JP2841001B2 - Air-fuel ratio feedback control device for internal combustion engine - Google Patents

Air-fuel ratio feedback control device for internal combustion engine

Info

Publication number
JP2841001B2
JP2841001B2 JP4272971A JP27297192A JP2841001B2 JP 2841001 B2 JP2841001 B2 JP 2841001B2 JP 4272971 A JP4272971 A JP 4272971A JP 27297192 A JP27297192 A JP 27297192A JP 2841001 B2 JP2841001 B2 JP 2841001B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
correction
response delay
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4272971A
Other languages
Japanese (ja)
Other versions
JPH06257490A (en
Inventor
尚己 冨澤
渡辺  悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP4272971A priority Critical patent/JP2841001B2/en
Publication of JPH06257490A publication Critical patent/JPH06257490A/en
Application granted granted Critical
Publication of JP2841001B2 publication Critical patent/JP2841001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の空燃比フィー
ドバック制御装置に関し、特に、制御系の応答遅れを補
正して、空燃比フィードバック制御の応答性を改善する
ための技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio feedback control device for an internal combustion engine, and more particularly to a technique for correcting a response delay of a control system to improve the response of the air-fuel ratio feedback control.

【0002】[0002]

【従来の技術】内燃機関の空燃比フィードバック制御装
置として、酸素センサで検出される排気中の酸素濃度に
基づいて、理論空燃比に対する実際の空燃比のリッチ・
リーンを判別し、かかる判別結果に基づいて実際の空燃
比を理論空燃比(目標空燃比)に近づけるように機関へ
の燃料供給量をフィードバック制御するものが知られて
いる(特開昭60−240840号公報等参照)。
2. Description of the Related Art As an air-fuel ratio feedback control device for an internal combustion engine, a rich air-fuel ratio of an actual air-fuel ratio to a stoichiometric air-fuel ratio is determined based on the oxygen concentration in exhaust gas detected by an oxygen sensor.
It is known to determine lean, and to feedback-control the amount of fuel supplied to the engine based on the result of the determination so that the actual air-fuel ratio approaches the stoichiometric air-fuel ratio (target air-fuel ratio). No. 240840).

【0003】[0003]

【発明が解決しようとする課題】上記のような空燃比フ
ィードバック制御においては、過渡運転などによって空
燃比の大きなずれが生じたときには、大きな制御操作量
を与えて速やかに目標空燃比に収束させることが要求さ
れる。しかしながら、燃料供給量を補正する空燃比フィ
ードバック制御の結果が、実際に酸素センサ(空燃比セ
ンサ)で検出されるまでには、吸気輸送時間,シリンダ
内ガス残留時間,排気輸送時間,酸素センサ単体の応答
遅れ時間などからなるフィードバック制御系の応答遅れ
時間が存在するため、従来では、かかる応答遅れに対し
て略等しくなるような制御時定数となるようにして、制
御の発散を防止するようにしていた。
In the above-described air-fuel ratio feedback control, when a large deviation of the air-fuel ratio occurs due to transient operation or the like, a large control operation amount is given to quickly converge to the target air-fuel ratio. Is required. However, until the result of the air-fuel ratio feedback control for correcting the fuel supply amount is actually detected by the oxygen sensor (air-fuel ratio sensor), the intake transport time, the gas remaining time in the cylinder, the exhaust transport time, the oxygen sensor alone Since there is a response delay time of the feedback control system including the response delay time of the control system, conventionally, the control time constant is set to be substantially equal to the response delay so as to prevent the divergence of the control. I was

【0004】このように、前記応答遅れ時間の存在によ
って、大きな空燃比偏差を生じても制御応答を早めるこ
とができず、過渡運転などによって大きな空燃比偏差が
生じたときに、目標空燃比に収束するまでの間、排気性
状が悪化してしまうという問題があった。本発明は上記
問題点に鑑みなされたものであり、前記応答遅れ時間を
見込んだ空燃比フィードバック制御が行えるようにし
て、空燃比フィードバック制御の応答性を高め、以て、
過渡運転時の排気性状を改善することを目的とする。
As described above, due to the presence of the response delay time, the control response cannot be accelerated even if a large air-fuel ratio deviation occurs, and when a large air-fuel ratio deviation occurs due to transient operation or the like, the target air-fuel ratio is reduced. Until the convergence, there is a problem that the exhaust properties deteriorate. The present invention has been made in view of the above-described problems, and enables the air-fuel ratio feedback control in consideration of the response delay time to enhance the responsiveness of the air-fuel ratio feedback control.
The purpose is to improve exhaust properties during transient operation.

【0005】[0005]

【課題を解決するための手段】そのため本発明にかかる
内燃機関の空燃比フィードバック制御装置は、図1に示
すように構成される。図1において、空燃比センサは、
機関吸入混合気の空燃比によって変化する排気中の特定
気体成分の濃度に感応して出力値が変化するセンサであ
る。
Accordingly, an air-fuel ratio feedback control device for an internal combustion engine according to the present invention is configured as shown in FIG. In FIG. 1, the air-fuel ratio sensor is
This is a sensor whose output value changes in response to the concentration of a specific gas component in exhaust gas that changes according to the air-fuel ratio of the engine intake air-fuel mixture.

【0006】また、空燃比フィードバック制御手段は、
前記空燃比センサの出力値に基づいて、実際の空燃比を
目標空燃比に近づけるべく燃料供給手段による燃料供給
量を補正するための空燃比フィードバック補正値を制御
する。一方、応答遅れ時間演算手段は、前記空燃比フィ
ードバック制御手段によるフィードバック制御系におけ
る応答遅れ時間を機関の運転条件に基づいて演算する。
The air-fuel ratio feedback control means includes:
On the basis of the output value of the air-fuel ratio sensor, an air-fuel ratio feedback correction value for correcting the fuel supply amount by the fuel supply means so as to bring the actual air-fuel ratio close to the target air-fuel ratio is controlled. On the other hand, the response delay time calculating means calculates a response delay time in the feedback control system by the air-fuel ratio feedback control means based on operating conditions of the engine .

【0007】また、空燃比偏差演算手段は、実際の空燃
比と目標空燃比との偏差を示す値を、前記空燃比センサ
の出力値又は前記空燃比フィードバック補正値と前記目
標空燃比相当の値との偏差として演算する。また、補正
値及び補正時間設定手段は、前記演算された応答遅れ時
間と空燃比偏差とに基づいて、前記空燃比フィードバッ
ク補正値の補正値と補正時間とを設定する。そして、応
答遅れ補正手段は、前記設定された補正時間内であると
きに前記空燃比フィードバック補正値を前記補正値で補
正設定する
The air-fuel ratio deviation calculating means calculates a value indicating a difference between an actual air-fuel ratio and a target air-fuel ratio with the output value of the air-fuel ratio sensor or the air-fuel ratio feedback correction value and the target value.
It is calculated as a deviation from a value corresponding to the target air-fuel ratio . Also correct
The value and correction time setting means is configured to output the calculated response delay.
The air-fuel ratio feedback based on the
The correction value and the correction time of the lock correction value are set. Then, the response delay correcting means determines that the time is within the set correction time.
In this case, the air-fuel ratio feedback correction value is supplemented by the correction value.
Set correctly .

【0008】ここで、前記応答遅れ時間演算手段が、
関回転速度に応じてシリンダ内ガス滞留時間を演算する
と共に、機関の吸入空気流量に応じて排気輸送遅れ時間
を演算し、前記シリンダ内ガス滞留時間と前記排気輸送
遅れ時間と予め記憶された空燃比センサ単体の応答遅れ
時間との総和を、前記応答遅れ時間として演算するよう
構成すると良い。
[0008] Here, the response delay time calculating means, the machine
Calculates the gas residence time in the cylinder according to the rotation speed
Together with the exhaust transport delay time according to the intake air flow rate of the engine
And the gas residence time in the cylinder and the exhaust gas transport
Delay time and response delay of the air-fuel ratio sensor alone stored in advance
It is preferable to calculate the sum of time and the response delay time .

【0009】[0009]

【作用】かかる構成によると、空燃比センサにより検出
される実際の空燃比が目標空燃比となるように燃料供給
量をフィードバック制御するシステムにおいて、前記空
燃比フィードバック制御系の応答遅れ時間が演算され、
この応答遅れ時間とそのときの空燃比偏差(目標空燃比
と実際の空燃比との偏差)とに基づいて、空燃比フィー
ドバック補正値の補正値及び補正時間が設定され、前記
補正時間内において空燃比フィードバック補正値が前記
補正値によって補正される。
According to this configuration, in a system for performing feedback control of a fuel supply amount so that an actual air-fuel ratio detected by an air-fuel ratio sensor becomes a target air-fuel ratio, a response delay time of the air-fuel ratio feedback control system is calculated. ,
Based on the response delay time and the air-fuel ratio deviation at that time (the deviation between the target air-fuel ratio and the actual air-fuel ratio) , the air-fuel ratio
The correction value and the correction time of the debug correction value are set, and
Within the correction time, the air-fuel ratio feedback correction value
It is corrected by the correction value.

【0010】即ち、前記応答遅れ時間と空燃比偏差とに
基づいて、必要補正量がオーバーシュートの回避と応答
性向上とをバランスさせた時間内で付加されるように、
補正時間と補正値とを設定し、これに基づいて空燃比フ
ィードバック補正値を補正することで、前記応答遅れ時
間の存在による制御の応答遅れを解消し得るものであ
る。
That is, based on the response delay time and the air-fuel ratio deviation, the necessary correction amount can be set to avoid overshoot and reduce the response.
So that it can be added within a time that balances
By setting a correction time and a correction value and correcting the air-fuel ratio feedback correction value based on the correction time and the correction value, the control response delay due to the presence of the response delay time can be eliminated.

【0011】[0011]

【実施例】以下に本発明の実施例を説明する。一実施例
を示す図2において、内燃機関1にはエアクリーナ2か
ら吸気ダクト3,スロットル弁4及び吸気マニホールド
5を介して空気が吸入される。前記吸気マニホールド5
の各ブランチ部には、各気筒別に燃料供給手段としての
燃料噴射弁6が設けられている。
Embodiments of the present invention will be described below. In FIG. 2 showing one embodiment, air is sucked into an internal combustion engine 1 from an air cleaner 2 through an intake duct 3, a throttle valve 4 and an intake manifold 5. The intake manifold 5
Each of the branch portions is provided with a fuel injection valve 6 as a fuel supply means for each cylinder.

【0012】燃料噴射弁6は、ソレノイドに通電されて
開弁し、通電停止されて閉弁する電磁式燃料噴射弁であ
って、後述するコントロールユニット12からの噴射パル
ス信号により通電されて開弁し、図示しない燃料ポンプ
から圧送されてプレッシャレギュレータにより所定の圧
力に調整された燃料を、機関1に噴射供給する。機関1
の各燃焼室には点火栓7が設けられていて、これにより
火花点火して混合気を着火燃焼させる。そして、機関1
からは、排気マニホールド8,排気ダクト9,三元触媒
10及びマフラー11を介して排気が排出される。
The fuel injection valve 6 is an electromagnetic fuel injection valve which is energized by a solenoid to open, and is deenergized and closed by being energized by an injection pulse signal from a control unit 12 which will be described later. Then, the fuel which is pressure-fed from a fuel pump (not shown) and adjusted to a predetermined pressure by the pressure regulator is injected and supplied to the engine 1. Institution 1
Each of the combustion chambers is provided with an ignition plug 7 for igniting and sparking the mixture by spark ignition. And institution 1
From the exhaust manifold 8, exhaust duct 9, three-way catalyst
Exhaust gas is exhausted through 10 and muffler 11.

【0013】コントロールユニット12は、CPU,RO
M,RAM,A/D変換器及び入出力インタフェイス等
を含んで構成されるマイクロコンピュータを備え、各種
のセンサからの入力信号を受け、後述の如く演算処理し
て、燃料噴射弁6の作動を制御する。前記各種のセンサ
としては、吸気ダクト3中にエアフローメータ13が設け
られていて、機関1の吸入空気流量Qに応じた信号を出
力する。
The control unit 12 includes a CPU, an RO,
A microcomputer including an M, a RAM, an A / D converter, an input / output interface, and the like is provided. The microcomputer receives input signals from various sensors, performs arithmetic processing as described later, and operates the fuel injection valve 6. Control. As the various sensors, an air flow meter 13 is provided in the intake duct 3, and outputs a signal corresponding to the intake air flow rate Q of the engine 1.

【0014】また、クランク角センサ14が設けられてい
て、基準ピストン位置毎の基準角度信号REFと、クラ
ンク角1°又は2°毎の単位角度信号POSとを出力す
る。ここで、基準角度信号REFの周期、或いは、所定
時間内における単位角度信号POSの発生数を計測する
ことにより、機関回転速度Neを算出できる。また、機
関1のウォータジャケットの冷却水温度Twを検出する
水温センサ15が設けられている。
A crank angle sensor 14 is provided to output a reference angle signal REF for each reference piston position and a unit angle signal POS for each crank angle of 1 ° or 2 °. Here, the engine rotation speed Ne can be calculated by measuring the cycle of the reference angle signal REF or the number of occurrences of the unit angle signal POS within a predetermined time. Further, a water temperature sensor 15 for detecting a cooling water temperature Tw of the water jacket of the engine 1 is provided.

【0015】また、排気マニホールド8の集合部に空燃
比センサとしての酸素センサ16が設けられている。前記
酸素センサ16は、大気中の酸素濃度(基準酸素濃度)に
対する排気中の酸素濃度の比に応じた起電力を発生する
酸素濃淡電池であり、排気中の酸素濃度が理論空燃比
(本実施例における目標空燃比)を境に急変することを
利用し、理論空燃比付近で出力が急変することによって
理論空燃比のみ(理論空燃比に対するリッチ・リーン)
を検出し得る公知のセンサである。
In addition, an oxygen sensor 16 as an air-fuel ratio sensor is provided at a collecting portion of the exhaust manifold 8. The oxygen sensor 16 is an oxygen concentration cell that generates an electromotive force according to the ratio of the oxygen concentration in the exhaust to the oxygen concentration in the atmosphere (reference oxygen concentration). Using the sudden change around the target air-fuel ratio in the example, the output changes suddenly near the stoichiometric air-fuel ratio, and only the stoichiometric air-fuel ratio (rich / lean relative to the stoichiometric air-fuel ratio)
Is a known sensor that can detect the

【0016】ここにおいて、コントロールユニット12に
内蔵されたマイクロコンピュータのCPUは、吸入空気
流量Qと機関回転速度Neとに基づいて目標空燃比(本
実施例では理論空燃比)相当の基本燃料噴射量Tp(基
本噴射パルス幅)を演算する一方、前記冷却水温度Tw
に基づく基本補正係数や加減速補正係数などを含む各種
補正係数COEFを設定し、更に、前記酸素センサ16に
よる検出結果に基づいて実際の空燃比を目標空燃比(理
論空燃比)にフィードバック制御するための空燃比フィ
ードバック補正係数(空燃比フィードバック補正値)α
を演算する。そして、前記基本燃料噴射量Tpに、前記
各種補正係数COEF,空燃比フィードバック補正係数
αを乗算して有効噴射量Te(←Tp×COEF×α)
を演算し、更に、この有効噴射量Teにバッテリ電圧の
変化による燃料噴射弁6の有効開弁時間の変化を補正す
るための補正分Tsを加算して、この加算結果を最終的
な燃料噴射量(噴射パルス幅)Ti(←Te+Ts)と
して設定する。
Here, the CPU of the microcomputer built in the control unit 12 determines the basic fuel injection amount corresponding to the target air-fuel ratio (the stoichiometric air-fuel ratio in this embodiment) based on the intake air flow rate Q and the engine speed Ne. While calculating Tp (basic injection pulse width), the cooling water temperature Tw is calculated.
Various correction coefficients COEF including a basic correction coefficient and an acceleration / deceleration correction coefficient are set based on the above, and further, the actual air-fuel ratio is feedback-controlled to the target air-fuel ratio (the stoichiometric air-fuel ratio) based on the detection result by the oxygen sensor 16. -Fuel ratio feedback correction coefficient (air-fuel ratio feedback correction value) α
Is calculated. Then, the basic fuel injection amount Tp is multiplied by the various correction coefficients COEF and the air-fuel ratio feedback correction coefficient α to obtain an effective injection amount Te (← Tp × COEF × α).
Is calculated, and a correction amount Ts for correcting a change in the effective valve opening time of the fuel injection valve 6 due to a change in the battery voltage is added to the effective injection amount Te. The quantity (injection pulse width) is set as Ti (← Te + Ts).

【0017】更に、コントロールユニット12は、前記演
算した燃料噴射量Tiに相当するパルス幅の噴射パルス
信号を燃料噴射弁6に対して所定タイミングで出力する
ことで、機関への燃料供給量を電子制御する。ここで、
前記コントロールユニット12による空燃比フィードバッ
ク補正係数αの演算の様子を図3のフローチャートに従
って詳細に説明する。
Further, the control unit 12 outputs an injection pulse signal having a pulse width corresponding to the calculated fuel injection amount Ti to the fuel injection valve 6 at a predetermined timing, so that the fuel supply amount to the engine is electronically controlled. Control. here,
The manner in which the control unit 12 calculates the air-fuel ratio feedback correction coefficient α will be described in detail with reference to the flowchart of FIG.

【0018】尚、本実施例において、空燃比フィードバ
ック制御手段,応答遅れ時間演算手段,空燃比偏差演算
手段,補正値及び補正時間設定手段,応答遅れ補正手段
としての機能は、前記図3のフローチャートに示すよう
にコントロールユニット12がソフトウェア的に備えてい
る。図3のフローチャートにおいて、まず、ステップ1
(図中ではS1としてある。以下同様)では、酸素セン
サ16の出力電圧Vsを読み込む。
In this embodiment, the functions of the air-fuel ratio feedback control means, the response delay time calculation means, the air-fuel ratio deviation calculation means, the correction value and correction time setting means, and the response delay correction means are shown in the flowchart of FIG. As shown in (1), the control unit 12 is provided as software. In the flowchart of FIG.
In step S1 in the figure, the output voltage Vs of the oxygen sensor 16 is read.

【0019】次のステップ2では、前記読み込んだ出力
電圧Vsと、理論空燃比相当の基準電圧とを比較し、実
際の空燃比が目標空燃比である理論空燃比に対してリッ
チであるかリーンであるかを判別する。ここで、出力電
圧Vsが基準電圧よりも高く、実際の空燃比が理論空燃
比よりもリッチであると判別されたときには、ステップ
3へ進んで、かかるリッチ判別が初回(リーンからリッ
チへの反転時)であるか否かを判別する。
In the next step 2, the read output voltage Vs is compared with a reference voltage corresponding to the stoichiometric air-fuel ratio to determine whether the actual air-fuel ratio is rich or lean with respect to the stoichiometric air-fuel ratio as the target air-fuel ratio. Is determined. Here, when it is determined that the output voltage Vs is higher than the reference voltage and the actual air-fuel ratio is richer than the stoichiometric air-fuel ratio, the process proceeds to step 3, and the rich determination is performed for the first time (inversion from lean to rich). ) Is determined.

【0020】そして、リッチ判別の初回であるときに
は、ステップ4へ進み、所定の比例分Pを前回までの空
燃比フィードバック補正係数αから減算し、初回でない
ときには、ステップ5へ進み、所定の積分分ΔIを前回
までの空燃比フィードバック補正係数αから減算する。
ここで、前記空燃比フィードバック補正係数αの減少変
化は、燃料噴射量Tiを減少補正することになり、かか
る減少補正によって理論空燃比に対するリッチ状態が解
消されるまで、ステップ5における積分制御が繰り返さ
れ、徐々に空燃比をリーン化させていく。
If it is the first time of the rich determination, the process proceeds to step 4, where a predetermined proportional component P is subtracted from the air-fuel ratio feedback correction coefficient α up to the previous time. ΔI is subtracted from the previous air-fuel ratio feedback correction coefficient α.
Here, the decreasing change of the air-fuel ratio feedback correction coefficient α causes the fuel injection amount Ti to be reduced, and the integration control in step 5 is repeated until the reduction state eliminates the rich state with respect to the stoichiometric air-fuel ratio. And gradually make the air-fuel ratio lean.

【0021】尚、前記比例分P及び積分分Iは、機関負
荷等の情報に基づいて変化させる構成であっても良い。
同様に、ステップ2で、出力電圧Vsが基準電圧よりも
低く理論空燃比よりもリーンであると判別されたときに
は、ステップ6でリーン判別の初回であるか否かを判別
させ、初回であればステップ7で比例制御により補正係
数αを増大させ、初回でない場合にはステップ8で積分
制御により補正係数αを増大させる。
The proportional component P and the integral component I may be changed on the basis of information such as the engine load.
Similarly, when it is determined in step 2 that the output voltage Vs is lower than the reference voltage and leaner than the stoichiometric air-fuel ratio, it is determined in step 6 whether or not the lean determination is the first time. In step 7, the correction coefficient α is increased by the proportional control, and when it is not the first time, the correction coefficient α is increased in the step 8 by the integral control.

【0022】このように、ステップ1〜ステップ8は、
空燃比フィードバック補正係数αを比例・積分制御する
ことで、実際の空燃比が目標空燃比に近づくように燃焼
噴射量を制御するよう構成されている(図4参照)。上
記のようにして比例積分制御によって空燃比フィードバ
ック補正係数αを設定すると、次のステップ9では、空
燃比フィードバック補正係数αの制御結果が酸素センサ
16によって空燃比変化として検出されるまでの応答遅れ
時間(空燃比フィードバック制御系の応答遅れ時間)を
演算する。
Thus, steps 1 to 8 are
By performing proportional / integral control on the air-fuel ratio feedback correction coefficient α, the fuel injection amount is controlled so that the actual air-fuel ratio approaches the target air-fuel ratio (see FIG. 4). When the air-fuel ratio feedback correction coefficient α is set by the proportional integral control as described above, in the next step 9, the control result of the air-fuel ratio feedback correction coefficient α is
A response delay time (a response delay time of the air-fuel ratio feedback control system) until the air-fuel ratio change is detected is calculated by 16.

【0023】即ち、空燃比フィードバック補正係数αを
制御しても、その補正係数αを用いた燃料噴射が実際に
行われるまでの遅れ時間があり、更に、前記燃料噴射に
よって形成された混合気がシリンダ内に吸引されるまで
の吸気輸送時間,シリンダ内におけるガスの滞留時間,
シリンダから排出された排気が酸素センサ16に到達する
までの排気輸送時間,排気中酸素濃度の変化に対して実
際に酸素センサ16の出力が変化するまでのセンサ単体の
応答遅れ時間などが存在し、これらの総和によって求め
られる応答遅れ時間だけ経過しないと、実際には空燃比
フィードバック制御の結果を排気中酸素濃度変化として
捉えることができず、これが、本実施例における空燃比
フィードバック制御系の応答遅れ時間となる。
That is, even if the air-fuel ratio feedback correction coefficient α is controlled, there is a delay time until the fuel injection using the correction coefficient α is actually performed. Intake transport time before being sucked into the cylinder, gas residence time in the cylinder,
There is an exhaust transportation time until the exhaust gas discharged from the cylinder reaches the oxygen sensor 16, and a response delay time of the sensor itself until the output of the oxygen sensor 16 actually changes in response to a change in the oxygen concentration in the exhaust gas. However, if the response delay time obtained by the sum of these times does not elapse, the result of the air-fuel ratio feedback control cannot actually be regarded as the change in the oxygen concentration in the exhaust gas, which is the response of the air-fuel ratio feedback control system in the present embodiment. It will be a delay time.

【0024】尚、前記応答遅れ時間が存在するために、
前記比例積分制御における制御定数(比例分P,積分分
ΔI)は、前記応答遅れ時間に略等しい時定数となるよ
うに設定されている。ここで、燃料噴射が行われるまで
の応答遅れ時間は、現在のクランク角度と噴射タイミン
グのクランク角度との差に基づいて演算でき、また、シ
リンダ内のガス残留時間は機関回転速度Neに依存して
変化するから、機関回転速度Neに応じて前記残留時間
を記憶したマップを設け、前記マップを参照して残留時
間を求め、前記噴射までの応答時間と前記残留時間との
和を応答遅れ時間Aとする。
Incidentally, since the response delay time exists,
The control constants (proportional amount P and integral amount ΔI) in the proportional integral control are set to be time constants substantially equal to the response delay time. Here, the response delay time until the fuel injection is performed can be calculated based on the difference between the current crank angle and the crank angle at the injection timing, and the gas residual time in the cylinder depends on the engine rotation speed Ne. Therefore, a map in which the residual time is stored according to the engine speed Ne is provided, the residual time is obtained by referring to the map, and the sum of the response time until the injection and the residual time is determined as the response delay time. A.

【0025】尚、本実施例では、吸気系における応答遅
れ時間を構成する吸気輸送時間を前記時間Aに含めてい
ないが、これは、前記吸気輸送時間による低応答性が問
題となる過渡運転時には、前記吸気輸送遅れを見込んだ
燃料噴射量Tiの過渡補正(壁流補正)が前記各種補正
係数COEFに含まれる加減速補正係数によって施され
ることを前提としたためである。従って、前記時間A
に、吸入空気流量Qに依存する吸気輸送遅れ時間を加算
しても良い。
In this embodiment, the intake air transport time which constitutes the response delay time in the intake system is not included in the time A. However, this is necessary during transient operation in which low responsiveness due to the intake air transport time becomes a problem. This is because it is premised that the transient correction (wall flow correction) of the fuel injection amount Ti in consideration of the intake transport delay is performed by the acceleration / deceleration correction coefficient included in the various correction coefficients COEF. Therefore, the time A
Alternatively, an intake air transport delay time depending on the intake air flow rate Q may be added.

【0026】一方、前記排気輸送遅れは排気流量に依存
するが、この排気流量に代替して吸入空気流量Qを用
い、予め吸入空気流量Qに応じて排気輸送遅れ時間を記
憶したマップを参照して、現時点での排気輸送遅れ時間
Bを求める。更に、雰囲気中の酸素濃度変化に対する酸
素センサ16の出力変化の遅れ時間は、固定時間tO2とし
て記憶されており、これを遅れ時間Cにセットする。
On the other hand, although the exhaust gas transport delay depends on the exhaust gas flow rate, an intake air flow rate Q is used instead of this exhaust gas flow rate, and a map in which the exhaust gas transport delay time is stored in advance according to the intake air flow rate Q is referred to. Then, the current exhaust transportation delay time B is obtained. Further, a delay time of a change in the output of the oxygen sensor 16 with respect to a change in the oxygen concentration in the atmosphere is stored as a fixed time t O2 , and is set as the delay time C.

【0027】次のステップ10では、上記のようにして個
別に設定された応答遅れ時間A,B,Cの総和を、空燃
比フィードバック制御系の応答遅れ時間としてTφにセ
ットする。また、次のステップ11では、目標空燃比相当
の補正係数αの値αSTと、現在の補正係数αとの偏差を
求め、これを目標空燃比と実際の空燃比との偏差に相当
する値としてΔαにセットする。
In the next step 10, the sum of the response delay times A, B, and C individually set as described above is set to Tφ as the response delay time of the air-fuel ratio feedback control system. Further, in the next step 11, a deviation between the value α ST of the correction coefficient α corresponding to the target air-fuel ratio and the current correction coefficient α is obtained, and this is calculated as a value corresponding to the deviation between the target air-fuel ratio and the actual air-fuel ratio. Is set to Δα.

【0028】前記目標空燃比相当の補正係数αSTは、空
燃比のリッチ・リーン反転毎に求められる補正係数αの
最新の最大値a・最小値bの平均(a+b)/2として
求める。即ち、補正係数αがあるレベルを中心として制
御されている安定状態から機関が過渡運転されて空燃比
のずれが生じ、かかる空燃比ずれを補償すべく補正係数
αが比例積分制御によって増大方向又は減少方向に大き
く制御されるようになると、前記平均値に対して補正係
数αが比較的大きな偏差を有するようになるから、前記
偏差を実際の空燃比と目標空燃比との偏差と見做すもの
である。
The correction coefficient α ST corresponding to the target air-fuel ratio is obtained as the average (a + b) / 2 of the latest maximum value a and minimum value b of the correction coefficient α obtained for each rich / lean inversion of the air-fuel ratio. That is, the engine is transiently operated from a stable state in which the correction coefficient α is controlled around a certain level to cause a deviation in the air-fuel ratio, and the correction coefficient α is increased in proportion to the air-fuel ratio by proportional integral control in order to compensate for the air-fuel ratio deviation. When the control is largely performed in the decreasing direction, the correction coefficient α has a relatively large deviation from the average value. Therefore, the deviation is regarded as a deviation between the actual air-fuel ratio and the target air-fuel ratio. Things.

【0029】ここで、理論空燃比のみを検出し得る酸素
センサ16に代えて、リッチからリーン領域を全域に渡っ
て計測し得る公知の全領域空燃比センサを用いる場合に
は、前記Δαを、目標空燃比に対応する所定の出力レベ
ルと、現在のセンサ出力との偏差とすれば良く、空燃比
センサを理論空燃比センサ(酸素センサ16)に限定する
ものではない。前記全領域空燃比センサを用いる構成と
すれば、空燃比偏差を定量的に検知できるから、酸素セ
ンサ16を用いる場合に比べ、後述する応答遅れ補正によ
る高応答化の効果が大きくなる。
Here, when a known full-range air-fuel ratio sensor capable of measuring the entire region from rich to lean is used in place of the oxygen sensor 16 capable of detecting only the stoichiometric air-fuel ratio, Δα is calculated as follows: The air-fuel ratio sensor may be a deviation between a predetermined output level corresponding to the target air-fuel ratio and the current sensor output, and the air-fuel ratio sensor is not limited to the stoichiometric air-fuel ratio sensor (oxygen sensor 16). With the configuration using the full-range air-fuel ratio sensor, the air-fuel ratio deviation can be quantitatively detected, so that the effect of increasing the response by the later-described response delay correction is greater than when the oxygen sensor 16 is used.

【0030】尚、前記全領域空燃比センサを用いる場合
には、前記ステップ1〜8の比例積分制御においては、
比例分を実際の空燃比と目標空燃比との偏差に応じて設
定させ、かかる偏差の積分値に基づいて積分分を設定さ
せれば良い。上記のようにして応答遅れ時間Tφ、及
び、空燃比偏差を示すΔαが求められると、次のステッ
プ12では、前記応答遅れ時間Tφと空燃比段差Δαとに
基づいて、補正係数αの補正値β及び補正時間Txを設
定する。
When the full-range air-fuel ratio sensor is used, in the proportional-integral control in steps 1 to 8,
The proportional component may be set according to the deviation between the actual air-fuel ratio and the target air-fuel ratio, and the integral component may be set based on the integral value of the deviation. When the response delay time Tφ and Δα indicating the air-fuel ratio deviation are obtained as described above, in the next step 12, the correction value of the correction coefficient α is calculated based on the response delay time Tφ and the air-fuel ratio step Δα. β and the correction time Tx are set.

【0031】即ち、図5に示すように、前記応答遅れ時
間Tφと空燃比偏差Δαと積は、前記応答遅れがないと
した場合の必要補正量に相当することになり、かかる必
要補正量を直ちに付加すれば見掛け上は応答遅れによる
影響を排除できる。しかしながら、前記必要補正量を短
期間のうちに付加すると、オーバーシュートを発生した
りするので、オーバーシュートの回避と応答性向上とを
バランスさせた時間Tx内で必要補正量(Tφ×Δα)
が付加されるように、必要補正量(Tφ×Δα)を、補
正付加時間Txと補正値βとに変換する。
That is, as shown in FIG. 5, the product of the response delay time Tφ and the air-fuel ratio deviation Δα corresponds to the necessary correction amount when there is no response delay. If added immediately, the effect of the response delay can be apparently eliminated. However, if the required correction amount is added in a short period of time, an overshoot may occur. Therefore, the required correction amount (Tφ × Δα) within a time Tx that balances the avoidance of overshoot and the improvement of responsiveness.
Is converted into a correction addition time Tx and a correction value β so that is added.

【0032】次のステップ13では、最新にステップ12で
設定された補正付加時間Txが経過したか否かを判別
し、補正付加時間Tx内であるときには、ステップ14へ
進み、補正付加時間Txと同時に設定した補正値βを比
例積分制御された補正係数αに加算し、該加算値で基本
燃料噴射量Tpを補正して燃料噴射量Ti(←Tp×C
OEF×(α+β)+Ts)を演算させるようにする。
In the next step 13, it is determined whether or not the correction additional time Tx set in the latest step 12 has elapsed. When the correction additional time Tx is within the correction additional time Tx, the process proceeds to step 14, where the correction additional time Tx is determined. At the same time, the correction value β that has been set is added to the correction coefficient α that has been subjected to the proportional-integral control, and the basic fuel injection amount Tp is corrected with the added value to obtain the fuel injection amount Ti (← Tp × C
OEF × (α + β) + Ts) is calculated.

【0033】また、最新に設定された前記補正付加時間
Txが経過すると、ステップ15へ進み前記補正値βの付
加を停止し、比例積分制御される補正係数αのみによっ
て基本燃料噴射量Tpを補正して燃料噴射量Ti(←T
p×COEF×α+Ts)を演算させるようにする。従
って、目標空燃比付近に安定している場合には、通常に
比例積分制御される補正係数αのみによって、燃料噴射
量を補正する。
When the latest correction addition time Tx has elapsed, the routine proceeds to step 15, where the addition of the correction value β is stopped, and the basic fuel injection amount Tp is corrected only by the correction coefficient α controlled by the proportional-integral control. And the fuel injection amount Ti (← T
p × COEF × α + Ts). Therefore, when the target air-fuel ratio is stable near the target air-fuel ratio, the fuel injection amount is corrected only by the correction coefficient α that is normally controlled by proportional integral control.

【0034】このように、応答遅れ分の補正値βを補正
係数αに加えるようにすれば、空燃比フィードバック制
御系の高応答化が図られ、例えば図6に示すように、過
渡運転に伴って空燃比ずれが生じたときに、目標空燃比
(理論空燃比)相当値へ補正係数αを速やかに収束させ
ることができ、以て、過渡運転時の排気性状を改善でき
る。
As described above, if the correction value β for the response delay is added to the correction coefficient α, the response of the air-fuel ratio feedback control system is increased, and for example, as shown in FIG. Thus, when an air-fuel ratio deviation occurs, the correction coefficient α can be promptly converged to a value corresponding to the target air-fuel ratio (the stoichiometric air-fuel ratio), thereby improving the exhaust properties during the transient operation.

【0035】尚、本実施例では、理論空燃比のみを検出
する酸素センサ16を用いたが、前述のように、全領域空
燃比センサを用いることもでき、酸素センサ16よりも一
般に高価である全領域空燃比センサを設けることでコス
トアップにはなるが、目標空燃比に対する偏差を直接的
に求めることができるので、一層応答性良く空燃比をフ
ィードバック制御できることになる。
In this embodiment, the oxygen sensor 16 for detecting only the stoichiometric air-fuel ratio is used. However, as described above, an air-fuel ratio sensor for the entire region can be used, and is generally more expensive than the oxygen sensor 16. Although the cost is increased by providing the full-range air-fuel ratio sensor, the deviation from the target air-fuel ratio can be directly obtained, so that the air-fuel ratio can be feedback-controlled with higher responsiveness.

【0036】また、本実施例では、空燃比フィードバッ
ク補正係数αを比例積分によって制御したが、比例積分
制御に限定されるものではない。
Further, in the present embodiment has been controlled by a proportional integral air-fuel ratio feedback correction coefficient alpha, it has name limited to proportional integral control.

【0037】また、本実施例では、目標空燃比を理論空
燃比としたが、全領域空燃比センサを用い、理論空燃比
以外を目標空燃比とする構成であっても良いことは明ら
かである。
Further, in the present embodiment, the target air-fuel ratio is set to the stoichiometric air-fuel ratio. However, it is obvious that a configuration may be adopted in which the target air-fuel ratio is set to a value other than the stoichiometric air-fuel ratio by using a full-range air-fuel ratio sensor. .

【0038】[0038]

【発明の効果】以上説明したように本発明によると、排
気中の特定気体成分の濃度の検出に基づいて実際の空燃
比を検知し、かかる検出結果に基づいて燃料供給量をフ
ィードバック制御する空燃比フィードバック制御におい
て、制御系の応答遅れ分を補正して、空燃比フィードバ
ック制御の高応答化を図れることができ、以て、目標空
燃比に対するずれが生じる機関の過渡運転時に、速やか
に目標空燃比に収束させ、過渡運転時の排気性状を改善
できるという効果がある。
As described above, according to the present invention, the actual air-fuel ratio is detected based on the detection of the concentration of the specific gas component in the exhaust gas, and the fuel supply amount is feedback-controlled based on the detection result. In the fuel ratio feedback control, the response delay of the control system can be corrected, and the response of the air-fuel ratio feedback control can be increased, so that the target air-fuel ratio can be quickly changed during the transient operation of the engine in which a deviation from the target air-fuel ratio occurs. This has the effect of converging on the fuel ratio and improving the exhaust properties during transient operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】本発明の一実施例を示すシステム概略図。FIG. 2 is a system schematic diagram showing one embodiment of the present invention.

【図3】空燃比フィードバック補正係数の設定を示すフ
ローチャート。
FIG. 3 is a flowchart illustrating setting of an air-fuel ratio feedback correction coefficient.

【図4】空燃比フィードバック補正係数の比例積分制御
の様子を示すタイムチャート。
FIG. 4 is a time chart showing a state of proportional integral control of an air-fuel ratio feedback correction coefficient.

【図5】実施例における補正値βの設定特性を説明する
ための線図。
FIG. 5 is a diagram for explaining setting characteristics of a correction value β in the embodiment.

【図6】実施例における応答遅れ補正の様子を示すタイ
ムチャート。
FIG. 6 is a time chart showing how a response delay is corrected in the embodiment.

【符号の説明】[Explanation of symbols]

1 機関 6 燃料噴射弁 12 コントロールユニット 13 エアフローメータ 14 クランク角センサ 15 水温センサ 16 酸素センサ 1 engine 6 fuel injection valve 12 control unit 13 air flow meter 14 crank angle sensor 15 water temperature sensor 16 oxygen sensor

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F02D 41/14 310 F02D 41/34Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) F02D 41/14 310 F02D 41/34

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】機関吸入混合気の空燃比によって変化する
排気中の特定気体成分の濃度に感応して出力値が変化す
る空燃比センサと、 該空燃比センサの出力値に基づいて、実際の空燃比を目
標空燃比に近づけるべく燃料供給手段による燃料供給量
を補正するための空燃比フィードバック補正値を制御す
る空燃比フィードバック制御手段と、 該空燃比フィードバック制御手段によるフィードバック
制御系における応答遅れ時間を機関の運転条件に基づい
演算する応答遅れ時間演算手段と、 実際の空燃比と目標空燃比との偏差を示す値を、前記空
燃比センサの出力値又は前記空燃比フィードバック補正
値と前記目標空燃比相当の値との偏差として演算する空
燃比偏差演算手段と、 前記演算された応答遅れ時間と空燃比偏差とに基づい
、前記空燃比フィードバック補正値の補正値と補正時
間とを設定する補正値及び補正時間設定手段と、 前記設定された補正時間内であるときに前記空燃比フィ
ードバック補正値を前記補正値で補正設定する 応答遅れ
補正手段と、 を含んで構成されたことを特徴とする内燃機関の空燃比
フィードバック制御装置。
An air-fuel ratio sensor whose output value changes in response to the concentration of a specific gas component in exhaust gas that changes according to the air-fuel ratio of an engine intake air-fuel mixture; and an actual air-fuel ratio sensor based on the output value of the air-fuel ratio sensor. Air-fuel ratio feedback control means for controlling an air-fuel ratio feedback correction value for correcting the fuel supply amount by the fuel supply means so as to bring the air-fuel ratio closer to the target air-fuel ratio; and a response delay time in a feedback control system by the air-fuel ratio feedback control means. Based on engine operating conditions
A response delay time computing means for computing Te, the actual value that indicates the deviation between the air-fuel ratio and the target air-fuel ratio, the output value or the air-fuel ratio feedback correction of the air-fuel ratio sensor
Air-fuel ratio deviation calculating means for calculating a deviation between the air-fuel ratio deviation value and the value corresponding to the target air-fuel ratio; and a correction value for the air-fuel ratio feedback correction value based on the calculated response delay time and air-fuel ratio deviation.
A correction value and correction time setting means for setting the air-fuel ratio value when the air-fuel ratio is within the set correction time.
An air-fuel ratio feedback control device for an internal combustion engine, comprising: response delay correction means for correcting and setting a feedback correction value with the correction value .
【請求項2】前記応答遅れ時間演算手段が、機関回転速
度に応じてシリンダ内ガス滞留時間を演算すると共に、
機関の吸入空気流量に応じて排気輸送遅れ時間を演算
し、前記シリンダ内ガス滞留時間と前記排気輸送遅れ時
間と予め記憶された空燃比センサ単体の応答遅れ時間と
の総和を、前記応答遅れ時間として演算することを特徴
とする請求項1記載の内燃機関の空燃比フィードバック
制御装置。
2. The method according to claim 1, wherein said response delay time calculating means includes an engine speed.
Calculate the gas residence time in the cylinder according to the degree,
Calculate exhaust transport delay time according to engine intake air flow rate
When the gas residence time in the cylinder and the exhaust transportation delay
And the response delay time of the air-fuel ratio sensor alone stored in advance and
2. The air-fuel ratio feedback control device for an internal combustion engine according to claim 1 , wherein the sum of the above is calculated as the response delay time .
JP4272971A 1992-10-12 1992-10-12 Air-fuel ratio feedback control device for internal combustion engine Expired - Fee Related JP2841001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4272971A JP2841001B2 (en) 1992-10-12 1992-10-12 Air-fuel ratio feedback control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4272971A JP2841001B2 (en) 1992-10-12 1992-10-12 Air-fuel ratio feedback control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH06257490A JPH06257490A (en) 1994-09-13
JP2841001B2 true JP2841001B2 (en) 1998-12-24

Family

ID=17521349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4272971A Expired - Fee Related JP2841001B2 (en) 1992-10-12 1992-10-12 Air-fuel ratio feedback control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2841001B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100373044B1 (en) * 2000-10-30 2003-02-19 현대자동차주식회사 Method for learning of fuel feedback gain of a car
JP4775199B2 (en) * 2006-09-13 2011-09-21 株式会社デンソー Air-fuel ratio detection device for internal combustion engine
DE102012201033A1 (en) * 2012-01-25 2013-07-25 Robert Bosch Gmbh Method and control unit for determining a dead time of an exhaust gas sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313641A (en) * 1988-06-14 1989-12-19 Mitsubishi Motors Corp Air/fuel ratio controller for internal combustion engine
JPH0726568B2 (en) * 1988-12-09 1995-03-29 日産自動車株式会社 Air-fuel ratio controller for engine
JP2712821B2 (en) * 1990-11-22 1998-02-16 トヨタ自動車株式会社 Fuel injection amount control device for internal combustion engine

Also Published As

Publication number Publication date
JPH06257490A (en) 1994-09-13

Similar Documents

Publication Publication Date Title
JP2858288B2 (en) Self-diagnosis device in air-fuel ratio control device of internal combustion engine
US4800857A (en) Apparatus for learn-controlling air-fuel ratio for internal combustion engine
US6397830B1 (en) Air-fuel ratio control system and method using control model of engine
JP2841001B2 (en) Air-fuel ratio feedback control device for internal combustion engine
US5363831A (en) Method of and an apparatus for carrying out feedback control on an air-fuel ratio in an internal combustion engine
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
US5671720A (en) Apparatus and method for controlling air-fuel ratio of an internal combustion engine
JP2596054Y2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
US4646699A (en) Method for controlling air/fuel ratio of fuel supply for an internal combustion engine
JP2847454B2 (en) Air-fuel ratio detection device for internal combustion engine
JP2958595B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP2715208B2 (en) Air-fuel ratio learning control device for internal combustion engine
JPH0746750Y2 (en) Air-fuel ratio controller for engine
JP3170046B2 (en) Air-fuel ratio learning method for internal combustion engine
JP2527321Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2592327B2 (en) Fuel supply control device for internal combustion engine
JPH01151748A (en) Electronic control fuel injection device for internal combustion engine
JPH05248285A (en) Air-fuel ratio control device for internal combustion engine
JPH0953495A (en) Air fuel ratio control device of internal combustion engine
JPH05214991A (en) Air-fuel ratio control device for internal combustion engine
JPH11182281A (en) Engine control device
JPS62210232A (en) Fuel feed control device
JPH09195754A (en) Apparatus for determining catalyst activity for internal combustion engine

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees