JP2936640B2 - Comprehensive control system for auxiliary steering angle and wheel load distribution - Google Patents

Comprehensive control system for auxiliary steering angle and wheel load distribution

Info

Publication number
JP2936640B2
JP2936640B2 JP10404590A JP10404590A JP2936640B2 JP 2936640 B2 JP2936640 B2 JP 2936640B2 JP 10404590 A JP10404590 A JP 10404590A JP 10404590 A JP10404590 A JP 10404590A JP 2936640 B2 JP2936640 B2 JP 2936640B2
Authority
JP
Japan
Prior art keywords
control
steering angle
load distribution
wheel load
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10404590A
Other languages
Japanese (ja)
Other versions
JPH042575A (en
Inventor
智弘 山村
深 菅沢
正継 横手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10404590A priority Critical patent/JP2936640B2/en
Priority to GB9108131A priority patent/GB2245873B/en
Priority to DE4112582A priority patent/DE4112582C2/en
Priority to US07/686,341 priority patent/US5297646A/en
Publication of JPH042575A publication Critical patent/JPH042575A/en
Application granted granted Critical
Publication of JP2936640B2 publication Critical patent/JP2936640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To make the total control effect of both control devices optimum in a vehicle mounted simultaneously with an auxiliary steering angle control device and a wheel load distribution control device by discriminating the vehicle state region by parameters including lateral largeness of control effect. CONSTITUTION:In an integrated control device comprising an auxiliary steering angle control device (a) for controlling the steering angle of at least either front wheels or rear wheels at the time of steering the front wheels, and a wheel load distribution control device (b) for controlling the load moving quantity distribution of each wheel, mounted on a vehicle, there is provided a lateral acceleration detecting means (d) for detecting the lateral acceleration YG acting upon the vehicle. The auxiliary steering angle control sensitivity alphas and the wheel load distribution control sensitivity alphaR are set by an integrated control sensitivity setting means (e) in such a way that the wheel load distribution control sensitivity alphaR becomes larger in relation to the auxiliary steering angle control sensitivity alphaS as the lateral acceleration detection value becomes larger. The total control effect of both control devices (a), (b) can be thereby made optimum while preventing the restriction of control quantity on the control device side with larger control effect during the simultaneous operation of both control devices (a), (b).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、補助舵角と輪荷重配分の総合制御装置に関
する。
Description: TECHNICAL FIELD The present invention relates to an integrated control device for auxiliary steering angle and wheel load distribution.

(従来の技術) 従来、補助舵角制御装置の一例である後輪舵角制御装
置としては、例えば、特開昭59−77968号公報に記載さ
れている装置が知られていて、この従来出典には、低車
速時或は前輪操舵角が大きい時等には後輪を逆相に転舵
し、高車速時或は前輪操舵角が小さい時等には後輪を同
相に転舵し、操縦性能を高める内容が示されている。
2. Description of the Related Art Conventionally, as a rear wheel steering angle control device which is an example of an auxiliary steering angle control device, for example, a device described in JP-A-59-77968 is known. At low vehicle speed or when the front wheel steering angle is large, the rear wheels are steered in the opposite phase, and at high vehicle speed or when the front wheel steering angle is small, the rear wheels are steered in phase. The contents to improve the steering performance are shown.

また、従来、輪荷重配分制御装置の一例であるサスペ
ンション制御装置としては、例えば、特開昭62−292516
号公報に記載されている装置が知られて、この従来出典
には、サスペンションのバネ定数又は減衰定数を連続的
に且つ広範囲に変更することで、車両のロール,ピッ
チ,バウンス等による車両姿勢変化を抑制する内容が示
されている。
Conventionally, as a suspension control device which is an example of a wheel load distribution control device, for example, Japanese Patent Application Laid-Open No. 62-292516
The device described in Japanese Patent Application Publication No. H11-209,991 is known. According to this conventional source, a vehicle attitude change due to a roll, pitch, bounce, and the like of a vehicle is continuously and widely changed by changing a spring constant or a damping constant of a suspension. Are shown.

(発明が解決しようとする課題) しかしながら、上記後輪舵角制御装置とサスペンショ
ン制御装置とを同時に1つの車両に搭載した場合で、補
助舵角制御感度と輪荷重配分制御感度をそれぞれで独自
に設定し、設定感度に基づき互いに独立して後輪舵角制
御と輪荷重配分制御を行なう構成とした場合、本来、補
助舵角制御の制御効果が大きな車両状態領域と輪荷重配
分制御の制御効果が大きな車両状態領域とが異なってい
るにもかかわらずこの点が全く考慮されない為、両制御
装置によるトータル的な制御効果が最適なものとはなら
ない。
(Problems to be Solved by the Invention) However, when the rear wheel steering angle control device and the suspension control device are simultaneously mounted on one vehicle, the auxiliary steering angle control sensitivity and the wheel load distribution control sensitivity are independently set. If the rear wheel steering angle control and the wheel load distribution control are performed independently based on the set sensitivity and the set sensitivity, the control effect of the vehicle state area where the control effect of the auxiliary steering angle control is large and the control effect of the wheel load distribution control are originally large. However, since this point is not considered at all even though the vehicle state area is different from the large vehicle state area, the total control effect of the two control devices is not optimal.

また、後輪舵角制御と輪荷重配分制御とが同時に行な
われる場合、一方の制御効果の小さな車両状態であって
も制御量は単独で搭載される場合と同じ制御量となりト
ータルのエネルギ消費が大となると共に、このように複
数の制御装置が搭載される車両では燃費等の理由により
トータルのエネルギの消費が限られる場合には、制御効
果の大きい側の制御量が制御されることがある。
In addition, when the rear wheel steering angle control and the wheel load distribution control are performed simultaneously, the control amount is the same as when the vehicle is mounted alone and the total energy consumption is reduced even in the vehicle state where one of the control effects is small. In a vehicle equipped with a plurality of control devices as described above, when the total energy consumption is limited for reasons such as fuel efficiency, the control amount on the side where the control effect is large may be controlled. .

そこで、単にある性能を向上させるために協調制御し
たり、一方の制御変更により他の性能劣化分を補う制御
を行ない、互いの制御をリンクさせることが考えられる
が、この場合、特定の性能に対してのみ効果が得られる
に過ぎず、トータル的な制御効果の最適化を達成し得な
い。
Therefore, it is conceivable to simply perform cooperative control to improve a certain performance or perform control to compensate for the other performance degradation by changing one control and link the controls with each other. In this case, the effect can be obtained only for this purpose, and the optimization of the total control effect cannot be achieved.

本発明は、上述のような問題に着目してなされたもの
で、補助舵角制御装置と輪荷重配分制御装置とが同時に
搭載された車両の総合制御装置において、両制御装置の
同時作動時に制御効果の大きい装置側で装置量が制御さ
れるのを防止しながら、両制御装置によるトータル的な
制御効果の最適化を図ることを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems. In a general control device for a vehicle in which an auxiliary steering angle control device and a wheel load distribution control device are simultaneously mounted, control is performed when both control devices are simultaneously operated. It is an object of the present invention to optimize the total control effect of both control devices while preventing the device amount from being controlled on the device side having a large effect.

(課題を解決するための手段) 上記課題を解決するために本発明の補助舵角と輪荷重
配分の総合制御装置では、補助舵角制御の制御効果が大
きく車両状態領域と輪荷重配分制御の制御効果が大きな
車両状態領域とを少なくとも横加速度を含む同じパラメ
ータにより区別し、制御効果の大小に応じて制御感度を
変更する手段とした。
(Means for Solving the Problems) In order to solve the problems described above, the integrated control device for assisting steering angle and wheel load distribution according to the present invention has a large control effect of assisting steering angle control and a vehicle state area and wheel load distribution control. A vehicle state region having a large control effect is distinguished by the same parameter including at least the lateral acceleration, and the control sensitivity is changed according to the magnitude of the control effect.

即ち、第1図のクレーム対応図に示すように、請求項
1記載の発明では、前輪または後輪の少なくとも一方の
舵角を前輪操舵時に制御する補助舵角制御装置aと、各
輪の荷重移動量の配分を制御する輪荷重配分制御装置b
と、車両に作用する横加速度YGを検出する横加速度検出
手段dと、補助舵角目標値を比例定数と基本制御舵角を
掛け合わせた式で表した場合の比例定数を補助舵角制御
感度αと定義し、輪荷重配分目標値を比例定数と基本
輪荷重配分を掛け合わせた式で表した場合の比例定数を
輪荷重配分制御感度αと定義したとき、横加速度検出
値の値が大きいほど補助舵角制御感度αに対して輪荷
重配分制御感度αを相対的に大きくするように補助舵
角制御感度αと輪荷重配分制御感度αを設定する総
合制御感度設定手段eと、を備えている事を特徴とす
る。
That is, as shown in the claim correspondence diagram of FIG. 1, in the invention according to claim 1, an auxiliary steering angle control device a for controlling at least one of the front wheels or the rear wheels during steering of the front wheels, and a load on each wheel. Wheel load distribution control device b for controlling distribution of moving amount
When the lateral acceleration detecting means d for detecting a lateral acceleration Y G acting on the vehicle, the auxiliary steering angle control proportional constant when representing the auxiliary steering angle target value obtained by multiplying a proportional constant and basic control steering angle formula Sensitivity α S is defined, and the proportional constant when the wheel load distribution target value is represented by an equation obtained by multiplying the proportional constant by the basic wheel load distribution is defined as the wheel load distribution control sensitivity α R. Overall control sensitivity setting the auxiliary steering angle control sensitivity alpha S and wheel load distribution control sensitivity alpha S to relatively increase the wheel load distribution control sensitivity alpha R relative to the larger value the auxiliary steering angle control sensitivity alpha S And setting means e.

また、請求項2記載の発明では、前輪または後輪の少
なくとも一方の舵角を前輪操舵時に制御する補助舵角制
御装置aと、各輪の荷重移動量の配分を制御する輪荷重
配分制御装置bと、車両に作用する前後加速度XGを検出
する前後加速度検出手段cと、車両に作用する横加速度
YGを検出する横加速度検出手段dと、補助舵角目標値を
比例定数と基本制御舵角を掛け合わせた式で表した場合
の比例定数を補助舵角制御感度αと定義し、輪荷重配
分目標値を比例定数と基本輪荷重配分を掛け合わせた式
で表した場合の比例定数を輪荷重配分制御感度αと定
義したとき、前後加速度検出値の二乗と横加速度検出値
の二乗の和(XG 2+YG 2)を演算し、この和(XG 2+YG 2
の値が大きいほど補助舵角制御感度αに対する輪荷重
配分制御感度合αの比(αR)の値が大きくなる
ように補助舵角制御感度αと輪荷重配分制御感度α
を設定する総合制御感度設定手段eと、を備えている事
を特徴とする。
Further, in the invention according to claim 2, an auxiliary steering angle control device a for controlling at least one steering angle of the front wheel or the rear wheel at the time of front wheel steering, and a wheel load distribution control device for controlling distribution of a load movement amount of each wheel. and b, a longitudinal acceleration detecting means c for detecting a longitudinal acceleration X G acting on the vehicle, the lateral acceleration acting on the vehicle
A lateral acceleration detecting means d for detecting the Y G, the proportionality constant when expressed auxiliary steering angle target value proportional constant and the basic control and the steering angle multiplied by the formula was defined as the auxiliary steering angle control sensitivity alpha S, wheels when the proportional constant when representing the load distribution target value obtained by multiplying a proportional constant and basic wheel load distribution formula defined as wheel load distribution control sensitivity alpha R, the square of the square and the lateral acceleration detected value of the longitudinal acceleration detected value Calculates the sum of (X G 2 + Y G 2 ) and sums this (X G 2 + Y G 2 )
Auxiliary steering angle control sensitivity alpha S and wheel load distribution control sensitivity so that the value of the ratio of the wheel load distribution control feeling degree α R (α R / α S ) is increased relative to the higher the value the auxiliary steering angle control sensitivity alpha S α R
And a total control sensitivity setting means e for setting

(作 用) 車両走行時に、請求項1記載の発明にあっては、総合
制御感度設定手段eにおいて、補助舵角目標値を比例定
数と基本制御舵角を掛け合わせた式で表した場合の比例
定数を補助舵角制御感度αと定義し、輪荷重配分目標
値を比例定数と基本輪荷重配分を掛け合わせた式で表し
た場合の比例定数を輪荷重配分制御感度αと定義した
とき、横加速度検出値の値が大きいほど補助舵角制御感
度αに対して輪荷重配分制御感度αを相対的に大き
くするように補助舵角制御感度αと輪荷重配分制御感
度αが設定される。
(Operation) According to the first aspect of the present invention, when the vehicle is running, the total control sensitivity setting means e sets the auxiliary steering angle target value by a formula obtained by multiplying the proportional constant by the basic control steering angle. the proportionality constant is defined as the auxiliary steering angle control sensitivity alpha S, defining the proportionality constant in the case of representing the wheel load distribution target value by the formula obtained by multiplying a proportional constant and basic wheel load distribution between the wheel load distribution control sensitivity alpha R when, as the value of the lateral acceleration detection value is larger auxiliary steering angle control sensitivity alpha S wheel load distribution control sensitivity alpha auxiliary steering angle control sensitivity to relatively large R alpha S and wheel load distribution control sensitivity alpha relative R is set.

また、車両走行時に、請求項2記載の発明にあって
は、総合制御感度設定手段eにおいて、前後加速度検出
手段cから検出される前後加速度検出値の二乗と横加速
度検出手段dから検出される横加速度検出値の二乗の和
(XG 2+YG 2)が演算され、この和(XG 2+YG 2)の値が大
きいほど補助舵角制御感度αに対する輪荷重配分制御
感度αの比(αR)の値が大きくなるように補助
舵角制御感度αと輪荷重配分制御感度αが設定され
る。
According to the second aspect of the present invention, when the vehicle is running, the total control sensitivity setting means e detects the square of the longitudinal acceleration detection value detected by the longitudinal acceleration detection means c and the lateral acceleration detection means d. the sum of the squares of the lateral acceleration detection value (X G 2 + Y G 2 ) is calculated, the sum (X G 2 + Y G 2 ) wheel load distribution control sensitivity higher the value for the auxiliary steering angle control sensitivity alpha S of alpha R the ratio auxiliary steering angle control sensitivity so that the value of (α R / α S) increases alpha S and wheel load distribution control sensitivity alpha R is set for.

つまり、YGもしくは(XG 2+YG 2)をパラメータとして
両制御感度αSを設定変更するようにしているが、
これは下記の理由による。
In other words, the two control sensitivities α S and α R are set and changed using Y G or (X G 2 + Y G 2 ) as a parameter.
This is for the following reason.

輪荷重配分制御は、左右輪間又は前後輪間の荷重移動
量をコントロールすることでタイヤのコーナリングパワ
ーをコントロールするものである為、荷重移動量を大き
い領域で制御効果が大きく、制御効果が大きな領域とは
前後加速度や横加速度が大きな領域ということができ
る。
Wheel load distribution control is to control the cornering power of the tire by controlling the amount of load movement between the left and right wheels or between the front and rear wheels, so the control effect is large in the area where the load movement is large, and the control effect is large. The region can be referred to as a region where the longitudinal acceleration and the lateral acceleration are large.

一方、補助舵角制御は、タイヤのコーナリングパワー
特性において線形域から非線形域まで効果があるが、非
線形域では他の制御装置の効果が大きい為、相対的にタ
イヤ特性の線形領域で制御効果が大きく、制御効果が大
きな領域とは輪荷重配分移動の少ない前後加速度及び横
加速度が小さな領域ということができる。
On the other hand, the auxiliary steering angle control has an effect in the cornering power characteristic of the tire from a linear region to a non-linear region, but since the effect of other control devices is large in the non-linear region, the control effect is relatively large in the linear region of the tire characteristic. A region that is large and has a large control effect can be regarded as a region where the longitudinal acceleration and the lateral acceleration in which the wheel load distribution movement is small are small.

従って、YGもしくは(XG 2+YG 2)をパラメータとする
ことで制御効果の大小に応じた領域区別が可能となり、
YGもしくは(XG 2+YG 2)の値が小さい走行時には、補助
舵角制御感度αが輪荷重配合制御感度αに対して相
対的に高めとされることで、輪荷重配合制御に伴なうス
テア特性の変化が小さく抑えられ、制御効果の大きな補
助舵角制御が十分に生かされる。
Therefore, by using Y G or (X G 2 + Y G 2 ) as a parameter, it is possible to distinguish areas according to the magnitude of the control effect.
The Y G or (X G 2 + Y G 2 ) during running value is small, that the auxiliary steering angle control sensitivity alpha S is relatively enhanced with respect to the wheel load compounding control sensitivity alpha R, wheel load compounding control Therefore, the change in the steering characteristic due to the above is suppressed to a small extent, and the auxiliary steering angle control having a large control effect is fully utilized.

一方、YGもしくは(XG 2+YG 2)の値が大きい走行時に
は、輪荷重配合制御感度αが補助舵角制御感度α
対して相対的に高めとされることで、補助舵角制御に伴
なうタイヤの横滑り角の変化で輪荷重の移動量が変化す
るのが小さく抑えられ、制御効果の大きな輪荷重配分制
御が十分に生かされることになり、両制御装置a,bによ
るトータル的に制御効果の最適化が図られる。
On the other hand, during the running value is large Y G or (X G 2 + Y G 2 ), by the wheel load compounding control sensitivity alpha R is relatively enhanced with respect to the auxiliary steering angle control sensitivity alpha S, auxiliary steering The change in the amount of movement of the wheel load due to the change in the side slip angle of the tire accompanying the angle control is suppressed small, and the wheel load distribution control with a large control effect is fully utilized, and both control devices a, b Thus, the control effect can be totally optimized.

また、燃費等の理由によりトータルのエネルギの消費
が限られても両制御感度αSの変更制御により制御
効果が小さい装置側でのエネルギ消費が減少する為、両
制御装置a,bのうち制御効果の大きい装置側での制御量
制限が防止される。
Further, even if the total energy consumption is limited due to reasons such as fuel efficiency, the energy consumption on the side of the device having a small control effect is reduced by the change control of the two control sensitivities α S and α R. Among them, the control amount limitation on the side of the device having a large control effect is prevented.

(第1実施例) まず、構成を説明する。First Embodiment First, the configuration will be described.

第2図は前後輪舵角制御装置(補助舵角制御装置の一
例)と前後輪駆動力配分制御装置(制駆動力制御装置の
一例)とアクティブサスペンション制御装置(輪荷重配
分制御装置の一例)との同時搭載車両を示す全体システ
ム図である。
FIG. 2 shows a front and rear wheel steering angle control device (an example of an auxiliary steering angle control device), a front and rear wheel driving force distribution control device (an example of a braking / driving force control device), and an active suspension control device (an example of a wheel load distribution control device). FIG. 1 is an overall system diagram showing a vehicle simultaneously mounted with the above.

各制御システムが搭載された車両は、後輪駆動ベース
のトルクスプリット四輪駆動車で、左右の後輪1R,1Lに
は、エンジン2,トランスミッション3,リアプロペラシャ
フト3,リアディファレンシャル5,左右のリアドライブシ
ャフト6R,6Lを介してエンジン駆動力が伝達される。
The vehicle equipped with each control system is a torque split four-wheel drive vehicle based on a rear wheel drive, and the right and left rear wheels 1R, 1L are equipped with an engine 2, a transmission 3, a rear propeller shaft 3, a rear differential 5, Engine driving force is transmitted via rear drive shafts 6R and 6L.

左右の前輪7R,7Lには、リアプロペラシャフト4の途
中に設けられたトランスファ8からフロントプロペラシ
ャフト9,フロントディファレンシャル10,左右のフロン
トドライブシャフト11R,11Lを介してエンジン駆動力が
伝達される。
The engine driving force is transmitted to the left and right front wheels 7R, 7L from a transfer 8 provided in the middle of the rear propeller shaft 4 via a front propeller shaft 9, a front differential 10, and left and right front drive shafts 11R, 11L.

そして、前輪7R,7Lを操舵するフロントステアリング
ギア装置12及び左右後輪1R,1L間には、 供給油圧によるピストンストロークで前輪7R,7L及び後
輪1R,1Lに補助舵角を与える前後輪舵角制御アクチュエ
ータとしての前輪油圧パワーシリンダ13及び後輪油圧パ
ワーシリンダ14が設けられる。
Further, between the front steering gear device 12 for steering the front wheels 7R, 7L and the left and right rear wheels 1R, 1L, front and rear wheel steering for giving an auxiliary steering angle to the front wheels 7R, 7L and the rear wheels 1R, 1L by a piston stroke by the supplied hydraulic pressure. A front wheel hydraulic power cylinder 13 and a rear wheel hydraulic power cylinder 14 are provided as angle control actuators.

また、前記トランスファ8には、締結圧制御により前
輪側への可変の伝達トルクを与える前後輪駆動力配分制
御アクチュエータとしての油圧多板クラッチ15が内蔵さ
れる。
Further, the transfer 8 has a built-in hydraulic multi-plate clutch 15 as a front and rear wheel driving force distribution control actuator for giving a variable transmission torque to the front wheels by engagement pressure control.

さらに、各輪のばね上とばね下間には、供給油圧の独
立制御により車体の揺動を積極的に抑えるアクティブサ
スペンション制御アクチュエータとしての油圧シリンダ
16FR,16FL,16RR,16RLが設けられている。
In addition, a hydraulic cylinder as an active suspension control actuator between the sprung and unsprung positions of each wheel that actively suppresses vehicle body swing by independent control of supply hydraulic pressure
16FR, 16FL, 16RR, 16RL are provided.

前記前輪油圧パワーシリンダ13及び後輪油圧パワーシ
リンダ14への供給油圧制御は、前輪油圧制御バルブ17F
及び後輪油圧制御バルブ17Rに対する舵角制御コントロ
ーラ18からのバルブ作動制御指令により行なわれるもの
で、舵角制御コントローラ18には前輪舵角センサ19,車
速センサ20等から検出信号が入力され、例えば、旋回時
に所望のヨーレート応答を得るヨーレイトのモデル適合
制御や操舵応答性と操舵安定性の両立を目指す位相反転
制御等が行なわれる。
The supply hydraulic pressure to the front wheel hydraulic power cylinder 13 and the rear wheel hydraulic power cylinder 14 is controlled by a front wheel hydraulic control valve 17F.
And a valve operation control command from the steering angle control controller 18 for the rear wheel hydraulic control valve 17R.A detection signal is input to the steering angle control controller 18 from a front wheel steering angle sensor 19, a vehicle speed sensor 20, and the like. In addition, model adaptation control of yaw rate for obtaining a desired yaw rate response at the time of turning, phase inversion control for achieving both steering response and steering stability, and the like are performed.

前記油圧多板クラッチ15への供給油圧制御は、駆動力
配分制御バルブ21に対する駆動力配分コントローラ22か
らのバルブ作動制御指令により行なわれるもので、駆動
力配分コントローラ22には右前輪回転センサ23,左前輪
回転センサ24,右後輪回転センサ25,左後輪回転センサ2
6,横加速度センサ27等からの検出信号が入力され、駆動
力配分を後輪駆動(0:100)からリジッド4WD(50:50)
まで連続的に制御する上記前後輪駆動力配分制御によ
り、例えば、発進時や加速時等では駆動輪スリップを抑
えながら、旋回時には前輪への駆動力配分を減じて後輪
駆動傾向とすることで、駆動性能と旋回性能の向上を両
立させる制御等が行なわれる。
The control of the supply hydraulic pressure to the hydraulic multi-plate clutch 15 is performed by a valve operation control command from the driving force distribution controller 22 to the driving force distribution control valve 21, and the driving force distribution controller 22 includes a right front wheel rotation sensor 23, Left front wheel rotation sensor 24, Right rear wheel rotation sensor 25, Left rear wheel rotation sensor 2
6, Detection signals from the lateral acceleration sensor 27 etc. are input and the driving force distribution is changed from rear wheel drive (0: 100) to rigid 4WD (50:50)
By the above-described front and rear wheel driving force distribution control that continuously controls the vehicle, for example, while starting or accelerating, the driving wheel distribution is reduced by reducing the driving force distribution to the front wheels during turning to reduce rear wheel driving tendency. For example, control for improving both driving performance and turning performance is performed.

前記油圧シリンダ16FR,16FL,16RR,16RLへの供給油圧
制御は、右前輪制御バルブ28FR,左前輪制御バルブ28FL,
右後輪制御バルブ28RR,左後輪制御バルブ28RLに対する
サスペンション制御コントローラ29からのバルブ作動制
御指令により行なわれるもので、サスペンション制御コ
ントローラ29には上下加速度センサ30,横加速度センサ2
7,前後加速度センサ31,車高センサ32等からの検出信号
が入力され、例えば、車体上下方向のバウンド抑制制御
や車体ロールの抑制制御や車両のピッチング抑制制御や
車高変化の抑制制御等が行なわれる。
The hydraulic pressure supplied to the hydraulic cylinders 16FR, 16FL, 16RR, 16RL is controlled by a right front wheel control valve 28FR, a left front wheel control valve 28FL,
The suspension control controller 29 controls the right rear wheel control valve 28RR and the left rear wheel control valve 28RL according to valve operation control commands. The suspension control controller 29 includes a vertical acceleration sensor 30, a lateral acceleration sensor 2
7, detection signals from the longitudinal acceleration sensor 31, the vehicle height sensor 32, and the like are input, and for example, vehicle body vertical restraint control, vehicle body roll restraint control, vehicle pitching restraint control, vehicle height change restraint control, etc. Done.

そして、前後加速度センサ31(前後加速度検出手段)
及び横加速度センサ27(横加速度検出手段)からの検出
信号とマニュアルスイッチ33からのスイッチ信号を入力
し、車両状態に応じた制御効果の大小領域を(XG 2
YG 2)と(XG/YG)をパラメータとして区別し、その時の
車両状態に最適である補助舵角制御感度αと駆動力配
分制御感度αと輪過重配分制御感度αを求め、各制
御感度αSTを前記各コントローラ18,22,29に出
力する総合制御コントローラ34(総合制御感度設定手
段)が設けられている。尚、前記マニュアルスイッチ33
は、ドライバーの意図や好みを反映させるために制御特
性モードを変更するスイッチで、実施例では駆動力特性
重視のモードAと旋回性重視のモードBの2つが設定さ
れている。
And the longitudinal acceleration sensor 31 (longitudinal acceleration detecting means)
And the detection signal from the lateral acceleration sensor 27 (lateral acceleration detecting means) and the switch signal from the manual switch 33 are input to determine the magnitude of the control effect according to the vehicle state (X G 2 +
Y G 2 ) and (X G / Y G ) are distinguished as parameters, and the auxiliary steering angle control sensitivity α S , the driving force distribution control sensitivity α T, and the wheel overload distribution control sensitivity α R that are optimal for the vehicle state at that time are determined. There is provided a general control controller 34 (general control sensitivity setting means) which outputs the obtained control sensitivities α S , α T , α R to the respective controllers 18, 22, 29. The manual switch 33
Is a switch for changing the control characteristic mode in order to reflect the driver's intention and preference. In the embodiment, two modes are set, a mode A emphasizing driving force characteristics and a mode B emphasizing turning characteristics.

第3図に前後輪舵角制御システムの具体例を示し、第
4図に前後輪駆動力配分システムの具体例を示し、第5
図にアクティブサスペンション制御システムの具体例を
示すが、いずれも周知であり詳しい説明は省略する。
FIG. 3 shows a specific example of the front and rear wheel steering angle control system, FIG. 4 shows a specific example of the front and rear wheel driving force distribution system, and FIG.
The figure shows a specific example of an active suspension control system, all of which are well known and detailed description is omitted.

次に、本実施例での制御感度設定に関する基本概念を
説明する。
Next, a basic concept regarding control sensitivity setting in the present embodiment will be described.

(イ)(XG 2+YG 2),(XG/YG)を制御効果の大小領域
を区分するパラメータとする理由 まず、(XG 2+YG 2),(XG/YG)を制御効果の大小領
域を区分するパラメータとして各制御感度αST
を変更設定するようにしているが、これは下記の理由に
よる。
(I) (X G 2 + Y G 2), (X G / Y G) first reason for a parameter for distinguishing the magnitude region of the control effect, (X G 2 + Y G 2), (X G / Y G) each control sensitivity alpha S as a parameter for distinguishing the magnitude region of the control effect, α T, α R
Is changed and set for the following reason.

・制駆動力制御は、駆動力又は制動力の配分によるスリ
ップ率コントロールであるので駆動力又は制動力が大き
く、スリップ率が大となる領域で制御効果が大きく、制
御効果が大きな領域とは前後加速度が大きな加速領域又
は減速領域ということができる。
・ Since the braking / driving force control is a slip ratio control based on the distribution of the driving force or the braking force, the driving force or the braking force is large, and the control effect is large in a region where the slip ratio is large. It can be called an acceleration region or a deceleration region where the acceleration is large.

・輪荷重配分制御は、左右輪間の荷重移動量(又は前後
輪間)をコントロールしてタイヤのコーナリングパワー
をコントロールするので、荷重移動が大きい領域での制
御効果が大きい。
In the wheel load distribution control, since the cornering power of the tire is controlled by controlling the amount of load movement between the left and right wheels (or between the front and rear wheels), the control effect is large in an area where the load movement is large.

つまり、横加速度や前後加速度の大きな領域となる。
但し、前後加速度より横加速度を重視するもので、これ
は、横加速度の方が定常的に発生することが多いためで
ある。
That is, it is a region where the lateral acceleration and the longitudinal acceleration are large.
However, emphasis is placed on lateral acceleration rather than longitudinal acceleration, since lateral acceleration often occurs more steadily.

・補助舵角制御は、タイヤのコーナリングパワー特性に
おいて線形域から非線形域までの効果があるが、非線形
域では他の制御装置の効果が大きい為、相対的にタイヤ
特性の線形領域で制御効果が大きく、制御効果が大きな
領域とは輪荷重移動の少ない前後加速度及び横加速度が
小さな領域ということができる。
-The auxiliary steering angle control has an effect from the linear range to the non-linear range in the cornering power characteristics of the tire.However, in the non-linear range, the control effect is relatively large in the linear region of the tire characteristics because the effect of other control devices is large. A region that is large and has a large control effect can be regarded as a region where the longitudinal acceleration and the lateral acceleration in which the wheel load movement is small are small.

従って、各制御感度αSTにより制御効果の大
きな車両状態領域を概念図により示すと第6図のように
なる。
Accordingly, FIG. 6 is a conceptual diagram showing a vehicle state region having a large control effect by the respective control sensitivities α S , α T , and α R.

(ロ)制御感度を固定値とした場合の問題 a) 補助舵角制御が得意な(XG 2+YG 2)が小さい領域
での問題 ・制駆動力制御について 基本的にこの領域では制御が不必要であり、パワーが
無駄になるし、補助舵角制御にたくさんパワー(例え
ば、油圧制御の際の油圧)をかけて補助舵角制御効果を
大きくしたいにもかかわらず、燃費等の理由によりトー
タルの出力が限られるため、補助舵角制御装置で必要な
パワーを得られない。
(B) Problems when control sensitivity is fixed value a) Problems in the area where (X G 2 + Y G 2 ) is good at assisting steering angle control ・ About braking / driving force control Basically, control is not performed in this area. It is unnecessary and wastes power, and despite the desire to increase the auxiliary steering angle control effect by applying a lot of power (for example, hydraulic pressure during hydraulic control) to the auxiliary steering angle control, due to reasons such as fuel efficiency, Since the total output is limited, the power required by the auxiliary steering angle control device cannot be obtained.

性能的には、輪荷重配分が変化するのに連動して前後
輪のコーナリングパワーが変化し、コーナリングパワー
の変化が無いものとして制御している補助舵角制御装置
の制御効果が損なわれる。
In terms of performance, the cornering power of the front and rear wheels changes in conjunction with the change in the wheel load distribution, and the control effect of the auxiliary steering angle control device that controls the cornering power as if there is no change is impaired.

・輪荷重配分制御について パワーが無駄になることと補助舵角制御装置のパワー
が得られなくなる点は、制駆動力制御と同様である。
・ About wheel load distribution control The point that the power is wasted and the power of the auxiliary steering angle control device cannot be obtained is the same as the braking / driving force control.

性能的には、補助舵角制御の単独制御はステア特性が
ある一定値と考えて制御を行なっているが、輪荷重配分
制御によりステア特性が変化してしまい(具体的には前
後のコーナリングパワーのバランスが変化する)、補助
舵角制御が本来狙っていた特性が得られなくなる。
In terms of performance, the independent control of the auxiliary steering angle control is controlled by assuming that the steering characteristic has a constant value, but the steering characteristic changes due to the wheel load distribution control (specifically, the front and rear cornering powers). ), The characteristic originally intended by the auxiliary steering angle control cannot be obtained.

b) 輪荷重配分制御が得意な(XG 2+YG 2)が大で、
(XG/YG)が小の領域での問題 ・補助舵角制御について パワーが無駄になることと輪荷重配分制御装置のパワ
ーが得られなくなる点は、他と同様である。
b) (X G 2 + Y G 2 ) is good at wheel load distribution control,
Problems in the area where (X G / Y G ) is small ・ Auxiliary steering angle control The point that the power is wasted and the power of the wheel load distribution control device cannot be obtained is the same as the others.

性能的には、例えば、補助舵角制御を行なった為にタ
イヤの横滑り角が変化してしまいタイヤに働く横力,前
後力の向きが変化し、輪荷重の移動量が変化する(後輪
を逆相に切ると横滑り角が旋回内側を向くように発生
し、前内輪の輪荷重配分が減少し、後外輪の輪荷重が増
大する)。従って、輪荷重配分制御の制御前の状態が、
補助舵角制御の有無により違っていて、輪荷重配分制御
で狙った通りの制御が適切に行なえない。
In terms of performance, for example, the side slip angle of the tire changes due to the control of the auxiliary steering angle, the direction of the lateral force and the longitudinal force acting on the tire changes, and the moving amount of the wheel load changes (rear wheel movement). , The sideslip angle is directed to the inside of the turn, the wheel load distribution of the front inner wheel decreases, and the wheel load of the rear outer wheel increases.) Therefore, the state before the control of the wheel load distribution control is as follows.
The control depends on the presence or absence of the auxiliary steering angle control, and the intended control in the wheel load distribution control cannot be properly performed.

・制駆動力制御について パワーが無駄になることと輪荷重配分制御装置のパワ
ーが得られなくなる点は、他と同様である。
・ About braking / driving force control The point that the power is wasted and the power of the wheel load distribution control device cannot be obtained is the same as the others.

性能的には、例えば、前後輪駆動力配分制御では駆動
力配分を変化させるために前後輪のスリップ率が変動す
る。輪荷重配分制御でステア特性の制御を行なって各輪
の発生するコーナリングフォースを最適にしたいにもか
かわらず、スリップ率の変動によりコーナリングフォー
スが最適値よりずれてしまう。
In terms of performance, for example, in the front and rear wheel driving force distribution control, the slip ratio of the front and rear wheels fluctuates to change the driving force distribution. Despite the desire to optimize the cornering force generated by each wheel by controlling the steering characteristic by the wheel load distribution control, the cornering force deviates from the optimum value due to the change in the slip ratio.

c) 制御駆動制御が得意な(XG 2+YG 2)が大で、(XG
/YG)が大の領域での問題 ・補助舵角制御について パワーが無駄になることと制駆動力制御装置のパワー
が得られなくなる点は、他と同様である。
c) Control (X G 2 + Y G 2 ) which is good at drive control is large, and (X G
Problems in the region where / Y G ) is large ・ Auxiliary steering angle control The point that the power is wasted and the power of the braking / driving force control device cannot be obtained is the same as the others.

性能的には、例えば、補助舵角制御を行なった為にタ
イヤの横滑り角が変化してしまいタイヤに働く横力,前
後力の向きが変化し、輪荷重の移動量が変化する(後輪
を逆相に切ると横滑り角が旋回内側を向くように発生
し、前内輪の輪荷重が減少して前内輪が空転する)。
In terms of performance, for example, the side slip angle of the tire changes due to the control of the auxiliary steering angle, the direction of the lateral force and the longitudinal force acting on the tire changes, and the moving amount of the wheel load changes (rear wheel movement). , The sideslip angle is directed toward the inside of the turn, the wheel load on the front inner wheel decreases, and the front inner wheel spins.)

従って、輪荷重の変化によって各輪のスリップ率が変
化し、最終的には前後輪回転速度差が補助舵角制御の有
無により異なってくるために狙った通りの制御が行なえ
ない。
Therefore, the slip ratio of each wheel changes due to the change in the wheel load, and finally, the difference between the front and rear wheel rotational speeds differs depending on the presence or absence of the auxiliary steering angle control, so that the intended control cannot be performed.

・輪荷重配分制御について パワーが無駄になることと制駆動力制御装置のパワー
が得られなくなる点は、他と同様である。
・ About wheel load distribution control The point that the power is wasted and the power of the braking / driving force control device cannot be obtained is the same as the others.

性能的には、例えば、輪荷重配分制御を行なった為に
ある一輪の輪荷重配分が減少するとそのタイヤのスリッ
プ率は増大し、最悪の場合、空転してしまい前後輪の回
転速度差が輪荷重配分制御の有無により変ってしまう
為、狙い通りの制御が行なえない。
In terms of performance, for example, when the wheel load distribution of one wheel decreases due to the wheel load distribution control, the slip ratio of the tire increases, and in the worst case, the tire slips and the rotational speed difference between the front and rear wheels increases. Since it changes depending on the presence or absence of the load distribution control, the intended control cannot be performed.

次に、作用を説明する。 Next, the operation will be described.

第7図は各制御感度αSTを設定して各コント
ローラ18,22,29に出力する総合制御コントローラ34での
制御感度設定処理作動の流れを示すフローチャートで、
以下、各ステップについて説明する。
FIG. 7 is a flow chart showing the flow of the control sensitivity setting processing operation in the general control controller 34 which sets the respective control sensitivities α S , α T , α R and outputs them to the controllers 18, 22, 29.
Hereinafter, each step will be described.

ステップ101では、マニュアルスイッチ33からのスイ
ッチ信号と前後加速度センサ31及び横加速度センサ27か
らのセンサ信号が読み込まれる。
In step 101, a switch signal from the manual switch 33 and sensor signals from the longitudinal acceleration sensor 31 and the lateral acceleration sensor 27 are read.

ステップ102では、前後加速度XGの二乗と横加速度YG
の二乗の和が算出される。
In step 102, the square of the longitudinal acceleration X G and the lateral acceleration Y G
Is calculated.

ステップ103では、(XG 2+YG 2)の値が所定値以上か
どうかが判断される。
In step 103, it is determined whether the value of (X G 2 + Y G 2 ) is equal to or greater than a predetermined value.

この判断で、(XG 2+YG 2)の値が所定値未満であれ
ば、ステップ108へ進み、補助舵角制御感度αS,駆動力
配分制御感度αT,輪荷重配分制御感度αをそれぞれα
S1T1R1に設定する。
If the value of (X G 2 + Y G 2 ) is less than the predetermined value, the process proceeds to step 108, where the auxiliary steering angle control sensitivity α S , the driving force distribution control sensitivity α T , and the wheel load distribution control sensitivity α R Is α
S1, alpha T1, sets the alpha R1.

ここで、αT1R1はαS1に対してきわめて小さな値
に設定し、補助舵角制御効果が大きくなるようにする。
例えば、αS1=1でαT1R1≒0としても良い。
Here, α T1 and α R1 are set to extremely small values with respect to α S1 so that the auxiliary steering angle control effect is increased.
For example, α S1 = 1 and α T1 , α R1 ≒ 0 may be set.

一方、ステップ103の判断で、(XG 2+YG 2)の値が所
定値以上と判断された場合には、ステップ104以降に進
む。
On the other hand, if it is determined in step 103 that the value of (X G 2 + Y G 2 ) is equal to or greater than the predetermined value, the process proceeds to step 104 and subsequent steps.

ステップ104では、ステップ枠内に記載されている(X
G 2+YG 2)の値に対する補助舵角制御感度特性マップ及
び制御ゲイン特性マップにより補助舵角制御感度α
制御ゲインKSの値が算出される。
In step 104, (X
The values of the auxiliary steering angle control sensitivity α S and the control gain K S are calculated from the auxiliary steering angle control sensitivity characteristic map and the control gain characteristic map for the value of G 2 + Y G 2 ).

尚、これらの特性マップはマニュアルスイッチ33によ
る特性モードにより選択されるが、基本的に、補助舵角
制御感度αは、(XG 2+YG 2)の値が大きくなるほど小
さくなり(右下がり)、制御ゲインKSは、(XG 2+YG 2
の値が大きくなるほど大きくなる(右上がり)特性に設
定している。
Although these characteristic map is selected by characteristic mode by manual switch 33, basically, the auxiliary steering angle control sensitivity alpha S is, (X G 2 + Y G 2) Higher the smaller increase (right downward ), The control gain K S is (X G 2 + Y G 2 )
The characteristic is set to increase (increase right) as the value increases.

ステップ105では、(XG/YG)の値が算出される。In step 105, the value of (X G / Y G ) is calculated.

ステップ106では、ステップ枠内に記載されている(X
G/YG)の値に対する駆動力配分制御感度特性マップ及び
輪荷重配分制御感度特性マップにより駆動力配分基本制
御感度αTOと輪荷重配分基本制御感度αROの値が算出さ
れる。
In step 106, (X
The values of the driving force distribution basic control sensitivity α TO and the wheel load distribution basic control sensitivity α RO are calculated from the driving force distribution control sensitivity characteristic map and the wheel load distribution control sensitivity characteristic map for the value of G / Y G ).

尚、これらの特性マップはマニュアルスイッチ33によ
る特性モードにより選択されるが、基本的に、駆動力配
分基本制御感度αTOは、(XG/YG)の値が大きくなるほ
ど大きくなり(右上がり)、輪荷重配分基本制御感度α
ROは、(XG/YG)の値が大きくなるほど小さくなる(右
下がり)特性に設定している。
It should be noted that these characteristic maps are selected in the characteristic mode by the manual switch 33. Basically, the driving force distribution basic control sensitivity α TO increases as the value of (X G / Y G ) increases (increases to the right). ), Wheel load distribution basic control sensitivity α
RO is set so that it becomes smaller (lower right) as the value of (X G / Y G ) becomes larger.

ステップ107では、前記ステップ106で求められた基本
制御感度αTOROを下記の式で補正を行ない、駆動力
配分制御感度α及び輪荷重配分制御感度αが算出さ
れる。
In step 107, the basic control sensitivities α TO and α RO obtained in step 106 are corrected by the following equation, and the driving force distribution control sensitivity α T and the wheel load distribution control sensitivity α R are calculated.

α=αTO・KS α=αRO・KS ステップ109では、ステップ104及びステップ107もし
くはステップ108で得られた各制御感度αST
が、それぞれ舵角制御コントローラ18,駆動力配分コ
ントローラ22,サスペンション制御コントローラ29へ出
力される。
α T = α TO · K S α R = α RO · K S In step 109, the control sensitivities α S , α T , α obtained in step 104 and step 107 or step 108 are obtained.
R is output to the steering angle controller 18, the driving force distribution controller 22, and the suspension control controller 29, respectively.

以上の各制御感度αSTの設定に基づいて各コ
ントローラ18,22,29では下記のような制御が行なわれ
る。
Based on the settings of the control sensitivities α S , α T , and α R described above, the controllers 18, 22, and 29 perform the following control.

舵角制御コントローラ18では、下記の式に示すよう
に、基本制御舵角fsf及びfsrに補助舵角制御感度α
掛け合わせた値が前輪補助舵角目標値δ 及び後輪補
助舵角目標値δ とされ、この目標値δ ,δ
が得られる指令信号が前輪舵角制御バルブ17F及び後輪
舵角制御バルブ17Rに出力される。
As shown in the following equation, the steering angle control controller 18 multiplies the basic control steering angles f sf and f sr by the auxiliary steering angle control sensitivity α S to obtain the front wheel auxiliary steering angle target value δ F * and the rear wheel is an auxiliary steering angle target value [delta] R *, the target value δ F *, δ R *
Is output to the front wheel steering angle control valve 17F and the rear wheel steering angle control valve 17R.

δ =α・fsf(θ,V) δ =α・fsf(θ,V) 駆動力配分コントローラ22では、下記の式に示すよう
に、基本前輪側駆動力配分割合fTに駆動力配分制御感度
αを掛け合わせた値が駆動力配分前輪割合目標値TF
とされ、この目標値TF が得られる指令信号が駆動力配
分制御バルブ21に出力される。
δ F * = α S · f sf (θ, V) δ R * = α S · f sf (θ, V) in the driving force distribution controller 22, as shown in the following formula, the basic front wheel side driving force distribution ratio the value obtained by multiplying the driving force distribution control sensitivity alpha T to f T is the driving force distribution wheel ratio target value T F *
A command signal for obtaining the target value T F * is output to the driving force distribution control valve 21.

TF =α・fT(ΔN,YG) 但し、ΔNは前後輪回転速度差であって、各回転セン
サ23,24,25,26からの信号により後輪回転速度Nrと前輪
回転速度Nfを求め、これらの差をとる次式により得られ
る。
T F * = α T · f T (ΔN, Y G ) where ΔN is the difference between the front and rear wheel rotation speeds, and the rear wheel rotation speed Nr and the front wheel rotation are determined by signals from the rotation sensors 23, 24, 25, and 26. The speed Nf is obtained by the following equation which takes the difference between them.

ΔN=Nr−Nf サスペンション制御コントローラ29では、下記の式に
示すように、基本輪荷重配分割合fRに輪荷重配分制御感
度αを掛け合わせた値が輪荷重配分割合目標値RS
される。
ΔN = Nr−Nf In the suspension control controller 29, as shown in the following equation, the value obtained by multiplying the basic wheel load distribution ratio f R by the wheel load distribution control sensitivity α R is equal to the wheel load distribution ratio target value R S * . Is done.

RS =α・fR(ZG,XG,YG,S) 以上説明したように、本発明である補助舵角と輪荷重
配分の総合制御装置の実施例に相当する前後輪舵角制御
と前後輪駆動力配分制御をみた場合、下記に列挙する効
果が発揮される。
R S * = α R · f R (Z G , X G , Y G , S) As described above, the front and rear wheels corresponding to the embodiment of the integrated control device for auxiliary steering angle and wheel load distribution according to the present invention. When the steering angle control and the front and rear wheel drive force distribution control are viewed, the following effects are exhibited.

(XG 2+YG 2)をパラメータとすることで制御効果の
大小に応じた領域区別が可能となり、第8図の特性マッ
プに示すように、(XG 2+YG 2)の値が小さい走行時に
は、補助舵角制御感度αが輪荷重配分制御感度α
対して相対的に高めとされることで、輪荷重配分制御に
伴なうステア特性の変化が小さく抑えられ、制御効果の
大きな前後輪舵角制御が十分に生かされる。
By using (X G 2 + Y G 2 ) as a parameter, areas can be distinguished according to the magnitude of the control effect, and as shown in the characteristic map of FIG. 8, the value of (X G 2 + Y G 2 ) is small. during running, the auxiliary steering angle control sensitivity alpha S is turned into the relatively raised against the wheel load distribution control sensitivity alpha R, change in accompanying steering characteristic in the wheel load distribution control is kept small, control effect The large front and rear wheel steering angle control is fully utilized.

また、(XG 2+YG 2)の値が大きい走行時には、輪荷重
配分制御感度αが補助舵角制御感度αに対して相対
的に高めとされることで、補助舵角制御に伴なうタイヤ
の横滑り角の変化で輪荷重の移動量が変化するのが小さ
く抑えられ、制御効果の大きなアクティブサスペンショ
ン制御が十分に生かされることになる。
Further, (X G 2 + Y G 2) When the value of a large travel, that the wheel load distribution control sensitivity alpha R is relatively enhanced with respect to the auxiliary steering angle control sensitivity alpha S, the auxiliary steering angle control A change in the amount of movement of the wheel load due to a change in the side slip angle of the accompanying tire is suppressed to a small extent, and the active suspension control with a large control effect is sufficiently utilized.

即ち、補助舵角と輪荷重配分の両制御装置によるトー
タル的な制御効果の最適化が図られる。
That is, optimization of the total control effect by the control devices for the auxiliary steering angle and the wheel load distribution is achieved.

燃費等の理由によりトータルのエネルギの消費が限
られていても両制御感度αSの変更制御により制御
効果が小さい装置側でのエネルギ消費が減少する為、補
助舵角と駆動力配分の両制御装置のうち制御効果の大き
い装置側での制御量制限が防止される。
Even if the total energy consumption is limited due to reasons such as fuel consumption, the energy consumption on the side of the device where the control effect is small is reduced by the change control of both control sensitivities α S , α R , so the auxiliary steering angle and drive power distribution Of the two control devices, the control amount limitation on the device having the greater control effect is prevented.

マニュアルスイッチ33を設け、第8図及び第9図に
示すように、駆動力特性重視モードAと旋回性重視モー
ドBのいずれかを選択が可能とした為、ドライバーの好
みや走行路面等に対応して搭載装置の性能を引き出すこ
とができる。
A manual switch 33 is provided to enable selection of either the driving force characteristic emphasis mode A or the turning performance emphasis mode B, as shown in FIGS. 8 and 9, to meet the driver's preference and traveling road surface. In this way, the performance of the mounting device can be brought out.

(第2実施例) 次に、請求項1記載の発明に相当する第2実施例の補
助舵角と輪荷重配分の総合制御装置について説明する。
(Second Embodiment) Next, a description will be given of an integrated control device for auxiliary steering angle and wheel load distribution according to a second embodiment corresponding to the first aspect of the present invention.

第1実施例では、制駆動力制御装置を含むシステムで
ある為、前後加速度XGと横加速度YGの両者により制御感
度の大小を決定する例を示したが、この第2実施例は補
助舵角制御装置と輪荷重配分制御装置との2つの装置が
同時に搭載された車両であって、請求項1に記載したよ
うに、前後加速度XGを検出することなく、横加速度YG
みを検出して補助舵角制御感度αと輪荷重配分制御感
度αとを設定するようにした例である。
In the first embodiment, since a system comprising a longitudinal force control device, an example of determining the magnitude of the control sensitivity by both of the longitudinal acceleration X G and the lateral acceleration Y G, the second embodiment auxiliary a vehicle in which two devices with the steering angle controller and the wheel load distribution control device mounted simultaneously, as described in claim 1, without detecting the longitudinal acceleration X G, only the lateral acceleration Y G detected and is an example of to set an auxiliary steering angle control sensitivity alpha S and wheel load distribution control sensitivity alpha R.

構成的には、第1実施例装置において、駆動力配分制
御系が省略されたシステムとなり、他の構成は変更ない
ので、説明を省略する。
In terms of configuration, in the apparatus of the first embodiment, the driving force distribution control system is omitted, and the other configuration is not changed.

次に、第10図は第2実施例の総合制御コントローラ34
で行なわれる制御感度設定処理作動の流れを示すフロー
チャートで、以下、各ステップについて説明する。
Next, FIG. 10 shows a general controller 34 of the second embodiment.
Each step will be described below with reference to a flowchart showing the flow of the control sensitivity setting processing operation performed in step (a).

ステップ201では、横加速度センサ27から横加速度YG
が読み込まれる。
In step 201, the lateral acceleration Y G
Is read.

ステップ202では、横加速度YGに基づいてステ枠内に
記載されている制御感度特性マップに従って補助舵角制
御感度αと輪荷重配分制御感度αが決定される。
In step 202, the lateral acceleration Y auxiliary steering angle control sensitivity alpha S and wheel load distribution control sensitivity according to the control sensitivity characteristic map that is described in the stearyl frame based on the G alpha R is determined.

即ち、低前後加速度域では輪荷重配分制御感度α
り補助舵角制御感度αが高めと値とされ、高前後加速
度域では補助舵角制御感度αより輪荷重配分制御感度
αが高めの値とされる。
That is, in the low longitudinal acceleration zone wheel load distribution control sensitivity alpha R than the auxiliary steering angle control sensitivity alpha S is the increased value, the wheel load distribution control sensitivity alpha R than the auxiliary steering angle control sensitivity alpha S in the high longitudinal acceleration region is Higher value.

ステップ203では、ステップ202で決定された両制御感
度αSが舵角制御コントローラ18とサスペンション
制御コントローラ29に出力される。
In step 203, the two control sensitivities α S and α R determined in step 202 are output to the steering angle controller 18 and the suspension controller 29.

従って、第1実施例と同様に、両制御装置の同時作動
時に制御効果の大きい装置側で制御量が制限されるのを
防止しながら、両制御装置によるトータル的な制御効果
の最適化を図ることが出来る。
Therefore, as in the first embodiment, the total control effect of the two control devices is optimized while preventing the control amount from being limited on the side of the device having a large control effect when both control devices operate simultaneously. I can do it.

以上、実施例を図面に基づいて説明してきたが、具体
的な構成はこの実施例に限られるものではなく、本発明
の要旨を逸脱しない範囲における設計変更等があっても
本発明に含まれる。
As described above, the embodiments have been described based on the drawings. However, the specific configuration is not limited to the embodiments, and even if there is a design change or the like without departing from the gist of the present invention, it is included in the present invention. .

例えば、実施例では制御感度αSが交差する特性
(第8図)の例を示したが、必ずしも両特性が交差する
必要はなく、第9図に示すように、(XG 2+YG 2)に対す
る(αR)の特性グラフを記載した場合、(XG 2+Y
G 2)の値が大きくなるほど(αR)の値が大きくな
るように補助舵角制御感度αと輪荷重制御感度α
設定すれば本発明に含まれる。つまり、(αR)の
グラフが右上がり特性のグラフであることを満たしてい
れば各制御感度特性マップは上に凸でも下に凸でもクレ
ームを満足する。
For example, in the embodiment, the example of the characteristic (FIG. 8) where the control sensitivities α S and α R intersect is shown. However, it is not always necessary that both characteristics intersect, and as shown in FIG. 9, (X G 2 When a characteristic graph of (α R / α S ) with respect to (+ Y G 2 ) is described, (X G 2 + Y
G 2 values of) are included in the larger the (α R / α S) of the auxiliary steering angle control so that the value becomes greater sensitivity alpha S and wheel load control sensitivity alpha present invention is set to R. That is, if the graph of (α R / α S ) satisfies that the graph is a right-upward characteristic, each control sensitivity characteristic map satisfies the claim whether it is convex upward or downward.

また、本実施例においては、駆動力配分制御装置を含
むシステムについて説明してきたが、駆動力配分制御装
置が搭載されていない車両にも適用できるのは勿論であ
り、少なくとも補助舵角制御装置と輪荷重配分制御装置
とが同時に搭載された車両には適用できる。
Further, in the present embodiment, the system including the driving force distribution control device has been described. However, it is needless to say that the present invention can be applied to a vehicle not equipped with the driving force distribution control device. The present invention can be applied to a vehicle equipped with a wheel load distribution control device at the same time.

また、補助舵角制御装置として、実施例では前後輪を
共に舵角制御する例を示したが、後輪もしくは前輪のみ
を補助舵角制御する装置であっても良い。
Further, as an auxiliary steering angle control device, an example has been described in which the steering angle is controlled for both the front and rear wheels in the embodiment, but a device for controlling the auxiliary steering angle only for the rear wheel or the front wheel may be used.

また、輪荷重配分制御装置として、油圧アクティブサ
スペンション制御システムによりロール剛性とピッチ剛
性を共に変更できる例を示したが、エアーサスペンショ
ンによる荷重移動制御システムや、スタビライザ特性変
更によりロール剛性配分のみの制御を行なうロール剛性
配分制御システムやピッチ剛性配分のみの制御を行なう
ピッチ剛性配分制御システムやバネ定数と減衰定数の一
方を変更する制御システム等であっても良い。
In addition, as an example of the wheel load distribution control device, both the roll stiffness and the pitch stiffness can be changed by the hydraulic active suspension control system. A roll stiffness distribution control system that performs the control, a pitch stiffness distribution control system that controls only the pitch stiffness distribution, a control system that changes one of the spring constant and the damping constant, and the like may be used.

(発明の効果) 以上説明してきたように、本発明にあっては、補助舵
角制御装置と輪荷重配分制御装置とが同時に搭載された
車両の総合制御装置において、補助舵角制御の制御効果
が大きな車両状態領域と輪荷重配分制御の制御効果が大
きな車両状態領域とを少なくとも横加速度を含む同じパ
ラメータにより区別し、補助舵角目標値を比例定数と基
本制御舵角を掛け合わせた式で表した場合の比例定数を
補助舵角制御感度αと定義し、輪荷重配分目標値を比
例定数と基本輪荷重配分を掛け合わせた式で表した場合
の比例定数を輪荷重配分制御感度αと定義したとき、
制御効果の大小に応じて制御感度を変更する手段とした
為、両制御装置の同時作動時に制御効果の大きい装置側
で制御量が制限されるのを防止しながら、両制御装置に
よるトータル的な制御効果の最適化を図ることが出来る
という効果が得られる。
(Effects of the Invention) As described above, according to the present invention, the control effect of the auxiliary steering angle control is provided in the integrated control device of the vehicle in which the auxiliary steering angle control device and the wheel load distribution control device are simultaneously mounted. Is distinguished from the vehicle state area where the vehicle load is large and the vehicle state area where the control effect of the wheel load distribution control is large by the same parameter including at least the lateral acceleration, and the auxiliary steering angle target value is multiplied by the proportional constant and the basic control steering angle. the proportionality constant when expressed is defined as the auxiliary steering angle control sensitivity alpha S, wheel load distribution control sensitivity proportional constant when representing the wheel load distribution target value by the formula obtained by multiplying a proportional constant and basic wheel load distribution alpha When defined as R ,
Since the control sensitivity is changed according to the magnitude of the control effect, the total control by both control devices is prevented while preventing the control amount from being limited on the side of the control effect having a large control effect when both control devices operate simultaneously. The effect that the control effect can be optimized can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の補助舵角と輪荷重配分の総合制御装置
を示すクレーム対応図、第2図は前後輪舵角制御装置
(補助舵角制御装置の一例)と前後輪駆動力配分制御装
置(制駆動力制御装置の一例)とアクティブサスペンシ
ョン制御装置(輪荷重配分制御装置の一例)との同時搭
載車両を示す全体システム図、第3図は前後輪舵角制御
システムの具体例を示す図、第4図は前後輪駆動力配分
制御システムの具体例を示す図、第5図はアクティブサ
スペンション制御システムの具体例を示す図、第6図は
各制御で制御効果の大きな車両状態領域を示す領域概念
図、第7図は第1実施例の総合制御コントローラでの制
御感度設定処理作動の流れを示すフローチャート、第8
図は(XG 2+YG 2)の値に対する補助舵角制御感度と輪荷
重配分制御感度の特性マップ図、第9図は制御感度比特
性グラフ図、第10図は第2実施例の総合制御コントロー
ラでの制御感度設定処理作動の流れを示すフローチャー
トである。 a……補助舵角制御装置 b……輪荷重配分制御装置 c……前後加速度検出手段 d……横加速度検出手段 e……総合制御感度設定手段
FIG. 1 is a claim correspondence diagram showing an integrated control device for auxiliary steering angle and wheel load distribution according to the present invention, and FIG. 2 is a front and rear wheel steering angle control device (an example of an auxiliary steering angle control device) and front and rear wheel driving force distribution control. FIG. 3 is an overall system diagram showing a vehicle equipped with a device (an example of a braking / driving force control device) and an active suspension control device (an example of a wheel load distribution control device). FIG. 3 shows a specific example of a front and rear wheel steering angle control system. FIG. 4, FIG. 4 is a diagram showing a specific example of the front and rear wheel driving force distribution control system, FIG. 5 is a diagram showing a specific example of the active suspension control system, and FIG. FIG. 7 is a flow chart showing the flow of the control sensitivity setting processing operation in the integrated controller of the first embodiment.
The figure is a characteristic map of the auxiliary steering angle control sensitivity and the wheel load distribution control sensitivity with respect to the value of (X G 2 + Y G 2 ), FIG. 9 is a control sensitivity ratio characteristic graph, and FIG. 6 is a flowchart illustrating a flow of a control sensitivity setting process operation in the controller. a: auxiliary steering angle control device b: wheel load distribution control device c: longitudinal acceleration detecting means d lateral acceleration detecting means e: total control sensitivity setting means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B62D 131:00 (58)調査した分野(Int.Cl.6,DB名) B62D 6/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 identification code FI B62D 131: 00 (58) Field surveyed (Int.Cl. 6 , DB name) B62D 6/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】前輪または後輪の少なくとも一方の舵角を
前輪操舵時に制御する補助舵角制御装置と、 各輪の荷重移動量の配分を制御する輪荷重配分制御装置
と、 車両に作用する横加速度を検出する横加速度検出手段
と、 補助舵角目標値を比例定数と基本制御舵角を掛け合わせ
た式で表した場合の比較定数を補助舵角制御感度α
定義し、輪荷重配分目標値を比例定数と基本輪荷重配分
を掛け合わせた式で表した場合の比例定数を輪荷重配分
制御感度αと定義したとき、横加速度検出値の値が大
きいほど補助舵角制御感度に対して輪荷重配分制御感度
を相対的に大きくするように補助舵角制御感度と輪荷重
配分制御感度を設定する総合制御感度設定手段と、 を備えている事を特徴とする補助舵角と輪荷重配分の総
合制御装置。
An auxiliary steering angle control device for controlling a steering angle of at least one of a front wheel and a rear wheel during front wheel steering; a wheel load distribution control device for controlling distribution of a load movement amount of each wheel; define a lateral acceleration detecting means for detecting a lateral acceleration, a comparison constant when representing the auxiliary steering angle target value proportional constant and the basic control and the steering angle multiplied by the formula and the auxiliary steering angle control sensitivity alpha S, wheel load when the proportional constant when representing the distribution target value obtained by multiplying a proportional constant and basic wheel load distribution formula defined as wheel load distribution control sensitivity alpha R, as the value of the lateral acceleration detection value is larger auxiliary steering angle control sensitivity And a total control sensitivity setting means for setting the auxiliary steering angle control sensitivity and the wheel load distribution control sensitivity so as to relatively increase the wheel load distribution control sensitivity. Integrated control system for wheel load distribution.
【請求項2】前輪または後輪の少なくとも一方の舵角を
前輪操舵時に制御する補助舵角制御装置と、 各輪の荷重移動量の配分を制御する輪荷重配分制御装置
と、 車両に作用する前後加速度を検出する前後加速度検出手
段と、 車両に作用する横加速度を検出する横加速度検出手段
と、 補助操舵目標値を比例定数と基本制御舵角を掛け合わせ
た式で表した場合の比例定数を補助舵角制御感度α
定義し、輪荷重配分目標値を比例定数と基本輪荷重配分
を掛け合わせた式で表した場合の比例定数を輪荷重配分
制御感度αと定義したとき、前後加速度検出値の二乗
と横加速度検出値の二乗の和を演算し、この和の値が大
きいほど補助舵角制御感度に対する輪荷重配分制御感度
の比の値が大きくなるように補助舵角制御感度と輪荷重
配分制御感度を設定する総合制御感度設定手段と、 を備えている事を特徴とする補助舵角と輪荷重配分の総
合制御装置。
An auxiliary steering angle control device for controlling the steering angle of at least one of a front wheel and a rear wheel during front wheel steering; a wheel load distribution control device for controlling distribution of a load moving amount of each wheel; Longitudinal acceleration detecting means for detecting longitudinal acceleration, lateral acceleration detecting means for detecting lateral acceleration acting on the vehicle, and a proportional constant when the auxiliary steering target value is represented by a formula obtained by multiplying a proportional constant by a basic control steering angle. was defined as the auxiliary steering angle control sensitivity alpha S, when defining the proportionality constant in the case of representing the wheel load distribution target value by the formula obtained by multiplying a proportional constant and basic wheel load distribution between the wheel load distribution control sensitivity alpha R, Calculates the sum of the square of the longitudinal acceleration detection value and the square of the lateral acceleration detection value, and increases the value of the ratio of the wheel load distribution control sensitivity to the auxiliary steering angle control sensitivity as the sum increases. Sensitivity and wheel load distribution control sensitivity And a total control sensitivity setting means for setting the auxiliary steering angle and the wheel load distribution.
JP10404590A 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and wheel load distribution Expired - Fee Related JP2936640B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10404590A JP2936640B2 (en) 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and wheel load distribution
GB9108131A GB2245873B (en) 1990-04-18 1991-04-16 Control system for optimizing operation of vehicle performance/safety enhancing systems
DE4112582A DE4112582C2 (en) 1990-04-18 1991-04-17 Motor vehicle with an active chassis controlled by means of a control system
US07/686,341 US5297646A (en) 1990-04-18 1991-04-17 Control system for optimizing operation of vehicle performance/safety enhancing systems such as 4WS, 4WD active suspensions, and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10404590A JP2936640B2 (en) 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and wheel load distribution

Publications (2)

Publication Number Publication Date
JPH042575A JPH042575A (en) 1992-01-07
JP2936640B2 true JP2936640B2 (en) 1999-08-23

Family

ID=14370249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10404590A Expired - Fee Related JP2936640B2 (en) 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and wheel load distribution

Country Status (1)

Country Link
JP (1) JP2936640B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895314B1 (en) * 2005-12-23 2008-02-15 Renault Sas METHOD AND DEVICE FOR CONTROLLING AN ANTI-ROLL SYSTEM FOR A MOTOR VEHICLE
JP4834428B2 (en) * 2006-03-08 2011-12-14 本田技研工業株式会社 Vehicle control device
WO2010134251A1 (en) * 2009-05-21 2010-11-25 アイシン精機株式会社 Ground contact load control device for vehicle

Also Published As

Publication number Publication date
JPH042575A (en) 1992-01-07

Similar Documents

Publication Publication Date Title
US5297646A (en) Control system for optimizing operation of vehicle performance/safety enhancing systems such as 4WS, 4WD active suspensions, and the like
KR100622228B1 (en) Driving power control device between right-left wheel for vehicles
JP2851385B2 (en) Torque distribution control device for four-wheel drive vehicle
JPS62295714A (en) Suspension for vehicle
US5184298A (en) Rear wheel steering system for vehicle
US4921060A (en) Integrated roll rigidity and differential slip control system
JP2913748B2 (en) Comprehensive control device for braking / driving force and wheel load distribution
JP3079538B2 (en) Comprehensive control system for auxiliary steering angle and braking / driving force
JP2936640B2 (en) Comprehensive control system for auxiliary steering angle and wheel load distribution
JPH03189241A (en) Four-wheel drive device
JP3060800B2 (en) Vehicle yawing momentum control system
JP2010188928A (en) Vehicle behavior controller
JPH0370633A (en) Torque control device for front and rear wheels in four-wheel drive vehicle
JP2588546B2 (en) Vehicle motion characteristics control method
JPH03235708A (en) Camber angle control device for vehicle
JP2718251B2 (en) Vehicle braking force control device
JPH05185859A (en) Control device of driving system clutch for vehicle
JP2630609B2 (en) Control method of driving force distribution and rear wheel steering angle of four-wheel drive, four-wheel steering vehicle
JP3169683B2 (en) Travel control device for four-wheel drive vehicle
JPH04230472A (en) Electronically controlled power steering device
JPH04169310A (en) Active suspension
JPH03169735A (en) Integrated control device for roll rigidity distribution and differential limit force for vehicle
JPH045115A (en) Synthetic controller for auxiliary steering angle and wheel load distribution
JP2593488B2 (en) Vehicle motion characteristics control method
JP2859697B2 (en) Torque distribution control device for four-wheel drive vehicle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees