JP3023080B2 - Method and apparatus for estimating stagnation amount in incinerator - Google Patents

Method and apparatus for estimating stagnation amount in incinerator

Info

Publication number
JP3023080B2
JP3023080B2 JP9218120A JP21812097A JP3023080B2 JP 3023080 B2 JP3023080 B2 JP 3023080B2 JP 9218120 A JP9218120 A JP 9218120A JP 21812097 A JP21812097 A JP 21812097A JP 3023080 B2 JP3023080 B2 JP 3023080B2
Authority
JP
Japan
Prior art keywords
incinerator
amount
waste
equation
estimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9218120A
Other languages
Japanese (ja)
Other versions
JPH1151355A (en
Inventor
裕一 宮本
正人 林
薫 小谷野
健司 湯浅
剛 安河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP9218120A priority Critical patent/JP3023080B2/en
Publication of JPH1151355A publication Critical patent/JPH1151355A/en
Application granted granted Critical
Publication of JP3023080B2 publication Critical patent/JP3023080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ごみ等の廃棄物の
焼却炉において、焼却炉内の廃棄物滞留量を、焼却炉の
動特性数式モデルと焼却炉における計測信号を用いて、
リアルタイムに推定する炉内滞留量推定方法及び装置に
関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an incinerator for waste such as garbage, in which the amount of waste retained in the incinerator is calculated by using a mathematical model of the dynamic characteristic of the incinerator and a measurement signal in the incinerator.
TECHNICAL FIELD The present invention relates to a method and an apparatus for estimating an in-furnace retention amount for estimating in real time.

【0002】[0002]

【従来の技術】ごみ焼却炉において、排ガス中のCO、
NOx濃度の抑制、廃熱ボイラの蒸気流量の安定、蒸気
タービン発電機の発電量の安定等のためには、ごみを安
定燃焼させることが必要不可欠である。ごみの安定燃焼
のためには、焼却炉内のごみ滞留量を燃焼制御に見合っ
た所定の量に保つことが必要である。しかし、ごみ焼却
炉の特徴として、ごみの比容積や低位発熱量などの物理
的・化学的性状が不均一であることにより、例えば、ス
トーカ式ごみ焼却炉では、給じん装置速度やストーカ速
度を一定としても、焼却炉内へのごみ供給量及び焼却炉
のごみ滞留量が変動する。しかしながら、焼却炉内のご
み滞留量はセンサ等で直接計測することが困難であり、
従来、ごみ滞留量の把握は、熟練運転員が炉内ITV
(工業用テレビカメラ)の画像、種々の計測値、過去の
運転経験に基づいて下した判断に頼ることが多かった。
そこで、熟練運転員の不足に対応するため、運転員の質
に左右されない炉内滞留量推定方法及び装置が求められ
ている。
2. Description of the Related Art In waste incinerators, CO in exhaust gas,
In order to suppress the NOx concentration, stabilize the steam flow rate of the waste heat boiler, stabilize the power generation amount of the steam turbine generator, and the like, it is essential to stably burn the refuse. For stable combustion of waste, it is necessary to keep the amount of waste retained in the incinerator at a predetermined amount suitable for combustion control. However, as a characteristic of refuse incinerators, due to non-uniform physical and chemical properties such as specific volume of refuse and low calorific value, for example, in stoker type refuse incinerators, the speed of the feeding device and stoker speed is reduced. Even if it is constant, the amount of waste supplied into the incinerator and the amount of waste retained in the incinerator fluctuate. However, it is difficult to directly measure the amount of garbage in the incinerator with a sensor, etc.
Conventionally, the amount of waste accumulated has been determined by skilled operators
(Industrial television cameras) often rely on decisions made based on images, various measurements, and past driving experiences.
Therefore, in order to cope with a shortage of skilled operators, a method and an apparatus for estimating the amount of residence in a furnace which are not affected by the quality of the operators are required.

【0003】また、特開平8−261431号公報に
は、燃焼用空気ダンパ開度を切り換えた時の、燃焼用空
気流量又はストーカ下空気圧力の過渡応答結果に基づい
てストーカ上のゴミ厚を推定する方法及び装置が開示さ
れている。上記公報記載の発明では、ダンパ開度を、定
常的な燃焼運転を行うための空気流量に設定する第一状
態から、第一状態よりも開度を大きく設定する第二状態
に切り換え、ストーカ上のゴミ厚の薄いときにダンパ開
度を切り換えると、空気流量は急激に大きく上昇し、一
方、ストーカ上のゴミ厚が厚いときは、空気流量は急激
に小さく上昇し、ゴミ厚が厚く、かつ吹き抜け部が存在
する場合には、空気流量は急激に小さく上昇し、その
後、徐々に増加することが示されている。また、ダンパ
開度の切り換えによるゴミ厚の推定は、30〜60分に
1回行うことが記載されている。
Japanese Patent Laid-Open Publication No. Hei 8-261431 discloses a method of estimating a dust thickness on a stoker based on a transient response result of a flow rate of a combustion air or an air pressure under a stoker when an opening degree of a combustion air damper is switched. A method and apparatus are disclosed. In the invention described in the above publication, the damper opening is switched from the first state in which the air flow rate is set to perform a steady combustion operation to the second state in which the opening is set to be larger than the first state, and When the damper opening is switched when the dust thickness is small, the air flow increases sharply and sharply.On the other hand, when the dust thickness on the stoker is large, the air flow sharply decreases and the dust thickness increases. It is shown that when a blow-through exists, the air flow rate rises sharply and then gradually. Further, it is described that estimation of the dust thickness by switching the damper opening is performed once every 30 to 60 minutes.

【0004】[0004]

【発明が解決しようとする課題】上記のように、従来
は、熟練運転員が、炉内ITV(工業用テレビカメラ)
の画像、種々の計測値、過去の運転経験に基づいて、焼
却炉内のごみ滞留量を判断する必要があったので、熟練
運転員の数が不足した場合等に、運転経験の浅い運転員
ではごみ滞留量を定量的に把握することが困難であっ
た。また、焼却炉内のごみ滞留量が所定量に保たれない
と、焼却炉の安定運転ができなくなり、排ガス中のC
O、NOx濃度の抑制、廃熱ボイラの蒸気流量の安定、
蒸気タービン発電機の発電量の安定等を図ることができ
ない。また、ごみ焼却炉においては、燃焼が困難なごみ
の大量滞留やごみが鎮火しかかるごみ切れ等を早期に把
握する必要がある。
As described above, conventionally, a trained operator is required to use an in-furnace ITV (industrial television camera).
It was necessary to judge the amount of waste in the incinerator based on the images, various measured values, and past operating experience. Therefore, it was difficult to quantitatively grasp the amount of waste accumulated. In addition, if the amount of waste accumulated in the incinerator is not maintained at a predetermined amount, stable operation of the incinerator cannot be performed, and C
Suppression of O and NOx concentration, stabilization of steam flow rate of waste heat boiler,
The power generation of the steam turbine generator cannot be stabilized. Also, in a refuse incinerator, it is necessary to grasp at an early stage a large stagnation of refuse that is difficult to burn and a refuse that can extinguish the refuse.

【0005】また、上記の特開平8−261431号公
報記載の発明は、空気流量の過渡応答トレンドからゴミ
厚を判断するが、判断基準が定量的でなく、ゴミ厚の判
断結果に運転員により差が生じるという問題点がある。
また、上記公報記載の発明は、ダンパ開度のステップ変
化操作によりゴミ厚の判断を開始するが、この操作が焼
却炉の安定運転にとって外乱となる。また、上記公報記
載の発明は、30〜60分に1回ゴミ厚を判断してお
り、ゴミ厚が急激に変化した場合に対処が遅れるという
問題点がある。
In the invention described in Japanese Patent Application Laid-Open No. Hei 8-261431, the thickness of dust is determined from the transient response trend of the air flow rate. However, the criterion is not quantitative, and the result of the determination of the thickness of dust is determined by the operator. There is a problem that a difference occurs.
Further, in the invention described in the above publication, the determination of the dust thickness is started by the step change operation of the damper opening, but this operation becomes a disturbance for the stable operation of the incinerator. Further, the invention described in the above publication has a problem in that the dust thickness is determined once every 30 to 60 minutes, and there is a problem that the response is delayed when the dust thickness changes rapidly.

【0006】本発明は上記の諸点に鑑みなされたもの
で、本発明の目的は、ごみ等の廃棄物の焼却炉におい
て、焼却炉における計測信号と焼却炉の動特性数式モデ
ルを用いて、焼却炉内の廃棄物滞留量をリアルタイムで
定量的に推定することにより、運転員が運転経験の量に
左右されずに焼却炉内の廃棄物滞留量を把握でき、か
つ、運転員が廃棄物滞留量に応じた運転操作を行うこと
で焼却炉内の廃棄物滞留量が常に所定量に保たれ、その
結果、焼却炉の安定運転が可能となり、特にごみ焼却炉
の場合は、排ガス中のCO、NOx濃度の抑制、廃熱ボ
イラの蒸気流量の安定、蒸気タービン発電機の発電量の
安定等を図ることができ、しかも、燃焼が困難なごみの
大量滞留やごみが鎮火しかかるごみ切れ等を早期に把握
できる炉内滞留量推定方法及び装置を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object of the present invention is to provide an incinerator for waste such as garbage by using a measurement signal in the incinerator and a dynamic characteristic mathematical model of the incinerator. By quantitatively estimating the amount of waste accumulated in the incinerator in real time, the operator can grasp the amount of waste accumulated in the incinerator regardless of the amount of operating experience, and the operator can estimate the amount of waste accumulated in the incinerator. By performing the operation according to the amount, the amount of waste accumulated in the incinerator is always maintained at a predetermined amount, and as a result, the incinerator can be operated stably. , Control of NOx concentration, stabilization of steam flow rate of waste heat boiler, stabilization of power generation rate of steam turbine generator, etc., and large amount of refuse which is difficult to burn A method for estimating the amount of residence in the furnace that can be grasped at an early stage And a device.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の焼却炉における炉内滞留量推定方法は
却炉でごみを燃焼させるに際し、焼却炉における計測
信号である燃焼用空気流量、2次空気流量、燃焼用空気
温度、2次空気温度、燃焼室出口ガス温度、ボイラ出口
ガス温度、ボイラドラム圧力、主蒸気流量及び排ガス酸
素濃度焼却炉の動特性数式モデルを構成する焼却炉
全体のエネルギーバランス式、焼却炉内のマスバランス
式及び焼却炉内の空気比式を用いて、焼却炉内のごみ滞
留量をリアルタイムに算出することにより、焼却炉内の
ごみ滞留量を定量的に推定することを特徴としている
(図1〜図3参照)。
Means for Solving the Problems To achieve the above object, a method for estimating the amount of stagnation in an incinerator according to the present invention comprises :
Upon burning the garbage incinerator, combustion air flow rate is a measurement signal in the incinerator, the secondary air flow rate, the combustion air
Temperature, secondary air temperature, combustion chamber outlet gas temperature, boiler outlet
Gas temperature, boiler drum pressure, main steam flow rate and exhaust gas acid
Incinerator constituting the oxygen concentration, the dynamic characteristic mathematical model of the incinerator
Overall energy balance type, mass balance in incinerator
It is characterized by quantitatively estimating the amount of waste in the incinerator by calculating the amount of waste in the incinerator in real time using the equation and the air ratio formula in the incinerator. (See FIG. 3).

【0008】上記のように、焼却炉における計測信号
を、燃焼用空気流量、2次空気流量、燃焼用空気温度、
2次空気温度、燃焼室出口ガス温度、ボイラ出口ガス温
度、ボイラドラム圧力、主蒸気流量及び排ガス酸素濃度
とし、焼却炉の動特性数式モデルを、焼却炉全体のエネ
ルギーバランス式、焼却炉内のマスバランス式及び焼却
炉内の空気比式から構成する。また、上記の本発明の方
法において、焼却炉の動特性数式モデルを、ごみ滞留量
を未知数の1つとする連立微分方程式として把握し、こ
れらの連立微分方程式の微分項を差分で近似することに
より現在のごみ滞留量を求める計算式を導き出し、この
計算式から、焼却炉の静特性を表わす式から静特性計算
により算出したごみ滞留量の初期値を用いて、順次現在
のごみ滞留量を計算することが好ましい。
[0008] As described above, the measurement signal in the incinerator is calculated based on the combustion air flow rate, the secondary air flow rate, the combustion air temperature, and the like.
The secondary air temperature, the combustion chamber outlet gas temperature, the boiler outlet gas temperature, the boiler drum pressure, the main steam flow rate and the exhaust gas oxygen concentration, and the dynamic characteristics mathematical model of the incinerator, the energy balance formula of the entire incinerator, that make up the air ratio equation mass balance equation and the incinerator. Further, in the method of the present invention, the dynamic characteristic mathematical expression model of the incinerator is grasped as a simultaneous differential equation in which the amount of waste is one of unknowns, and a differential term of these simultaneous differential equations is approximated by a difference. A calculation formula for the current waste accumulation amount is derived, and the current waste accumulation amount is sequentially calculated from this expression using the initial value of the waste accumulation amount calculated by the static characteristic calculation from the expression representing the static characteristics of the incinerator. Is preferred.

【0009】本発明の焼却炉における炉内滞留量推定装
置は、焼却炉における計測信号と焼却炉の動特性数式モ
デルを用いて、焼却炉内のごみ滞留量を推定する装置で
あって、検出された焼却炉における計測値である燃焼用
空気流量、2次空気流量、燃焼用空気温度、2次空気温
度、燃焼室出口ガス温度、ボイラ出口ガス温度、ボイラ
ドラム圧力、主蒸気流量及び排ガス酸素濃度を入力する
計測信号入力処理手段と、計測信号入力処理手段に入力
され処理された計測信号から焼却炉の動特性数式モデル
を構成する焼却炉全体のエネルギーバランス式、焼却炉
内のマスバランス式及び焼却炉内の空気比式によりごみ
滞留量を算出する炉内滞留量推定計算手段と、炉内滞留
量推定計算手段で算出されたごみ滞留量の推定値に応じ
て焼却炉の操作を制御する制御手段とを備えたことを特
徴としている(図1〜図3参照)。
[0009] furnace residence quantity estimation apparatus according incinerator of the present invention, by using a dynamic characteristic mathematical model of the measurement signal and the incinerator in incinerators, an apparatus for estimating the waste holdup in the incinerator, For combustion which is the measured value in the incinerator detected
Air flow, secondary air flow, combustion air temperature, secondary air temperature
Degree, combustion chamber outlet gas temperature, boiler outlet gas temperature, boiler
Measurement signal input processing means for inputting the drum pressure, main steam flow rate, and exhaust gas oxygen concentration, and a dynamic characteristic mathematical model of the incinerator based on the measurement signals input to the measurement signal input processing means and processed.
The energy balance of the entire incinerator that constitutes the incinerator
In- furnace estimation calculation means that calculates the amount of waste retained by the mass balance formula in the furnace and the air ratio formula in the incinerator, and incineration in accordance with the estimated value of the amount of waste retained calculated by the in-furnace estimated amount calculation device And a control means for controlling the operation of the furnace (see FIGS. 1 to 3).

【0010】上記のように、計測信号入力処理手段に入
力される焼却炉における計測値を、燃焼用空気流量、2
次空気流量、燃焼用空気温度、2次空気温度、燃焼室出
口ガス温度、ボイラ出口ガス温度、ボイラドラム圧力、
主蒸気流量及び排ガス酸素濃度とし、炉内滞留量推定計
算手段で用いられる焼却炉の動特性数式モデルを、焼却
炉全体のエネルギーバランス式、焼却炉内のマスバラン
ス式及び焼却炉内の空気比式から構成する。また、上記
の本発明の装置において、炉内滞留量推定計算手段を、
連立微分方程式で構成される焼却炉の動特性数式モデル
を差分法を用いて解くものにし、その際、焼却炉の静特
性計算により算出したごみ滞留量の初期値を用いてごみ
滞留量を算出するものとすることが好ましい。
[0010] As described above, the measured values in the incinerator to be input to the measurement signal input processing means, the combustion air flow rate, 2
Secondary air flow rate, combustion air temperature, secondary air temperature, combustion chamber outlet gas temperature, boiler outlet gas temperature, boiler drum pressure,
The incinerator dynamic characteristic model used as the main steam flow rate and exhaust gas oxygen concentration and used in the incinerator residual amount estimating means is calculated using the energy balance equation for the entire incinerator, the mass balance equation in the incinerator, and the air ratio in the incinerator. It configures from the equation. Further, in the above-described apparatus of the present invention, the in-furnace residence amount estimation calculation means may include:
The incinerator dynamic characteristic mathematical model composed of simultaneous differential equations is solved using the difference method, and at that time, the amount of waste accumulated is calculated using the initial value of the amount of waste accumulated calculated by the static characteristics calculation of the incinerator It is preferable to do so.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。図1は、本発明の実施の形態による
焼却炉における炉内滞留量推定方法を実施する装置を示
している。なお、本実施の形態では、焼却炉としてスト
ーカ式ごみ焼却炉を用いているが、本発明はこれに限定
されるものではなく、ごみ以外の他の廃棄物(例えば、
汚泥、産業廃棄物等)に適用してもよく、また、ストー
カ炉以外の他の焼却炉(例えば、流動床炉、キルン式炉
等)を用いることも勿論可能である。また、本実施の形
態では、焼却炉における計測信号が、燃焼用空気流量、
2次空気流量、燃焼用空気温度、2次空気温度、燃焼室
出口ガス温度、ボイラ出口ガス温度、ボイラドラム圧
力、主蒸気流量、排ガス酸素濃度であり、焼却炉の動特
性数式モデルが、焼却炉全体のエネルギーバランス式、
焼却炉内のマスバランス式、焼却炉内の空気比式で構成
される場合を示しているが、本発明がこれに限定される
ものでないことは言うまでもない。
Embodiments of the present invention will be described below in detail. FIG. 1 shows an apparatus for carrying out a method for estimating a residence amount in an incinerator according to an embodiment of the present invention. In the present embodiment, a stoker-type waste incinerator is used as an incinerator, but the present invention is not limited to this, and other wastes other than waste (for example,
It may be applied to sludge, industrial waste, and the like, and it is of course possible to use other incinerators other than the stoker furnace (for example, a fluidized-bed furnace, a kiln-type furnace, and the like). Further, in the present embodiment, the measurement signal in the incinerator is a combustion air flow rate,
The secondary air flow rate, combustion air temperature, secondary air temperature, combustion chamber outlet gas temperature, boiler outlet gas temperature, boiler drum pressure, main steam flow rate, and exhaust gas oxygen concentration. Energy balance for the entire furnace,
Although a case is shown in which the mass balance type in the incinerator and the air ratio type in the incinerator are shown, it is needless to say that the present invention is not limited to this.

【0012】図1において、ごみ焼却炉10は、乾燥ス
トーカ12、燃焼ストーカ14及び後燃焼ストーカ16
を有するストーカ式ごみ焼却炉であり、ごみ焼却炉10
の燃焼室17後流には、廃熱ボイラ18、蒸気タービン
発電機20が設けられている。図1に示すように、ごみ
クレーン22によりごみがごみホッパ24に投入され
る。ごみホッパ24に投入されたごみは、給じん装置2
6により乾燥ストーカ12上に供給される。乾燥ストー
カ12上のごみは、高温燃焼ガスによる輻射熱とストー
カ下の燃焼用空気供給管28から供給される燃焼用空気
により乾燥着火する。乾燥ストーカ12、燃焼ストーカ
14、後燃焼ストーカ16は傾斜しており、その揺動運
動によりごみは順次後方のストーカに送られ燃焼を完結
する。ごみの燃焼で生じた焼却灰は、後燃焼ストーカ1
6後端の焼却灰抜出口30から抜き出される。一方、ご
みの燃焼により発生した排ガスは、廃熱ボイラ18に導
入されて、廃熱ボイラ18で廃熱が回収され、廃熱ボイ
ラ18で発生した蒸気は、高圧蒸気溜め34を介して蒸
気タービン発電機20等に使用される。19はボイラド
ラムである。また、燃焼室17の温度を一定範囲に制御
するために、2次空気供給管36から燃焼室17内に2
次空気を供給している。
In FIG. 1, a waste incinerator 10 includes a drying stoker 12, a combustion stoker 14, and a post-burning stoker 16
Is a stoker-type waste incinerator having
A waste heat boiler 18 and a steam turbine generator 20 are provided downstream of the combustion chamber 17. As shown in FIG. 1, dust is thrown into a dust hopper 24 by a dust crane 22. The refuse supplied to the refuse hopper 24 is supplied to the dust supply device 2.
6 feeds onto the drying stoker 12. The dust on the drying stoker 12 is dried and ignited by the radiant heat from the high-temperature combustion gas and the combustion air supplied from the combustion air supply pipe 28 below the stoker. The drying stoker 12, the combustion stoker 14, and the post-burning stoker 16 are inclined, and the refuse is sequentially sent to the rear stoker by the swinging motion to complete the combustion. The incineration ash generated by the combustion of refuse is used as post-combustion stoker 1
6 Extracted from the incineration ash outlet 30 at the rear end. On the other hand, the exhaust gas generated by the combustion of the refuse is introduced into the waste heat boiler 18, the waste heat is recovered by the waste heat boiler 18, and the steam generated by the waste heat boiler 18 is sent to the steam turbine via the high pressure steam reservoir 34. Used for the generator 20 and the like. 19 is a boiler drum. Further, in order to control the temperature of the combustion chamber 17 within a certain range, the secondary air
The next air is supplied.

【0013】図1に示すごみ焼却炉においてごみ滞留量
を算出するために、ごみ焼却炉の動特性数式モデルを作
成する。動特性数式モデルは、焼却炉全体でのエネルギ
ーバランス式、ストーカ上でのマスバランス式、燃焼室
内での空気比式で構成され、それらは、それぞれ下記の
式(1)〜(3)で表される。 d(CRRG)/dt+TBdPB/dt=(IB1−I
B2)Gs+CPAA1A1+CPAA2A2+HUηcWR+C
RRIR−CRROG−CPG{GA1+GA2+(22.4
/18)H2OGRI}TE (1)dWR/dt=GRI−η
cWR−GRO
(2)21/(21−O2)=(GA1+GA2)/
[{(1.01/1000)HU+0.5}ηcWR
(3)
In order to calculate the amount of waste accumulated in the incinerator shown in FIG. 1, a mathematical model of the dynamic characteristics of the incinerator is created. The dynamic characteristic formula model is composed of an energy balance formula for the entire incinerator, a mass balance formula on the stoker, and an air ratio formula in the combustion chamber, which are expressed by the following formulas (1) to (3), respectively. Is done. d (C R W R T G ) / dt + T B dP B / dt = (I B1 -I
B2) Gs + C PA G A1 T A1 + C PA G A2 T A2 + H U ηcW R + C
R G RI T R -C R G RO T G -C PG {G A1 + G A2 + (22.4
/ 18) H 2 OG RI} T E (1) dW R / dt = G RI -η
cW R -G RO
(2) 21 / (21−O 2 ) = (G A1 + G A2 ) /
[{(1.01 / 1000) H U +0.5} ηcW R ]
(3)

【0014】なお、上記の式(1)〜(3)における記
号の説明は次の通りである。 CPA :空気比熱[kcal/Nm3℃] CPG :排ガス比熱[kcal/Nm3℃] CR :ごみ比熱[kcal/kg℃] GA1 :燃焼用空気流量[Nm3/h] GA2 :2次空気流量[Nm3/h] GRI :ごみ供給量[kg/h] GRO :ごみ排出量[kg/h] Gs :主蒸気流量[kg/h] H2O :ごみ中水分率[kg/kg] HU :ごみ低位発熱量[kcal/kg] IB1 :ボイラ給水エンタルピ[kcal/kg] IB2 :蒸気エンタルピ[kcal/kg] O2 :排ガス酸素濃度[%] PB :ボイラドラム圧力[MPa] TA1 :燃焼用空気温度[℃] TA2 :2次空気温度[℃] TB :ボイラ時定数[kcal/MPa] TE :ボイラ出口ガス温度[℃] TG :燃焼室出口ガス温度[℃] TR :ごみ供給温度[℃] WR :ごみ滞留量[kg] ηc :ごみ燃焼速度[kg/kgh]
The explanation of the symbols in the above formulas (1) to (3) is as follows. C PA : Specific heat of air [kcal / Nm 3 ° C] C PG : Exhaust gas specific heat [kcal / Nm 3 ° C] C R : Waste specific heat [kcal / kg ° C] G A1 : Air flow rate for combustion [Nm 3 / h] G A2 : secondary air flow rate [Nm 3 / h] G RI : waste supply rate [kg / h] G RO: dust emissions [kg / h] Gs: main steam flow rate [kg / h] H 2 O : garbage in water rate [kg / kg] H U: waste LHV [kcal / kg] I B1: boiler feed water enthalpy [kcal / kg] I B2: steam enthalpy [kcal / kg] O 2: exhaust gas oxygen concentration [%] P B : boiler drum pressure [MPa] T A1: combustion air temperature [℃] T A2: 2 primary air temperature [° C.] T B: boiler time constant [kcal / MPa] T E: boiler outlet gas temperature [° C.] T G : combustion chamber exit gas temperature [° C.] T R: waste feed temperature [° C.] W R: waste holdup [kg] [eta] c: refuse combustion rate [kg / kgh]

【0015】式(1)〜(3)を用いて未知数であるご
み滞留量WRを算出する。ごみ滞留量WR以外で、直接計
測できず、かつ、変動が大きいために未知数として扱う
プロセス量を、ごみ供給量GRI、ごみ低位発熱量HU
する。従って、式(1)〜(3)は、ごみ滞留量WR
ごみ供給量GRI、ごみ低位発熱量HUを未知数とする連
立微分方程式となる。式(1)〜(3)において、計測
信号は、燃焼用空気流量GA1、2次空気流量GA2、燃焼
用空気温度TA1、2次空気温度TA2、燃焼室出口ガス温
度TG、ボイラ出口ガス温度TE、ボイラドラム圧力
B、主蒸気流量Gs、排ガス酸素濃度O2であり、その
他は、ほぼ一定値であるので係数として扱うことができ
る。式(1)〜(3)からなる連立微分方程式を、連立
差分方程式の初期値問題に近似して解く。以下に、差分
法の1つであるEuler(オイラー)法を用いて解い
た例を示す。ただし、本実施の形態では、連立差分方程
式の初期値問題の解法としてEuler法を用いている
が、本発明は、これに限定されるものではなく、他の解
法を用いることもできる。
A waste retention amount W R , which is an unknown number, is calculated by using equations (1) to (3). Outside dust retention amount W R, can not be directly measured, and the process variables to be treated as unknown for a large variation, dust supply amount G RI, and garbage lower heating value H U. Therefore, the expressions (1) to (3) are equivalent to the waste retention amount W R ,
A simultaneous differential equation having the garbage supply amount G RI and the lower heat generation amount H U as unknowns is obtained. In the equations (1) to (3), the measurement signals are the combustion air flow rate G A1 , the secondary air flow rate G A2 , the combustion air temperature T A1 , the secondary air temperature T A2 , the combustion chamber outlet gas temperature T G , The boiler outlet gas temperature T E , the boiler drum pressure P B , the main steam flow rate Gs, and the exhaust gas oxygen concentration O 2 , and the other values are almost constant and can be treated as coefficients. The simultaneous differential equations composed of the equations (1) to (3) are solved by approximating the initial value problem of the simultaneous differential equations. The following is an example of solving using the Euler (Euler) method, which is one of the difference methods. However, in the present embodiment, the Euler method is used as a solution of the initial value problem of the simultaneous difference equations, but the present invention is not limited to this, and another solution may be used.

【0016】式(1)、(2)は微分項d/dtをも
つ。この微分項で微分されるプロセス量は、ごみ滞留量
R、燃焼室出口ガス温度TG、ボイラドラム圧力PB
ある。ごみ滞留量WR、燃焼室出口ガス温度TG、ボイラ
ドラム圧力PBの微分を差分で近似する。燃焼室出口ガ
ス温度TG、ボイラドラム圧力PBについては計測信号な
ので、差分は現在の計測値と過去の計測値との勾配とす
る。ごみ滞留量WRは未知数であり、その差分を式
(4)で表す。 dWR/dt={WR(t)−WR(t−△)}/△ (4) 式(4)における記号の説明は次の通りである。 WR(t) :現在のごみ滞留量[kg] WR(t−△) :1ステップ前のごみ滞留量[kg] t :現在時刻[h] △ :Euler法の1ステップサイズ 式(4)を式(1)、(2)に代入し、以下のように式
を変形する。式(1)を式(5)に変形する。 AHUR(t)+BWR(t)+CGRI+D=0 (5) 式(5)における記号A、B、C、Dの内容は式(6)
〜(9)の通りである。 A=ηc (6) B=−CRG/△−CR(dTG/dt) (7) C=CRR−CPG(22.4/18)H2OTE (8) D=(IB1−IB2)Gs+CPAA1A1+CPAA2A2 −CRROG−CPG(GA1+GA2)TE−TB(dPB/dt) +CRGR(t−△)/△ (9)
Equations (1) and (2) have a differential term d / dt. Process variable that is differentiated by the differentiating section is a dust retention amount W R, the combustion chamber exit gas temperature T G, the boiler drum pressure P B. The difference between the waste retention amount W R , the combustion chamber outlet gas temperature T G , and the boiler drum pressure P B is approximated by a difference. Combustion chamber exit gas temperature T G, since the boiler drum pressure P B is a measurement signal, the difference is the slope of the current measured value and the past measurement value. The waste retention amount W R is an unknown number, and the difference is represented by equation (4). dW R / dt = {W R (t) -W R (t- △)} / △ (4) a description of symbols in formula (4) is as follows. W R (t): current waste holdup [kg] W R (t- △ ): 1 step before the waste holdup [kg] t: current time [h] △: 1 step size equation Euler method (4 ) Is substituted into equations (1) and (2), and the equation is modified as follows. Equation (1) is transformed into equation (5). AH U W R (t) + BW R (t) + CG RI + D = 0 (5) symbols in formula (5) A, B, C , the contents of the D formula (6)
To (9). A = ηc (6) B = -C R T G / △ -C R (dT G / dt) (7) C = C R T R -C PG (22.4 / 18) H 2 OT E (8) D = (I B1 -I B2) Gs + C PA G A1 T A1 + C PA G A2 T A2 -C R G RO T G -C PG (G A1 + G A2) T E -T B (dP B / dt) + C R T G W R (t- △) / △ (9)

【0017】式(2)を式(10)に変形する。 GRI+EWR(t)+F=0 (10) 式(10)における記号E、Fの内容は式(11)、
(12)の通りである。 E=−ηc−1/△ (11) F=WR(t−△)/△−GRO (12) 式(3)を式(13)に変形する。 GHUR(t)+HWR(t)+I=0 (13) 式(13)における記号G、H、Iの内容は式(14)
〜(16)の通りである。 G=(1.01/1000)ηc (14) H=0.5ηc (15) I=−(21−O2)/21(GA1+GA2) (16)
Equation (2) is transformed into equation (10). G RI + EW R (t) + F = 0 (10) symbols in formula (10) E, the content of F is the formula (11),
It is as (12). E = -ηc-1 / △ ( 11) F = W R (t- △) / △ -G RO (12) Equation (3) is deformed into the equation (13). GH U W R (t) + HW R (t) + I = 0 (13) symbol G in formula (13), H, the contents of the I formula (14)
To (16). G = (1.01 / 1000) ηc (14) H = 0.5ηc (15) I = - (21-O 2) / 21 (G A1 + G A2) (16)

【0018】式(5)、(10)、(13)より、現在
のごみ滞留量WR(t)、ごみ供給量GRI、ごみ低位発
熱量HUを算出する。式(10)を式(17)に変形
し、式(13)を式(18)に変形する。 GRI=−EWR(t)−F (17) HUR(t)=(−HWR(t)−I)/G (18) 式(17)、(18)を式(5)に代入すると、現在の
ごみ滞留量WR(t)が式(19)で得られる。 WR(t)=(AI+CFG−DG)/(−AH+BG−CEG) (19) また、式(19)を式(17)に代入するとごみ供給量
RIが式(20)で得られ、式(19)を式(18)に
代入するとごみ低位発熱量HUが式(21)で得られ
る。 GRI={−E(AI+CFG−DG)}/(−AH+BG−CEG)−F (20) HU=−H/G −{I(−AH+BG−CEG)}/{G(AI+CFG−DG)}(21) 式(19)の右辺A、B、C、D、E、F、G、H、I
は、計測信号GA1、GA2、TA1、TA2、TG、TE
B、Gs、O2、TGの勾配、PBの勾配、各係数、1ス
テップ前のごみ滞留量WR(t−△)、Euler法の
1ステップサイズ△からなる。したがって、ごみ滞留量
Rの初期値が得られれば、順次現在のごみ滞留量W
R(t)が計算できる。
From the equations (5), (10), and (13), the current waste retention amount W R (t), the waste supply amount G RI , and the lower heat generation amount H U are calculated. Equation (10) is transformed into equation (17), and equation (13) is transformed into equation (18). G RI = -EW R (t) -F (17) H U W R (t) = (- HW R (t) -I) / G (18) Equation (17), (18) Equation (5) , The current waste retention amount W R (t) is obtained by equation (19). W R (t) = (AI + CFG−DG) / (− AH + BG−CEG) (19) Further, when the equation (19) is substituted into the equation (17), the waste supply amount GRI is obtained by the equation (20). By substituting (19) into equation (18), the lower heat generation value H U of the dust is obtained by equation (21). G RI = {- E (AI + CFG-DG)} / (- AH + BG-CEG) -F (20) H U = -H / G - {I (-AH + BG-CEG)} / {G (AI + CFG-DG)} (21) A, B, C, D, E, F, G, H, I on the right side of equation (19)
Are the measurement signals G A1 , G A2 , T A1 , T A2 , T G , T E ,
P B, Gs, gradient of O 2, T G, the gradient of P B, the coefficients, one step before the waste holdup W R (t- △), consisting of one step size of the Euler method △. Therefore, as long it obtained initial value of the waste holdup W R, sequential current waste holdup W
R (t) can be calculated.

【0019】以下に、ごみ滞留量WRの初期値の算出方
法を示す。ごみ滞留量WRの初期値は、定常運転中のご
み焼却炉の計測値から以下のように算出する。ごみ焼却
炉が定常運転中は、ごみ滞留量WR、燃焼室出口ガス温
度TG、ボイラドラム圧力PBは、ほぼ一定でその時間変
化は緩やかであり、短時間での変化は無視することがで
きる。したがって、式(1)、(2)の左辺=0と考え
てよく、図1に示すごみ焼却炉において、焼却炉全体で
のエネルギーバランス式、ストーカ上でのマスバランス
式、燃焼室内での空気比式は、式(22)〜(24)で
表される。式(22)〜(24)はごみ焼却炉の静特性
を表しており、式(22)〜(24)から静特性計算に
より未知数を算出する。 0=(IB1−IB2)Gs+CPAA1A1+CPAA2A2 +HUηcWR+CRRIR−CRROG −CPG{GA1+GA2+(22.4/18)H2OGRI}TE (22) 0=GRI−ηcWR−GRO (23) 21/(21−O2) =(GA1+GA2)/[{(1.01/1000)HU+0.5}ηcWR] (24)
The method for calculating the initial value of the waste retention amount W R will be described below. The initial value of the waste holdup W R is calculated as follows from the measured values of the incinerator during steady operation. During steady operation of the waste incinerator, the amount of retained waste W R , the temperature T G of the combustion chamber outlet gas, and the pressure P B of the boiler drum are almost constant and their time changes are gradual, and changes in a short time should be ignored. Can be. Therefore, it can be considered that the left side of equations (1) and (2) = 0, and in the refuse incinerator shown in FIG. 1, the energy balance type for the entire incinerator, the mass balance type for the stoker, and the air in the combustion chamber The ratio expression is represented by Expressions (22) to (24). Equations (22) to (24) represent the static characteristics of the refuse incinerator, and the unknowns are calculated from the equations (22) to (24) by static characteristic calculation. 0 = (I B1 -I B2) Gs + C PA G A1 T A1 + C PA G A2 T A2 + H U ηcW R + C R G RI T R -C R G RO T G -C PG {G A1 + G A2 + (22. 4/18) H 2 OG RI} T E (22) 0 = G RI -ηcW R -G RO (23) 21 / (21-O 2) = (G A1 + G A2) / [{(1.01 / 1000) H U +0.5} ηcW R ] (24)

【0020】式(22)を式(25)に変形する。 JHUR+KGRI+L=0 (25) 式(25)における記号J、K、Lの内容は式(26)
〜(28)の通りである。 J=ηc (26) K=CRR−CPG(22.4/18)H2OTE (27) L=(IB1−IB2)Gs+CPAA1A1+CPAA2A2 −CRROG−CPG(GA1+GA2)TE (28) 式(23)を式(29)に変形する。 GRI+MWR+N=0 (29) 式(29)における記号M、Nの内容は式(30)、
(31)の通りである。 M=−ηc (30) N=−GRO (31) 式(24)を式(32)に変形する。 PHUR+QWR+R=0 (32) 式(32)における記号P、Q、Rの内容は式(33)
〜(35)の通りである。 P=(1.01/1000)ηc (33) Q=0.5ηc (34) R=−(21−O2)/21(GA1+GA2) (35)
Equation (22) is transformed into equation (25). JH U W R + KG RI + L = 0 (25) symbols in the formula (25) J, K, the contents of the L formula (26)
To (28). J = ηc (26) K = C R T R -C PG (22.4 / 18) H 2 OT E (27) L = (I B1 -I B2) Gs + C PA G A1 T A1 + C PA G A2 T A2 -C R G RO T G -C PG (G A1 + G A2) T E (28) equation (23) is deformed into the equation (29). G RI + MW R + N = 0 (29) Equation symbol M in (29), the content of N is formula (30),
(31). M = −ηc (30) N = −G RO (31) Equation (24) is transformed into equation (32). PH U W R + QW R + R = 0 (32) symbols in the formula (32) P, Q, the content of R is formula (33)
To (35). P = (1.01 / 1000) ηc (33) Q = 0.5ηc (34) R = - (21-O 2) / 21 (G A1 + G A2) (35)

【0021】式(25)、(29)、(32)より、ご
み滞留量WRの初期値を算出する。式(29)を式(3
6)に変形し、式(32)を式(37)に変形する。 GRI=−MWR−N (36) HUR=(−QWR−R)/P (37) 式(36)、(37)を式(25)に代入すると、ごみ
滞留量WRの初期値が式(38)で算出できる。 WR=(JR+KNP−LP)/(−JQ−KMP) (38) 式(38)で算出したごみ滞留量WRの初期値と各計測
値、各係数を用いて、式(19)により1ステップサイ
ズ△[h]後のごみ滞留量WRが算出できる。以後同様に
1ステップサイズ△[h]前のごみ滞留量WR(t−△)
と各計測値、各係数を用いて、式(19)により現在の
ごみ滞留量WR(t)がリアルタイムに算出できる。
[0021] Equation (25), (29) and (32), and calculates the initial value of the waste holdup W R. Equation (29) is replaced with equation (3)
6), and the equation (32) is transformed into the equation (37). G RI = -MW R -N (36 ) H U W R = (- QW R -R) / P (37) Equation (36), is substituted into equation (25) to (37), dust retention amount W R Can be calculated by equation (38). W R = (JR + KNP- LP) / (- JQ-KMP) (38) Equation (38) the initial value of the waste holdup W R calculated at the respective measurement values, using the coefficients, the equation (19) 1 The waste retention amount W R after the step size △ [h] can be calculated. Thereafter, similarly, the waste retention amount W R (t- △) before the one step size △ [h].
The current waste retention amount W R (t) can be calculated in real time by equation (19), using the measured values and the respective coefficients.

【0022】図2は、本発明の炉内滞留量推定装置を含
む焼却炉の監視・操作の一例を示す全体構成図である。
図2では、一例として、ごみ焼却炉におけるごみ滞留量
を推定する場合について説明しているが、本発明はこれ
に限定されるものではない。図2において、ごみ焼却炉
40の計測信号は、センサ42を介して制御装置44に
入力され、制御装置44を介してごみ滞留量推定装置4
6に入力される。ごみ滞留量推定装置46の計測信号入
力処理部48に入力された計測信号を用いて、ごみ滞留
量推定計算部50では、ごみ焼却炉の動特性数式モデル
によりごみ滞留量WRがリアルタイムに算出される。算
出されたごみ滞留量WRは、ごみ滞留量推定装置46の
推定結果出力処理部52から、オペレータコンソール5
4に送られて表示される。運転員(オペレータ)は、表
示されたごみ滞留量WRに応じてごみ焼却炉40の操作
を行う。ごみ焼却炉40の操作は、制御装置44に対し
て操作量、設定値を変更することにより行われ、操作量
は、アクチュエータ56を介してごみ焼却炉40に伝え
られる。
FIG. 2 is an overall configuration diagram showing an example of monitoring and operating an incinerator including the in-furnace retention amount estimation device of the present invention.
FIG. 2 illustrates, as an example, a case in which the amount of retained refuse in a refuse incinerator is estimated, but the present invention is not limited to this. In FIG. 2, a measurement signal of the waste incinerator 40 is input to a control device 44 via a sensor 42, and the waste accumulation amount estimation device 4
6 is input. Using the measurement signal input to the measurement signal input processing unit 48 of the waste holdup estimation device 46, the waste holdup estimate calculating part 50, calculates dust retention amount W R is the real time dynamic characteristic mathematical model of the waste incinerator Is done. Calculated waste residual amount W R from estimation result output processing section 52 of the waste holdup estimation device 46, the operator console 5
4 and displayed. Operator (operator), operates the waste incinerator 40 in accordance with the waste holdup W R that is displayed. The operation of the refuse incinerator 40 is performed by changing an operation amount and a set value to the control device 44, and the operation amount is transmitted to the refuse incinerator 40 via the actuator 56.

【0023】図3は、本発明の焼却炉における炉内滞留
量推定の計算処理の一例を示すフローチャートである。
図3では、一例として、ごみ焼却炉におけるごみ滞留量
を推定する場合について説明しているが、本発明はこれ
に限定されるものではない。図3に示すように、ごみ焼
却炉が定常運転中でない場合は、ごみ滞留量WRの推定
は行わない。ごみ焼却炉が定常運転に入った場合は、初
めに、計測信号を用いて静特性計算を行い、ごみ滞留量
Rの初期値を算出する。フローチャートの1サイクル
後に、ごみ滞留量の初期値と計測信号を用いて現在のご
み滞留量を算出する。以後、1サイクル前に算出したご
み滞留量と計測信号を用いて現在のごみ滞留量を推定す
ることを繰り返す。
FIG. 3 is a flowchart showing an example of a calculation process for estimating the amount of residence in the incinerator of the present invention.
FIG. 3 illustrates, as an example, a case in which the amount of waste retained in a waste incinerator is estimated, but the present invention is not limited to this. As shown in FIG. 3, if the incinerator is not in steady operation, the estimation of the waste holdup W R is not performed. If the refuse incinerator has entered the steady operation, initially, performs the static characteristic calculation using the measurement signal, and calculates the initial value of the waste holdup W R. After one cycle of the flowchart, the current waste accumulation amount is calculated using the initial value of the waste accumulation amount and the measurement signal. Thereafter, the estimation of the current dust accumulation amount using the dust accumulation amount calculated one cycle before and the measurement signal is repeated.

【0024】図4は、本発明の炉内滞留量推定方法を適
用した実炉(ストーカ式ごみ焼却炉)でのデータの一例
であり、図5は、同じ炉でのごみ投入実績のデータの一
例である。2つのグラフとも、横軸は時間であり、推定
開始又は投入開始から6時間のデータを示している。以
下、各グラフを説明する。図4は、ごみ滞留量WRの推
定値[kg]の経時変化を示している。これに対して、図
5は、ごみの投入実績[t]の経時変化を示しており、
ごみクレーンによるごみホッパへのごみ投入実績の合計
を1時間毎に表したものである(図1参照)。図4と図
5のグラフを比較すると、ごみの投入量が減少(1時間
後)してから約30分後にごみ滞留量の推定値が減少し
ていることがわかる。ごみホッパの容量を考慮すれば、
ごみ滞留量の推定値とごみの投入量(投入実績)との関
係は妥当であることがわかる。
FIG. 4 shows an example of data in a real furnace (stoker type waste incinerator) to which the method for estimating the in-furnace retention amount of the present invention is applied, and FIG. This is an example. In each of the two graphs, the horizontal axis indicates time, and indicates data for 6 hours from the start of estimation or the start of introduction. Hereinafter, each graph will be described. Figure 4 shows the time course of the estimated value of the waste holdup W R [kg]. On the other hand, FIG. 5 shows a change over time of the refuse input result [t],
The total amount of waste input to the waste hopper by the waste crane is shown every hour (see Fig. 1). Comparing the graphs of FIG. 4 and FIG. 5, it can be seen that the estimated value of the garbage retention amount decreases about 30 minutes after the refuse input amount decreases (after 1 hour). Considering the capacity of the garbage hopper,
It can be seen that the relationship between the estimated value of the garbage accumulation amount and the amount of refuse input (input results) is appropriate.

【0025】[0025]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 焼却炉内の廃棄物滞留量が、焼却炉における計
測信号と焼却炉の動特性数式モデルを用いてリアルタイ
ムで定量的に推定されるので、運転員の運転経験の量に
左右されずに焼却炉内の廃棄物滞留量を把握できる。 (2) 焼却炉内の廃棄物滞留量に応じた運転操作を行
うことにより、焼却炉内の廃棄物滞留量を常に所定量に
保つことができるので、焼却炉の安定運転が可能とな
り、特にごみ焼却炉の場合には、排ガス中のCO、NO
x濃度の抑制、廃熱ボイラの蒸気流量の安定、蒸気ター
ビン発電機の発電量の安定等が図れる。 (3) 本発明をごみ焼却炉に適用する場合、焼却炉内
のごみ滞留量が、焼却炉における計測信号と焼却炉の動
特性数式モデルを用いてリアルタイムに推定されるの
で、燃焼が困難なごみの大量滞留やごみが鎮火しかかる
ごみ切れ等を早期に把握できる。
As described above, the present invention has the following effects. (1) Since the amount of accumulated waste in the incinerator is quantitatively estimated in real time using the measurement signal in the incinerator and the mathematical model of the dynamic characteristic of the incinerator, it is not affected by the amount of operating experience of the operator. The amount of waste accumulated in the incinerator can be ascertained. (2) By performing an operation in accordance with the amount of waste accumulated in the incinerator, the amount of accumulated waste in the incinerator can always be maintained at a predetermined amount, so that stable operation of the incinerator becomes possible. In the case of refuse incinerator, CO, NO in exhaust gas
The x concentration can be suppressed, the steam flow rate of the waste heat boiler can be stabilized, and the power generation amount of the steam turbine generator can be stabilized. (3) When the present invention is applied to a refuse incinerator, the amount of stagnation in the incinerator is estimated in real time using a measurement signal in the incinerator and a mathematical model of the dynamic characteristic of the incinerator, so that refuse difficult to combust. It is possible to grasp at an early stage whether a large amount of waste has been collected or the waste has ceased to extinguish.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による焼却炉における炉内
滞留量推定方法を実施する装置を示す概略構成図であ
る。
FIG. 1 is a schematic configuration diagram showing an apparatus for performing a method for estimating a residence amount in an incinerator according to an embodiment of the present invention.

【図2】本発明の炉内滞留量推定装置を含む焼却炉の監
視・操作の一例を示す全体構成図である。
FIG. 2 is an overall configuration diagram showing an example of monitoring and operation of an incinerator including the in-furnace retention amount estimation device of the present invention.

【図3】本発明の焼却炉における炉内滞留量推定の計算
処理の一例を示すフローチャートである。
FIG. 3 is a flowchart showing an example of a calculation process for estimating the amount of residence in the incinerator in the incinerator according to the present invention.

【図4】本発明の炉内滞留量推定方法を適用した実炉
(ストーカ式ごみ焼却炉)でのデータの一例で、ごみ滞
留量推定値の経時変化を示すグラフである。
FIG. 4 is a graph showing an example of data in an actual furnace (a stoker-type incinerator) to which the method for estimating the in-furnace retention amount of the present invention is applied, showing a change over time of the estimated value of the retention amount of waste.

【図5】実炉(ストーカ式ごみ焼却炉)でのデータの一
例で、ごみ投入実績の経時変化を示すグラフである。
FIG. 5 is a graph showing an example of data in an actual furnace (stoker type waste incinerator), showing a change over time in the actual result of waste input.

【符号の説明】[Explanation of symbols]

10、40 ごみ焼却炉 12 乾燥ストーカ 14 燃焼ストーカ 16 後燃焼ストーカ 17 燃焼室 18 廃熱ボイラ 19 ボイラドラム 20 蒸気タービン発電機 22 ごみクレーン 24 ごみホッパ 26 給じん装置 28 燃焼用空気供給管 30 焼却灰抜出口 34 高圧蒸気溜め 36 2次空気供給管 42 センサ 44 制御装置 46 ごみ滞留量推定装置 48 計測信号入力処理部 50 ごみ滞留量推定計算部 52 推定結果出力処理部 54 オペレータコンソール 56 アクチュエータ 10, 40 Refuse incinerator 12 Dry stoker 14 Combustion stoker 16 Post-combustion stoker 17 Combustion chamber 18 Waste heat boiler 19 Boiler drum 20 Steam turbine generator 22 Refuse crane 24 Refuse hopper 26 Dust supply device 28 Combustion air supply pipe 30 Incineration ash Extraction port 34 High-pressure steam reservoir 36 Secondary air supply pipe 42 Sensor 44 Control device 46 Waste accumulation amount estimation device 48 Measurement signal input processing unit 50 Waste accumulation amount estimation calculation unit 52 Estimation result output processing unit 54 Operator console 56 Actuator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯浅 健司 神戸市中央区東川崎町1丁目1番3号 川崎重工業株式会社 神戸本社内 (72)発明者 安河内 剛 神戸市中央区東川崎町1丁目1番3号 川崎重工業株式会社 神戸本社内 (56)参考文献 特開 平7−301413(JP,A) 特開 昭62−169920(JP,A) 特開 平9−303741(JP,A) 特開 平7−133917(JP,A) 特開 平8−94052(JP,A) (58)調査した分野(Int.Cl.7,DB名) F23G 5/50 ZAB ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenji Yuasa 1-3-1 Higashikawasaki-cho, Chuo-ku, Kobe Kawasaki Heavy Industries, Ltd. Kobe Head Office (72) Inventor Tsuyoshi Yasukochi 1-1-1, Higashikawasaki-cho, Chuo-ku, Kobe No. 3 Kawasaki Heavy Industries, Ltd. Kobe Head Office (56) References JP-A-7-301413 (JP, A) JP-A-62-169920 (JP, A) JP-A-9-303741 (JP, A) JP 7-133917 (JP, A) JP-A-8-94052 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F23G 5/50 ZAB

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 焼却炉でごみを燃焼させるに際し、焼却
炉における計測信号である燃焼用空気流量、2次空気流
量、燃焼用空気温度、2次空気温度、燃焼室出口ガス温
度、ボイラ出口ガス温度、ボイラドラム圧力、主蒸気流
量及び排ガス酸素濃度焼却炉の動特性数式モデル
構成する焼却炉全体のエネルギーバランス式、焼却炉内
のマスバランス式及び焼却炉内の空気比式を用いて、焼
却炉内のごみ滞留量をリアルタイムに算出することによ
り、焼却炉内のごみ滞留量を定量的に推定することを特
徴とする焼却炉における炉内滞留量推定方法
When burning refuse in an incinerator , a combustion air flow rate and a secondary air flow which are measurement signals in the incinerator.
Amount, combustion air temperature, secondary air temperature, combustion chamber outlet gas temperature
Degree, boiler outlet gas temperature, boiler drum pressure, main steam flow
The amount and the exhaust gas oxygen concentration, the dynamic characteristic mathematical model of the incinerator
Energy balance system for the entire incinerator, inside the incinerator
Incineration characterized by quantitatively estimating the amount of waste in the incinerator by calculating the amount of waste in the incinerator in real time using the mass balance equation and the air ratio in the incinerator Method for estimating the amount of residence in the furnace .
【請求項2】 焼却炉の動特性数式モデルを、ごみ滞留
量を未知数の1つとする連立微分方程式として把握し、
これらの連立微分方程式の微分項を差分で近似すること
により現在のごみ滞留量を求める計算式を導き出し、こ
の計算式から、焼却炉の静特性を表わす式から静特性計
算により算出したごみ滞留量の初期値を用いて、順次現
在のごみ滞留量を計算する請求項記載の焼却炉におけ
る炉内滞留量推定方法
2. A model for calculating a dynamic characteristic of an incinerator as a simultaneous differential equation in which the amount of waste retained is one of unknowns,
By approximating the differential terms of these simultaneous differential equations by the difference, a calculation formula for the current waste retention amount is derived, and from this calculation formula, the waste retention amount calculated by the static characteristics calculation from the expression representing the static characteristics of the incinerator. 2. The method for estimating the amount of accumulated waste in an incinerator according to claim 1, wherein the current amount of accumulated waste is sequentially calculated using the initial value of ( 1 ) .
【請求項3】 焼却炉における計測信号と焼却炉の動特
性数式モデルを用いて、焼却炉内のごみ滞留量を推定す
る装置であって、検出された焼却炉における計測値であ
る燃焼用空気流量、2次空気流量、燃焼用空気温度、2
次空気温度、燃焼室出口ガス温度、ボイラ出口ガス温
度、ボイラドラム圧力、主蒸気流量及び排ガス酸素濃度
を入力する計測信号入力処理手段と、計測信号入力処理
手段に入力され処理された計測信号から焼却炉の動特性
数式モデルを構成する焼却炉全体のエネルギーバランス
式、焼却炉内のマスバランス式及び焼却炉内の空気比式
によりごみ滞留量を算出する炉内滞留量推定計算手段
と、炉内滞留量推定計算手段で算出されたごみ滞留量の
推定値に応じて焼却炉の操作を制御する制御手段とを備
えたことを特徴とする焼却炉における炉内滞留量推定装
Using 3. dynamics mathematical model of the measurement signal and the incinerator in incinerators, an apparatus for estimating the waste holdup in the incinerator, measurements der in detected incinerators
Combustion air flow, secondary air flow, combustion air temperature,
Secondary air temperature, combustion chamber outlet gas temperature, boiler outlet gas temperature
Time, construction boiler drum pressure, the main steam flow rate and the measurement signal input processing means for inputting an exhaust gas oxygen concentration <br/>, the dynamic characteristic mathematical model of the incinerator from the input to the measurement signal input processing means processed measurement signal Energy balance of the entire incinerator
Calculating means for calculating the amount of refuse accumulated in the incinerator using the equation, mass balance equation in the incinerator and the air ratio equation in the incinerator, and garbage accumulation calculated by the means for estimating the accumulated amount in the furnace Control means for controlling the operation of the incinerator in accordance with the estimated value of the amount .
【請求項4】 炉内滞留量推定計算手段が、連立微分方
程式で構成される焼却炉の動特性数式モデルを差分法を
用いて解くものであり、その際、焼却炉の静特性計算に
より算出したごみ滞留量の初期値を用いてごみ滞留量を
算出するようにした請求項記載の焼却炉における炉内
滞留量推定装置。
4. An incinerator residual amount estimating calculation means for solving a dynamic characteristic mathematical model of an incinerator constituted by simultaneous differential equations using a difference method, wherein the calculation is performed by a static characteristic calculation of the incinerator. 4. The in-furnace retention amount estimating apparatus for an incinerator according to claim 3 , wherein the waste retention amount is calculated using the initial value of the waste retention amount.
JP9218120A 1997-07-28 1997-07-28 Method and apparatus for estimating stagnation amount in incinerator Expired - Lifetime JP3023080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9218120A JP3023080B2 (en) 1997-07-28 1997-07-28 Method and apparatus for estimating stagnation amount in incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9218120A JP3023080B2 (en) 1997-07-28 1997-07-28 Method and apparatus for estimating stagnation amount in incinerator

Publications (2)

Publication Number Publication Date
JPH1151355A JPH1151355A (en) 1999-02-26
JP3023080B2 true JP3023080B2 (en) 2000-03-21

Family

ID=16714950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9218120A Expired - Lifetime JP3023080B2 (en) 1997-07-28 1997-07-28 Method and apparatus for estimating stagnation amount in incinerator

Country Status (1)

Country Link
JP (1) JP3023080B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106821A (en) * 2000-09-29 2002-04-10 Kawasaki Heavy Ind Ltd Method and device for controlling combustion in refuse incineration plant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169920A (en) * 1986-01-22 1987-07-27 Takuma Co Ltd Multi-variable automatic combustion control of incinerator
JP2847468B2 (en) * 1994-04-29 1999-01-20 川崎重工業株式会社 Waste Property Estimation Method and Estimation Device for Waste Incinerator
JPH09303741A (en) * 1996-05-10 1997-11-28 Kobe Steel Ltd Method and device for control of fluidized bed incineration furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106821A (en) * 2000-09-29 2002-04-10 Kawasaki Heavy Ind Ltd Method and device for controlling combustion in refuse incineration plant

Also Published As

Publication number Publication date
JPH1151355A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
US7035717B2 (en) Method for controlling a thermodynamic process, in particular a combustion process
KR20000022068A (en) Combustion control method and apparatus for waste incinerators
JP3023080B2 (en) Method and apparatus for estimating stagnation amount in incinerator
JP3822328B2 (en) Method for estimating the lower heating value of combustion waste in refuse incinerators
WO2019235377A1 (en) Method for estimating state quantity of combustion facility, combustion control method, and combustion control device
JP3466555B2 (en) Combustion control method and device for refuse incineration plant
JP6722458B2 (en) Fly ash treatment facility and method of supplying heavy metal fixing agent for fly ash treatment
TW419575B (en) Method for automatically setting the firing of a garbage incineration plant
JP3668405B2 (en) Waste incinerator control method and apparatus
WO1991014915A1 (en) Method of controlling combustion in fluidized bed incinerator
JP2022183710A (en) Controller, garbage incineration facility, control method, and program
JP2022076571A (en) System control device and control method
JPH0468533B2 (en)
JP2000028123A (en) Secondary combustion controller for refuse incinerator
JPH09273731A (en) Control method of combustion in incinerating furnace
JPH10238735A (en) Refuse incinerating furnace, method and apparatus for detecting hopper bridge
JPH0320501A (en) Steam temperature control of boiler
JPH11108327A (en) Garbage incinerator and combustion control method
JP2756815B2 (en) Boiler combustion control search method and apparatus
JPH06341629A (en) Method and device for controlling air ratio in fluidized-bed furnace
JPH09303741A (en) Method and device for control of fluidized bed incineration furnace
JP2023059347A (en) Corrosiveness estimation method for boiler and boiler device
JPH1114027A (en) Method of controlling combustion of incinerator
JP3582955B2 (en) Method for estimating garbage remaining amount of garbage incinerator and simulated incinerator
JP3582956B2 (en) Estimation method of garbage burning amount of refuse incinerator and simulated incinerator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 14

EXPY Cancellation because of completion of term