JP2874885B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof

Info

Publication number
JP2874885B2
JP2874885B2 JP1031081A JP3108189A JP2874885B2 JP 2874885 B2 JP2874885 B2 JP 2874885B2 JP 1031081 A JP1031081 A JP 1031081A JP 3108189 A JP3108189 A JP 3108189A JP 2874885 B2 JP2874885 B2 JP 2874885B2
Authority
JP
Japan
Prior art keywords
layer
silicide
metal compound
impurity layer
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1031081A
Other languages
Japanese (ja)
Other versions
JPH02211622A (en
Inventor
巌 國島
恭一 須黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1031081A priority Critical patent/JP2874885B2/en
Publication of JPH02211622A publication Critical patent/JPH02211622A/en
Application granted granted Critical
Publication of JP2874885B2 publication Critical patent/JP2874885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は浅い不純物層を有する半導体装置及びその製
造方法に関する。
The present invention relates to a semiconductor device having a shallow impurity layer and a method for manufacturing the same.

(従来の技術) 近年、コンピューターや通信機器の重要部分には、多
数のトランジスタや抵抗等を電気回路を達成する様に結
びつけ、1チップ上に集積化して形成した大規模集積回
路(LSI)が多用されている。このLSI単体の性能向上
が、機器全体の高性能化を図る上で重要である。これは
例えばLSIの集積度を高める事により達成されるため、L
SIの基本素子例えば電界効果トランジスタ(FET)の微
細化が必要となる。そこでFETのゲートを短くするに伴
ってソース・ドレイン領域も浅くする事が要求され、例
えばこれらの領域の形成に低加速イオン注入法が広く用
いられている。この方法を用いることによって0.1μm
程度の浅いソース・ドレイン領域を形成でき、より微細
化して高性能になったFETの形成が可能である。ところ
が、この様にイオン注入法だけで形成する不純物層は抵
抗が高く100Ω/口以上のシート抵抗になってしまう。F
ETの高速化のためにはこの不純物層のシート抵抗を小さ
くし、ドレイン電流の流れを良好にする必要がある。こ
れには不純物層の一部を金属化する方法が考えられてお
り、例えばサリサイドと呼ばれる方法が有る。これを第
4図に示す。この方法は先ず、シリコン基板(1)がフ
ィールド酸化膜(2)から露出した領域に不純物層
(41)を形成する(第4図(a))。
(Prior Art) In recent years, large-scale integrated circuits (LSIs) formed by integrating a large number of transistors, resistors, and the like to achieve an electric circuit and integrating them on one chip have become an important part of computers and communication devices. It is heavily used. Improving the performance of this LSI alone is important for improving the performance of the entire device. This is achieved, for example, by increasing the degree of integration of the LSI.
It is necessary to miniaturize a basic element of SI, for example, a field effect transistor (FET). Therefore, it is required to make the source / drain regions shallow as the gate of the FET is shortened. For example, low-acceleration ion implantation is widely used for forming these regions. 0.1 μm by using this method
It is possible to form a source / drain region having a shallow degree, and it is possible to form a finer and higher performance FET. However, the impurity layer formed only by the ion implantation method has a high resistance and a sheet resistance of 100 Ω / port or more. F
In order to increase the speed of the ET, it is necessary to reduce the sheet resistance of the impurity layer and improve the flow of the drain current. For this, a method of metallizing a part of the impurity layer has been considered, for example, a method called salicide. This is shown in FIG. This method first silicon substrate (1) forms an impurity layer on the region exposed from the field oxide film (2) to (4 1) (FIG. 4 (a)).

次ぎにこの層上にCo膜(71)を堆積する(第4図
(b))。
Next to deposit a Co film (71) to this layer (FIG. 4 (b)).

この上をランプアニールで加熱してCoシリサイド膜
(42)を形成する(第4図(c))。
Over this was heated by a lamp annealing to form a Co silicide film (4 2) (FIG. 4 (c)).

この後、未反応のCo(72)をエッチング除去する(第
4図(d))。
Thereafter, the unreacted Co (7 2) is removed by etching (FIG. 4 (d)).

最後に絶縁膜(8)を設け開口を施した後配線(9)
を形成する(第4図(e))。
Finally, an insulating film (8) is provided and an opening is formed.
Is formed (FIG. 4 (e)).

この方法を用いると、例えば150nm厚のシリサイドを
形成することができ、しかもシート抵抗は3〜5Ω/口
に低減できる。
When this method is used, for example, a 150 nm thick silicide can be formed, and the sheet resistance can be reduced to 3 to 5 Ω / port.

しかし、この方法で形成した場合、不純物層(41)と
金属シリサイド層(42)間の界面は凹凸形状となる。第
5図は第4図(e)に示した領域Aの拡大図であり、こ
の界面の様子を示す。(40)は金属シリサイド層(42
がP+型不純物層(41)側につき出た凸部であり、(41
はその逆の凹部である。これらの凹凸の差(8)は500
Åから1000Å程度になる事もあり、上述した形成方法で
はこれ以下のものは形成困難であった。この様な半導体
装置ではこの凸部(40)に電界が集中し、界面の電界分
布はその面内の均一性を失う。この様な状態では電界が
集中した所からn型のシリコン基板(1)へリーク電流
(42)が発生し、ひいてはP+型不純物層(41)とn型基
板(1)間のPN接合の破壊を紹く結果となる。
However, when formed by this method, the interface between the impurity layer (4 1 ) and the metal silicide layer (4 2 ) has an uneven shape. FIG. 5 is an enlarged view of the region A shown in FIG. 4 (e), and shows the state of this interface. (40) is a metal silicide layer (4 2 )
Are convex portions protruding from the P + -type impurity layer (4 1 ) side, and (4 1 )
Is the opposite recess. The difference between these irregularities (8) is 500
In some cases, the thickness may be from about 1000 to about 1000 mm, and it is difficult to form a wafer having a thickness of less than 1000 mm using the above-described forming method. In such a semiconductor device, the electric field concentrates on the convex portion (40), and the electric field distribution at the interface loses in-plane uniformity. In such a state, a leak current (42) is generated from the place where the electric field is concentrated to the n-type silicon substrate (1), and the PN junction between the P + -type impurity layer (4 1 ) and the n-type substrate (1) Introduce the destruction of the result.

(発明が解決しようとする課題) 従来の半導体装置は、0.1μm以下の浅い不純物層を
備えてはいたが、金属化合物層と不純物層間の界面が凸
凹形状になるため、ここに電荷の集中が起き、これに起
因して基板と不純物層間の接合が破れてしまう問題があ
った。
(Problems to be Solved by the Invention) Although the conventional semiconductor device has a shallow impurity layer of 0.1 μm or less, since the interface between the metal compound layer and the impurity layer has an uneven shape, the concentration of electric charge is here. This causes a problem that the junction between the substrate and the impurity layer is broken.

本発明は上記問題点に鑑みなされたもので、金属化合
物と不純物層間の界面での電荷の集中を防ぎ、リーク電
流を抑えた半導体装置を提供する事を第1の目的とす
る。
The present invention has been made in view of the above problems, and has as its first object to provide a semiconductor device in which charge concentration at an interface between a metal compound and an impurity layer is prevented and a leak current is suppressed.

また、この様な半導体装置を容易に形成することので
きる半導体装置の製造方法を提供する事を第2の目的と
する。
It is a second object of the present invention to provide a method for manufacturing a semiconductor device which can easily form such a semiconductor device.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明は上記目的を達成するためになされたもので、
第1の発明は第1導電型の半導体基板と、この基板表面
に選択的に設けられた第2導電型の不純物層と、この不
純物層表面に設けられた前記不純物層の構成元素及び金
属を含む金属化合物層とを備える半導体装置において、
前記不純物層と前記金属化合物層の界面が100Å以下の
段差の凹凸を有する事を特徴とする半導体装置を提供す
るものである。
(Means for Solving the Problems) The present invention has been made to achieve the above object.
According to a first aspect of the present invention, there is provided a semiconductor substrate of a first conductivity type, an impurity layer of a second conductivity type selectively provided on the surface of the substrate, and a constituent element and a metal of the impurity layer provided on the surface of the impurity layer. A metal compound layer comprising:
An object of the present invention is to provide a semiconductor device, wherein an interface between the impurity layer and the metal compound layer has unevenness with a step of 100 ° or less.

さらに第2の発明は、第1導電型の半導体基板表面に
選択的に第2導電型の不純物層を形成すると共に、この
不純物層の表面に前記半導体基板の構成元素及び金属を
含む金属化合物を形成する工程を具備する半導体装置の
製造方法において、前記金属化合物の形成前に、前記半
導体基板若しくは前記不純物層に、所望のイオンを注入
する事により、前記半導体基板若しくは前記不純物層を
前記金属化合物の格子定数に近づける事を特徴とする半
導体装置の製造方法を提供するものである。
According to a second aspect of the present invention, a second conductivity type impurity layer is selectively formed on a first conductivity type semiconductor substrate surface, and a metal compound containing a constituent element and a metal of the semiconductor substrate is formed on the impurity layer surface. In the method for manufacturing a semiconductor device including a step of forming, before forming the metal compound, desired ions are implanted into the semiconductor substrate or the impurity layer, so that the semiconductor substrate or the impurity layer is And a method of manufacturing a semiconductor device characterized by making the lattice constant close to the above.

(作用) 本発明によれば、半導体基板上に浅い不純物層を介し
て金属化合物層を形成するに当たり、この浅い不純物層
若しくは不純物を形成する前の基板表面に予めイオン注
入を行ってその格子定数を金属化合物層の格子定数に近
づける。これにより、不純物層とこの金属化合物層間に
発生するストレスが低減されてこの層間の界面に発生す
る凹凸が抑えられる。従って金属化合物層が不純物層を
介して基板に近接する箇所(凸部)が減少するため、こ
の箇所から基板側に向けての電流リークは少なくなる。
(Function) According to the present invention, when forming a metal compound layer on a semiconductor substrate via a shallow impurity layer, ion implantation is performed in advance on the surface of the substrate before the formation of the shallow impurity layer or the impurity, and the lattice constant is determined. Is approximated to the lattice constant of the metal compound layer. Thus, stress generated between the impurity layer and the metal compound layer is reduced, and irregularities generated at the interface between the layers are suppressed. Therefore, the number of portions (projections) where the metal compound layer comes close to the substrate via the impurity layer is reduced, so that the current leakage from this portion toward the substrate is reduced.

(実施例) 本発明の詳細を実施例を用いて説明する。(Examples) Details of the present invention will be described using examples.

第1図は本発明の一実施例に係る電界効果トランジス
タを製造工程順に示した断面図である。
FIG. 1 is a sectional view showing a field effect transistor according to one embodiment of the present invention in the order of manufacturing steps.

先ず、(100)を主面とするn型のシリコン基板
(1)上に熱酸化によりフィールド酸化膜(2)を形成
する。この酸化膜(2)に囲まれた素子形成領域にゲー
ト酸化膜(31)、ドープした多結晶シリコン層(32)、
硅化タングステン層(33)及びCVD−SiO2膜(34)を順
次積層した後これをゲート形状にエッチングで加して積
層膜を設ける(第1図(a))。
First, a field oxide film (2) is formed by thermal oxidation on an n-type silicon substrate (1) having (100) as a main surface. The oxide film (2) surrounded by the element formation region on the gate oxide film (3 1), doped polycrystalline silicon layer (3 2),
A tungsten silicide layer (3 3 ) and a CVD-SiO 2 film (3 4 ) are sequentially laminated and then etched by gate etching to form a laminated film (FIG. 1 (a)).

次いで、この積層膜とフィールド酸化膜(2)をマス
クにして、基板(1)表面にSiイオンを加速電圧40ke
V、ドーズ量2×1015cm-2にて注入する。この結果基板
の表面は約0.1μmの深さにわたって非晶質化した。こ
の後、続けてBF2イオンを加速電圧15keV、ドーズ量2×
1015cm-2にて注入する。さらに1000℃,30秒の条件にて
ランプアニールを行う。これにより、深さ約0.08μmの
P+型の不純物拡散層(41),(51)を形成した。この際
の拡散層(41),(51)の平均格子定数は5.44Åであっ
た。この工程の後、積層膜の側壁にSiO2膜(35)を設
け、ゲート電極(3)を完成する(第1図(b))。
Then, using the laminated film and the field oxide film (2) as a mask, Si ions are applied to the surface of the substrate (1) at an acceleration voltage of 40 ke.
V is implanted at a dose of 2 × 10 15 cm −2 . As a result, the surface of the substrate became amorphous over a depth of about 0.1 μm. After that, BF 2 ions are continuously applied at an acceleration voltage of 15 keV and a dose of 2 ×
Inject at 10 15 cm -2 . Further, lamp annealing is performed at 1000 ° C. for 30 seconds. As a result, a depth of about 0.08 μm
P + -type impurity diffusion layers (4 1 ) and (5 1 ) were formed. At this time, the average lattice constant of the diffusion layers (4 1 ) and (5 1 ) was 5.44 °. After this step, SiO 2 film (35) provided in the side wall of the laminated film, to complete the gate electrode (3) (FIG. 1 (b)).

この後、ゲート電極(3)及びフィールド酸化膜
(2)をマスクにしてCイオン(6)を加速電圧5keV、
ドーズ量1×1014cm-2にて拡散層(41),(51)の表面
に注入する。次いで950℃、15秒間のランプアニールを
行う。これにより、拡散層(41),(51)の平均格子定
数は5.41Åになった。これは、基板シリコンの一部がC
に置換された結晶構造に変化したためである。ここでは
拡散層(41),(51)の少くとも表面近傍(200Å程度
の深さ)の平均格子定数を5.41Åにすれば良い(第1図
(c))。
Thereafter, C ions (6) are accelerated at 5 keV using the gate electrode (3) and the field oxide film (2) as a mask.
A dose of 1 × 10 14 cm −2 is implanted into the surfaces of the diffusion layers (4 1 ) and (5 1 ). Next, lamp annealing is performed at 950 ° C. for 15 seconds. As a result, the average lattice constant of the diffusion layers (4 1 ) and (5 1 ) became 5.41 °. This is because part of the substrate silicon is C
This is because the crystal structure has been changed to a substitution. Here, the average lattice constant of the diffusion layers (4 1 ) and (5 1 ) at least in the vicinity of the surface (depth of about 200 °) may be set to 5.41 ° (FIG. 1 (c)).

さらに、全面にスパッタリング法を用いて例えばNi膜
(71)を200Å厚に堆積する(第1図(d))。この後9
00℃、10秒のランプアニールを行う事で、硅化ニッケル
層(42),(52)を形成する。これにより、ソース・ド
レイン領域(4),(5)が整う。この時形成された硅
化ニッケル層(42),(52)の格子定数は5.41Åであっ
た。よってここで形成された硅化ニッケル層(42),
(52)は拡散層(41),(51)と整合する。(72)は反
応せずに残ったNi層である(第1図(e))。
Further, the entire surface sputtering deposited by for example Ni film (71) to 200Å thick using (FIG. 1 (d)). After this 9
The nickel silicide layers (4 2 ) and (5 2 ) are formed by performing lamp annealing at 00 ° C. for 10 seconds. Thereby, the source / drain regions (4) and (5) are prepared. At this time silicide nickel layer formed (4 2), the lattice constant of (5 2) was 5.41A. Therefore silicide nickel layer formed here (4 2),
(5 2) of the diffusion layer (4 1), consistent with (5 1). (7 2) is a Ni layer remaining without reacting (FIG. 1 (e)).

次いでHClとH2O2の混合溶液を用いて未反応のNi層(7
2)を常温にて除去する。この時、混合溶液はHCl:H2O2
=3:1とした。最後に、層間絶縁膜としてCVD−SiO2
(8)を1μm厚にて全面に堆積した後、ソース・ドレ
イン領域(4),(5)上にコンタクトホールを設け、
ここに例えばAl・Si合金の電極配線(9)を形成して電
界効果トランジスタが完成する(第1図(f))。
Then, using a mixed solution of HCl and H 2 O 2 , an unreacted Ni layer (7
2 ) is removed at room temperature. At this time, the mixed solution was HCl: H 2 O 2
= 3: 1. Finally, a CVD-SiO 2 film (8) as an interlayer insulating film is deposited on the entire surface with a thickness of 1 μm, and contact holes are provided on the source / drain regions (4) and (5).
Here, for example, an electrode wiring (9) of an Al.Si alloy is formed to complete the field effect transistor (FIG. 1 (f)).

以上の方法によって形成された電界効果トランジスタ
のソース・ドレイン領域(4),(5)とシリコン基板
(1)間のリーク電流を調べた。第2図は1×10-3cm2
の面積のソース領域に0〜15Vの範囲内で逆バイアス
(V)をかけた際のリーク電流(I)の値を測定した結
果である。
The leakage current between the source / drain regions (4) and (5) of the field effect transistor formed by the above method and the silicon substrate (1) was examined. Figure 2 shows 1 × 10 -3 cm 2
Is a result of measuring a value of a leak current (I) when a reverse bias (V) is applied to a source region having an area of 0 to 15 V in a range of 0 to 15 V.

またこの図には、前述した凹凸の差(δ)が100Å
(本実施例の方法で形成したFET)と比較の為に従来の
方法で形成したFET(δが500Å,800Å)の測定結果も夫
々示した。この第2図から明らかな様にδが500Å以上
有るものは、リーク電流(I)を10-8〔A〕以下に抑え
る事ができないのに対し、δが100Å以下の本発明のFET
は、接合破壊に至るまで10-11〔A〕以下に低減でき
る。ドレイン領域についても同様の結果を得た。
Also, in this figure, the difference (δ) between the irregularities described above is 100 °.
For comparison with the FET formed by the method of the present embodiment and the FET formed by the conventional method (δ = 500 °, 800 °), the measurement results are also shown. As is apparent from FIG. 2, when the δ is 500 ° or more, the leakage current (I) cannot be suppressed to 10 −8 [A] or less.
Can be reduced to 10 −11 [A] or less until the junction is broken. Similar results were obtained for the drain region.

この様にリーク電流の低減できた理由は、従来の技術
では拡散層と金属シリサイド間の格子定数の差が大きい
ため、この界面にストレスが発生し、これにより、界面
に500Å以上の段差の凹凸が生じ、ここからリーク電流
が発生したが、本実施例ではP+型拡散層(41),(51
にCイオン(6)を注入して硅化ニッケル(42),
(52)の格子定数に近づけたため、この凹凸の発生が10
0Åに抑えられ、リーク電流が減少したものと考えられ
る。これ以上の凹凸差のFET例えば30Åのものも100Åの
ものと同様にリーク電流は抑えられた。しかしながら、
30Åより段差の小さいFETの形成は困難であり、大量生
産に向かない事が判った。
The reason why the leak current was reduced in this way is that in the conventional technology, the difference in the lattice constant between the diffusion layer and the metal silicide is large, so that stress is generated at this interface. And a leak current is generated from this, but in this embodiment, the P + type diffusion layers (4 1 ) and (5 1 )
Silicide Nickel (4 2) by implanting C ions (6),
Since closer to the lattice constant of (5 2), the occurrence of the unevenness 10
It is considered that the leakage current was reduced to 0 °. The leakage current was also suppressed in FETs having a difference of more than three asperities, for example, those of 30 mm as well as those of 100 mm. However,
It was found that it was difficult to form an FET with a step smaller than 30 mm, and it was not suitable for mass production.

以上の事からδが100Å以下のFETは印加電圧に拘わる
ことなく、接合破壊に至るまでリーク電流を一定値抑
え、しかもこのリーク電流は従来よりも2ケタ程度に低
減できる。また、この様なδが100Å以下にしたFETは、
本発明の方法によって初めて容易に形成できたものであ
る。
From the above, in the FET having a δ of 100 ° or less, the leak current is suppressed to a constant value until the junction is broken, regardless of the applied voltage, and the leak current can be reduced to about two digits compared to the conventional case. Further, such a FET in which δ is 100 ° or less,
It can be easily formed for the first time by the method of the present invention.

次ぎに本発明の他の実施例を第3図に沿って説明す
る。
Next, another embodiment of the present invention will be described with reference to FIG.

先ず第1図(a)〜第1図(c)と同様の工程を経て
フィールド酸化膜(2)、ゲート電極(3)、P+型拡散
層(41),(51)を形成する。この際P+型拡散層はC
(6)が注入されており、やはり平均格子定数が5.41Å
になっている(第3図(a))。
First FIG. 1 (a) by the same process as ~ FIG. 1 (c) a field oxide film (2), a gate electrode (3), P + -type diffusion layer (4 1), to form a (5 1) . At this time, the P + type diffusion layer is C
(6) is implanted, and the average lattice constant is also 5.41Å
(FIG. 3 (a)).

次いで、この拡散層(41),(51)上に硅化タングス
テン層(43),(53)を選択CVD法によって形成する。
これによりソース・ドレイン領域(4),(5)が整
う。この際選択形成された硅化タングステン層(43),
(53)の格子定数は5.41Åであった(第3図(b))。
Then, the diffusion layer (4 1), (5 1) a tungsten silicide layer on the (4 3) are formed by selective CVD method (3).
Thus, the source / drain regions (4) and (5) are prepared. In this case a tungsten silicide layer selectively formed (4 3),
Lattice constant of (3) was 5.41A (FIG. 3 (b)).

最後にCVD法によってSiO2膜(8)を形成し、コンタ
クトホールを設けた後、Al・Si合金の電極配線(9)を
形成して電界効果トランジスタが完全する(第3図
(c))。
Finally, an SiO 2 film (8) is formed by a CVD method, a contact hole is provided, and an electrode wiring (9) of an Al.Si alloy is formed to complete the field effect transistor (FIG. 3 (c)). .

この様にして形成された電界効果トランジスタも先の
実施例と同様な特性を有した。
The field effect transistor formed in this manner also had the same characteristics as the previous embodiment.

上記2つの実施例では格子定数の関係が〔不純物層
(BF2ドープシリコン層)>金属化合物(硅化ニッケ
ル,硅化タングステン)〕となっているために、Cを不
純物層に注入してSiの一部をCに置換した結晶構造に変
化させこの層の平均格子定数を金属化合物に合う様に低
下させた。本発明はこの様に不純物層の平均格子定数を
金属化合物層の格子定数に近づけるようにできるイオン
種を選ぶことによって初めて達成される。
In the above two embodiments, the relationship between the lattice constants is [impurity layer (BF 2 -doped silicon layer)> metal compound (nickel silicide, tungsten silicide)]. The structure was changed to a crystal structure in which the part was replaced with C, and the average lattice constant of this layer was reduced to match the metal compound. The present invention is attained for the first time by selecting an ionic species that can bring the average lattice constant of the impurity layer closer to the lattice constant of the metal compound layer.

本発明は上記実施例に限るものではない。 The present invention is not limited to the above embodiment.

例えば、実施例では金属シリサイドに硅化ニッケルを
用いたが、シリコンの不純物層との接触抵抗が低く、硅
化ニッケルと同様に扱える他の金属化合物例えば、硅化
バナジウム,硅化タングステン,硅化コバルト,硅化パ
ラジウム,硅化白金,硅化イリジウム等を用いても良
い。その他、硅化マンガンや硅化ロジウムも場合に応じ
て使用できる。
For example, in the embodiment, nickel silicide is used as the metal silicide. However, other metal compounds which have low contact resistance with the silicon impurity layer and can be treated similarly to nickel silicide, such as vanadium silicide, tungsten silicide, cobalt silicide, palladium silicide, Platinum silicide, iridium silicide, or the like may be used. In addition, manganese silicide and rhodium silicide can be used depending on the case.

また、実施例では不純物拡散層を形成した後に金属シ
リサイドを形成したが金属シリサイドを形成した後に不
純物拡散層を形成する半導体装置についても実施でき
る。
In the embodiment, the metal silicide is formed after forming the impurity diffusion layer. However, the present invention can be applied to a semiconductor device in which the impurity diffusion layer is formed after forming the metal silicide.

さらに、基板にはシリコンを用いたが、ゲルマニウム
或は化合物半導体例えばGaAsやInP等を用いる事ができ
る。
Further, although silicon is used for the substrate, germanium or a compound semiconductor such as GaAs or InP can be used.

ここではMOS型FETを挙げたが、本発明は他のFET例え
ばショットキー接合型FET、pn接合型FETやヘテロ接合型
FETに対しても、或はFET以外の浅い不純物層を備える他
の半導体素子例えばダイオードやバイポーラトランジス
タ等に対しても適用できる。
Although the MOS type FET has been described here, the present invention is applicable to other FETs such as a Schottky junction type FET, a pn junction type FET, and a hetero junction type FET.
The present invention is also applicable to FETs or to other semiconductor devices having shallow impurity layers other than FETs, such as diodes and bipolar transistors.

尚、本発明はこれ以外にも、その主旨を逸脱しない範
囲内で種々を変形して実施できる事はいうまでもない。
In addition, it goes without saying that the present invention can be variously modified and implemented without departing from the gist of the present invention.

〔発明の効果〕〔The invention's effect〕

本発明の構成により、接合界面に生じるリーク電流を
抑えた半導体装置を容易に形成する事ができる。
According to the structure of the present invention, a semiconductor device in which a leak current generated at a junction interface is suppressed can be easily formed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す図、第2図は本発明の
一実施例を説明する図、第3図は本発明の他の実施例を
示す図、第4図は従来例を示す図、第5図は従来例を説
明する図である。 1……シリコン基板、2……フィールド酸化膜、3……
ゲート酸化膜、4……ソース領域、5……ドレイン領
域、6……所定のイオン(Cイオン)、7……金属層、
8……層間絶縁膜、9……電極配線。
FIG. 1 is a view showing one embodiment of the present invention, FIG. 2 is a view for explaining one embodiment of the present invention, FIG. 3 is a view showing another embodiment of the present invention, and FIG. FIG. 5 is a diagram for explaining a conventional example. 1 ... silicon substrate, 2 ... field oxide film, 3 ...
Gate oxide film, 4 ... source region, 5 ... drain region, 6 ... predetermined ion (C ion), 7 ... metal layer,
8 ... interlayer insulating film, 9 ... electrode wiring.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 21/28 - 21/288 H01L 29/41 - 29/51 H01L 29/78 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 21/28-21/288 H01L 29/41-29/51 H01L 29/78

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電型の半導体基板と、この基板表面
に選択的に設けられた第2導電型の不純物層と、この不
純物層表面に設けられた前記半導体基板の構成元素及び
金属を含む金属化合物層とを備える半導体装置におい
て、前記不純物層と前記金属化合物層の界面が100Å以
下の段差の凹凸を有する事を特徴とする半導体装置。
1. A semiconductor substrate of a first conductivity type, an impurity layer of a second conductivity type selectively provided on the surface of the substrate, and constituent elements and metals of the semiconductor substrate provided on the surface of the impurity layer. A semiconductor device comprising: a metal compound layer including a metal compound layer, wherein an interface between the impurity layer and the metal compound layer has unevenness with a step of 100 ° or less.
【請求項2】前記不純物層と金属化合物層の積層膜が電
界効果トランジスタのソース領域或はドレイン領域であ
る事をと特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the laminated film of the impurity layer and the metal compound layer is a source region or a drain region of a field effect transistor.
【請求項3】第1導電型の半導体基板表面に選択的に第
2導電型の不純物層を形成すると共に、この不純物層の
表面に前記半導体基板の構成元素及び金属を含む金属化
合物を形成する工程を具備する半導体装置の製造方法に
おいて、前記金属化合物の形成前に、前記半導体基板若
しくは前記不純物層に、所望のイオンを注入する事によ
り、前記半導体基板若しくは前記不純物層の結晶の平均
格子定数を前記金属化合物の平均格子定数に近づける事
を特徴とする半導体装置の製造方法。
3. An impurity layer of the second conductivity type is selectively formed on the surface of the semiconductor substrate of the first conductivity type, and a metal compound containing a constituent element of the semiconductor substrate and a metal is formed on the surface of the impurity layer. In the method for manufacturing a semiconductor device, the method further comprises implanting desired ions into the semiconductor substrate or the impurity layer before forming the metal compound, thereby forming an average lattice constant of a crystal of the semiconductor substrate or the impurity layer. Is brought closer to the average lattice constant of the metal compound.
【請求項4】前記半導体基板はシリコンであり、前記イ
オン注入のイオン種は炭素であり、前記金属化合物層は
珪化バナジウム、珪化タングステン、珪化ニッケル、珪
化コバルト、珪化バラジウム、珪化白金、珪化イリジウ
ムから選ばれたものである事を特徴とする請求項3記載
の半導体装置の製造方法。
4. The semiconductor substrate is silicon, the ion species of the ion implantation is carbon, and the metal compound layer is made of vanadium silicide, tungsten silicide, nickel silicide, cobalt silicide, baradium silicide, platinum silicide, iridium silicide. 4. The method for manufacturing a semiconductor device according to claim 3, wherein the method is selected.
JP1031081A 1989-02-13 1989-02-13 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2874885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1031081A JP2874885B2 (en) 1989-02-13 1989-02-13 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1031081A JP2874885B2 (en) 1989-02-13 1989-02-13 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02211622A JPH02211622A (en) 1990-08-22
JP2874885B2 true JP2874885B2 (en) 1999-03-24

Family

ID=12321472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1031081A Expired - Lifetime JP2874885B2 (en) 1989-02-13 1989-02-13 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2874885B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692617B2 (en) * 1994-12-06 1997-12-17 日本電気株式会社 Method for manufacturing semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138075A (en) * 1982-02-12 1983-08-16 Nec Corp Silicon metal oxide semiconductor type field-effect transistor and its manufacture
JPS63117420A (en) * 1986-11-06 1988-05-21 Nippon Telegr & Teleph Corp <Ntt> Manufacture of silicide layer

Also Published As

Publication number Publication date
JPH02211622A (en) 1990-08-22

Similar Documents

Publication Publication Date Title
US4392150A (en) MOS Integrated circuit having refractory metal or metal silicide interconnect layer
US4597824A (en) Method of producing semiconductor device
JPH0613403A (en) Self-aligned cobalt silicide on mos integrated circuit
JP3688734B2 (en) Method of manufacturing part of integrated circuit and structure thereof
JPH0343778B2 (en)
JPH04286154A (en) Manufacture of field efect transistor and bipolar transistor structure, manufacture of integrated circuit, manufacture of semiconductor device and manufacture of semiconductor structure
US5443994A (en) Method of fabricating a semiconductor device having a borosilicate glass spacer
US5834811A (en) Salicide process for FETs
JP2874885B2 (en) Semiconductor device and manufacturing method thereof
JP3420104B2 (en) Manufacturing method of resistance element
US6780700B2 (en) Method of fabricating deep sub-micron CMOS source/drain with MDD and selective CVD silicide
JP2002518827A (en) Method of manufacturing semiconductor device including MOS transistor
JP3156001B2 (en) Method for manufacturing semiconductor device
JPH0653492A (en) Semiconductor device and fabrication thereof
JPH1064898A (en) Manufacturing method of semiconductor device
JPH0831598B2 (en) Method for manufacturing semiconductor device
JP3110054B2 (en) Semiconductor device and manufacturing method thereof
JP2886174B2 (en) Method for manufacturing semiconductor device
US6221725B1 (en) Method of fabricating silicide layer on gate electrode
JP3194921B1 (en) Method of manufacturing raised strap structure MOS transistor
JPH06163576A (en) Manufacture of semiconductor device
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JPH0564469B2 (en)
JP3507750B2 (en) Method for manufacturing semiconductor device
JPH0527975B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 11