JP3079538B2 - Comprehensive control system for auxiliary steering angle and braking / driving force - Google Patents

Comprehensive control system for auxiliary steering angle and braking / driving force

Info

Publication number
JP3079538B2
JP3079538B2 JP10404490A JP10404490A JP3079538B2 JP 3079538 B2 JP3079538 B2 JP 3079538B2 JP 10404490 A JP10404490 A JP 10404490A JP 10404490 A JP10404490 A JP 10404490A JP 3079538 B2 JP3079538 B2 JP 3079538B2
Authority
JP
Japan
Prior art keywords
control
driving force
steering angle
braking
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10404490A
Other languages
Japanese (ja)
Other versions
JPH042557A (en
Inventor
智弘 山村
深 菅沢
正継 横手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10404490A priority Critical patent/JP3079538B2/en
Priority to GB9108131A priority patent/GB2245873B/en
Priority to DE4112582A priority patent/DE4112582C2/en
Priority to US07/686,341 priority patent/US5297646A/en
Publication of JPH042557A publication Critical patent/JPH042557A/en
Application granted granted Critical
Publication of JP3079538B2 publication Critical patent/JP3079538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、補助舵角と制駆動力の総合制御装置に関す
る。
Description: TECHNICAL FIELD The present invention relates to an integrated control device for auxiliary steering angle and braking / driving force.

(従来の技術) 従来、補助舵角制御装置の一例である後輪舵角制御装
置としては、例えば、特開昭59−77968号公報に記載さ
れている装置が知られていて、この従来出典には、低車
速時或は前輪操舵角が大きい時等には後輪を逆相に転舵
し、高車速時或は前輪操舵角が小さい時等には後輪を同
相に転舵し、操縦性能を高める内容が示されている。
2. Description of the Related Art Conventionally, as a rear wheel steering angle control device which is an example of an auxiliary steering angle control device, for example, a device described in JP-A-59-77968 is known. At low vehicle speed or when the front wheel steering angle is large, the rear wheels are steered in the opposite phase, and at high vehicle speed or when the front wheel steering angle is small, the rear wheels are steered in phase. The contents to improve the steering performance are shown.

また、従来、制駆動力制御装置の一例である四輪駆動
車の駆動力配分制御装置としては、例えば、特開昭61−
157437号公報に記載されている装置が知られて、この従
来出典には、駆動輪スリップ発生時に従動輪側への駆動
力配分を増して4輪駆動方向に駆動力配分を制御し、急
発進時や加速時等において駆動性能と走行安定性を高め
る内容が示されている。
Conventionally, as a driving force distribution control device for a four-wheel drive vehicle, which is an example of a braking / driving force control device, for example, Japanese Unexamined Patent Publication No.
A device described in Japanese Patent No. 157437 is known, and in this conventional source, when a driving wheel slip occurs, the driving force distribution to the driven wheels is increased to control the driving force distribution in the four-wheel drive direction, and the vehicle is quickly started. The contents to improve the driving performance and the running stability at the time of acceleration, acceleration and the like are shown.

(発明が解決しようとする課題) しかしながら、上記後輪舵角制御装置と四輪駆動車の
駆動力配分制御装置とを同時に1つの車両に搭載した場
合で、後輪舵角制御感度と駆動力配分制御感度をそれぞ
れで独自に設定し、設定感度に基づき互いに独立して後
輪舵角制御と駆動力配分制御を行なう構成とした場合、
本来、補助舵角制御の制御効果が大きな車両状態領域と
制駆動力制御の制御効果が大きな車両状態領域とが異な
っているにもかかわらずこの点が全く考慮されない為、
両制御装置によるトータル的な制御効果が最適なものと
はならない。
(Problems to be Solved by the Invention) However, when the rear wheel steering angle control device and the driving force distribution control device for a four-wheel drive vehicle are simultaneously mounted on one vehicle, the rear wheel steering angle control sensitivity and the driving force If the distribution control sensitivity is set independently, and the rear wheel steering angle control and the driving force distribution control are performed independently of each other based on the set sensitivity,
Originally, this point is not considered at all even though the vehicle state area where the control effect of the auxiliary steering angle control is large and the vehicle state area where the control effect of the braking / driving force control are large are different.
The total control effect of both control devices is not optimal.

また、後輪舵角制御と駆動力配分制御とが同時に行な
われる場合、一方の制御効果の小さな車両状態であって
も制御量は単独で搭載される場合と同じ制御量となりト
ータルのエネルギ消費が大となると共に、このように複
数の制御装置が搭載される車両では燃費等の理由により
トータルのエネルギの消費が限られる場合には、制御効
果の大きい側の制御量が制限されることがある。
In addition, when the rear wheel steering angle control and the driving force distribution control are performed simultaneously, the control amount is the same as when the vehicle is mounted alone and the total energy consumption is reduced even in the vehicle state where one control effect is small. When the total energy consumption is limited due to reasons such as fuel efficiency in a vehicle equipped with a plurality of control devices as described above, the control amount on the side where the control effect is large may be limited. .

そこで、単にある性能を向上させるために協調制御し
たり、一方の制御変更により他の性能劣化分を補う制御
を行ない、互いの制御をリンクさせることが考えられる
が、この場合、特定の性能に対してのみ効果が得られる
に過ぎず、トータル的な制御効果の最適化を達成し得な
い。
Therefore, it is conceivable to simply perform cooperative control to improve a certain performance or perform control to compensate for the other performance degradation by changing one control and link the controls with each other. In this case, the effect can be obtained only for this purpose, and the optimization of the total control effect cannot be achieved.

本発明は、上述のような問題に着目してなされたもの
で、補助舵角制御装置と制駆動力制御装置とが同時に搭
載された車両の総合制御装置において、両制御装置の同
時作動時に制御効果の大きい装置側で制御量が制限され
るのを防止しながら、両制御装置によるトータル的な制
御効果の最適化を図ることを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problem. In a general control device for a vehicle in which an auxiliary steering angle control device and a braking / driving force control device are simultaneously mounted, control is performed when both control devices are simultaneously operated. It is an object of the present invention to optimize the total control effect of both control devices while preventing the control amount from being restricted on the side of the device having a large effect.

(課題を解決するための手段) 上記課題を解決するために本発明の補助舵角と制駆動
力の総合制御装置では、補助舵角制御の制御効果が大き
な車両状態領域と制駆動力制御の制御効果が大きな車両
状態領域とを少なくとも前後加速度を含む同じパラメー
タにより区別し、制御効果の大小に応じて制御感度を変
更する手段とした。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the integrated control device for auxiliary steering angle and braking / driving force according to the present invention has a vehicle state region in which the control effect of the auxiliary steering angle control is large, A vehicle state area having a large control effect is distinguished by the same parameter including at least the longitudinal acceleration, and the control sensitivity is changed according to the magnitude of the control effect.

即ち、第1図のクレーム対応図に示すように、請求項
1記載の発明では、前輪または後輪の少なくとも一方の
舵角を前輪操舵時に制御する補助舵角制御装置aと、各
輪の制動力または駆動力の少なくとも一方を制御する制
駆動力制御装置bと、車両に作用する前後加速度XGを検
出する前後加速度検出手段cと、目標制御量を得る演算
式で基本制御量に掛け合わせる値を制御感度と定義した
とき、前後加速度検出値の値が小さいときは補助舵角制
御感度αを大きく制駆動力制御感度αを小さく設定
し、前後加速度検出値の値が大きくなるにしたがって補
助舵角制御感度αを小さくし制駆動力制御感度α
大きく設定する総合制御感度設定手段eと、を備えてい
る事を特徴とする。
That is, as shown in the claim correspondence diagram of FIG. 1, in the invention of claim 1, an auxiliary steering angle control device a for controlling at least one of the front wheels or the rear wheels during steering of the front wheels, and a control for each wheel. a longitudinal force control device b for controlling at least one of power or driving force, and longitudinal acceleration detecting means c for detecting a longitudinal acceleration X G acting on the vehicle, multiplying the basic control amount arithmetic expression to obtain the target control amount when defining the values and the control sensitivity, when the value of the longitudinal acceleration detection value is smaller is set smaller the larger longitudinal force control sensitivity alpha T auxiliary steering angle control sensitivity alpha S, the value of the longitudinal acceleration detection value increases Accordingly, characterized in that it comprises a and a general control sensitivity setting means e for setting the auxiliary steering angle control sensitivity alpha S decrease by braking-driving force control sensitivity alpha T increases.

また、請求項2記載の発明では、前輪または後輪の少
なくとも一方の舵角を前輪操舵時に制御する補助舵角制
御装置aと、各輪の制動力または駆動力の少なくとも一
方を制御する制駆動力制御装置bと、車両に作用する前
後加速度XGを検出する前後加速度検出手段cと、車両に
作用する横加速度YGを検出する横加速度検出手段dと、
目標制御量を得る演算式で基本制御量に掛け合わせる値
を制御感度と定義したとき、前後加速度検出値の二乗と
横加速度検出値の二乗の和(XG 2+YG 2)を演算し、二乗
の和(XG 2+YG 2)の演算値が所定値以下のときには、補
助舵角制御感度αを大きな一定値に設定すると共に制
駆動力制御感度αを小さな一定値に設定し、二乗の和
(XG 2+YG 2)の演算値が所定値を超えたときには、横加
速度検出値に対する前後加速度検出値の比(αT
を演算し、演算された比(αT)の値が小さいとき
に補助舵角制御感度αを大きく制駆動力制御感度α
を小さく設定し、演算された比(αT)の値が大き
くなるにしたがって補助舵角制御感度αを小さくし制
駆動力制御感度αを大きく設定する総合制御感度設定
手段eと、を備えている事を特徴とする。
According to the second aspect of the present invention, an auxiliary steering angle control device a for controlling at least one of the front wheels and the rear wheels during steering of the front wheels, and a braking / driving device for controlling at least one of the braking force or the driving force of each wheel. a force control unit b, and the longitudinal acceleration detection means c for detecting a longitudinal acceleration X G acting on the vehicle, the lateral acceleration detecting means d for detecting a lateral acceleration Y G acting on the vehicle,
When the value to be multiplied by the basic control amount is defined as the control sensitivity in the equation for obtaining the target control amount, the sum of the square of the longitudinal acceleration detection value and the square of the lateral acceleration detection value (X G 2 + Y G 2 ) is calculated, When the calculated value of the sum of the squares (X G 2 + Y G 2 ) is equal to or less than a predetermined value, the auxiliary steering angle control sensitivity α S is set to a large constant value and the braking / driving force control sensitivity α T is set to a small constant value. , When the calculated value of the sum of squares (X G 2 + Y G 2 ) exceeds a predetermined value, the ratio of the longitudinal acceleration detection value to the lateral acceleration detection value (α T / α S )
When the calculated ratio (α T / α S ) is small, the auxiliary steering angle control sensitivity α S is increased and the braking / driving force control sensitivity α T is increased.
Control sensitivity setting means e for setting the auxiliary steering angle control sensitivity α S to be smaller and the braking / driving force control sensitivity α T to be larger as the value of the calculated ratio (α T / α S ) becomes larger. And is characterized by having.

(作 用) 車両走行時に、請求項1記載の発明にあっては、総合
制御感度設定手段eにおいて、目標制御量を得る演算式
で基本制御量に掛け合わせる値を制御感度と定義したと
き、前後加速度検出手段cから検出される前後加速度検
出値の値が小さいときは補助舵角制御感度αが大きく
設定され、制駆動力制御感度αが小さく設定される。
そして、前後加速度検出値の値が大きくなるにしたがっ
て補助舵角制御感度αが小さく設定され、制駆動力制
御感度αが大きく設定される。
(Operation) According to the first aspect of the present invention, when the vehicle travels, when the value to be multiplied by the basic control amount in the arithmetic expression for obtaining the target control amount is defined as the control sensitivity, when the value of the longitudinal acceleration detection value detected from the longitudinal acceleration detecting means c is small is set auxiliary steering angle control sensitivity alpha S is large, the braking-driving force control sensitivity alpha T is set small.
Then, set the auxiliary steering angle control sensitivity alpha S is small according to the value of the longitudinal acceleration detection value increases, the braking-driving force control sensitivity alpha T is set larger.

また、車両走行時に、請求項2記載の発明にあって
は、総合制御感度設定手段eにおいて、目標制御量を得
る演算式で基本制御量に掛け合わせる値を制御感度と定
義したとき、前後加速度検出値の二乗と横加速度検出値
の二乗の和(XG 2+YG 2)が演算され、二乗の和(XG 2+Y
G 2)の演算値が所定値以下のときには、補助舵角制御感
度αが大きな一定値に設定されると共に制駆動力制御
感度αが小さな一定値に設定される。そして、二乗の
和(XG 2+YG 2)の演算値が所定値を超えたときには、横
加速度検出値に対する前後加速度検出値の比(αT/
α)が演算され、この演算された比(αT)の値
が小さいときに補助舵角制御感度αが大きく設定さ
れ、制駆動力制御感度αが小さく設定され、演算され
た比(αT)の値が大きくなるにしたがって補助舵
角制御感度αが小さく設定され制駆動力制御感度α
が大きく設定される。
According to the second aspect of the present invention, when the control sensitivity is defined as a value obtained by multiplying the basic control amount by an arithmetic expression for obtaining the target control amount, the longitudinal acceleration is determined by the total control sensitivity setting means e during vehicle running. The sum of the square of the detection value and the square of the lateral acceleration detection value (X G 2 + Y G 2 ) is calculated, and the sum of the squares (X G 2 + Y
Calculated value of G 2) is at a predetermined value or less, the auxiliary steering angle control sensitivity alpha S is longitudinal force control sensitivity alpha T while being set to a predetermined value is set to a small constant value. When the calculated value of the sum of squares (X G 2 + Y G 2 ) exceeds a predetermined value, the ratio of the longitudinal acceleration detection value to the lateral acceleration detection value (α T /
α S ) is calculated, and when the calculated ratio (α T / α S ) is small, the auxiliary steering angle control sensitivity α S is set large, and the braking / driving force control sensitivity α T is set small. As the value of the ratio (α T / α S ) increases, the auxiliary steering angle control sensitivity α S is set smaller, and the braking / driving force control sensitivity α T
Is set large.

つまり、XGもしくは(XG 2+YG 2)をパラメータとして
両制御感度αSを設定変更するようにしているが、
これは下記の理由による。
That is, both the control sensitivities α S and α T are changed using X G or (X G 2 + Y G 2 ) as a parameter.
This is for the following reason.

制駆動力制御は、駆動力又は制動力の配分によるスリ
ップ率コントロールであるので駆動力又は制動力が大き
く、スリップ率が大となる領域で制御効果が大きく、制
御効果が大きな領域とは前後加速度が大きな領域という
ことができる。
Since the braking / driving force control is a slip ratio control based on the distribution of the driving force or the braking force, the driving effect or the braking force is large, the control effect is large in a region where the slip ratio is large, and the region where the control effect is large is the longitudinal acceleration. Is a large area.

補助舵角制御は、タイヤのコーナリングパワー特性に
おいて線形域から非線形域まで効果があるが、非線形域
では他の制御装置の効果が大きい為、相対的にタイヤ特
性の線形領域で制御効果が大きく、制御効果が大きな領
域とは輪荷重移動の少ない前後加速度及び横加速度が小
さな領域ということができる。
The auxiliary steering angle control has an effect in the cornering power characteristic of the tire from the linear region to the non-linear region, but since the effect of other control devices is large in the non-linear region, the control effect is relatively large in the linear region of the tire characteristic, The region where the control effect is large can be regarded as a region where the longitudinal acceleration and the lateral acceleration where the wheel load movement is small are small.

従って、XGもしくは(XG 2+YG 2)をパラメータとする
ことで制御効果の大小に応じた領域区別が可能となり、
XGもしくは(XG 2+YG 2)の値が小さい走行時には、補助
舵角制御感度αが制駆動力制御感度αに対して相対
的に高めとされることで、制駆動力制御に伴なう前後輪
のコーナリングパワーの変化が小さく抑えられ、制御効
果の大きな補助舵角制御が十分に生かされる。そして、
XGもしくは(XG 2+YG 2)の値が大きい走行時には、制駆
動力制御感度αが補助舵角制御感度αに対して相対
的に高めとされることで、補助舵角制御に伴なう輪荷重
の変化で各輪スリップ率の変化が小さく抑えられ、制御
効果の大きな制駆動力制御が十分に生かされることにな
り、両制御装置a,bによるトータル的な制御効果の最適
化が図られる。
Therefore, it is possible to areas distinguished according to the magnitude of the control effect by X G or a (X G 2 + Y G 2 ) as parameters,
The X G or (X G 2 + Y G 2 ) during running value is small, that the auxiliary steering angle control sensitivity alpha S is relatively enhanced with respect to the longitudinal force control sensitivity alpha T, the braking-driving force control Therefore, the change in the cornering power of the front and rear wheels due to the control is suppressed to a small value, and the auxiliary steering angle control having a large control effect is sufficiently utilized. And
When the vehicle travels with a large value of X G or (X G 2 + Y G 2 ), the braking / driving force control sensitivity α T is set to be relatively higher than the auxiliary steering angle control sensitivity α S , so that the auxiliary steering angle control is performed. As a result, the change in wheel slip rate due to the change in wheel load can be kept small, and the braking / driving force control with a large control effect can be fully utilized, and the total control effect of both control devices a and b can be reduced. Optimization is achieved.

また、燃費等の理由によりトータルのエネルギの消費
が限られても両制御感度αSの変更制御により制御
効果が小さい装置側でのエネルギ消費が減少する為、両
制御装置a,bのうち制御効果の大きい装置側での制御量
制限が防止される。
Further, even if the total energy consumption is limited due to reasons such as fuel efficiency, etc., both control sensitivities α S , α T change control reduces the energy consumption on the side of the device having a small control effect, so both control devices a, b Among them, the control amount limitation on the side of the device having a large control effect is prevented.

(第1実施例) まず、構成を説明する。First Embodiment First, the configuration will be described.

第2図は前後輪舵角制御装置(補助舵角制御装置の一
例)と前後輪駆動力配分制御装置(制駆動力制御装置の
一例)とアクティブサスペンション制御装置(輪荷重配
分制御装置の一例)との同時搭載車両を示す全体システ
ム図である。
FIG. 2 shows a front and rear wheel steering angle control device (an example of an auxiliary steering angle control device), a front and rear wheel driving force distribution control device (an example of a braking / driving force control device), and an active suspension control device (an example of a wheel load distribution control device). FIG. 1 is an overall system diagram showing a vehicle simultaneously mounted with the above.

各制御システムが搭載された車両は、後輪駆動ベース
のトルクスプリット四輪駆動車で、左右の後輪1R,1Lに
は、エンジン2,トランスミッション3,リアプロペラシャ
フト4,リアディファレンシャル5,左右のリアドライブシ
ャフト6R,6Lを介してエンジン駆動力が伝達される。
The vehicle equipped with each control system is a torque split four-wheel drive vehicle based on a rear wheel drive, and the right and left rear wheels 1R, 1L are equipped with an engine 2, a transmission 3, a rear propeller shaft 4, a rear differential 5, Engine driving force is transmitted via rear drive shafts 6R and 6L.

左右の前輪7R,7Lには、リアプロペラシャフト4の途
中に設けられたトランスファ8からフロントプロペラシ
ャフト9,フロントディファレンシャル10,左右のフロン
トドライブシャフト11R,11Lを介してエンジン駆動力が
伝達される。
The engine driving force is transmitted to the left and right front wheels 7R, 7L from a transfer 8 provided in the middle of the rear propeller shaft 4 via a front propeller shaft 9, a front differential 10, and left and right front drive shafts 11R, 11L.

そして、前輪7R,7Lを操舵するフロントステアリング
ギア装置12及び左右後輪1R,1L間には、供給油圧による
ピストンストロークで前輪7R,7L及び後輪1R,1Lに補助舵
角を与える前後輪舵角制御アクチュエータとしての前輪
油圧パワーシリンダ13及び後輪油圧パワーシリンダ14が
設けられる。
Further, between the front steering gear device 12 for steering the front wheels 7R, 7L and the left and right rear wheels 1R, 1L, front and rear wheel steering for giving an auxiliary steering angle to the front wheels 7R, 7L and the rear wheels 1R, 1L by a piston stroke by supply hydraulic pressure. A front wheel hydraulic power cylinder 13 and a rear wheel hydraulic power cylinder 14 are provided as angle control actuators.

また、前記トランスファ8には、締結圧制御により前
輪側へ可変の伝達トルクを与える前後輪駆動力配分制御
アクチュエータとしての油圧多板クラッチ15が内蔵され
る。
The transfer 8 has a built-in hydraulic multi-plate clutch 15 as a front and rear wheel drive force distribution control actuator that applies a variable transmission torque to the front wheels by controlling the engagement pressure.

さらに、各輪のばね上とばね下間には、供給油圧の独立
制御により車体の揺動を積極的に抑えるアクティブサス
ペンション制御アクチュエータとしての油圧シリンダ16
FR,16FL,16RR,16RLが設けられている。
Further, between the sprung and unsprung portions of each wheel, a hydraulic cylinder 16 as an active suspension control actuator for actively suppressing the swing of the vehicle body by independently controlling the supply hydraulic pressure.
FR, 16FL, 16RR, 16RL are provided.

前記前輪油圧パワーシリンダ13及び後輪油圧パワーシ
リンダ14への供給油圧制御は、前輪油圧制御バルブ17F
及び後輪油圧制御バルブ17Rに対する舵角制御コントロ
ーラ18からのバルブ作動制御指令により行なわれるもの
で、舵角制御コントローラ18には前輪舵角センサ19,車
速センサ20等から検出信号が入力され、例えば、旋回時
に所望のヨーレート応答を得るヨーレイトのモデル適合
制御や操舵応答性と操舵安定性の両立を目指す位相反転
制御等が行なわれる。
The supply hydraulic pressure to the front wheel hydraulic power cylinder 13 and the rear wheel hydraulic power cylinder 14 is controlled by a front wheel hydraulic control valve 17F.
And a valve operation control command from the steering angle control controller 18 for the rear wheel hydraulic control valve 17R.A detection signal is input to the steering angle control controller 18 from a front wheel steering angle sensor 19, a vehicle speed sensor 20, and the like. In addition, model adaptation control of yaw rate for obtaining a desired yaw rate response at the time of turning, phase inversion control for achieving both steering response and steering stability, and the like are performed.

前記油圧多板クラッチ15への供給油圧制御は、駆動力
配分制御バルブ21に対する駆動力配分コントローラ22か
らのバルブ作動制御指令により行なわれるもので、駆動
力配分コントローラ22には右前輪回転センサ23,左前輪
回転センサ24,右後輪回転センサ25,左後輪回転センサ2
6,横加速度センサ27等からの検出信号が入力され、駆動
力配分を後輪駆動(0:100)からリジッド4WD(50:50)
まで連続的に制御する上記前後輪駆動力配分制御によ
り、例えば、発進時や加速時等では駆動輪スリップを抑
えながら、旋回時には前輪への駆動力配分を減じて後輪
駆動傾向とすることで、駆動性能と旋回性能の向上を両
立させる制御等が行なわれる。
The control of the supply hydraulic pressure to the hydraulic multi-plate clutch 15 is performed by a valve operation control command from the driving force distribution controller 22 to the driving force distribution control valve 21, and the driving force distribution controller 22 includes a right front wheel rotation sensor 23, Left front wheel rotation sensor 24, Right rear wheel rotation sensor 25, Left rear wheel rotation sensor 2
6, Detection signals from the lateral acceleration sensor 27 etc. are input and the driving force distribution is changed from rear wheel drive (0: 100) to rigid 4WD (50:50)
By the above-described front and rear wheel driving force distribution control that continuously controls the vehicle, for example, while starting or accelerating, the driving wheel distribution is reduced by reducing the driving force distribution to the front wheels during turning to reduce rear wheel driving tendency. For example, control for improving both driving performance and turning performance is performed.

前記油圧シリンダ16FR,16FL,16RR,16RLへの供給油圧
制御は、右前輪制御バルブ28FR,左前輪制御バルブ28FL,
右後輪制御バルブ28RR,左後輪制御バルブ28RLに対する
サスペンション制御コントローラ29からのバルブ作動制
御指令により行なわれるもので、サスペンション制御コ
ントローラ29には上下加速度センサ30,横加速度センサ2
7,前後加速度センサ31,車高センサ32等からの検出信号
が入力され、例えば、車体上下方向のバウンド抑制制御
や車体ロールの抑制制御や車両のピッチング抑制制御や
車高変化の抑制制御等が行なわれる。
The hydraulic pressure supplied to the hydraulic cylinders 16FR, 16FL, 16RR, 16RL is controlled by a right front wheel control valve 28FR, a left front wheel control valve 28FL,
The suspension control controller 29 controls the right rear wheel control valve 28RR and the left rear wheel control valve 28RL according to valve operation control commands. The suspension control controller 29 includes a vertical acceleration sensor 30, a lateral acceleration sensor 2
7, detection signals from the longitudinal acceleration sensor 31, the vehicle height sensor 32, and the like are input, and for example, vehicle body vertical restraint control, vehicle body roll restraint control, vehicle pitching restraint control, vehicle height change restraint control, etc. Done.

そして、前後加速度センサ31(前後加速度検出手段)
及び横加速度センサ27(横加速度検出手段)からの検出
信号とマニュアルスイッチ33からのスイッチ信号を入力
し、車両状態に応じた制御効果の大小領域を(XG 2
YG 2)と(XG/YG)をパラメータとして区別し、その時の
車両状態に最適である補助舵角制御感度αと駆動力配
分制御感度αと輪荷重配分制御感度αを求め、各制
御感度αSTを前記各コントローラ18,22,29に出
力する総合制御コントローラ34(総合制御感度設定手
段)が設けられている。
And the longitudinal acceleration sensor 31 (longitudinal acceleration detecting means)
And the detection signal from the lateral acceleration sensor 27 (lateral acceleration detecting means) and the switch signal from the manual switch 33 are input to determine the magnitude of the control effect according to the vehicle state (X G 2 +
Y G 2 ) and (X G / Y G ) are distinguished as parameters, and the auxiliary steering angle control sensitivity α S , the driving force distribution control sensitivity α T, and the wheel load distribution control sensitivity α R that are optimal for the vehicle state at that time are determined. There is provided a general control controller 34 (general control sensitivity setting means) which outputs the obtained control sensitivities α S , α T , α R to the respective controllers 18, 22, 29.

尚、前記マニュアルスイッチ33は、ドライバーの意図
や好みを反映させるために制御特性モードを変更するス
イッチで、実施例では駆動力特性重視のモードAと旋回
性重視のモードBの2つが設定されている。
The manual switch 33 is a switch for changing the control characteristic mode in order to reflect the driver's intention and preference. In the embodiment, two modes, a mode A for emphasizing driving force characteristics and a mode B for turning characteristics, are set. I have.

第3図に前後輪舵角制御システムの具体例を示し、第
4図に前後輪駆動力配分システムの具体例を示し、第5
図にアクティブサスペンション制御システムの具体例を
示すが、いずれも周知であり詳しい説明は省略する。
FIG. 3 shows a specific example of the front and rear wheel steering angle control system, FIG. 4 shows a specific example of the front and rear wheel driving force distribution system, and FIG.
The figure shows a specific example of an active suspension control system, all of which are well known and detailed description is omitted.

次に、本実施例での制御感度設定に関する基本概念を
説明する。
Next, a basic concept regarding control sensitivity setting in the present embodiment will be described.

(イ)(XG 2+YG 2),(XG/YG)を制御効果の大小領域
を区分するパラメータとする理由 まず、(XG 2+YG 2),(XG/YG)を制御効果の大小領
域を区分するパラメータとして各制御感度αST
を変更設定するようにしているが、これは下記の理由に
よる。
(I) (X G 2 + Y G 2), (X G / Y G) first reason for a parameter for distinguishing the magnitude region of the control effect, (X G 2 + Y G 2), (X G / Y G) each control sensitivity alpha S as a parameter for distinguishing the magnitude region of the control effect, α T, α R
Is changed and set for the following reason.

・制駆動力制御は、駆動力又は制動力の配分によるスリ
ップ率コントロールであるので駆動力又は制動力が大き
く、スリップ率が大となる領域で制御効果が大きく、制
御効果が大きな領域とは前後加速度が大きな加速領域又
は減速領域ということができる。
・ Since the braking / driving force control is a slip ratio control based on the distribution of the driving force or the braking force, the driving force or the braking force is large, and the control effect is large in a region where the slip ratio is large. It can be called an acceleration region or a deceleration region where the acceleration is large.

・輪荷重配分制御は、左右輪間の荷重移動量(又は前後
輪間)をコントロールしてタイヤのコーナリングパワー
をコントロールするので、荷重移動が大きい領域での制
御効果が大きい。
In the wheel load distribution control, since the cornering power of the tire is controlled by controlling the amount of load movement between the left and right wheels (or between the front and rear wheels), the control effect is large in an area where the load movement is large.

つまり、横加速度や前後加速度の大きな領域となる。
但し、前後加速度より横加速度を重視するもので、これ
は、横加速度の方が定常的に発生することが多いためで
ある。
That is, it is a region where the lateral acceleration and the longitudinal acceleration are large.
However, emphasis is placed on lateral acceleration rather than longitudinal acceleration, since lateral acceleration often occurs more steadily.

・補助舵角制御は、タイヤのコーナリングパワー特性に
おいて線形域から非線形域まで効果があるが、非線形域
では他の制御装置の効果が大きい為、相対的にタイヤ特
性の線形領域で制御効果が大きく、制御効果が大きな領
域とは輪荷重移動の少ない前後加速度及び横加速度が小
さな領域ということができる。
・ Auxiliary steering angle control has an effect on the cornering power characteristics of the tire from the linear range to the non-linear range, but since the effect of other control devices is large in the non-linear range, the control effect is relatively large in the linear region of the tire characteristics. The region where the control effect is large can be regarded as a region where the longitudinal acceleration and the lateral acceleration where the wheel load movement is small are small.

従って、各制御感度αSTにより制御効果の大
きな車両状態領域を概念図により示すと第6図のように
なる。
Accordingly, FIG. 6 is a conceptual diagram showing a vehicle state region having a large control effect by the respective control sensitivities α S , α T , and α R.

(ロ)制御感度を固定値とした場合の問題 a) 補助舵角制御が得意な(XG 2+YG 2)が小さい領域
での問題 ・制駆動力制御について 基本的にこの領域では制御が不必要であり、パワーが
無駄となるし、補助舵角制御にたくさんパワー(例え
ば、油圧制御の際の油圧)をかけて補助舵角制御効果を
大きくしたいにもかかわらず、燃費等の理由によりトー
タルの出力が限られるため、補助舵角制御装置で必要な
パワーを得られない。
(B) Problems when control sensitivity is fixed value a) Problems in the area where (X G 2 + Y G 2 ) is good at assisting steering angle control ・ About braking / driving force control Basically, control is not performed in this area. It is unnecessary and wastes power, and despite the fact that it is desired to increase the auxiliary steering angle control effect by applying a lot of power (for example, oil pressure in hydraulic control) to the auxiliary steering angle control, due to reasons such as fuel efficiency, Since the total output is limited, the power required by the auxiliary steering angle control device cannot be obtained.

性能的には、制駆動力が変化するのに連動して前後輪
のコーナリングパワーが変化し、コーナリングパワーの
変化が無いものとして制御している補助舵角制御装置の
制御効果が損なわれる。
In terms of performance, the cornering power of the front and rear wheels changes in conjunction with the change in the braking / driving force, and the control effect of the auxiliary steering angle control device that controls the cornering power as if there is no change is impaired.

・輪荷重配分制御について パワーが無駄になることと補助舵角制御装置のパワー
が得られなくなる点は、制駆動力制御と同様である。
・ About wheel load distribution control The point that the power is wasted and the power of the auxiliary steering angle control device cannot be obtained is the same as the braking / driving force control.

性能的には、補助舵角制御の単独制御はステア特性が
ある一定値と考えて制御を行なっているが、輪荷重配分
制御によりステア特性が変化してしまい(具体的には前
後のコーナリングパワーのバランスが変化する)、補助
舵角制御が本来狙っていた特性が得られなくなる。
In terms of performance, the independent control of the auxiliary steering angle control is controlled by assuming that the steering characteristic has a constant value, but the steering characteristic changes due to the wheel load distribution control (specifically, the front and rear cornering powers). ), The characteristic originally intended by the auxiliary steering angle control cannot be obtained.

b) 輪荷重配分制御が得意な(XG 2+YG 2)が大で、
(XG/YG)が小の領域での問題 ・補助舵角制御について パワーが無駄になることと輪荷重配分制御装置のパワ
ーが得られなくなる点は、他と同様である。
b) (X G 2 + Y G 2 ) is good at wheel load distribution control,
Problems in the area where (X G / Y G ) is small ・ Auxiliary steering angle control The point that the power is wasted and the power of the wheel load distribution control device cannot be obtained is the same as the others.

性能的には、例えば、補助舵角制御を行なった為にタ
イヤの横滑り角が変化してしまいタイヤに働く横力,前
後力の向きが変化し、輪荷重の移動量が変化する(後輪
を逆相に切ると横滑り角が旋回内側を向くように発生
し、前内輪の輪荷重が減少し、後外輪の輪荷重が増大す
る)。
In terms of performance, for example, the side slip angle of the tire changes due to the control of the auxiliary steering angle, the direction of the lateral force and the longitudinal force acting on the tire changes, and the moving amount of the wheel load changes (rear wheel movement). , The sideslip angle is directed toward the inside of the turn, the wheel load on the front inner wheel decreases, and the wheel load on the rear outer wheel increases.)

従って、輪荷重配分制御の制御前の状態が、補助舵角
制御の有無により違っていて、輪荷重配分制御で狙った
通りの制御が適切に行なえない。
Therefore, the state before the control of the wheel load distribution control is different depending on the presence or absence of the auxiliary steering angle control, and the intended control in the wheel load distribution control cannot be appropriately performed.

・制駆動力制御について パワーが無駄になることと輪荷重配分制御装置のパワ
ーが得られなくなる点は、他と同様である。
・ About braking / driving force control The point that the power is wasted and the power of the wheel load distribution control device cannot be obtained is the same as the others.

性能的には、例えば、前後輪駆動力配分制御では駆動
力配分を変化させるために前後輪のスリップ率が変動す
る。輪荷重配分制御でステア特性の制御を行なって各輪
の発生するコーナリングフォースを最適にしたいにもか
かわらず、スリップ率の変動によりコーナリングフォー
スが最適値よりずれてしまう。
In terms of performance, for example, in the front and rear wheel driving force distribution control, the slip ratio of the front and rear wheels fluctuates to change the driving force distribution. Despite the desire to optimize the cornering force generated by each wheel by controlling the steering characteristic by the wheel load distribution control, the cornering force deviates from the optimum value due to the change in the slip ratio.

c) 制駆動力制御が得意な(XG 2+YG 2)が大で、(XG
/YG)が大の領域での問題 ・補助舵角制御について パワーが無駄になることと制駆動力制御装置のパワー
が得られなくなる点は、他と同様である。
c) (X G 2 + Y G 2 ) which is good at braking / driving force control is large, and (X G
Problems in the region where / Y G ) is large ・ Auxiliary steering angle control The point that the power is wasted and the power of the braking / driving force control device cannot be obtained is the same as the others.

性能的には、例えば、補助舵角制御を行なった為にタ
イヤの横滑り角が変化してしまいタイヤに働く横力,前
後力の向きが変化し、輪荷重の移動量が変化する(後輪
を逆相に切ると横滑り角が旋回内側を向くように発生
し、前内輪の輪荷重が減少して前内輪が空転する)。
In terms of performance, for example, the side slip angle of the tire changes due to the control of the auxiliary steering angle, the direction of the lateral force and the longitudinal force acting on the tire changes, and the moving amount of the wheel load changes (rear wheel movement). , The sideslip angle is directed toward the inside of the turn, the wheel load on the front inner wheel decreases, and the front inner wheel spins.)

従って、輪荷重の変化によって各輪のスリップ率が変
化し、最終的には前後輪回転速度差が補助舵角制御の有
無により異なってくるために狙った通りの制御が行なえ
ない。
Therefore, the slip ratio of each wheel changes due to the change in the wheel load, and finally, the difference between the front and rear wheel rotational speeds differs depending on the presence or absence of the auxiliary steering angle control, so that the intended control cannot be performed.

・輪荷重配分制御について パワーが無駄になることと輪荷重配分制御装置のパワ
ーが得られなくなる点は、他と同様である。
・ About wheel load distribution control The point that the power is wasted and the power of the wheel load distribution control device cannot be obtained is the same as the others.

性能的には、例えば、輪荷重配分制御を行なった為に
ある一輪の輪荷重が減少するとそのタイヤのスリップ率
は増大し、最悪の場合、空転してしまい前後輪の回転速
度差が輪荷重配分制御の有無により変ってしまう為、狙
い通りの制御が行なえない。
In terms of performance, for example, when the wheel load of one wheel decreases due to the wheel load distribution control, the slip rate of the tire increases, and in the worst case, the tire slips and the difference in the rotational speed of the front and rear wheels becomes the wheel load. Since it changes depending on the presence or absence of the distribution control, the desired control cannot be performed.

次に、作用を説明する。 Next, the operation will be described.

第7図は各制御感度αSTを設定して各コント
ローラ18,22,29に出力する総合制御コントローラ34での
制御感度設定処理作動の流れを示すフローチャートで、
以下、各ステップについて説明する。
FIG. 7 is a flow chart showing the flow of the control sensitivity setting processing operation in the general control controller 34 which sets the respective control sensitivities α S , α T , α R and outputs them to the controllers 18, 22, 29.
Hereinafter, each step will be described.

ステップ101では、マニュアルスイッチ33からのスイ
ッチ信号と前後加速度センサ31及び横加速度センサ27か
らのセンサ信号が読み込まれる。
In step 101, a switch signal from the manual switch 33 and sensor signals from the longitudinal acceleration sensor 31 and the lateral acceleration sensor 27 are read.

ステップ102では、前後加速度XGの二乗と横加速度YG
の二乗の和が算出される。
In step 102, the square of the longitudinal acceleration X G and the lateral acceleration Y G
Is calculated.

ステップ103では、(XG 2+YG 2)の値が所定値以上か
どうかが判断される。
In step 103, it is determined whether the value of (X G 2 + Y G 2 ) is equal to or greater than a predetermined value.

この判断で、(XG 2+YG 2)の値が所定値未満であれ
ば、ステップ108へ進み、補助舵角制御感度αS,駆動力
配分制御感度αT,輪荷重配分制御感度αをそれぞれα
S1T1R1に設定する。
If the value of (X G 2 + Y G 2 ) is less than the predetermined value, the process proceeds to step 108, where the auxiliary steering angle control sensitivity α S , the driving force distribution control sensitivity α T , and the wheel load distribution control sensitivity α R Is α
S1, alpha T1, sets the alpha R1.

ここで、αT1R1はαS1に対してきわめて小さな値
に設定し、補助舵角制御効果が大きくなるようにする。
例えば、αS1=1でαT1R1≒0としても良い。
Here, α T1 and α R1 are set to extremely small values with respect to α S1 so that the auxiliary steering angle control effect is increased.
For example, α S1 = 1 and α T1 , α R1 ≒ 0 may be set.

一方、ステップ103の判断で、(XG 2+YG 2)の値が所
定値以上と判断された場合には、ステップ104以降に進
む。
On the other hand, if it is determined in step 103 that the value of (X G 2 + Y G 2 ) is equal to or greater than the predetermined value, the process proceeds to step 104 and subsequent steps.

ステップ104では、ステップ枠内に記載されている(X
G 2+YG 2)の値に対する補助舵角制御感度特性マップ及
び制御ゲイン特性マップにより補助舵角制御感度α
制御ゲインKSの値が算出される。
In step 104, (X
The values of the auxiliary steering angle control sensitivity α S and the control gain K S are calculated from the auxiliary steering angle control sensitivity characteristic map and the control gain characteristic map for the value of G 2 + Y G 2 ).

尚、これらの特性マップはマニュアルスイッチ33によ
り特性モードにより選択されるが、基本的に、補助舵角
制御感度αは、(XG 2+YG 2)の値が大きくなるほど小
さくなり(右下がり)、制御ゲインKSは、(XG 2+YG 2
の値が大きくなるほど大きくなる(右上がり)特性に設
定している。
Although these characteristic map is selected by characteristic mode by manual switch 33, basically, the auxiliary steering angle control sensitivity alpha S is, (X G 2 + Y G 2) Higher the smaller increase (right downward ), The control gain K S is (X G 2 + Y G 2 )
The characteristic is set to increase (increase right) as the value increases.

ステップ105では、(XG/YG)の値が算出される。In step 105, the value of (X G / Y G ) is calculated.

ステップ106では、ステップ枠内に記載されている(X
G/YG)の値に対する駆動力配分制御感度特性マップ及び
輪荷重配分制御感度特性マップにより駆動力配分基本制
御感度αTOと輪荷重配分基本制御感度αROの値が算出さ
れる。
In step 106, (X
The values of the driving force distribution basic control sensitivity α TO and the wheel load distribution basic control sensitivity α RO are calculated from the driving force distribution control sensitivity characteristic map and the wheel load distribution control sensitivity characteristic map for the value of G / Y G ).

尚、これらの特性マップはマニュアルスイッチ33によ
る特性モードにより選択されるが、基本的に、駆動力配
分基本制御感度αTOは、(XG/YG)の値が大きくなるほ
ど大きくなり(右上がり)、輪荷重配分基本制御感度α
ROは、(XG/YG)の値が大きくなるほど小さくなる(右
下がり)特性に設定している。
It should be noted that these characteristic maps are selected in the characteristic mode by the manual switch 33. Basically, the driving force distribution basic control sensitivity α TO increases as the value of (X G / Y G ) increases (increases to the right). ), Wheel load distribution basic control sensitivity α
RO is set so that it becomes smaller (lower right) as the value of (X G / Y G ) becomes larger.

ステップ107では、前記ステップ106で求められた基本
制御感度αTOROを下記の式で補正を行ない、駆動力
配分制御感度α及び輪荷重配分制御感度αが算出さ
れる。
In step 107, the basic control sensitivities α TO and α RO obtained in step 106 are corrected by the following equation, and the driving force distribution control sensitivity α T and the wheel load distribution control sensitivity α R are calculated.

α=αTO・KS α=αRO・KS ステップ109では、ステップ104及びステップ107もし
くはステップ108で得られた各制御感度αST
が、それぞれ舵角制御コントローラ18,駆動力配分コ
ントローラ22,サスペンション制御コントローラ29へ出
力される。
α T = α TO · K S α R = α RO · K S In step 109, the control sensitivities α S , α T , α obtained in step 104 and step 107 or step 108 are obtained.
R is output to the steering angle controller 18, the driving force distribution controller 22, and the suspension control controller 29, respectively.

以上の各制御感度αSTの設定に基づいて各コ
ントローラ18,22,29では下記のような制御が行なわれ
る。
Based on the settings of the control sensitivities α S , α T , and α R described above, the controllers 18, 22, and 29 perform the following control.

舵角制御コントローラ18では、下記の式に示すよう
に、基本制御舵角fsf及びfsrに補助舵角制御感度α
掛け合わせた値が前輪補助舵角目標値δ 及び後輪補
助舵角目標値δ とされ、この目標値δ ,δ
が得られる指令信号が前輪舵角制御バルブ17F及び後輪
舵角制御バルブ17Rに出力される。
As shown in the following equation, the steering angle control controller 18 multiplies the basic control steering angles f sf and f sr by the auxiliary steering angle control sensitivity α S to obtain the front wheel auxiliary steering angle target value δ F * and the rear wheel is an auxiliary steering angle target value [delta] R *, the target value δ F *, δ R *
Is output to the front wheel steering angle control valve 17F and the rear wheel steering angle control valve 17R.

δ =α・fsf(θ,V) δ =α・fsr(θ,V) 駆動力配分コントローラ22では、下記の式に示すよう
に、基本前輪側駆動力配分割合fTに駆動力配分制御感度
αを掛け合わせた値が駆動力配分前輪割合目標値TF
とされ、この目標値TF が得られる指令信号が駆動力配
分制御バルブ21に出力される。
δ F * = α S · f sf (θ, V) δ R * = α S · f sr (θ, V) in the driving force distribution controller 22, as shown in the following formula, the basic front wheel side driving force distribution ratio the value obtained by multiplying the driving force distribution control sensitivity alpha T to f T is the driving force distribution wheel ratio target value T F *
A command signal for obtaining the target value T F * is output to the driving force distribution control valve 21.

TF =α・fT(ΔN,YG) 但し、ΔNは前後輪回転速度差であって、各回転セン
サ23,24,25,26からの信号により後輪回転速度Nrと前輪
回転速度Nfを求め、これらの差をとる次式により得られ
る。
T F * = α T · f T (ΔN, Y G ) where ΔN is the difference between the front and rear wheel rotation speeds, and the rear wheel rotation speed Nr and the front wheel rotation are determined by signals from the rotation sensors 23, 24, 25, and 26. The speed Nf is obtained by the following equation which takes the difference between them.

ΔN=Nr−Nf サスペンション制御コントローラ29では、下記の式に
示すように、基本輪荷重配分割合fRに輪荷重配分制御感
度αを掛け合わせた値が輪荷重配分割合目標値RS
される。
ΔN = Nr−Nf In the suspension control controller 29, as shown in the following equation, the value obtained by multiplying the basic wheel load distribution ratio f R by the wheel load distribution control sensitivity α R is equal to the wheel load distribution ratio target value R S * . Is done.

RS =α・fR(ZG,XG,YG,S) 以上説明したように、本発明である補助舵角と制駆動
力の総合制御装置の実施例に相当する前後輪舵角制御と
前後輪駆動力配分制御をみた場合、下記に列挙する効果
が発揮される。
R S * = α R · f R (Z G , X G , Y G , S) As described above, the front and rear wheels corresponding to the embodiment of the integrated control device for auxiliary steering angle and braking / driving force according to the present invention. When the steering angle control and the front and rear wheel drive force distribution control are viewed, the following effects are exhibited.

(XG 2+YG 2)をパラメータとすることで制御効果の
大小に応じた領域区別が可能となり、第8図の特性マッ
プに示すように、(XG 2+YG 2)の値が小さい走行時に
は、補助舵角制御感度αが駆動力配分制御感度α
対して相対的に高めとされることで、駆動力配分制御に
伴なう前後輪のコーナリングパワーの変化が小さく抑え
られ、制御効果の大きな前後輪舵角制御が十分に生かさ
れる。
By using (X G 2 + Y G 2 ) as a parameter, areas can be distinguished according to the magnitude of the control effect, and as shown in the characteristic map of FIG. 8, the value of (X G 2 + Y G 2 ) is small. during running, the auxiliary steering angle control sensitivity alpha S is turned into the relatively elevated with respect to the driving force distribution control sensitivity alpha T, the driving force distribution control changes in the cornering power of the accompanying front and rear wheels is suppressed small Therefore, the front and rear wheel steering angle control having a large control effect is sufficiently utilized.

また、(XG 2+YG 2)の値が大きい走行時には、駆動力
配分制御感度αが補助舵角制御感度αに対して相対
的に高めとされることで、前後輪舵角制御に伴なう輪荷
重配分の変化で各輪スリップ率の変化が小さく抑えら
れ、制御効果の大きな駆動力配分制御が十分に生かされ
ることになる。
Further, when the vehicle travels with a large value of (X G 2 + Y G 2 ), the driving force distribution control sensitivity α T is set relatively higher than the auxiliary steering angle control sensitivity α S , so that the front and rear wheel steering angle control is performed. As a result, the change in the slip ratio of each wheel is suppressed to a small degree by the change in the wheel load distribution accompanying the driving force distribution, and the driving force distribution control having a large control effect is sufficiently utilized.

即ち、補助舵角と駆動力配分の両制御装置によるトー
タル的な制御効果の最適化が図られる。
That is, optimization of the total control effect by the control devices for the auxiliary steering angle and the driving force distribution is achieved.

燃費等の理由によりトータルのエネルギの消費が限
られても両制御感度αSの変更制御により制御効果
が小さい装置側でのエネルギ消費が減少する為、補助舵
角と駆動力配分の両制御装置のうち制御効果の大きい装
置側での制御量制限が防止される。
Even if the total energy consumption is limited due to reasons such as fuel consumption, the energy consumption on the side of the device where the control effect is small is reduced by the change control of the two control sensitivities α S and α T. The control amount limitation on the side of the control device having the greater control effect is prevented.

マニュアルスイッチ33を設け、第8図及び第9図に
示すように、駆動力特性重視モードAと旋回性重視モー
ドBのいずれかを選択が可能とした為、ドライバーの好
みや走行路面等に対応して搭載装置の性能を引き出すこ
とができる。
A manual switch 33 is provided to enable selection of either the driving force characteristic emphasis mode A or the turning performance emphasis mode B, as shown in FIGS. 8 and 9, to meet the driver's preference and traveling road surface. In this way, the performance of the mounting device can be brought out.

(第2実施例) 次に、請求項1記載の発明に相当する第2実施例の補
助舵角と制駆動力の総合制御装置について説明する。
Second Embodiment Next, a description will be given of an auxiliary steering angle and braking / driving force comprehensive control device according to a second embodiment corresponding to the first aspect of the present invention.

第1実施例は、輪荷重配分制御装置を含むシステムで
ある為、前後加速度XGと横加速度YGの両者により制御感
度の大小を決定する例を示したが、この第2実施例は補
助舵角制御装置と制駆動力制御装置との2つの装置が同
時に搭載された車両であって、請求項1に記載したよう
に、横加速度YGを検出することなく、前後加速度XGのみ
を検出して補助舵角制御感度αと駆動力配分制御感度
αとを設定するようにした例である。
The first embodiment, since a system including a wheel load distribution control device, an example of determining the magnitude of the control sensitivity by both of the longitudinal acceleration X G and the lateral acceleration Y G, the second embodiment auxiliary a vehicle in which two devices with steering angle control apparatus as longitudinal force control device is mounted at the same time, as described in claim 1, without detecting the lateral acceleration Y G, only longitudinal acceleration X G It detected and is an example of to set the auxiliary steering angle control sensitivity alpha S and the driving force distribution control sensitivity alpha T.

構成的には、第1実施例装置において、サスペンショ
ン制御系が省略されたシステムとなり、他の構成は変更
ないので、説明を省略する。
In terms of the configuration, the suspension control system is omitted from the apparatus of the first embodiment, and the other configuration is not changed.

次に、第10図は第2実施例の総合制御コントローラ34
で行なわれる制御感度設定処理作動の流れを示すフロー
チャートで、以下、各ステップについて説明する。
Next, FIG. 10 shows a general controller 34 of the second embodiment.
Each step will be described below with reference to a flowchart showing the flow of the control sensitivity setting processing operation performed in step (a).

ステップ201では、前後加速度センサ31から前後加速
度XGが読み込まれる。
In step 201, the loaded acceleration X G longitudinal from the acceleration sensor 31 before and after.

ステップ202では、前後加速度XGに基づいてステ枠内
に記載されている制御感度特性マップに従って補助舵角
制御感度αと駆動力配分制御感度αが決定される。
In step 202, the auxiliary steering angle control sensitivity alpha S and the driving force distribution control sensitivity alpha T is determined according to control sensitivity characteristics map that is described in the stearyl frame based on the longitudinal acceleration X G.

即ち、低前後加速度域では駆動力配分制御感度α
り補助舵角制御感度αが高めの値とされ、高前後加速
度域では補助舵角制御感度αより駆動力配分制御感度
αが高めの値とされる。
That is, in the low longitudinal acceleration zone driving force distribution control sensitivity alpha T than the auxiliary steering angle control sensitivity alpha S is the value of increased, the drive force distribution control sensitivity alpha T than the auxiliary steering angle control sensitivity alpha S in the high longitudinal acceleration region is Higher value.

ステップ203では、ステップ202で決定された両制御感
度αSが舵角制御コントローラ18と駆動力配分コン
トローラ22に出力される。
In step 203, the two control sensitivities α S and α T determined in step 202 are output to the steering angle control controller 18 and the driving force distribution controller 22.

従って、第1実施例と同様に、両制御装置の同時作動
時に制御効果の大きい装置側で制御量が制限されるのを
防止しながら、両制御装置によるトータル的な制御効果
の最適化を図ることが出来る。
Therefore, as in the first embodiment, the total control effect of the two control devices is optimized while preventing the control amount from being limited on the side of the device having a large control effect when both control devices operate simultaneously. I can do it.

以上、実施例を図面に基づいて説明してきたが、具体
的な構成はこの実施例に限られるものではなく、本発明
の要旨を逸脱しない範囲における設計変更等があっても
本発明に含まれる。
As described above, the embodiments have been described based on the drawings. However, the specific configuration is not limited to the embodiments, and even if there is a design change or the like without departing from the gist of the present invention, it is included in the present invention. .

例えば、実施例では制御感度αSが交差する特性
(第8図)の例を示したが、必ずしも両特性が交差する
必要はなく、第9図に示すように、(XG 2+YG 2)に対す
る(αT)の特性グラフを記載した場合、(XG 2+Y
G 2)の値が大きくなるほど(αT)の値が大きくな
るように補助舵角制御感度αと駆動力配分制御感度α
を設定すれば本発明に含まれる。つまり、(αT/
α)のグラフが右上がり特性のグラフであることを満
たしていれば各制御感度特性マップは上に凸でも下に凸
でもクレームを満足する。
For example, in the embodiment, the example of the characteristic (FIG. 8) where the control sensitivities α S and α T intersect is shown. However, the two characteristics do not always need to intersect, and as shown in FIG. 9, (X G 2 + Y G 2 ), the characteristic graph of (α T / α S ) is described as (X G 2 + Y
G 2) value becomes larger (α T / α S driving force distribution control sensitivity and the auxiliary steering angle control sensitivity alpha S such that the value becomes large) alpha
If T is set, it is included in the present invention. That is, (α T /
If the graph of α S ) satisfies that the graph is a graph of upward-sloping characteristics, each control sensitivity characteristic map satisfies the claim whether it is convex upward or downward.

また、本実施例においては、輪荷重配分制御装置を含
むシステムについて説明してきたが、輪荷重配分制御装
置が搭載されてない車両にも適用できるのは勿論であ
り、少なくとも補助舵角制御装置と制駆動力制御装置と
が同様に搭載された車両には適用できる。
Further, in the present embodiment, the system including the wheel load distribution control device has been described. However, it is needless to say that the present invention can be applied to a vehicle not equipped with the wheel load distribution control device. The present invention can be applied to a vehicle in which a braking / driving force control device is similarly mounted.

また、補助舵角制御装置として、実施例では前後輪を
共に舵角制御する例を示したが、後輪もしくは前輪のみ
を補助舵角制御する装置であっても良い。
Further, as an auxiliary steering angle control device, an example has been described in which the steering angle is controlled for both the front and rear wheels in the embodiment, but a device for controlling the auxiliary steering angle only for the rear wheel or the front wheel may be used.

また、制駆動力制御装置として、前後輪駆動力配分装
置の例を示したが、左右駆動力配分制御装置や各輪の駆
動力を直接制御するトラクションコントロール装置や各
輪の制動力を制御するアンチロックブレーキングシステ
ム等であっても良い。
Also, as the braking / driving force control device, an example of the front and rear wheel driving force distribution device has been described, but a left / right driving force distribution control device, a traction control device for directly controlling the driving force of each wheel, and a braking force for each wheel are controlled. An anti-lock braking system or the like may be used.

(発明の効果) 以上説明してきたように、請求項1記載の発明にあっ
ては、補助舵角制御装置と制駆動力制御装置とが同時に
搭載された車両の総合制御装置において、補助舵角制御
の制御効果が大きな車両状態領域と制駆動力制御の制御
効果が大きな車両状態領域とを前後加速度をパラメータ
として区別し、制御効果の大小に応じて制御感度を変更
する手段とした為、両制御装置の同時作動時に制御効果
の大きい装置側で制御量が制限されるのを防止しなが
ら、両制御装置によるトータル的な制御効果の最適化を
図ることが出来るという効果が得られる。
(Effects of the Invention) As described above, according to the first aspect of the present invention, in the overall control device for a vehicle in which the auxiliary steering angle control device and the braking / driving force control device are simultaneously mounted, the auxiliary steering angle Since the vehicle state area where the control effect of the control is large and the vehicle state area where the control effect of the braking / driving force control is large are distinguished by using the longitudinal acceleration as a parameter, and the control sensitivity is changed according to the magnitude of the control effect, both means are used. It is possible to obtain an effect that the total control effect of the two control devices can be optimized while preventing the control amount from being limited on the device side having the large control effect when the control devices are simultaneously operated.

請求項2記載の発明にあっては、補助舵角制御装置と
制駆動力制御装置とが同時に搭載された車両の総合制御
装置において、補助舵角制御の制御効果が大きな車両状
態領域と制駆動力制御の制御効果が大きな車両状態領域
とを前後加速度の二乗と横加速度の二乗の和をパラメー
タとして区別し、制御効果の大小に応じて制御感度を変
更する手段とした為、両制御装置の同時作動時に制御効
果の大きい装置側で制御量が制限されるのを防止しなが
ら、両制御装置によるトータル的な制御効果の最適化を
図ることが出来るという効果が得られる。
According to a second aspect of the present invention, there is provided an integrated control system for a vehicle in which an auxiliary steering angle control device and a braking / driving force control device are simultaneously mounted. The vehicle state area where the control effect of the force control is large is distinguished from the sum of the square of the longitudinal acceleration and the square of the lateral acceleration as a parameter, and the control sensitivity is changed according to the magnitude of the control effect. The effect is obtained that the total control effect of the two control devices can be optimized while preventing the control amount from being limited on the side of the device having a large control effect during the simultaneous operation.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の補助舵角と制駆動力の総合制御装置を
示すクレーム対応図、第2図は前後輪舵角制御装置(補
助舵角制御装置の一例)と前後輪駆動力配分制御装置
(制駆動力制御装置の一例)とアクティブサスペンショ
ン制御装置(輪荷重配分制御装置の一例)との同時搭載
車両を示す全体システム図、第3図は前後輪舵角制御装
置の具体例を示す図、第4図は前後輪駆動力配分制御装
置の具体例を示す図、第5図はアクティブサスペンショ
ン制御装置の具体例を示す図、第6図は各制御で制御効
果の大きな車両状態領域を示す領域概念図、第7図は第
1実施例の総合制御コントローラでの制御感度設定処理
作動の流れを示すフローチャート、第8図は(XG 2
YG 2)の値に対する補助舵角制御感度と駆動力配分制御
感度の特性マップ図、第9図は制御感度比特性グラフ
図、第10図は第2実施例の総合制御コントローラでの制
御感度設定処理作動の流れを示すフローチャートであ
る。 a……補助舵角制御装置 b……制駆動力制御装置 c……前後加速度検出手段 d……横加速度検出手段 e……総合制御感度設定手段
FIG. 1 is a claim correspondence diagram showing an integrated control device for auxiliary steering angle and braking / driving force according to the present invention, and FIG. 2 is a front / rear wheel steering angle control device (an example of an auxiliary steering angle control device) and front / rear wheel driving force distribution control. FIG. 3 is an overall system diagram showing a vehicle equipped with a device (an example of a braking / driving force control device) and an active suspension control device (an example of a wheel load distribution control device). FIG. 3 shows a specific example of a front and rear wheel steering angle control device. FIG. 4, FIG. 4 is a diagram showing a specific example of the front and rear wheel driving force distribution control device, FIG. 5 is a diagram showing a specific example of the active suspension control device, and FIG. FIG. 7 is a flowchart showing the flow of the control sensitivity setting processing operation in the integrated controller of the first embodiment, and FIG. 8 is (X G 2 +
FIG. 9 is a characteristic map of the auxiliary steering angle control sensitivity and the driving force distribution control sensitivity with respect to the value of Y G 2 ), FIG. 9 is a control sensitivity ratio characteristic graph, and FIG. 10 is the control sensitivity of the integrated controller of the second embodiment. It is a flowchart which shows the flow of a setting process operation. a: auxiliary steering angle control device b: braking / driving force control device c: longitudinal acceleration detecting means d: lateral acceleration detecting means e: total control sensitivity setting means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B62D 101:00 103:00 113:00 (56)参考文献 特開 平1−119439(JP,A) 特開 平2−227339(JP,A) 実開 平1−62965(JP,U) (58)調査した分野(Int.Cl.7,DB名) B60K 41/00 B60T 8/58 B62D 6/00 B62D 7/00 B60K 17/348 B60K 23/08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI B62D 101: 00 103: 00 113: 00 (56) References JP-A-1-119439 (JP, A) JP-A-2-227339 (JP, A) Japanese Utility Model 1-62965 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B60K 41/00 B60T 8/58 B62D 6/00 B62D 7/00 B60K 17 / 348 B60K 23/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】前輪または後輪の少なくとも一方の舵角を
前輪操舵時に制御する補助舵角制御装置と、 各輪の制動力または駆動力の少なくとも一方を制御する
制駆動力制御装置と、 車両に作用する前後加速度を検出する前後加速度検出手
段と、 目標制御量を得る演算式で基本制御量に掛け合わせる値
を制御感度と定義したとき、前後加速度検出値の値が小
さいときは補助舵角制御感度を大きく制駆動力制御感度
を小さく設定し、前後加速度検出値の値が大きくなるに
したがって補助舵角制御感度を小さくし制駆動力制御感
度を大きく設定する総合制御感度設定手段と、 を備えている事を特徴とする補助舵角と制駆動力の総合
制御装置。
An auxiliary steering angle control device for controlling at least one of a front wheel and a rear wheel during steering of a front wheel; a braking / driving force control device for controlling at least one of a braking force and a driving force of each wheel; A longitudinal acceleration detecting means for detecting the longitudinal acceleration acting on the vehicle; and a control sensitivity when a value to be multiplied by the basic control amount in an arithmetic expression for obtaining a target control amount is defined as a control sensitivity. Comprehensive control sensitivity setting means for increasing the control sensitivity and decreasing the braking / driving force control sensitivity, and decreasing the auxiliary steering angle control sensitivity and increasing the braking / driving force control sensitivity as the longitudinal acceleration detection value increases. A total control device for auxiliary steering angle and braking / driving force, characterized by being provided.
【請求項2】前輪または後輪の少なくとも一方の舵角を
前輪操舵時に制御する補助舵角制御装置と、 各輪の制動力または駆動力の少なくとも一方を制御する
制駆動力制御装置と、 車両に作用する前後加速度を検出する前後加速度検出手
段と、 車両に作用する横加速度を検出する横加速度検出手段
と、 目標制御量を得る演算式で基本制御量に掛け合わせる値
を制御感度と定義したとき、前後加速度検出値の二乗と
横加速度検出値の二乗の和を演算し、二乗の和の演算値
が所定値以下のときには、補助舵角制御感度を大きな一
定値に設定すると共に制駆動力制御感度を小さな一定値
に設定し、二乗の和の演算値が所定値を超えたときに
は、横加速度検出値に対する前後加速度検出値の比を演
算し、演算された比の値が小さいときには補助舵角制御
感度を大きく制駆動力制御感度を小さく設定し、演算さ
れた比の値が大きくなるにしたがって補助舵角制御感度
を小さくし制駆動力制御感度を大きく設定する総合制御
感度設定手段と、 を備えている事を特徴とする補助舵角と制駆動力の総合
制御装置。
2. An auxiliary steering angle control device for controlling a steering angle of at least one of a front wheel and a rear wheel during front wheel steering; a braking / driving force control device for controlling at least one of a braking force and a driving force of each wheel; Longitudinal acceleration detecting means for detecting longitudinal acceleration acting on the vehicle, lateral acceleration detecting means for detecting lateral acceleration acting on the vehicle, and a control sensitivity is defined as a value to be multiplied by the basic control amount in an arithmetic expression for obtaining a target control amount. When the sum of the square of the longitudinal acceleration detection value and the square of the lateral acceleration detection value is calculated, and when the calculated value of the sum of the squares is equal to or smaller than a predetermined value, the auxiliary steering angle control sensitivity is set to a large constant value and the braking / driving force is set. The control sensitivity is set to a small constant value, and when the calculated value of the sum of squares exceeds a predetermined value, the ratio of the longitudinal acceleration detection value to the lateral acceleration detection value is calculated. Square system A total control sensitivity setting means for setting the control sensitivity to be large and the braking / driving force control sensitivity to be small, and setting the auxiliary steering angle control sensitivity to be small and setting the braking / driving force control sensitivity to be large as the calculated ratio value becomes large. A total control device for auxiliary steering angle and braking / driving force, characterized by being provided.
JP10404490A 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and braking / driving force Expired - Fee Related JP3079538B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10404490A JP3079538B2 (en) 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and braking / driving force
GB9108131A GB2245873B (en) 1990-04-18 1991-04-16 Control system for optimizing operation of vehicle performance/safety enhancing systems
DE4112582A DE4112582C2 (en) 1990-04-18 1991-04-17 Motor vehicle with an active chassis controlled by means of a control system
US07/686,341 US5297646A (en) 1990-04-18 1991-04-17 Control system for optimizing operation of vehicle performance/safety enhancing systems such as 4WS, 4WD active suspensions, and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10404490A JP3079538B2 (en) 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and braking / driving force

Publications (2)

Publication Number Publication Date
JPH042557A JPH042557A (en) 1992-01-07
JP3079538B2 true JP3079538B2 (en) 2000-08-21

Family

ID=14370221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10404490A Expired - Fee Related JP3079538B2 (en) 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and braking / driving force

Country Status (1)

Country Link
JP (1) JP3079538B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148890A (en) * 2002-10-29 2004-05-27 Nissan Motor Co Ltd Steering angle controlling device for vehicle
JP2006117176A (en) * 2004-10-25 2006-05-11 Mitsubishi Motors Corp Turning behavior controller for vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229139B2 (en) * 2004-03-18 2007-06-12 Ford Global Technologies, Llc Control system for brake-steer assisted parking and method therefor
JP4432649B2 (en) * 2004-07-13 2010-03-17 日産自動車株式会社 Driving force distribution device for four-wheel independent drive vehicle
JP5476909B2 (en) * 2009-10-07 2014-04-23 トヨタ自動車株式会社 Steering device
US9008915B2 (en) * 2013-02-13 2015-04-14 Honda Motor Co., Ltd. Four-wheel steered vehicle and torque distribution control methods for same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148890A (en) * 2002-10-29 2004-05-27 Nissan Motor Co Ltd Steering angle controlling device for vehicle
JP2006117176A (en) * 2004-10-25 2006-05-11 Mitsubishi Motors Corp Turning behavior controller for vehicle

Also Published As

Publication number Publication date
JPH042557A (en) 1992-01-07

Similar Documents

Publication Publication Date Title
US5297646A (en) Control system for optimizing operation of vehicle performance/safety enhancing systems such as 4WS, 4WD active suspensions, and the like
JP4618105B2 (en) Vehicle turning behavior control device
JP2534730B2 (en) 4-wheel steering / Differential limiting force integrated control device
KR100622228B1 (en) Driving power control device between right-left wheel for vehicles
US7761215B2 (en) Device operable to control turning of vehicle using driving and braking force for understeering and oversteering
US4921060A (en) Integrated roll rigidity and differential slip control system
JP3079538B2 (en) Comprehensive control system for auxiliary steering angle and braking / driving force
JP2913748B2 (en) Comprehensive control device for braking / driving force and wheel load distribution
JPH07164926A (en) Driving force distribution control device of automobile
JPH03189241A (en) Four-wheel drive device
JP2936640B2 (en) Comprehensive control system for auxiliary steering angle and wheel load distribution
JP3060800B2 (en) Vehicle yawing momentum control system
JPH0370633A (en) Torque control device for front and rear wheels in four-wheel drive vehicle
JP2552327B2 (en) Four-wheel steering control system for vehicles with limited slip differential
JP2630609B2 (en) Control method of driving force distribution and rear wheel steering angle of four-wheel drive, four-wheel steering vehicle
JP5040013B2 (en) Vehicle turning behavior control device
JPH05278490A (en) Driving force distribution device for four-wheel drive vehicle
JPH03235708A (en) Camber angle control device for vehicle
JP3187119B2 (en) Vehicle driving force control device
JPH05185859A (en) Control device of driving system clutch for vehicle
JP2005329861A (en) Right and left independent drive type vehicle
JP3132145B2 (en) Vehicle suspension control device
JPH0735879Y2 (en) Front and rear wheel drive vehicle drive control device
JP2643233B2 (en) Differential limiting force control device
JPH04169310A (en) Active suspension

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees