要な要素となる三次元的に交錯した
セラミックファイバーの交錯点を接合する作用がある。
ところが、この無機バインダーは、乾燥硬化の過程で起
こるマイグレーションによってシール層内部からセラミ
ック部材との接合面に移動し、前記交錯点の接合力が低
下して、ひいてはセラミック構造体自体の強度低下を招
くので、所望の耐久性を満足させることができなかっ
た。また、上記シール材を構成する炭化珪素粉末も同様
に上記マイグレーションに伴って移動し、熱伝導率の低
下や不均一を招き、ひいてはセラミック構造体の再生効
率低下の原因となった。
However, when the sealing material is filled between the ceramic members and hardened, the sealing material is liable to cause migration (a phenomenon in which a binder moves as the solvent is dried and removed). there were. Therefore, the sealing layer formed by curing the sealing material becomes brittle. In other words, the inorganic binder constituting the sealing material tightly joins the ceramic member and the sealing layer, and the three-dimensionally interwoven ceramic fiber which is an important element for the expression of the stress buffering function of the sealing layer. It has the effect of joining intersections.
However, the inorganic binder migrates from the inside of the seal layer to the bonding surface with the ceramic member due to migration occurring during the process of drying and curing, and the bonding force at the intersection is reduced, which in turn causes a reduction in the strength of the ceramic structure itself. Therefore, the desired durability could not be satisfied. In addition, the silicon carbide powder constituting the sealing material similarly moves with the migration, causing a decrease in thermal conductivity and unevenness, and a reduction in the regeneration efficiency of the ceramic structure.

【0010】これに対して、上記マイグレーションを抑
制することによって、構造体の耐久性を改善する方法も
考えられる。しかし、この方法は、シール材の乾燥硬化
に長時間を要して生産性を悪くするため好ましくない。
以上説明したように、上記従来の分割セラミック構造体
は、セラミック構造体としての耐久性等に関し、依然と
して改善の余地が残されていた。
[0010] On the other hand, a method of improving the durability of the structure by suppressing the migration is also conceivable. However, this method is not preferable because it takes a long time to dry and harden the sealing material and deteriorates productivity.
As described above, the above-described conventional divided ceramic structure still has room for improvement in durability and the like as a ceramic structure.

【0011】この発明は、従来技術が抱えている上述し
た種々の問題を解消するためになされたものであり、そ
の主たる目的は、セラミック構造体の耐久性を向上させ
ることにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned various problems of the prior art, and a main object thereof is to improve the durability of a ceramic structure.

【0012】この発明の他の目的は、常温時および高温
時におけるシール材の接着性等の材料特性を改善するこ
とにある。
It is another object of the present invention to improve material properties such as adhesiveness of a sealing material at normal temperature and high temperature.

【0013】この発明のさらに他の目的は、弾性と耐熱
性を維持しつつ、常温時および高温時におけるシール材
の接着性ならびに熱伝導性を改善することにより、分割
セラミック構造体の耐久性と再生効率の両方を同時に向
上させることにある。
Still another object of the present invention is to improve the durability and durability of a divided ceramic structure by improving the adhesiveness and thermal conductivity of a sealing material at normal temperature and high temperature while maintaining elasticity and heat resistance. It is to improve both of the regeneration efficiency at the same time.

【0014】[0014]

【課題を解決するための手段】上記目的の実現に向け、
はらは鋭意研究を続けた結果、以下に示す内容を要旨構
成とする発明を見だした。すなわち、この発明は、長手
方向に沿って並列する複数の貫通孔を有し、かつ、これ
らの貫通孔の各端面は、それぞれ市松模様状に目封じさ
れていると共に、ガスの入側と出側とでは開閉が逆の関
係にあり、そして、これらの貫通孔の隣接するものどう
しは、多孔質な隔壁を通じて互いに通気可能にしたセラ
ミック部材を、複数個結束させて集合体としたセラミッ
ク構造体において、前記各セラミック部材の相互間に、
少なくとも無機繊維、無機バインダー、有機バインダー
および無機粒子からなるものを充填し、乾燥し、硬化し
て、前記無機繊維と、無機粒子と、無機バインダーの加
熱焼成によって生成するセラミックスとが、三次元的に
交錯する構造の弾性質シール材を形造り、そのシール材
を介して前記各セラミック部材一体に接着されてお
り、とくに前記無機粒子として、炭化珪素、窒化珪素、
および窒化硼素から選ばれる少なくとも1種以上の無機
粉末またはウィスカーを用いることを特徴とするセラミ
ック構造体である。
In order to achieve the above object,
As a result of his intensive research, he found an invention having the following features. That is, the present invention has a plurality of through holes arranged in parallel along the longitudinal direction, and each end face of these through holes is plugged in a checkered pattern, and the gas enters and exits. The opening and closing are in the opposite relationship with the side, and the adjacent one of these through holes is a ceramic structure that is made by assembling a plurality of ceramic members that are mutually permeable through porous partition walls. In, between the ceramic members,
At least an inorganic fiber, an inorganic binder, filled with an organic binder and inorganic particles, dried and cured, the inorganic fibers, the inorganic particles, and ceramics generated by heating and firing the inorganic binder, three-dimensional An elastic sealing material having a structure that intersects with each other is formed, and the ceramic members are integrally bonded through the sealing material .
In particular, as the inorganic particles, silicon carbide, silicon nitride,
And at least one inorganic selected from boron nitride
A ceramic structure using a powder or a whisker .

【0015】ここで、前記シール材において、無機繊維
として、シリカ−アルミナ、ムライト、アルミナおよ
びシリカから選ばれる少なくとも1種以上のセラミック
ファイバーを用い、無機バインダーとしては、シリカゾ
ルおよびアルミナゾルから選ばれる少なくとも1種以上
のコロイダルゾルを用い、そして有機バインダーとして
は、ポリビニルアルコール、メチルセルロース、エチル
セルロースおよびカルボメトキシセルロースから選ばれ
る少なくとも1種以上の多糖類を用いることが望まし
い。
[0015] Here, in the sealing material, the inorganic fibers, silica - using alumina, mullite, at least one or more ceramic fibers selected from alumina and silica, the inorganic binder, at least selected from silica sol and alumina sol using one or more colloidal sol, and as the organic binder, polyvinyl alcohol, methyl cellulose, that are use of at least one or more kinds of polysaccharides selected from cellulose and carbomethoxy cellulose desirable.

【0016】具体的には、上記シール材は、下記に述べ
る構成を具えることがより好ましい。 .セラミックファイバーのうち、シリカ−アルミナセ
ラミックファイバーの含有量は、固形分で、10〜70wt
%,好ましくは10〜40wt%,より好ましくは20〜30wt%
であることが望ましい。この理由は、含有量が10wt%未
満では弾性体としての効果が低下し、一方、70wt%を超
えると熱伝導率の低下を招くと共に、弾性体としての効
果が低下するからである。
More specifically, it is more preferable that the sealing material has the following configuration. . Among the ceramic fibers, the content of the silica-alumina ceramic fibers is 10 to 70 wt.
%, Preferably 10-40 wt%, more preferably 20-30 wt%
It is desirable that The reason is that if the content is less than 10% by weight, the effect as an elastic body is reduced, while if it exceeds 70% by weight, the thermal conductivity is reduced and the effect as an elastic body is reduced.

【0017】.コロイダルゾルのうち、シリカゾルの
含有量は、固形分で、1〜30wt%,好ましくは1〜15wt
%,より好ましくは5〜9wt%であることが望ましい。
この理由は、含有量が1wt%未満では接着強度の低下を
招き、一方、30wt%を超えると熱伝導率の低下を招くか
らである。
[0017] In the colloidal sol, the content of the silica sol is 1 to 30% by weight, preferably 1 to 15% by weight in solid content.
%, More preferably 5 to 9% by weight.
The reason for this is that if the content is less than 1 wt%, the adhesive strength will decrease, while if it exceeds 30 wt%, the thermal conductivity will decrease.

【0018】.多糖類のうち、カルボキシメチルセル
ロースの含有量は、固形分で、0.1〜5.0 wt%,好まし
くは 0.2〜1.0 wt%,より好ましくは0.4 〜0.6 wt%で
あることが望ましい。この理由は、含有量が0.1 wt%未
満ではマイグレーションを抑制できず、一方、5.0 wt%
を超えると高温の熱履歴により有機バインダーが焼失
し、強度が低下するからである。
[0018] Among the polysaccharides, the content of carboxymethylcellulose is 0.1 to 5.0 wt%, preferably 0.2 to 1.0 wt%, more preferably 0.4 to 0.6 wt% in solid content. The reason is that migration cannot be suppressed if the content is less than 0.1 wt%, while 5.0 wt%
This is because, when the temperature exceeds 300 ° C., the organic binder is burned off due to a high-temperature heat history, and the strength is reduced.

【0019】.無機粉末またはウィスカーのうち、炭
化珪素粉末の含有量は、固形分で、3〜80wt%,好まし
くは10〜60wt%,より好ましくは20〜40wt%であること
が望ましい。この理由は、含有量が3wt%未満では、熱
伝導率の低下を招き、一方、80wt%を超えると高温時で
の接着強度の低下を招くからである。
[0019] It is desirable that the content of the silicon carbide powder in the inorganic powder or the whisker is 3 to 80% by weight, preferably 10 to 60% by weight, more preferably 20 to 40% by weight in solid content. The reason for this is that if the content is less than 3 wt%, the thermal conductivity will decrease, while if it exceeds 80 wt%, the adhesive strength at high temperatures will decrease.

【0020】.上記シール材を構成するセラミックフ
ァイバーのうち、シリカ−アルミナセラミックファイバ
ーは、そのショット含有量が1〜10wt%,好ましくは1
〜5wt%,より好ましくは1〜3wt%で、繊維長が1〜
100mm,好ましくは1〜50mm,より好ましくは1〜20mm
であることが望ましい。この理由は、ショット含有量を
1wt%未満にするのは製造上困難であり、ショット含有
量が50wt%を超えると、被シール材(セラミック部材)
の壁を傷つけるからである。一方、繊維長は、1mm未満
では弾性構造体を形成することができず、 100mmを超え
ると、毛玉のようになって無機微粒子の分散を悪くする
と共に、シール材の厚みを薄くできないために被シール
材間の熱伝導性の低下を招くからである。
[0020] Among the ceramic fibers constituting the sealing material, the silica-alumina ceramic fiber has a shot content of 1 to 10% by weight, preferably 1 to 10% by weight.
~ 5wt%, more preferably 1-3wt%, fiber length is 1 ~
100 mm, preferably 1 to 50 mm, more preferably 1 to 20 mm
It is desirable that The reason for this is that it is difficult to reduce the shot content to less than 1 wt% in production, and if the shot content exceeds 50 wt%, the material to be sealed (ceramic member)
Because it will hurt the wall. On the other hand, if the fiber length is less than 1 mm, an elastic structure cannot be formed, and if it exceeds 100 mm, the dispersion of inorganic fine particles becomes poor as a pill and the thickness of the sealing material cannot be reduced. This is because the thermal conductivity between the materials to be sealed is reduced.

【0021】.上記シール材を構成する無機粉末また
はウィスカーのうち、炭化珪素粉末は、その粒径が0.01
〜100 μm,好ましくは0.1 〜15μm,より好ましくは
0.1〜10μmであることが望ましい。この理由は、粒径
が 100μmを超えると、接着力(強度)および熱伝導性
の低下を招き、一方、0.01μm未満ではコスト高になる
からである。
[0021] Among the inorganic powders or whiskers constituting the sealing material, silicon carbide powder has a particle diameter of 0.01.
100100 μm, preferably 0.1 1515 μm, more preferably
It is desirable that the thickness be 0.1 to 10 μm. The reason for this is that if the particle size exceeds 100 μm, the adhesive strength (strength) and thermal conductivity decrease, while if it is less than 0.01 μm, the cost increases.

【0022】[0022]

【作用】この発明にかかるセラミック構造体の特徴は、
複数個のセラミック部材を一体に接合して結束できるシ
ール材の構成にある。具体的には、まず第1に、シール
材を構成する無機繊維と有機バインダーが相互に絡み合
うことにより、組織の均一性と低温領域での接合性を改
善し、セラミック構造体の耐久性を向上させた点にあ
る。つまり、早期に乾燥硬化する有機バインダーを採用
することによって、従来のシール材で見られるようなマ
イグレーションの発生を抑制し、無機繊維どうしの三次
元的な結合の維持と、無機繊維への無機粒子の固定化を
可能とした点に特徴がある。これにより、シール材を、
組織的に均一で、かつ接着性,弾性および強度に優れる
弾性質素材とすることができ、その結果、このようなシ
ール材によって複数個のセラミック部材を一体に結束し
たセラミック構造体は、外部からの拘束力を与えなくて
も十分な接着強度を有し、同時に熱応力を開放すること
ができる。
The features of the ceramic structure according to the present invention are as follows.
The present invention is directed to a structure of a sealing material which can integrally bind a plurality of ceramic members and bind them. Specifically, first, the inorganic fibers and the organic binder constituting the sealing material are entangled with each other, thereby improving the uniformity of the structure and the bonding property in a low-temperature region, and improving the durability of the ceramic structure. It is in the point which made it. In other words, by adopting an organic binder that dries and cures early, it suppresses the occurrence of migration as seen in conventional sealing materials, maintains three-dimensional bonding between inorganic fibers, and reduces inorganic particles to inorganic fibers. The feature is that it is possible to immobilize. As a result, the sealing material is
An elastic material that is systematically uniform and has excellent adhesiveness, elasticity and strength can be obtained. As a result, a ceramic structure in which a plurality of ceramic members are integrally bound by such a sealing material can be externally formed. Even if it does not give the restraining force, it has sufficient adhesive strength and can release thermal stress at the same time.

【0023】第2の特徴は、シール材を構成する無機繊
維と無機バインダーとの絡み合いの効果で、高温領域で
の接着強度を維持できる点にある。その理由は、高温領
域では、有機バインダーは焼成除去されてしまうが、無
機バインダーが加熱によってセラミック化され、このセ
ラミックスが、無機繊維どうしの交錯点に存在し、無機
繊維どうしおよびセラミック部材との接合に寄与するも
のと考えられている。一方で、この無機バインダーは、
乾燥および加熱により低温領域でも接着強度を保持でき
る。
The second feature is that the adhesive strength in a high temperature region can be maintained by the effect of the entanglement between the inorganic fibers and the inorganic binder constituting the sealing material. The reason is that in the high temperature region, the organic binder is removed by firing, but the inorganic binder is ceramicized by heating, and this ceramic is present at the intersection of the inorganic fibers, and the inorganic fiber and the ceramic member are joined. It is thought to contribute to. On the other hand, this inorganic binder
By drying and heating, the adhesive strength can be maintained even in a low temperature region.

【0024】従って、シリカ−アルミナなどのセラミッ
クファイバーとシリカゾルなどの無機バインダーの絡み
合いによる上記の効果と、前記有機バインダーとの相乗
効果により、低温域および高温域での接着強度に優れる
セラミック構造体とすることができる。
Accordingly, a ceramic structure having excellent adhesive strength in a low temperature range and a high temperature range due to a synergistic effect between the above-mentioned effect due to the entanglement of ceramic fibers such as silica-alumina and an inorganic binder such as silica sol and the organic binder. can do.

【0025】第3の特徴は、無機粒子が、無機繊維の表
面や無機バインダーの表面及び内部に介在して、セラミ
ック構造体の熱伝導率を改善する点にある。特に、窒化
物や炭化物の無機粒子は、窒化物もしくは炭化物の持つ
高熱伝導特性により、熱伝導率を著しく向上させること
ができる。
A third feature is that the inorganic particles are interposed on the surface of the inorganic fiber and the surface and inside of the inorganic binder to improve the thermal conductivity of the ceramic structure. In particular, the thermal conductivity of nitride or carbide inorganic particles can be significantly improved due to the high thermal conductivity of nitride or carbide.

【0026】従って、上記無機粒子を含むシール材は、
熱伝導率に優れ、例えば、排気ガス浄化装置用フィルタ
に用いると、複数のセラミック部材を組み合わせたとき
にできる空隙を埋めると同時に、再生時に温度ピーク現
象を招くことなく、セラミック構造体の破損を有効に防
止することができる。しかも、熱サイクルによるクラッ
クの発生が低減され、フィルタ外周のエッジ部の加熱も
比較的短時間ででき、再生効率を向上させることができ
る。
Therefore, the sealing material containing the inorganic particles is
Excellent in thermal conductivity, for example, when used in a filter for an exhaust gas purifying device, fills a gap formed when a plurality of ceramic members are combined, and at the same time, does not cause a temperature peak phenomenon at the time of regeneration. It can be effectively prevented. Moreover, the occurrence of cracks due to the heat cycle is reduced, the edge of the outer periphery of the filter can be heated in a relatively short time, and the regeneration efficiency can be improved.

【0027】以下、この発明のセラミック構造体につい
て詳細に説明する。セラミック構造体は、排気ガス浄化
装置用フィルタとして用いる場合には、それを構成する
シール材が、耐熱性のほかに、弾性、熱伝導性、接合性
および強度等を備えていることが必要である。弾性に優
れていると、加熱によってフィルタに熱応力が加わるよ
うなときでも、その熱応力を確実に開放することができ
るからである。また、熱伝導性に優れていると、発熱体
の熱が構造体全体に速やかにかつムラなく伝導し、排気
ガス浄化装置内部の温度差も小さくなるからである。ま
た、接合性および強度に優れたものであると、隣接して
結束されているセラミック部材同士の接着性が優れ、セ
ラミック構造体自体の耐久性も優れるものとなるからで
ある。
Hereinafter, the ceramic structure of the present invention will be described in detail. When a ceramic structure is used as a filter for an exhaust gas purifying device, it is necessary that a sealing material constituting the filter has elasticity, thermal conductivity, bonding property, strength, etc. in addition to heat resistance. is there. If the elasticity is excellent, even when thermal stress is applied to the filter by heating, the thermal stress can be reliably released. In addition, when the heat conductivity is excellent, the heat of the heating element is quickly and uniformly transmitted to the entire structure, and the temperature difference inside the exhaust gas purification device is reduced. Further, if the bonding property and the strength are excellent, the adhesiveness between adjacently tied ceramic members is excellent, and the durability of the ceramic structure itself is also excellent.

【0028】この発明は、上記物性を示すシール材の構
成として、無機繊維,無機バインダー,有機バインダー
および無機粒子を用い、かつ、三次元的に交錯する前記
無機繊維と無機粒子とを、前記の無機バインダーおよび
有機バインダーを介して互いに結合して弾性構造体とし
たことを特徴とする。
According to the present invention, as the structure of the sealing material having the above-mentioned physical properties, the inorganic fiber and the inorganic particles, which use inorganic fibers, an inorganic binder, an organic binder and inorganic particles, and which are three-dimensionally intersected with each other, are used. It is characterized in that it is bonded to each other via an inorganic binder and an organic binder to form an elastic structure.

【0029】ここで、無機繊維としては、シリカ−アル
ミナセラミックファイバー、ムライトファイバー、アル
ミナファイバーおよびシリカファイバーがあるが、特に
シリカ−アルミナセラミックファイバーが望ましく、弾
性に優れると共に熱応力を吸収する作用を示す。
Here, the inorganic fiber includes silica-alumina ceramic fiber, mullite fiber, alumina fiber and silica fiber. Particularly, silica-alumina ceramic fiber is desirable, which has excellent elasticity and has a function of absorbing thermal stress. .

【0030】無機バインダーとしては、コロイダルゾル
が望ましく、例えば、アルミナゾル、シリカゾルがある
が、特にシリカゾルが望ましく、接着剤(無機バインダ
ー)として作用する。このシリカゾルは、入手しやす
く、焼成により容易にSiO2 となるため高温領域での
接着剤として好適であり、しかも、絶縁性に優れてい
る。
The inorganic binder is preferably a colloidal sol, for example, an alumina sol or a silica sol, and particularly preferably a silica sol, which acts as an adhesive (inorganic binder). This silica sol is easily available and easily converted to SiO 2 by firing, so that it is suitable as an adhesive in a high-temperature region and has excellent insulating properties.

【0031】有機バインダーとしては、親水性有機高分
子が望ましく、特に多糖類がより好ましい。具体的に
は、ポリビニルアルコールやメチルセルロース、エチル
セルロース、カルボキシメチルセルロースなどがある
が、特にカルボキシメチルセルロースが望ましく、組立
時の流動性を確保し(作業性向上に寄与し)、常温領域
での優れた接着性を示す。
As the organic binder, a hydrophilic organic polymer is desirable, and a polysaccharide is more preferred. Specific examples include polyvinyl alcohol, methylcellulose, ethylcellulose, carboxymethylcellulose, etc., but carboxymethylcellulose is particularly desirable, which secures fluidity during assembly (contributes to improved workability) and has excellent adhesiveness in a normal temperature region. Is shown.

【0032】無機粒子としては、炭化物および/または
窒化物の無機粒子が望ましく、例えば炭化珪素、窒化珪
素および窒化硼素がある。これらの炭化物や窒化物は、
熱伝導率が非常に大きく、セラミックファイバー表面や
コロイダルゾルの表面および内部に介在して熱伝導性の
向上に寄与する。例えば、炭化珪素の熱伝導率は0.19ca
l/cm・sec ・℃、窒化硼素の熱伝導率は 0.136 cal/c
m・sec ・℃、これに対してアルミナの熱伝導率は0.08
cal/cm・sec ・℃程度であり、特に炭化物や窒化物
は、熱伝導率の改善に効果的であることが判る。これら
の炭化物および窒化物の無機粒子のうち、特に炭化珪素
は熱伝導の点で最適である。窒化硼素は、セラミックフ
ァイバーとのなじみが炭化珪素より低いからである。す
なわち、接着性、耐熱性、耐水性および熱伝導率を総て
兼ね備えているのが炭化珪素であることがその理由であ
る。
As the inorganic particles, carbide and / or nitride inorganic particles are desirable, for example, silicon carbide, silicon nitride and boron nitride. These carbides and nitrides
It has a very high thermal conductivity and contributes to the improvement of thermal conductivity by interposing on the surface and inside of the ceramic fiber and the colloidal sol. For example, the thermal conductivity of silicon carbide is 0.19ca
l / cm · sec · ° C, thermal conductivity of boron nitride is 0.136 cal / c
m · sec · ° C, whereas the thermal conductivity of alumina is 0.08
It is about cal / cm · sec · ° C., and it is understood that carbides and nitrides are particularly effective in improving the thermal conductivity. Among these carbide and nitride inorganic particles, silicon carbide is particularly optimal in terms of heat conduction. This is because boron nitride is less compatible with ceramic fibers than silicon carbide. That is, the reason is that silicon carbide has all of adhesiveness, heat resistance, water resistance and thermal conductivity.

【0033】[0033]

【実施例】以下に、この発明のセラミック構造体をディ
ーゼルエンジンに取り付けられる排気ガス浄化装置用フ
ィルタに具体化した実施例を図1〜図5に基づき詳しく
説明する。図1は、この発明のセラミック構造体を用い
た排気ガス浄化装置用フィルタ1を示す図であり、図2
は、このフィルタの部分断面拡大図である。これらの図
において、排気ガス浄化装置用フィルタ1は、8本の角
柱状のセラミック部材2と4本の断面直角二等辺三角形
状のセラミック部材3を、部材相互間に弾性質素材から
なるシール材(厚さ1.5 〜3.0mm )4を介在させて一体
に接着して構成されている。図3〜5は、排気ガス浄化
装置用フィルタ1の一部分を構成しているセラミック部
材2を示す図である。これらの図において、角柱状(33
mm×33mm×150mm )のセラミック部材2には、断面略正
方形状の貫通孔2aがその軸線方向に沿って規則的に穿設
されている。これらの貫通孔2aは、厚さ0.3mm の多孔質
な隔壁2bによって互いに隔てられている。各貫通孔2aの
排気ガス流入側または流出側のいずれかの一端は、多孔
質焼結体製の封止片2cによって市松模様状に封止されて
いる。その結果、セラミック部材2の流入側または流出
側のいずれか一方のみに開口するセルC1,C2が形成され
た状態となっている。なお、セルC1,C2の隔壁2bには、
白金族元素やその他の金属元素およびその酸化物等から
なる酸化触媒を担持してもよい。担持するとパティキュ
レートの着火温度が低下するためである。また、セラミ
ック部材3は、断面形状が直角二等辺三角形状であるこ
とを除いてセラミック部材2と同様の構成を有してい
る。そして、本実施例の排気ガス浄化装置用フィルタ1
を構成するセラミック部材2,3の場合、平均気孔径が
10μm、気孔率が43%、セル壁の厚さが0.3mm 、セルピ
ッチが1.8mm に設定されている。本実施例は、以上説明
したような構成にある排気ガス浄化装置用フィルタ1を
作製して、そのフィルタの性能評価を行ったものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which a ceramic structure of the present invention is embodied in a filter for an exhaust gas purifying apparatus mounted on a diesel engine will be described below in detail with reference to FIGS. FIG. 1 is a diagram showing a filter 1 for an exhaust gas purifying apparatus using a ceramic structure of the present invention.
FIG. 2 is an enlarged partial cross-sectional view of the filter. In these figures, an exhaust gas purifying filter 1 comprises eight prismatic ceramic members 2 and four isosceles triangular ceramic members 3 each having a right-angle cross section and a sealing material made of an elastic material between the members. (Thickness: 1.5 to 3.0 mm) It is integrally bonded with 4 interposed. 3 to 5 are views showing a ceramic member 2 constituting a part of the filter 1 for an exhaust gas purification device. In these figures, the prismatic shape (33
In the ceramic member 2 of mm × 33 mm × 150 mm), a through-hole 2 a having a substantially square cross section is formed regularly along the axial direction. These through holes 2a are separated from each other by a porous partition wall 2b having a thickness of 0.3 mm. One end of each of the through holes 2a on the exhaust gas inflow side or the outflow side is sealed in a checkered pattern by a sealing piece 2c made of a porous sintered body. As a result, cells C1 and C2 that are open only on one of the inflow side and the outflow side of the ceramic member 2 are formed. The partition walls 2b of the cells C1 and C2 include:
An oxidation catalyst comprising a platinum group element, another metal element, an oxide thereof, or the like may be supported. This is because the particulates lower the ignition temperature of the particulates. The ceramic member 3 has the same configuration as the ceramic member 2 except that the cross-sectional shape is a right-angled isosceles triangle. Then, the filter 1 for the exhaust gas purifying apparatus of the present embodiment
In the case of the ceramic members 2 and 3 constituting
The thickness is set to 10 μm, the porosity to 43%, the cell wall thickness to 0.3 mm, and the cell pitch to 1.8 mm. In this embodiment, a filter 1 for an exhaust gas purifying apparatus having the above-described configuration is manufactured, and the performance of the filter is evaluated.

【0034】(実施例1) (1) α型炭化珪素粉末51.5重量%とβ型炭化珪素粉末22
重量%とを湿式混合し、得られた混合物に有機バインダ
ー(メチルセルロース)と水とをそれぞれ6.5重量%、2
0重量%ずつ加えて混練した。次に、可塑剤と潤滑剤を
少量加えてさらに混練し、この混練物を押出成形するこ
とにより、ハニカム状の生成形体を得た。 (2) 次に、この生成形体をマイクロ波による乾燥機を用
いて乾燥し、その後、成形体の貫通孔2aを多孔質焼結体
製の封止片2c形成用のペーストによって封止した後、再
び乾燥機を用いて封止片2c用ペーストを乾燥させた。そ
して、この乾燥体を400 ℃で脱脂した後、更にそれをア
ルゴン雰囲気下にて2200℃で焼成し、多孔質でハニカム
状のセラミック部材2,3を得た。 (3) セラミックファイバー(アルミナシリケートセラミ
ックファイバー、ショット含有率3%、繊維長さ0.1 〜
100 mm)23.3重量%、平均粒径0.3 μmの炭化珪素粉末
30.2重量%、無機バインダーとしてのシリカゾル(ゾル
のSiO2の換算量は30%)7重量%、有機バインダーとし
てのカルボキシメチルセルロース 0.5重量%および水39
重量%を混合し、混練したものをペースト状にしてシー
ル材を作成した。 (4) セラミック部材2、3相互間に前記シール材を充填
し、50〜100 ℃×1時間にて乾燥,硬化して、セラミッ
ク部材2、3とシール材4とを接合して一体化した,図
1に示すようなフィルタ1を作製した。 なお、上記シール材は、マイグレーションを引き起こす
ことなく乾燥,硬化することができた。
Example 1 (1) 51.5% by weight of α-type silicon carbide powder and β-type silicon carbide powder 22
% By weight, and the resulting mixture was mixed with an organic binder (methyl cellulose) and water at 6.5% by weight and 2% by weight, respectively.
0% by weight was added and kneaded. Next, a small amount of a plasticizer and a lubricant were added, and the mixture was further kneaded, and the kneaded product was extruded to obtain a honeycomb-shaped formed body. (2) Next, this formed body is dried using a microwave drier, and then the through-hole 2a of the formed body is sealed with a paste for forming a sealing piece 2c made of a porous sintered body. Then, the paste for sealing piece 2c was dried again using a dryer. After the dried body was degreased at 400 ° C., it was further baked at 2200 ° C. in an argon atmosphere to obtain porous honeycomb-shaped ceramic members 2 and 3. (3) Ceramic fiber (alumina silicate ceramic fiber, shot content 3%, fiber length 0.1 ~
100 mm) 23.3% by weight, average particle size 0.3 μm silicon carbide powder
30.2% by weight, 7% by weight of silica sol as an inorganic binder (the converted amount of SiO 2 in the sol is 30%), 0.5% by weight of carboxymethyl cellulose as an organic binder and 39% of water
% By weight, and the mixture was kneaded to form a paste to form a sealing material. (4) The sealing material is filled between the ceramic members 2 and 3 and dried and hardened at 50-100 ° C. × 1 hour, and the ceramic members 2 and 3 and the sealing material 4 are joined and integrated. A filter 1 as shown in FIG. The sealing material could be dried and cured without causing migration.

【0035】(実施例2)本実施例は、基本的に実施例
1と同様であるが、シール材を実施例1にあるものに代
えて次のものとした。セラミックファイバー(ムライト
ファイバー、ショット含有率5% 繊維長さ0.1 〜100
mm)25重量%、平均粒径1.0 μmの窒化珪素粉末30重量
%、無機バインダとしてのアルミナゾル(アルミナゾル
の換算量は20%)7重量%、有機バインダーとしてのポ
リビニルアルコール0.5 重量%およびアルコール37.5重
量%を混合し、混練したものを使用した。なお、上記シ
ール材は、マイグレーションを引き起こすことなく乾
燥,硬化することができた。
(Embodiment 2) This embodiment is basically the same as Embodiment 1, except that the sealing material is replaced with the one in Embodiment 1. Ceramic fiber (mullite fiber, shot content 5%, fiber length 0.1 to 100
mm) 25% by weight, 30% by weight of silicon nitride powder having an average particle size of 1.0 μm, 7% by weight of alumina sol as an inorganic binder (converted amount of alumina sol is 20%), 0.5% by weight of polyvinyl alcohol as an organic binder and 37.5% by weight of alcohol % And kneaded. The sealing material could be dried and cured without causing migration.

【0036】(実施例3)本実施例は、基本的に実施例
1と同様であるが、シール材を実施例1にあるものに代
えて次のものとした。セラミックファイバー(アルミナ
ファイバー、ショット含有率4% 繊維長さ0.1 〜100
mm)23重量%、平均粒径1μmの窒化硼素粉末35重量
%、無機バインダとしてのアルミナゾル(アルミナゾル
の換算量は20%)8重量%、有機バインダーとしてのエ
チルセルロース0.5 重量%およびアセトン35.5重量%を
混合し、混練したものを使用した。なお、上記シール材
は、マイグレーションを引き起こすことなく乾燥,硬化
することができた。
(Embodiment 3) This embodiment is basically the same as Embodiment 1, except that the sealing material is replaced with that of Embodiment 1 and is as follows. Ceramic fiber (alumina fiber, shot content 4%, fiber length 0.1-100
mm) 23% by weight, 35% by weight of boron nitride powder having an average particle diameter of 1 μm, 8% by weight of alumina sol as an inorganic binder (converted amount of alumina sol is 20%), 0.5% by weight of ethyl cellulose as an organic binder and 35.5% by weight of acetone. What was mixed and kneaded was used. The sealing material could be dried and cured without causing migration.

【0037】(比較例1)本実施例は、基本的に実施例
1と同様であるが、シール材を実施例1にあるものに代
えて従来のシール材である以下のものとし、さらに、最
後に、フィルタ1の最外周部をセラミックファイバーの
断熱材(セラミックファイバー63重量%、α−セピオラ
イト7重量%、未膨張バーミキュライト20重量%および
有機結合剤10重量%)で被覆した。セラミックファイバ
ー(アルミナ−シリカファイバー、ショット含有率2.7
%、繊維長さ30〜100 mm)44.2重量%、無機バインダー
としてのシリカゾル13.3重量%および水42.5重量%を混
合し、混練したものをペースト状またはシート状にして
使用した。なお、上記シール材は、乾燥,硬化する際
に、マイグレーションを引き起こした。
(Comparative Example 1) This example is basically the same as Example 1, except that the sealing material in Example 1 is replaced with the following sealing material, which is a conventional sealing material. Finally, the outermost peripheral portion of the filter 1 was coated with a ceramic fiber heat insulating material (ceramic fiber 63% by weight, α-sepiolite 7% by weight, unexpanded vermiculite 20% by weight, and organic binder 10% by weight). Ceramic fiber (alumina-silica fiber, shot content 2.7
%, A fiber length of 30 to 100 mm), 44.2% by weight, 13.3% by weight of a silica sol as an inorganic binder and 42.5% by weight of water, and the mixture was kneaded and used in the form of a paste or a sheet. In addition, the said sealing material caused migration when drying and hardening.

【0038】実施例1〜3および比較例1で作製したフ
ィルタ1の性能評価を以下に示す方法にて実施した。 (初期およびヒートサイクル後の接着強度の測定)図6
に示すように、フィルタ1から、セラミック部材3個分
をテストピースとして切出し、中心のセラミック部材に
荷重をかけ、剥がれが生じた時の荷重を測定した。ま
た、実際の使用では、常温から900 ℃までの急熱、急冷
が予想されるため、室温〜 900℃のヒートサイクルテス
トを行ったものについても評価した。表1には、フィル
タ1を構成するセラミック部材2、3相互間の初期およ
びヒートサイクル後(100 回後)の接着強度の測定結果
を示した。
The performance of the filters 1 produced in Examples 1 to 3 and Comparative Example 1 was evaluated by the following method. (Measurement of adhesive strength at initial stage and after heat cycle) FIG.
As shown in (1), three ceramic members were cut out from the filter 1 as test pieces, a load was applied to the center ceramic member, and the load when peeling occurred was measured. Further, in actual use, rapid heating and cooling from room temperature to 900 ° C. are expected. Therefore, those subjected to a heat cycle test from room temperature to 900 ° C. were also evaluated. Table 1 shows the measurement results of the adhesive strength between the ceramic members 2 and 3 constituting the filter 1 at the initial stage and after the heat cycle (after 100 times).

【0039】[0039]

【表1】 なお、ヒートサイクル後の方が強度が向上する理由は、
900 ℃の加熱によるシリカの焼結作用のためであると推
定される。
[Table 1] The reason why the strength is improved after the heat cycle is that
It is presumed to be due to the sintering action of silica by heating at 900 ° C.

【0040】(熱伝導率の測定)図7に示すように、セ
ラミック部材4個分をテストピースとして切出し、外周
を断熱材で囲い、ヒーター6の上に設置して20分間加熱
する。この時のT1とT2の温度差を測定した。表2には、
図7に示すT1とT2の温度差を各実施例1〜3および比較
例について測定した結果を示した。
(Measurement of Thermal Conductivity) As shown in FIG. 7, four ceramic members are cut out as test pieces, the outer periphery is surrounded by a heat insulating material, and placed on a heater 6 for heating for 20 minutes. At this time, the temperature difference between T1 and T2 was measured. In Table 2,
The result of having measured the temperature difference of T1 and T2 shown in FIG. 7 about each of Examples 1-3 and the comparative example was shown.

【0041】[0041]

【表2】 [Table 2]

【0042】以上の結果から明らかなように、この発明
のセラミック構造体を用いたフィルタは、高温、常温で
も非常に高い接着強度を有し、熱サイクル特性にも優れ
ることから、フィルタとしての耐久性に優れることを確
認した。しかも、このセラミック構造体は、熱伝導性に
も優れるので、フィルタ内部に位置するセラミック部材
でのピーク温度の発生を低減でき、エッジ部分に位置す
るセラミック構造体の昇温時間を短縮させることができ
ることから、再生効率の向上を同時に実現させることが
できる。
As is evident from the above results, the filter using the ceramic structure of the present invention has extremely high adhesive strength even at a high temperature and a normal temperature, and has excellent heat cycle characteristics. It was confirmed that it had excellent properties. Moreover, since the ceramic structure also has excellent thermal conductivity, it is possible to reduce the occurrence of peak temperature in the ceramic member located inside the filter, and to shorten the time required for the ceramic structure located at the edge portion to rise. As a result, it is possible to simultaneously improve the reproduction efficiency.

【0043】なお、この発明のセラミック構造体が適用
されるフィルタ1の構成は、上記実施例に記載のものに
限定されることはなく、以下のような構成に変更するこ
とが可能である。例えば、 (a)セラミック部材の組み合わせ数は前記実施例のよ
うに12個でなくても良く、任意の数にすることが可能で
ある。この場合、サイズ・形状等の異なるセラミック部
材を適宜組み合わせて使用することも勿論可能である。
なお、セラミック部材を複数個組み合わせた構成を採る
ことは、大型の排気ガス浄化装置用フィルタを作製する
ときに特に有利である。 (b)前記実施例のフィルタ1は、いわば1つの大きな
フィルタが軸線方向に沿って複数個に分割された状態に
なっているとも捉えることができる。そこで、例えばフ
ィルタをドーナツ状に分割した状態、軸線方向に垂直に
分割した状態などにするというような変形例も考えられ
る。 (c)前記実施例にて示したようなハニカム状のセラミ
ック部材2,3のみに限られず、例えば三次元網目構
造、フォーム状、ヌードル状、ファイバー状等を採用す
ることが勿論可能である。また、セラミック部材2,3
用の材料として、炭化珪素以外のものを選択しても勿論
良い。 (d)フィルタ1を構成する場合、セラミック部材2,
3相互間にヒータを設けてなる構成としてもよい。この
場合、ヒータは金属線であることのみに限定されない。
つまり、ヒータは、金属メタライズ、導体ペーストの印
刷、スパッタリング等といった方法によって作製したも
のであってもよい。
The structure of the filter 1 to which the ceramic structure of the present invention is applied is not limited to the structure described in the above embodiment, but can be changed to the following structure. For example, (a) The number of combinations of ceramic members need not be twelve as in the above embodiment, but can be any number. In this case, it is of course possible to appropriately combine and use ceramic members having different sizes and shapes.
It should be noted that adopting a configuration in which a plurality of ceramic members are combined is particularly advantageous when manufacturing a large-sized filter for an exhaust gas purification device. (B) The filter 1 of the embodiment can be regarded as a state in which one large filter is divided into a plurality of pieces along the axial direction. Thus, for example, a modified example in which the filter is divided into a donut shape, a state in which the filter is divided perpendicularly to the axial direction, and the like can be considered. (C) The present invention is not limited to only the honeycomb-shaped ceramic members 2 and 3 as shown in the above-described embodiment, and it is of course possible to adopt a three-dimensional network structure, a foam shape, a noodle shape, a fiber shape, or the like. In addition, ceramic members 2 and 3
Of course, a material other than silicon carbide may be selected. (D) When constituting the filter 1, the ceramic member 2,
A configuration may be adopted in which a heater is provided between the three. In this case, the heater is not limited only to a metal wire.
That is, the heater may be manufactured by a method such as metal metallization, printing of a conductive paste, or sputtering.

【0044】本実施例においては、この発明のセラミッ
ク構造体を、ディーゼルエンジンに取り付けられる排気
ガス浄化装置用フィルタに具体化した例について説明し
たが、このセラミック構造体は、排気ガス浄化装置用フ
ィルタ以外にも、例えば、熱交換器用部材、あるいは高
温流体,高温蒸気の濾過フィルタとして使用することが
できる。
In this embodiment, an example has been described in which the ceramic structure of the present invention is embodied as a filter for an exhaust gas purifying apparatus attached to a diesel engine. Besides, for example, it can be used as a member for a heat exchanger or a filter for filtering high-temperature fluid or high-temperature steam.

【0045】[0045]

【発明の効果】以上説明したようにこの発明のセラミッ
ク構造体は、温度に関係なく接着強度に優れ、しかも熱
伝導率にも優れるので、例えば、排気ガス浄化装置用フ
ィルタに適用すると、再生時間の短縮、再生効率や耐久
性の向上を実現することができる。
As described above, the ceramic structure of the present invention has excellent adhesive strength and excellent thermal conductivity regardless of the temperature. , And improvement in reproduction efficiency and durability can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のセラミック構造体を用いた排気ガス
浄化装置用フィルタを示す斜視図である。
FIG. 1 is a perspective view showing a filter for an exhaust gas purification device using a ceramic structure of the present invention.

【図2】この発明のセラミック構造体を用いた排気ガス
浄化装置用フィルタの部分拡大断面図である。
FIG. 2 is a partially enlarged cross-sectional view of a filter for an exhaust gas purification device using the ceramic structure of the present invention.

【図3】この発明にかかる排気ガス浄化装置用フィルタ
のセラミック部材を示す斜視図である。
FIG. 3 is a perspective view showing a ceramic member of the filter for an exhaust gas purifying apparatus according to the present invention.

【図4】図3のA−A線における一部破断拡大断面図で
ある。
FIG. 4 is a partially broken enlarged sectional view taken along line AA of FIG. 3;

【図5】図4のB−B線における拡大断面図である。FIG. 5 is an enlarged sectional view taken along line BB of FIG. 4;

【図6】接着強度の測定試験の説明図である。FIG. 6 is an explanatory diagram of a measurement test of an adhesive strength.

【図7】熱伝導率の測定試験の説明図である。FIG. 7 is an explanatory diagram of a measurement test of thermal conductivity.

【符号の説明】[Explanation of symbols]

1 排気ガス浄化装置用フィルタ 2,3 セラミック部材 4 シール材 5 断熱材 DESCRIPTION OF SYMBOLS 1 Filter for exhaust gas purification apparatus 2, 3 Ceramic member 4 Sealing material 5 Heat insulating material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島戸 幸二 岐阜県揖斐郡揖斐川町北方1−1 イビ デン株式会社内 (72)発明者 岡添 弘 埼玉県上尾市大字壱丁目1番地 日産デ ィーゼル工業株式会社内 (72)発明者 岩広 政器 埼玉県上尾市大字壱丁目1番地 日産デ ィーゼル工業株式会社内 (56)参考文献 特開 平3−121213(JP,A) 特開 平6−9253(JP,A) 特開 平2−259190(JP,A) 実開 平6−47620(JP,U) 実開 平1−63715(JP,U) 特公 昭57−5429(JP,B2) 特公 昭51−43485(JP,B2) (58)調査した分野(Int.Cl.7,DB名) F01N 3/02 301 B01D 39/20 C04B 37/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Shimato, 1-1 Ibigawa-cho, Ibi-gun, Ibi-gun, Gifu Prefecture Inside (ibid) Co., Ltd. (72) Hiroshi Okazoe 1-1-1, Oaza, Ageo, Saitama Prefecture In-company (72) Inventor Masaki Iwahiro 1-chome, 1-chome, Ageo-shi, Saitama Nissan Diesel Industry Co., Ltd. (56) References JP-A-3-121213 (JP, A) JP-A-6-9253 ( JP, A) JP-A-2-259190 (JP, A) JP-A-6-47620 (JP, U) JP-A-1-63715 (JP, U) JP-B-57-5429 (JP, B2) JP-B 51-43485 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) F01N 3/02 301 B01D 39/20 C04B 37/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 長手方向に沿って並列する複数の貫通孔
を有し、かつ、これらの貫通孔の各端面は、それぞれ市
松模様状に目封じされていると共に、ガスの入側と出側
とでは開閉が逆の関係にあり、そして、これらの貫通孔
の隣接するものどうしは、多孔質な隔壁を通じて互いに
通気可能にしたセラミック部材を、複数個結束させて集
合体としたセラミック構造体において、 前記各セラミック部材の相互間に、少なくとも無機繊
維、無機バインダー、有機バインダーおよび無機粒子か
らなるものを充填し、乾燥し、硬化して、前記無機繊維
と、無機粒子と、無機バインダーの加熱焼成によって生
成するセラミックスとが、三次元的に交錯する構造の弾
性質シール材を形造り、そのシール材を介して前記各セ
ラミック部材一体に接着されており、とくに前記無機
粒子として、炭化珪素、窒化珪素、および窒化硼素から
選ばれる少なくとも1種以上の無機粉末またはウィスカ
ーを用いることを特徴とするセラミック構造体。
1. A plurality of through holes arranged in parallel along the longitudinal direction, and each end face of each of these through holes is plugged in a checkered pattern, and the gas inlet and outlet sides. The opening and closing are in the opposite relationship, and the adjacent ones of these through-holes are connected to each other through a porous partition in a ceramic structure formed by binding a plurality of ceramic members that can be permeable to each other. A space between at least each of the ceramic members is filled with at least an inorganic fiber, an inorganic binder, an organic binder and inorganic particles, dried and cured, and the inorganic fiber, the inorganic particles, and the inorganic binder are heated and fired. and the ceramics produced by us form building the elastic membrane sealing material three-dimensionally interlaced structures, said each ceramic member through the sealing member is bonded together , In particular the inorganic
Particles from silicon carbide, silicon nitride, and boron nitride
At least one or more inorganic powders or whiskers selected
A ceramic structure characterized by using a ceramic material.
【請求項2】 前記シール材において、無機繊維として
、シリカ−アルミナ、ムライト、アルミナおよびシリ
カから選ばれる少なくとも1種以上のセラミックファイ
バーを用い、無機バインダーとしては、シリカゾルおよ
びアルミナゾルから選ばれる少なくとも1種以上のコロ
イダルゾルを用い、そして有機バインダーとしては、ポ
リビニルアルコール、メチルセルロース、エチルセルロ
ースおよびカルボメトキシセルロースから選ばれる少な
くとも1種以上の多糖類を用いることを特徴とする請求
項1に記載のセラミック構造体。
2. In the sealing material , as an inorganic fiber,
The silica - alumina, mullite, using at least one or more ceramic fibers selected from alumina and silica, the inorganic binder, using at least one or more kinds of colloidal sol selected from silica sol and alumina sol, and the organic binder , polyvinyl alcohol, methyl cellulose, ceramic structure according to claim 1, characterized in that there use at least one kind of polysaccharide selected from ethyl cellulose and carbomethoxy cellulose.
【請求項3】 前記シール材は、固形分で、10〜70wt%
のシリカ−アルミナセラミックファイバー、1〜30wt%
のシリカゾル、0.1 〜5.0 wt%のカルボメトキシセルロ
ースおよび3〜80wt%の炭化珪素粉末からなることを特
徴とする請求項2に記載のセラミック構造体。
3. The sealing material has a solid content of 10 to 70 wt%.
Silica-alumina ceramic fiber, 1-30wt%
The ceramic structure according to claim 2, comprising: silica sol of 0.1 to 5.0 wt% carbomethoxycellulose and 3 to 80 wt% silicon carbide powder.
JP06161938A 1994-07-14 1994-07-14 Ceramic structure Expired - Lifetime JP3121497B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP06161938A JP3121497B2 (en) 1994-07-14 1994-07-14 Ceramic structure
PCT/JP1996/000042 WO1997025203A1 (en) 1994-07-14 1996-01-12 Ceramic structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP06161938A JP3121497B2 (en) 1994-07-14 1994-07-14 Ceramic structure
PCT/JP1996/000042 WO1997025203A1 (en) 1994-07-14 1996-01-12 Ceramic structure

Publications (2)

Publication Number Publication Date
JPH0828246A JPH0828246A (en) 1996-01-30
JP3121497B2 true JP3121497B2 (en) 2000-12-25

Family

ID=26437162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06161938A Expired - Lifetime JP3121497B2 (en) 1994-07-14 1994-07-14 Ceramic structure

Country Status (1)

Country Link
JP (1) JP3121497B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757351A2 (en) 2005-08-26 2007-02-28 Ibiden Co., Ltd. Honeycomb structure and manufacturing method thereof
WO2007069674A1 (en) 2005-12-14 2007-06-21 Ngk Insulators, Ltd. Bonding material, process for producing the same, and honeycomb structure made with the same
WO2007119407A1 (en) 2006-03-17 2007-10-25 Ngk Insulators, Ltd. Honeycomb structure and bonding material to be used for same
EP1974788A1 (en) 2007-03-29 2008-10-01 Ibiden Co., Ltd. Honeycomb structure
US7435279B2 (en) 2003-11-12 2008-10-14 Ngk Insulators, Ltd. Honeycomb structure
US7824629B2 (en) 2005-08-26 2010-11-02 Ibiden Co., Ltd. Honeycomb structure and manufacturing method for honeycomb structure
US7964263B2 (en) 2006-03-30 2011-06-21 Ngk Insulators, Ltd. Bonded element, honeycomb segment bonded element, and honeycomb structure using the same
US7981228B2 (en) 2006-12-25 2011-07-19 Ngk Insulators, Ltd. Joined body and method for manufacturing the same
US8053054B2 (en) 2006-03-23 2011-11-08 Ngk Insulators, Ltd. Honeycomb structure
US8092624B2 (en) 2006-12-07 2012-01-10 Ngk Insulators, Ltd. Bonding material composition and method for manufacturing the same, and joined body and method for manufacturing the same
KR101962556B1 (en) * 2014-11-24 2019-03-26 판너 슈츠베클라이둥 게엠베하 Item of clothing having an integrated pocket

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035224A (en) * 1998-07-28 2006-02-09 Ibiden Co Ltd Ceramic structure
JP2002530175A (en) 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Catalyst-carrying filter
US6126833A (en) * 1999-02-22 2000-10-03 Ceramem Corporation Cross-flow filtration device with filtrate conduit network and method of making same
JP2006061909A (en) * 1999-09-29 2006-03-09 Ibiden Co Ltd Ceramic filter assembly
DE20023987U1 (en) * 1999-09-29 2008-09-18 IBIDEN CO., LTD., Ogaki-shi Ceramic filter arrangement
JP3862458B2 (en) 1999-11-15 2006-12-27 日本碍子株式会社 Honeycomb structure
JP3889194B2 (en) 2000-01-13 2007-03-07 日本碍子株式会社 Honeycomb structure
JP2002047070A (en) * 2000-07-31 2002-02-12 Ibiden Co Ltd Ceramics structure
JP2002085922A (en) * 2000-09-20 2002-03-26 Ibiden Co Ltd Ceramic structure
JP4641605B2 (en) * 2000-09-27 2011-03-02 イビデン株式会社 Adhesive, ceramic structure and manufacturing method thereof
JP4404497B2 (en) 2001-03-01 2010-01-27 日本碍子株式会社 Honeycomb filter and manufacturing method thereof
JP4408183B2 (en) * 2001-03-16 2010-02-03 日本碍子株式会社 Honeycomb filter for exhaust gas purification
JP2002273130A (en) 2001-03-22 2002-09-24 Ngk Insulators Ltd Honeycomb structure
JP4511070B2 (en) 2001-03-29 2010-07-28 日本碍子株式会社 Honeycomb structure and assembly thereof
JP4511071B2 (en) 2001-03-29 2010-07-28 日本碍子株式会社 Honeycomb structure and assembly thereof
JP2002292225A (en) 2001-03-30 2002-10-08 Ngk Insulators Ltd Honeycomb structure and its assembly
JP4094823B2 (en) 2001-04-03 2008-06-04 日本碍子株式会社 Honeycomb structure and assembly thereof
JP2003010616A (en) 2001-06-29 2003-01-14 Ngk Insulators Ltd Honeycomb structure body
JP3983117B2 (en) 2001-07-31 2007-09-26 日本碍子株式会社 Honeycomb structure and manufacturing method thereof
JP4367683B2 (en) 2001-10-09 2009-11-18 日本碍子株式会社 Honeycomb filter
JP4246425B2 (en) * 2001-10-15 2009-04-02 日本碍子株式会社 Honeycomb filter
JP3893049B2 (en) 2001-11-20 2007-03-14 日本碍子株式会社 Honeycomb structure and manufacturing method thereof
AU2002349404A1 (en) 2001-12-06 2003-06-17 Ngk Insulators, Ltd. Honeycomb structure body and method for manufacturing the same
JP3927038B2 (en) 2001-12-21 2007-06-06 日本碍子株式会社 Si-containing honeycomb structure and manufacturing method thereof
CN101126335B (en) 2002-02-05 2011-10-26 揖斐电株式会社 Honeycomb filter for purifying exhaust gases
JP4157304B2 (en) 2002-02-05 2008-10-01 日本碍子株式会社 Honeycomb structure
JP4279497B2 (en) 2002-02-26 2009-06-17 日本碍子株式会社 Honeycomb filter
JP4293753B2 (en) 2002-03-19 2009-07-08 日本碍子株式会社 Honeycomb filter
JP2003291054A (en) 2002-03-29 2003-10-14 Ngk Insulators Ltd Manufacturing method for honeycomb structure
EP1829596A1 (en) 2002-03-29 2007-09-05 Ibiden Co., Ltd. Ceramic filter and exhaust gas decontamination unit
JP2003340224A (en) * 2002-05-30 2003-12-02 Ngk Insulators Ltd Honeycomb structure and manufacturing method therefor
JP2004270569A (en) 2003-03-10 2004-09-30 Ngk Insulators Ltd Honeycomb structure
KR101025849B1 (en) * 2003-03-19 2011-03-30 엔지케이 인슐레이터 엘티디 Honeycomb structure body
KR20060103551A (en) * 2003-06-10 2006-10-02 이비덴 가부시키가이샤 Honeycomb structure body
KR100692356B1 (en) 2003-07-15 2007-03-12 이비덴 가부시키가이샤 Honeycomb Structure Body
JP2005046764A (en) * 2003-07-30 2005-02-24 Asahi Glass Co Ltd Sealing material for silicon nitride-based honeycomb filter and method for sealing silicon nitride-based honeycomb filter by using the same
EP1688402A4 (en) * 2003-11-28 2010-07-07 Ngk Insulators Ltd Porous formed article, porous sintered article, method for producing the same and composite member comprising the same
FR2864577B1 (en) * 2003-12-24 2006-05-05 Saint Gobain Ct Recherches FILTRATION STRUCTURE, ESPECIALLY PARTICULATE FILTER FOR EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE AND REINFORCING MEMBER FOR SUCH A STRUCTURE
FR2864575B1 (en) * 2003-12-24 2006-02-10 Saint Gobain Ct Recherches BLOCK FOR FILTRATION OF PARTICLES CONTAINED IN THE EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE
JP2004216375A (en) * 2004-01-30 2004-08-05 Ibiden Co Ltd Ceramic filter aggregate and honeycomb filter
JP4527412B2 (en) * 2004-02-04 2010-08-18 イビデン株式会社 Honeycomb structure aggregate and honeycomb catalyst
JPWO2005089901A1 (en) * 2004-03-23 2008-01-31 日本碍子株式会社 Honeycomb structure and manufacturing method thereof
CN100419230C (en) * 2004-04-05 2008-09-17 揖斐电株式会社 Honeycomb structural body, manufacturing method of the honeycomb structural body, and exhaust gas purifying device
KR100833140B1 (en) 2005-03-16 2008-05-29 니뽄 가이시 가부시키가이샤 Honeycomb structure
CN1921940A (en) * 2005-03-28 2007-02-28 揖斐电株式会社 Honeycomb structure
WO2006103786A1 (en) 2005-03-28 2006-10-05 Ibiden Co., Ltd. Honeycomb structure and seal material
WO2006112061A1 (en) 2005-04-07 2006-10-26 Ibiden Co., Ltd. Honeycomb structure
CN100434398C (en) * 2005-04-28 2008-11-19 揖斐电株式会社 Honeycomb structure
WO2006137163A1 (en) 2005-06-24 2006-12-28 Ibiden Co., Ltd. Honeycomb structure body
WO2006137161A1 (en) 2005-06-24 2006-12-28 Ibiden Co., Ltd. Honeycomb structure body
WO2006137151A1 (en) 2005-06-24 2006-12-28 Ibiden Co., Ltd. Honeycomb structure and exhaust gas purifier
JP5037809B2 (en) * 2005-10-25 2012-10-03 日本碍子株式会社 Honeycomb structure
FR2894028B1 (en) 2005-11-30 2008-07-11 Saint Gobain Ct Recherches METHOD FOR SELECTING A FILTRATION STRUCTURE OF A GAS
FR2893861B1 (en) * 2005-11-30 2008-01-04 Saint Gobain Ct Recherches FILTRATION STRUCTURE OF GAS BASED ON CONTROLLED WALL SURFACE POROSITY SIC GAS
JP4948249B2 (en) * 2006-05-01 2012-06-06 イビデン株式会社 Honeycomb structure, honeycomb structure manufacturing method, honeycomb filter, and honeycomb filter manufacturing method
KR100809645B1 (en) * 2007-01-22 2008-03-05 서울산업대학교 산학협력단 Assemble type multi hole filter structure and manufacture method
WO2008096569A1 (en) * 2007-02-05 2008-08-14 Ngk Insulators, Ltd. Honeycomb segments joined body for dpf and bonding material composition for the joined body
WO2008126330A1 (en) 2007-03-30 2008-10-23 Ibiden Co., Ltd. Honeycomb structure
KR20100017601A (en) * 2007-05-04 2010-02-16 다우 글로벌 테크놀로지스 인크. Improved honeycomb filters
WO2009014199A1 (en) 2007-07-26 2009-01-29 Ngk Insulators, Ltd. Bonding material for honeycomb structure and honeycomb structure utilizing the material
CN101977870A (en) * 2008-03-20 2011-02-16 陶氏环球技术公司 Cement to make thermal shock resistant ceramic honeycomb structures and method to make them
JP5409053B2 (en) 2008-04-02 2014-02-05 日本碍子株式会社 Honeycomb structure
JP2009019634A (en) * 2008-08-11 2009-01-29 Ibiden Co Ltd Exhaust emission control device
JP2009012005A (en) * 2008-08-11 2009-01-22 Ibiden Co Ltd Honeycomb filter and filter aggregate
JP2010227918A (en) 2009-03-30 2010-10-14 Ngk Insulators Ltd Honeycomb structure body and manufacturing method therefor
JP2010048256A (en) * 2009-09-16 2010-03-04 Ibiden Co Ltd Method for manufacturing honeycomb filter and honeycomb filter
JP5460424B2 (en) * 2010-03-31 2014-04-02 日本碍子株式会社 Manufacturing method of honeycomb structure
JP2011240332A (en) * 2010-04-22 2011-12-01 Ibiden Co Ltd Honeycomb structure
JP6400395B2 (en) * 2014-09-08 2018-10-03 イビデン株式会社 Manufacturing method of honeycomb structure
JP6224643B2 (en) 2015-03-26 2017-11-01 日本碍子株式会社 Shelf board crack detection method, honeycomb structure transport method, shelf board crack detection device, and shelf board transport device
CN108331648B (en) * 2018-01-23 2020-05-12 倪惠芳 Dedicated aircraft tail gas cleanup unit of aerospace
JP7318841B1 (en) 2021-09-27 2023-08-01 株式会社プロテリアル CERAMIC HONEYCOMB STRUCTURE AND METHOD OF MANUFACTURING THE SAME

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7435279B2 (en) 2003-11-12 2008-10-14 Ngk Insulators, Ltd. Honeycomb structure
US7824629B2 (en) 2005-08-26 2010-11-02 Ibiden Co., Ltd. Honeycomb structure and manufacturing method for honeycomb structure
EP1757351A2 (en) 2005-08-26 2007-02-28 Ibiden Co., Ltd. Honeycomb structure and manufacturing method thereof
US8039086B2 (en) 2005-12-14 2011-10-18 Ngk Insulators, Ltd. Bonding material, process for producing the same, and honeycomb structure made with the same
WO2007069674A1 (en) 2005-12-14 2007-06-21 Ngk Insulators, Ltd. Bonding material, process for producing the same, and honeycomb structure made with the same
WO2007119407A1 (en) 2006-03-17 2007-10-25 Ngk Insulators, Ltd. Honeycomb structure and bonding material to be used for same
US8105675B2 (en) 2006-03-17 2012-01-31 Ngk Insulators, Ltd. Honeycomb structure and bonding material to be used for same
US8053054B2 (en) 2006-03-23 2011-11-08 Ngk Insulators, Ltd. Honeycomb structure
US7964263B2 (en) 2006-03-30 2011-06-21 Ngk Insulators, Ltd. Bonded element, honeycomb segment bonded element, and honeycomb structure using the same
US8092624B2 (en) 2006-12-07 2012-01-10 Ngk Insulators, Ltd. Bonding material composition and method for manufacturing the same, and joined body and method for manufacturing the same
US7981228B2 (en) 2006-12-25 2011-07-19 Ngk Insulators, Ltd. Joined body and method for manufacturing the same
EP1974788A1 (en) 2007-03-29 2008-10-01 Ibiden Co., Ltd. Honeycomb structure
KR101962556B1 (en) * 2014-11-24 2019-03-26 판너 슈츠베클라이둥 게엠베하 Item of clothing having an integrated pocket

Also Published As

Publication number Publication date
JPH0828246A (en) 1996-01-30

Similar Documents

Publication Publication Date Title
JP3121497B2 (en) Ceramic structure
WO1997025203A1 (en) Ceramic structure
EP1516659B1 (en) Honeycomb filter and ceramic filter assembly
JP3803009B2 (en) Ceramic filter assembly
JP4051163B2 (en) Ceramic filter assembly
EP1604719A2 (en) Ceramic filter for exhaust gas purification
JP4392984B2 (en) Ceramic structure
JP2001162119A (en) Ceramic filter aggregate
JP2001096116A (en) Ceramic filter aggregate and honeycomb filter
JP2001097777A (en) Porous silicon carbide sintered product, honeycomb filter, ceramic filter assembly
US20120211157A1 (en) Honeycomb filter and method for manufacturing the same
WO2007111280A1 (en) Honeycomb structure
WO2004063123A1 (en) Honeycomb structure
JP2002047070A (en) Ceramics structure
JP4167814B2 (en) Ceramic filter assembly
JP2006061909A (en) Ceramic filter assembly
JP2001096111A (en) Porous silicon carbide sintered compact, honeycomb filter and ceramic filter aggregate
JP2004216375A (en) Ceramic filter aggregate and honeycomb filter
JP2001097776A (en) Porous silicon carbide sintered product, honeycomb filter, ceramic filter assembly

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071020

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 13

EXPY Cancellation because of completion of term