JP3114137B2 - Thermal conductivity gas concentration analyzer - Google Patents

Thermal conductivity gas concentration analyzer

Info

Publication number
JP3114137B2
JP3114137B2 JP06066528A JP6652894A JP3114137B2 JP 3114137 B2 JP3114137 B2 JP 3114137B2 JP 06066528 A JP06066528 A JP 06066528A JP 6652894 A JP6652894 A JP 6652894A JP 3114137 B2 JP3114137 B2 JP 3114137B2
Authority
JP
Japan
Prior art keywords
gas
thermal conductivity
temperature
output voltage
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06066528A
Other languages
Japanese (ja)
Other versions
JPH07248304A (en
Inventor
裕行 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP06066528A priority Critical patent/JP3114137B2/en
Publication of JPH07248304A publication Critical patent/JPH07248304A/en
Application granted granted Critical
Publication of JP3114137B2 publication Critical patent/JP3114137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、試料ガスに含まれる
測定対象ガスの濃度を測定する熱伝導率式ガス濃度分析
に関するものである。
BACKGROUND OF THE INVENTION This invention is included in the sample gas
Thermal conductivity gas concentration analysis to measure the concentration of the gas to be measured
It is about a total .

【0002】[0002]

【従来の技術】従来より、石油精製,石油化学,鉄鋼な
どのプラントに使用される熱伝導率式ガス濃度分析計
して、その要部を図3に示すような熱伝導率式水素濃度
が用いられている。同図において、1は試料ガス(例
えば、測定対象ガスとしてH2ガス、共存ガスとしてN
2 ガスを含むガス)の給送通路に配置された第1の測温
抵抗体(TCD)、2は熱伝導率が既知のリファレンス
ガスの給送通路に配置された第2の測温抵抗体(TC
D)、R1,R2は抵抗、3は比較器、4は定電流源又
は定電圧源であり、TCD1,TCD2,抵抗R1,R
2によりホイートストンブリッジが組まれている。
2. Description of the Related Art Conventionally, a thermal conductivity type gas concentration analyzer used in a plant for petroleum refining, petrochemical, steel, etc., has a heat conduction type gas concentration analyzer as shown in FIG. Rate formula hydrogen concentration
Meter is used. In FIG. 1, reference numeral 1 denotes a sample gas (for example, H 2 gas as a gas to be measured and N as a coexisting gas).
A first resistance thermometer (TCD) disposed in a supply passage of a gas containing two gases), and a second resistance temperature detector (TCD) disposed in a supply passage of a reference gas having a known thermal conductivity. (TC
D), R1 and R2 are resistors, 3 is a comparator, 4 is a constant current source or a constant voltage source, TCD1, TCD2, resistors R1, R
A Wheatstone bridge is formed by the two.

【0003】この熱伝導率式水素濃度計では、試料ガス
がTCD1に給送され、その熱伝導率に比例した熱を奪
う。これにより、TCD1の発熱温度が変化し、その抵
抗値が変化する。一方、TCD2には、リファレンスガ
スが給送されている。この場合、リファレンスガスの熱
伝導率は一定であるから、リファレンスガスによって奪
われる熱も一定であり、TCD2の発熱温度は一定とな
り、その抵抗値は一定となる。抵抗R1とTCD1との
接続点に生ずる電圧は比較器3の非反転入力へ、抵抗R
2とTCD2との接続点に生ずる電圧は比較器3の反転
入力へ与えられる。これにより、試料ガスとリファレン
スガスの熱伝導率の差に比例した抵抗値変化(発熱温度
の差)が、不平衡電圧ΔVとして検出される。ここで、
リファレンスガスを試料ガスに含まれる共存ガスと同一
成分(N2 ガス)とすれば、検出される不平衡電圧ΔV
に基づいて予め設定されている検量線を参照として、試
料ガスに含まれているH2 ガスの濃度を測定することが
できる。
[0003] In this thermal conductivity type hydrogen concentration meter , a sample gas is fed to the TCD 1 to remove heat proportional to the thermal conductivity. As a result, the heat generation temperature of the TCD 1 changes, and the resistance value changes. On the other hand, a reference gas is supplied to the TCD 2. In this case, since the thermal conductivity of the reference gas is constant, the heat taken by the reference gas is also constant, the heat generation temperature of the TCD 2 is constant, and the resistance value is constant. The voltage generated at the connection point between the resistors R1 and TCD1 is applied to the non-inverting input of the comparator 3 and the resistor R
The voltage generated at the node between TCD2 and TCD2 is applied to the inverting input of comparator 3. Thus, a change in resistance value (difference in heat generation temperature) in proportion to the difference in thermal conductivity between the sample gas and the reference gas is detected as the unbalanced voltage ΔV. here,
If the reference gas is the same component (N 2 gas) as the coexisting gas contained in the sample gas, the detected unbalanced voltage ΔV
The concentration of H 2 gas contained in the sample gas can be measured with reference to a calibration curve set in advance based on.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の熱伝導率式ガス濃度分析計では、不平衡電圧
ΔVと測定対象ガスの濃度との関係を示す検量線を分析
計毎に固有に作成しており、このため多種類の校正ガス
を必要とし、その校正,調整(リニアライズ)に時間を
要するという問題があった。例えば、上述した熱伝導率
水素濃度計について言えば、濃度(既知濃度)の異な
るH2 ガス(共存ガスはN2 ガス)を校正ガスとして多
数用意し、これら校正ガスをTCD1へ給送して不平衡
電圧ΔVを検出するものとし、この検出された各校正ガ
スの不平衡電圧ΔVとH2 ガス濃度との関係をプロット
して検量線を作成している。ここで、この作成される検
量線は、水素濃度計毎にその装置定数が異なるため、共
通として使用することはできない。このため、水素濃度
毎に検量線を固有に作成しており、多種類の校正ガス
を必要とし、その校正,調整に時間を要するという問題
が生ずる。
However, in such a conventional thermal conductivity type gas concentration analyzer , a calibration curve indicating the relationship between the unbalanced voltage ΔV and the concentration of the gas to be measured is uniquely assigned to each analyzer. Therefore, there is a problem that many kinds of calibration gases are required, and it takes time for calibration and adjustment (linearization). For example, in the case of the above-described thermal conductivity type hydrogen concentration meter , a large number of H 2 gases (coexisting gas is N 2 gas) having different concentrations (known concentrations) are prepared as calibration gases, and these calibration gases are supplied to the TCD 1. To detect the unbalanced voltage ΔV, and the calibration curve is created by plotting the relationship between the detected unbalanced voltage ΔV of each calibration gas and the H 2 gas concentration. Here, the calibration curve created cannot be used in common because the apparatus constants are different for each hydrogen concentration meter . Therefore, the hydrogen concentration
Since a calibration curve is uniquely created for each meter , various kinds of calibration gas are required, and there is a problem that time is required for calibration and adjustment.

【0005】本発明はこのような課題を解決するために
なされたもので、その目的とするところは、固有の検量
線を用いることなく測定対象ガスの濃度を測定すること
ができ、校正,調整に要する時間の短縮化を図ることの
できる熱伝導率式ガス濃度分析計を提供することにあ
る。
The present invention has been made to solve such a problem, and an object of the present invention is to measure the concentration of a gas to be measured without using a specific calibration curve.
To reduce the time required for calibration and adjustment.
It is an object of the present invention to provide a thermal conductivity type gas concentration analyzer which can be used .

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために、本発明は、試料ガスの給送通路に配置された
測温抵抗体と、この測温抵抗体の温度変化を出力電圧v
の変化として検出し、この検出される出力電圧vの変化
に基づいて測温抵抗体へのエネルギーの供給量を制御し
その発熱温度を一定値に保つ制御手段と、この制御手段
によりその発熱温度が一定値に保たれた状態での出力電
圧vを固有の装置定数を含む所定の演算式に代入して試
料ガスの熱伝導率を算出する熱伝導率算出手段と、この
熱伝導率算出手段の算出した熱伝導率に基づき、試料ガ
スに含まれる測定対象ガスおよび共存ガスの種類に応じ
て定められている試料ガスの熱伝導率に対する測定対象
ガスの濃度を示す検量線を参照として測定対象ガスの濃
度を導出する濃度導出手段とを備えたものである。ここ
で、熱伝導率算出手段における演算式中の固有の装置定
数は、既知の熱伝導率λ1の第1の校正ガスを測温抵抗
体へ給送して制御手段によりその発熱温度が一定値に保
たれた状態での出力電圧v1を測定し、既知の熱伝導率
λ2(λ1≠λ2)の第2の校正ガスを測温抵抗体へ給
送して制御手段によりその発熱温度が一定値に保たれた
状態での出力電圧v2を測定し、これら測定した出力電
圧v1,v2および熱伝導率λ1,λ2に基づいて定め
ている。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a temperature measuring resistor disposed in a sample gas supply passage and an output voltage measuring device for detecting a temperature change of the temperature measuring resistor. v
Control means for controlling the amount of energy supplied to the resistance temperature detector based on the detected change in the output voltage v to maintain the heat generation temperature at a constant value; and Thermal conductivity calculating means for calculating the thermal conductivity of the sample gas by substituting the output voltage v in a state where is maintained at a constant value into a predetermined arithmetic expression including a unique device constant ,
Based on the thermal conductivity calculated by the thermal conductivity calculation means,
According to the type of gas to be measured and coexisting gas
Of measurement for the thermal conductivity of the sample gas specified in
Refer to the calibration curve showing the gas concentration
Density deriving means for deriving the degree . Here, the intrinsic device constant in the arithmetic expression in the thermal conductivity calculating means is such that the first calibration gas having a known thermal conductivity λ1 is supplied to the temperature measuring resistor, and the heating temperature is controlled by the control means to a constant value. Is measured, the second calibration gas having a known thermal conductivity λ2 (λ1 ≠ λ2) is supplied to the resistance temperature detector, and the control unit controls the heat generation temperature to a constant value. The output voltage v2 in the state where the voltage is maintained at is maintained, and the output voltage v2 is determined based on the measured output voltages v1 and v2 and the thermal conductivity λ1 and λ2.

【0007】[0007]

【作用】したがってこの発明によれば、試料ガスを測温
抵抗体へ給送すると、この測温抵抗体の温度変化が出力
電圧vの変化として検出され、この検出される出力電圧
vの変化に基づいて測温抵抗体へのエネルギーの供給量
が制御され、その発熱温度が一定値に保たれる。そし
て、発熱温度が一定値に保たれた状態での出力電圧vが
固有の装置定数を含む所定の演算式に代入され、試料ガ
スの熱伝導率が算出される。この算出された熱伝導率に
基づき、試料ガスに含まれる測定対象ガスおよび共存ガ
スの種類に応じて定められている試料ガスの熱伝導率に
対する測定対象ガスの濃度を示す検量線を参照として、
測定対象ガスの濃度が導出される。この場合、固有のも
のとしては、熱伝導率算出手段における演算式中の装置
定数を、既知の熱伝導率λ1の第1の校正ガスおよび既
知の熱伝導率λ2の第2の校正ガスを測温抵抗体へ給送
して出力電圧v1およびv2を測定し、これら測定した
出力電圧v1,v2および熱伝導率λ1,λ2に基づい
て定めてやるのみでよい。
Therefore, according to the present invention, when the sample gas is fed to the resistance temperature detector, a temperature change of the resistance temperature detector is detected as a change in the output voltage v, and the change in the detected output voltage v is detected. The amount of energy supplied to the resistance temperature detector is controlled based on this, and the heat generation temperature is maintained at a constant value. Then, the output voltage v in a state where the heat generation temperature is kept at a constant value is
The thermal conductivity of the sample gas is calculated by substituting into a predetermined arithmetic expression including a unique device constant . Based on the calculated thermal conductivity, the thermal conductivity of the sample gas is determined according to the type of the measurement target gas and the coexisting gas contained in the sample gas.
With reference to the calibration curve indicating the concentration of the gas to be measured,
The concentration of the gas to be measured is derived. In this case, the device constants in the arithmetic expressions in the thermal conductivity calculating means are uniquely measured by measuring the first calibration gas having a known thermal conductivity λ1 and the second calibration gas having a known thermal conductivity λ2. It is only necessary to measure the output voltages v1 and v2 by feeding them to the thermal resistor and determine them based on the measured output voltages v1 and v2 and the thermal conductivity λ1 and λ2.

【0008】[0008]

【実施例】以下、本発明を実施例に基づき詳細に説明す
る。図1はこの発明に係る熱伝導率式水素濃度計の要部
を示す図である。同図において、1は試料ガス(例え
ば、測定対象ガスとしてH2 ガス、共存ガスとしてN2
ガスを含むガス)の給送通路に配置された測温抵抗体
(TCD)、R1,R2,R3は抵抗、3は比較器、4
は熱伝導率算出部、5は濃度導出部、6はROMであ
り、TCD1,抵抗R1,R2,R3により恒温槽7内
でホイートストンブリッジが組まれている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments. FIG. 1 is a view showing a main part of a thermal conductivity type hydrogen concentration meter according to the present invention. In FIG. 1, reference numeral 1 denotes a sample gas (for example, H 2 gas as a gas to be measured and N 2 gas as a coexisting gas).
(TCD) disposed in the feed path of gas containing gas, R1, R2, and R3 are resistors, 3 is a comparator,
Is a thermal conductivity calculating unit, 5 is a concentration deriving unit, 6 is a ROM, and a Wheatstone bridge is formed in the thermostat 7 by the TCD1, the resistors R1, R2, and R3.

【0009】この熱伝導率式水素濃度計では、試料ガス
がTCD1に給送され、その熱伝導率に比例した熱を奪
う。これにより、TCD1の発熱温度TRhが変化し、そ
の抵抗値Rhが変化する。抵抗R1とTCD1との接続
点に生ずる電圧は出力電圧vとして比較器3の反転入力
へ、抵抗R3とR2との接続点に生ずる電圧は比較器3
の非反転入力へ与えられる。これにより、TCD1の温
度変化が、出力電圧vの変化Δvとして検出される。比
較器3は、この検出した出力電圧vの変化Δvに基づい
て、TCD1へ流れる電流iを制御し、TCD1の抵抗
値Rhを一定(Rh=(R1×R2)/R3)に保つ。
これにより、出力電圧vが変化し、TCD1の発熱温度
Rhが一定に保たれる。
In this thermal conductivity type hydrogen concentration meter , the sample gas is fed to the TCD 1 and takes away heat proportional to the thermal conductivity. As a result, the heat generation temperature T Rh of the TCD 1 changes, and the resistance value Rh changes. The voltage generated at the connection point between the resistors R1 and TCD1 is output to the inverting input of the comparator 3 as the output voltage v, and the voltage generated at the connection point between the resistors R3 and R2 is calculated as the output voltage v.
To the non-inverting input of Thereby, the temperature change of TCD1 is detected as the change Δv of the output voltage v. The comparator 3 controls the current i flowing to the TCD1 based on the detected change Δv of the output voltage v, and keeps the resistance Rh of the TCD1 constant (Rh = (R1 × R2) / R3).
As a result, the output voltage v changes, and the heat generation temperature T Rh of the TCD 1 is kept constant.

【0010】TCD1の発熱温度TRhが一定に保たれる
ことは下記(1)式を見ても分かる。すなわち、TCD
1は白金薄膜抵抗体であり、その抵抗値Rhは(1)式
で示され、TCD1の抵抗値Rhを一定に制御すれば、
同時に発熱温度TRhも一定に保たれる。 Rh=Rh20{1+α20・(TRh−20)+β20・(TRh−20)2 } ・・ ・(1) なお、この式において、Rh20は20℃におけるTCD
1の抵抗値(Ω)、α20は20℃におけるTCD1の1
次抵抗温度係数、β20は20℃におけるTCD1の2次
抵抗温度係数である。
The fact that the exothermic temperature T Rh of the TCD 1 is kept constant can also be seen from the following equation (1). That is, TCD
Reference numeral 1 denotes a platinum thin film resistor, and its resistance Rh is expressed by the following equation (1). If the resistance Rh of the TCD 1 is controlled to be constant,
At the same time, the exothermic temperature T Rh is kept constant. Rh = Rh 20 {1 + α 20 · (T Rh -20) + β 20 · (T Rh -20) 2} ·· · (1) Note that, in this formula, Rh 20 is TCD at 20 ° C.
The resistance value (Ω) of 1 and α 20 is 1 of TCD1 at 20 ° C.
The secondary resistance temperature coefficient, β 20, is the secondary resistance temperature coefficient of TCD1 at 20 ° C.

【0011】ここで、TCD1から周囲に伝わる熱量Q
T は、下記(2)式で示される。なお、この式におい
て、QG は熱伝導により試料ガスに伝わる熱量、QS
TCD1を構築するダイヤフラム(シリコン)および抵
抗パターンを通してシリコン台座に伝わる熱量、QC
対流(強制対流および自然対流)により伝わる熱量、Q
R は輻射により伝わる熱量である。 QT =QG +QS +QC +QR ・・・(2) この熱量QT は、さらに、下記(3)式として表現され
る。なお、この式において、TRR2 は恒温槽7の温度
(℃)、λmは試料ガスの熱伝導率(w/k・m)、G
は装置定数(m)、λsiはダイヤフラムおよび抵抗パタ
ーンの熱伝導率(w/k・m)、GS はダイヤフラムお
よび抵抗パターンにおける装置定数(m)である。
Here, the heat quantity Q transmitted from the TCD 1 to the surroundings
T is represented by the following equation (2). Note that, in this formula, Q G is the amount of heat transferred to the sample gas by heat conduction, Q S is the amount of heat transferred to the silicon base through the diaphragm (silicon) and the resistor pattern to build TCD 1, Q C convection (forced convection and natural convection) The amount of heat transmitted by Q
R is the amount of heat transmitted by radiation. Q T = Q G + Q S + Q C + Q R (2) The heat quantity Q T is further expressed by the following equation (3). In this equation, T RR2 is the temperature of the thermostat 7 (° C.), λm is the thermal conductivity of the sample gas (w / km), G
The apparatus constant (m), the lambda si thermal conductivity of the diaphragm and resistor pattern (w / k · m), G S is a device constant in the diaphragm and resistor pattern (m).

【0012】 QT =(TRh−TRR2 )・λm・G+(TRh−TRR2 )・λsi・GS +QC +QR ・・・(3) この(3)式において、GおよびGS はガス組成によっ
て変化しないし、QC,QR はQG ,QS に比べて十分
小さな値(または一定値)であり、λsiも一定と考えら
れる。また、TRh,TRR2 は一定にコントロールされる
ので、上記(3)式はA,Bを固有の装置定数(運転状
態を含めた形状係数)として、下記(4)式で示され
る。 QT =A・λm+B ・・・(4) 一方、QT は、 QT =i2 ・Rh=v2 /Rh ・・・(5) として表され、QT =A・λm+B=v2 /Rhより、
試料ガスの熱伝導率λmは下記(6)式で表されるもの
となる。 λm=(v2 /Rh−B)/A ・・・(6)
Q T = (T Rh −T RR2 ) · λm · G + (T Rh −T RR2 ) · λ si · G S + Q C + Q R (3) In the equation (3), G and G S is do not vary with gas composition, Q C, Q R is sufficiently small value compared to the Q G, Q S (or constant value), lambda si also considered constant. Further, since T Rh and T RR2 are controlled to be constant, the above equation (3) is expressed by the following equation (4), where A and B are intrinsic device constants (shape factors including the operating state). Q T = A · λm + B (4) On the other hand, Q T is expressed as Q T = i 2 · Rh = v 2 / Rh (5), and Q T = A · λm + B = v 2 / From Rh,
The thermal conductivity λm of the sample gas is represented by the following equation (6). λm = (v 2 / Rh−B) / A (6)

【0013】ここで、固有の装置定数A,Bが分かれ
ば、出力電圧vを上記(6)式に代入することにより、
試料ガスの熱伝導率λmを求めることができる。そこ
で、本実施例においては、上記(6)式を演算式として
熱伝導率算出部4へ設定する一方、この演算式における
固有の装置定数A,Bを次のようにして定めている。す
なわち、熱伝導率が既知の第1の校正ガス(例えば、1
00%N2 ガス)をTCD1へ給送して出力電圧v(v
N2=v1)を測定し、熱伝導率が既知の第2の校正ガス
(例えば、100%H2 ガス)をTCD1へ給送して出
力電圧v(vH2=v2)を測定し、この測定した出力電
圧vN2,vH2を下記(7)式および(8)式に代入して
固有の装置定数A,Bを求め、この求めた装置定数A,
Bを熱伝導率算出部4における演算式中の装置定数A,
Bとして設定している。
Here, if the specific device constants A and B are known, the output voltage v is substituted into the above equation (6) to obtain
The thermal conductivity λm of the sample gas can be obtained. Therefore, in the present embodiment, the above equation (6) is set as an arithmetic expression in the thermal conductivity calculating section 4, and the unique device constants A and B in this arithmetic expression are determined as follows. That is, a first calibration gas (for example, 1) whose thermal conductivity is known
00% N 2 gas) to the TCD 1 and output voltage v (v
N2 = v1) measuring a second calibration gas thermal conductivity is known (for example, by measuring the 100% H 2 gas) feeding to TCD1 to the output voltage v (v H2 = v2), the measurement By substituting the obtained output voltages v N2 and v H2 into the following equations (7) and (8), unique device constants A and B are obtained.
B is a device constant A,
B is set.

【0014】 A=(vN2 2 −vH2 2 )/Rh・(λN2−λH2) ・・・(7) B=(vN2 2 ・λH2−vH2 2 ・λN2)/Rh・(λH2−λN2) ・・・(8) なお、この式において、λN2(=λ1)は100%N2
ガスの(TRh+TRR2)/2における熱伝導率(w/k
・m)、λH2(=λ2)は100%H2 ガスの(TRh
RR2 )/2における熱伝導率(w/k・m)である。
また、上記(7)式および(8)式は、A・λm+B=
2 /Rhを変形して得られるv2 =Rh・A・λm+
Rh・BにvN2,λN2およびvH2,λH2を代入して得ら
れる下記(9)および(10)式の連立方程式を解いて
得られるものである。 vN2 2 =Rh・A・λN2+Rh・B ・・・(9) vH2 2 =Rh・A・λH2+Rh・B ・・・(10)
A = (v N2 2 −v H2 2 ) / Rh · (λ N2 −λ H2 ) (7) B = (v N2 2 · λ H2 −v H2 2 · λ N2 ) / Rh · (Λ H2 −λ N2 ) (8) In this equation, λ N2 (= λ1) is 100% N 2
Thermal conductivity (w / k) of gas at (T Rh + T RR2 ) / 2
M), λ H2 (= λ2) is (T Rh +) of 100% H 2 gas.
T RR2 ) / 2 is the thermal conductivity (w / km ).
The above equations (7) and (8) are given by A · λm + B =
v obtained by modifying a 2 / Rh v 2 = Rh · A · λm +
The Rh · B v N2, λ N2 and v H2, following which is obtained by substituting the lambda H2 (9) and (10) is obtained by solving the simultaneous equations of expression. v N2 2 = Rh · A · λ N2 + Rh · B (9) v H2 2 = Rh · A · λ H2 + Rh · B (10)

【0015】一方、本実施例において、ROM6には、
試料ガスに含まれる測定対象ガスおよび共存ガスの種類
に応じ分析計全体として共通に定められる検量線が、複
数種類格納されている。すなわち、測定対象ガスをH2
とし共存ガスをN2 としたときの試料ガスの熱伝導率λ
mに対するH2 ガスの濃度を示す検量線(図2参照:N
2 −H2 検量線)や、測定対象ガスをH2 とし共存ガス
をCH4 としたときの試料ガスの熱伝導率λmに対する
2 ガスの濃度を示す検量線(CH4 −H2 検量線)
や、測定対象ガスをH2 とし共存ガスをCO2 としたと
きの試料ガスの熱伝導率λmに対するH2 ガスの濃度を
示す検量線(CO2 −H2 検量線)など、多種類の検量
線が格納されている。これら、検量線は、物理データと
してすでに求められているものもあるが、求められてい
ない場合には実測のうえ作成する。
On the other hand, in this embodiment, the ROM 6 has
A plurality of types of calibration curves commonly defined for the entire analyzer according to the types of the measurement target gas and the coexisting gas contained in the sample gas are stored. That is, the gas to be measured is H 2
And the thermal conductivity λ of the sample gas when the coexisting gas is N 2
calibration curve showing the concentration of H 2 gas with respect to m (see FIG. 2: N
2 -H 2 calibration curve) or, a calibration curve showing the concentration of the H 2 gas to the measuring object gas of H 2 coexisting gas to the thermal conductivity λm of the sample gas when the CH 4 (CH 4 -H 2 calibration curve )
And various types of calibration such as a calibration curve (CO 2 -H 2 calibration curve) showing the concentration of H 2 gas with respect to the thermal conductivity λm of the sample gas when the gas to be measured is H 2 and the coexisting gas is CO 2. Lines are stored. Some of these calibration curves have already been obtained as physical data, but if they have not been obtained, they are created after actual measurement.

【0016】また、本実施例において、濃度導出部5
は、試料ガスの構成に応じ、ROM6に格納されている
検量線の中から所要の検量線を読み出す。本実施例で
は、測定対象ガスをH2 とし共存ガスをN2 としている
ので、外部からの指定に応じ、N2 −H2 検量線を読み
出す。そして、この読み出したN2 −H2 検量線を参照
として、熱伝導率算出部4にて算出された試料ガスの熱
伝導率λmに基づき、試料ガスに含まれるH2 ガスの濃
度を求め、この濃度を測定濃度値として出力する。
In the present embodiment, the concentration deriving unit 5
Reads a required calibration curve from the calibration curves stored in the ROM 6 according to the configuration of the sample gas. In the present embodiment, since the gas to be measured is H 2 and the coexisting gas is N 2 , an N 2 -H 2 calibration curve is read according to an external designation. Then, with reference to the read N 2 -H 2 calibration curve, the concentration of H 2 gas contained in the sample gas is determined based on the thermal conductivity λm of the sample gas calculated by the thermal conductivity calculator 4, This density is output as a measured density value.

【0017】なお、本実施例においては、測定対象ガス
を熱伝導率の高いH2 としたが、Heなどの高熱伝導率
のガスとしてもよい。また、これとは逆に、熱伝導率の
低いCl2 などのガスを測定対象ガスとしてもよい。す
なわち、熱伝導率の変化が大きいガスであれば、H2
同様にしてその濃度を測定することが可能である。ま
た、本実施例では、第1の校正ガスを100%N2
ス、第2の校正ガスを100%H2 ガスとしたが、熱伝
導率が既知のガスであれば如何なるガスも校正ガスとな
り得る。また、本実施例では、ROM6に多種類の検量
線を格納しておくものとしたが、これら検量線は近似式
に置き換えて格納しておくようにしてもよい。
In this embodiment, the gas to be measured is H 2 having a high thermal conductivity, but it may be a gas having a high thermal conductivity such as He. Conversely, a gas such as Cl 2 having a low thermal conductivity may be used as the measurement target gas. That is, if the gas has a large change in thermal conductivity, its concentration can be measured in the same manner as H 2 . In this embodiment, the first calibration gas is 100% N 2 gas, and the second calibration gas is 100% H 2 gas. However, any gas having a known thermal conductivity can be used as the calibration gas. obtain. Further, in this embodiment, various kinds of calibration curves are stored in the ROM 6, but these calibration curves may be stored by replacing them with approximate expressions.

【0018】[0018]

【発明の効果】以上説明したことから明らかなように本
発明によれば、試料ガスを測温抵抗体へ給送すると、こ
の測温抵抗体の温度変化が出力電圧vの変化として検出
され、この検出される出力電圧vの変化に基づいて測温
抵抗体へのエネルギーの供給量が制御され、その発熱温
度が一定値に保たれ、発熱温度が一定値に保たれた状態
での出力電圧vが固有の装置定数を含む所定の演算式に
代入され、試料ガスの熱伝導率が算出されるものとな
り、この算出された熱伝導率に基づき、試料ガスに含ま
れる測定対象ガスおよび共存ガスの種類に応じて定めら
れている試料ガスの熱伝導率に対する測定対象ガスの濃
度を示す検量線を参照として、測定対象ガスの濃度が導
出されるものとなり、分析計毎に固有の検量線を用いる
ことなく、測定対象ガスの濃度を測定することができ
る。この場合、固有のものとしては、熱伝導率算出手段
における演算式中の装置定数を、既知の熱伝導率λ1の
第1の校正ガスおよび既知の熱伝導率λ2の第2の校正
ガスを測温抵抗体へ給送して出力電圧v1およびv2を
測定し、これら測定した出力電圧v1,v2および熱伝
導率λ1,λ2に基づいて定めてやるのみでよいので
正,調整に要する時間を従来のものに比して大幅に短
縮することが可能となる。
As is apparent from the above description, according to the present invention, when the sample gas is supplied to the resistance temperature detector, a temperature change of the resistance temperature detector is detected as a change of the output voltage v. The amount of energy supplied to the resistance temperature detector is controlled based on the detected change in the output voltage v, and the output voltage in a state where the heat generation temperature is maintained at a constant value and the heat generation temperature is maintained at a constant value v is substituted into a predetermined arithmetic expression including a unique device constant, and the thermal conductivity of the sample gas is calculated. Based on the calculated thermal conductivity, the gas to be measured and the coexisting gas contained in the sample gas are calculated. Determined according to the type of
Concentration of the gas to be measured relative to the thermal conductivity of the sample gas
The concentration of the gas to be measured is derived with reference to the calibration curve
And use a unique calibration curve for each analyzer
Without measuring the concentration of the gas to be measured.
You. In this case, the device constants in the arithmetic expressions in the thermal conductivity calculating means are uniquely measured by measuring the first calibration gas having a known thermal conductivity λ1 and the second calibration gas having a known thermal conductivity λ2. Since the output voltages v1 and v2 are supplied to the thermal resistor and measured, and only the output voltages v1 and v2 and the thermal conductivity λ1 and λ2 need to be determined .
Calibration, and the time required for adjustment can be greatly shortened as compared with the prior art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る熱伝導率式水素濃度計の要部を
示す図である。
FIG. 1 is a view showing a main part of a thermal conductivity type hydrogen concentration meter according to the present invention.

【図2】 この熱伝導率式水素濃度計のROMに格納さ
れている検量線を例示する図である。
FIG. 2 is a diagram illustrating a calibration curve stored in a ROM of the thermal conductivity type hydrogen concentration meter .

【図3】 従来の熱伝導率式水素濃度計の要部を示す図
である。
FIG. 3 is a diagram showing a main part of a conventional thermal conductivity type hydrogen concentration meter .

【符号の説明】[Explanation of symbols]

1…測温抵抗体(TCD)、R1,R2,R3…抵抗、
3…比較器、4…熱伝導率算出部、5…濃度導出部、6
…ROM、7…恒温槽。
1: Temperature measuring resistor (TCD), R1, R2, R3: resistance,
3 ... Comparator, 4 ... Thermal conductivity calculating unit, 5 ... Concentration deriving unit, 6
... ROM, 7 ... thermostat.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 27/18 G01N 25/18 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 27/18 G01N 25/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料ガスの給送通路に配置された測温抵
抗体と、 この測温抵抗体の温度変化を出力電圧vの変化として検
出し、この検出される出力電圧vの変化に基づいて前記
測温抵抗体へのエネルギーの供給量を制御しその発熱温
度を一定値に保つ制御手段と、 この制御手段によりその発熱温度が一定値に保たれた状
態での出力電圧vを固有の装置定数を含む所定の演算式
に代入して前記試料ガスの熱伝導率を算出する熱伝導率
算出手段と この熱伝導率算出手段の算出した熱伝導率に基づき、試
料ガスに含まれる測定対象ガスおよび共存ガスの種類に
応じて定められている試料ガスの熱伝導率に対する測定
対象ガスの濃度を示す検量線を参照として測定対象ガス
の濃度を導出する濃度導出手段とを 備え、前記熱伝導率算出手段における演算式中の前記固有の装
置定数は、 既知の熱伝導率λ1の第1の校正ガスを前記
測温抵抗体へ給送して前記制御手段によりその発熱温度
が一定値に保たれた状態での出力電圧v1を測定し、既
知の熱伝導率λ2(λ1≠λ2)の第2の校正ガスを前
記測温抵抗体へ給送して前記制御手段によりその発熱温
度が一定値に保たれた状態での出力電圧v2を測定し、
これら測定した出力電圧v1,v2および前記熱伝導率
λ1,λ2に基づいて定められていることを特徴とする
熱伝導率式ガス濃度分析計
A temperature measuring resistor disposed in a sample gas supply passage; detecting a temperature change of the temperature measuring resistor as a change in an output voltage v; Control means for controlling the amount of energy supplied to the resistance temperature sensor to maintain its heat-generating temperature at a constant value; and controlling the output voltage v while the heat-generating temperature is maintained at a constant value by this control means . and the thermal conductivity calculating means for calculating the thermal conductivity of the assignment to the sample gas to a predetermined arithmetic expression including an apparatus constant, based on the calculated thermal conductivity of the thermal conductivity calculating means, trial
Gas and coexisting gas contained in the feed gas
Measurement for the thermal conductivity of the sample gas specified accordingly
Measurement target gas with reference to the calibration curve showing the concentration of the target gas
Concentration deriving means for deriving the concentration of the thermal conductivity.
The set constant is obtained by supplying a first calibration gas having a known thermal conductivity λ1 to the resistance temperature detector and measuring the output voltage v1 in a state where the heat generation temperature is maintained at a constant value by the control means. A second calibration gas having a known thermal conductivity λ2 (λ1 ≠ λ2) is supplied to the resistance temperature detector, and the output voltage v2 in a state where the heat generation temperature is maintained at a constant value by the control means is reduced. Measure,
Output voltage v1 that these measurements, v2 and the thermal conductivity .lambda.1, characterized in that are constant because on the basis of λ2
Thermal conductivity gas concentration analyzer .
JP06066528A 1994-03-11 1994-03-11 Thermal conductivity gas concentration analyzer Expired - Lifetime JP3114137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06066528A JP3114137B2 (en) 1994-03-11 1994-03-11 Thermal conductivity gas concentration analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06066528A JP3114137B2 (en) 1994-03-11 1994-03-11 Thermal conductivity gas concentration analyzer

Publications (2)

Publication Number Publication Date
JPH07248304A JPH07248304A (en) 1995-09-26
JP3114137B2 true JP3114137B2 (en) 2000-12-04

Family

ID=13318472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06066528A Expired - Lifetime JP3114137B2 (en) 1994-03-11 1994-03-11 Thermal conductivity gas concentration analyzer

Country Status (1)

Country Link
JP (1) JP3114137B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646494U (en) * 1992-12-03 1994-06-28 弘 月見里 Steam boiling pot
JP2007248220A (en) * 2006-03-15 2007-09-27 Yamatake Corp Heat conductivity measuring method, its measuring instrument, and gas component ratio measuring instrument

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100608A1 (en) * 2016-11-29 2018-06-07 英弘精機株式会社 Thermal conductivity measurement device, thermal conductivity measurement method, and vacuum evaluation device
EP3521816A1 (en) * 2018-02-06 2019-08-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for in-situ monitoring of the quality of gas delivered to a consuming industrial site using the thermal conductivity technique
JP7127580B2 (en) * 2019-02-28 2022-08-30 オムロン株式会社 Oxygen concentration measuring device and oxygen concentration measuring method
CN113866070A (en) * 2021-11-19 2021-12-31 郑州大学 Device and method for measuring micro surface area of macroporous material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646494U (en) * 1992-12-03 1994-06-28 弘 月見里 Steam boiling pot
JP2007248220A (en) * 2006-03-15 2007-09-27 Yamatake Corp Heat conductivity measuring method, its measuring instrument, and gas component ratio measuring instrument
JP4505842B2 (en) * 2006-03-15 2010-07-21 株式会社山武 Thermal conductivity measuring method and apparatus, and gas component ratio measuring apparatus

Also Published As

Publication number Publication date
JPH07248304A (en) 1995-09-26

Similar Documents

Publication Publication Date Title
JP3114139B2 (en) Thermal conductivity meter
US6450024B1 (en) Flow sensing device
US3621381A (en) Coulometric system having compensation for temperature induced viscosity changes
KR20010083072A (en) Thermal flow sensor, method and apparatus for identifying fluid, flow sensor, and method and apparatus for flow measurement
US4568198A (en) Method and apparatus for the determination of the heat transfer coefficient
US20050109100A1 (en) Thermal mass flowmeter apparatus and method with temperature correction
US5303167A (en) Absolute pressure sensor and method
CN102597754A (en) Hydrogen chlorine level detector
US4818977A (en) Combustible gas detector having temperature stabilization capability
US5494826A (en) Microcalorimeter sensor for the measurement of heat content of natural gas
JPH0850109A (en) Gas analyzing method
JP3136553B2 (en) Calorimeter
JPH0843341A (en) Method for identifying gas
JP3114137B2 (en) Thermal conductivity gas concentration analyzer
JPH07151572A (en) Measuring device and measuring method
GB1515611A (en) Electric circuits
SE427502B (en) VERMEGENOMGANGSMETARE
CA1319535C (en) Filament drive circuit
JP2949314B2 (en) Calorimeter and method
JPH102807A (en) Thermocouple measuring device
JP2879256B2 (en) Thermal flow meter
RU2761932C1 (en) Method for measuring the flow rate of a fluid medium and apparatus for implementation thereof
JPS5923369B2 (en) Zero-level heat flow meter
RU2034248C1 (en) Device for measuring temperature
RU2017089C1 (en) Method of temperature measurement

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12